
A SIXTEEN-RELATOR PRESENTATION OF
AN INFINITE HYPERBOLIC KAZHDAN GROUP

PIERRE-EMMANUEL CAPRACE

Abstract. We provide an explicit presentation of an infinite hyperbolic Kazhdan
group with 4 generators and 16 relators of length at most 73. That group acts
properly and cocompactly on a hyperbolic triangle building of type (3, 4, 4). We
also point out a variation of the construction that yields examples of lattices in
Ã2-buildings admitting non-Desarguesian residues of arbitrary prime power order.

1. Hyperbolic Kazhdan groups

On ne peut pas faire plus concis!

Raymond Devos, Matière à rire, 1991

The existence of infinite Gromov hyperbolic groups enjoying Kazhdan’s prop-
erty (T) has been known since the origin of the theory of hyperbolic groups, as a
combination of the following results.

• Every simple Lie group possesses a cocompact lattice, by [Bor63];
• the rank one simple Lie groups Sp(n, 1) (with n ≥ 2) and F−204 have (T), by

[Kos75] (see also [BdlHV08, §3.3]);
• if a locally compact group G has property (T), then so does every lattice Γ

in G by [Kaz67] (see also [BdlHV08, Theorem 1.7.1]);
• a cocompact lattice in a rank one simple Lie group is Gromov hyperbolic,

since it is virtually the fundamental group of a closed Riemannian manifold
of negative sectional curvature, see [Gro87].

The smallest known dimension of a negatively curved closed manifold M such that
π1(M) has (T) is 8 (namely when M is covered by the symmetric space of Sp(2, 1)),
and I am not aware of any known explicit presentation of the fundamental group
π1(M) in that case. This is a very interesting and natural problem. By the Hy-
perbolization Theorem (see [AFW15, Theorem 1.7.5] and references therein), the
fundamental group of a negatively curved closed manifold M of dimension 1, 2 or 3
is a lattice in R or O(2, 1) or O(3, 1). Therefore it cannot be a Kazhdan group by
[BdlHV08, Theorem 2.7.2] (see also [Fuj99] for a more general result on the failure
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of property (T) for 3-manifold groups). Whether there exists a negatively curved
closed manifold M of dimension 4, 5, 6 or 7 with a Kazhdan fundamental group is
another intriguing open problem. M. Kapovich pointed out to me that the related
problem of finding objects of either of the following kinds, is also open:

• a nonpositively curved closed manifold, not homeomorphic to a locally sym-
metric space, and with a Kazhdan fundamental group;
• a Kazhdan Poincaré duality group not isomorphic to a lattice in a connected

Lie group.

The possibility to write down an explicit presentation of an infinite hyperbolic
Kazhdan group was first realized in [BS97, Corollary 2], where the geometric ap-
proach to property (T) via the spectral gap of finite graphs is exploited (see [BdlHV08,
Chapter 5] for an exposition of that approach including a historical account). The
graphs used in [BS97] are certain Cayley graphs of SL2(Z/nZ), which satisfy the re-
quired spectral gap condition for n sufficiently large. An alternative source of finite
Cayley graphs that enjoy the required spectral condition is suggested by A. Valette
in his review of [BS97], but I am not aware of any reference where that suggestion
was incarnated into an explicit presentation of a hyperbolic Kazhdan group. A dif-
ferent construction is highlighted by M. Bourdon in [Bou00, §1.5.3]. It gives rise
to cocompact lattices in certain Gromov hyperbolic Fuchsian buildings, and also
relies on the geometric approach to property (T). The advantage is that the finite
graphs on which the spectral gap condition is tested are finite generalized polygons,
and the eigenvalues of their incidence matrix is explicitly known by classical results
from [FH64]. Nevertheless, the corresponding group presentations one obtains from
that construction take several hundreds relations. The variations on Bourdon’s con-
struction described in [Ś01] also seem to require a rather large number of relators.
Other examples of infinite hyperbolic Kazhdan groups are studied in [LMW], but
no explicit short presentation is recorded there.

Cornelia Drutu asked me whether it was possible to use buildings in order to
construct an explicit short presentation of an infinite hyperbolic group with Kazh-
dan’s property (T). As explained in [DK17, Section 19.8]: “while ‘generic’ finitely
presented groups are infinite and satisfy Property (T), finding explicit and reason-
ably short presentations presents a bit of a challenge”. In that context, targeting
hyperbolic buildings is especially natural in view of the fact that there exist five-
relator presentations of infinite Kazhdan groups acting properly and cocompactly
on buildings of type Ã2, see [Ess13, Examples following Theorem 5.8]. Note that
those groups cannot be hyperbolic since they are quasi-isometric to a 2-dimensional
Euclidean building. The shortest presentation I could find in attempting to answer
her question is the following.
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Theorem 1. The group

E = 〈x, y, z, t, r | x7, y7, [x, y]z−1, [x, z], [y, z],

t2, r73, trtr,

[x2yz−1, t], [xyz3, tr], [x3yz2, tr17],

[x, tr−34], [y, tr−32], [z, tr−29],

[x−2yz, tr−25], [x−1yz−3, tr−19], [x−3yz−2, tr−11]〉,

is an infinite Gromov hyperbolic group enjoying Kazhdan’s property (T). It acts
faithfully, properly, cocompactly (not type-preservingly) on a thick hyperbolic Fuch-
sian building of type (3, 4, 4). In particular E is quasi-isometrically rigid by [Xie06].

In view of the relation [x, y] = z, the generator z is redundant, and the presen-
tation of E given in Theorem 1 is equivalent to a presentation with 4 generators
and 16 relators. This modification increases the length of some of the relators, but
one checks that the maximal length of a relator in that 16-relator presentation of E
remains equal to 73.

The group E may be viewed as the fundamental group of a simple complex of finite
groups, in the sense of [BH99, Chapter II.12]. The underlying simplicial complex Y
has 11 vertices, denoted by a, b, c1, . . . , c9. It has 19 edges and 9 faces, spanned by
abci for i = 1, . . . , 9. As a metric space, it can be viewed as nine hyperbolic triangles
with angles π/2, π/4, π/6, glued along their hypothenuse [ab] (the triangle abci is
depicted in Figure 1). The angle at a is π/6 and the angle at b is π/4. The vertex
group Ea is the dihedral group of order 146; in the above presentation of E it is
generated by r and t. The vertex group Eb is the Heisenberg group over F7, of order
343; in the presentation above it is generated by x and y. The vertex group Eci is the
cyclic group of order 14 for i = 1, . . . , 9. The edge groups Eaci (resp. Ebci) are cyclic
of order 2 (resp. 7); they are generated by t, tr, tr17, tr−34, tr−32, tr−29, tr−25, tr−19

and tr−11 (resp. x2yz−1, xyz3, x3yz2, x, y, z, x−2yz, x−1yz−3 and x−3yz−2). The edge
group Eab and the face groups Eabci are trivial.

π/6

π/2

π/4

C14

ci

C2 C7

D146

a

H(F7)

b

1

Figure 1. The triangle abci
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The proof of Theorem 1 consists of the following steps.

• The link at a in the local development of Y around a is the first barycentric
subdivision of the incidence graph of the projective plane over the field F8

of order 8. In particular that link has girth 12, so the Link Condition is
satisfied at a. This step is achieved by Example 2 and Proposition 3 below.
• The link at b in the local development of Y around b is the incidence graph of

a generalized quadrangle of order (8, 6). In particular that link has girth 8,
so the Link Condition is satisfied at b. This step is achieved by Corollary 5
below.
• The link at ci is the complete bipartite graph K2,7, its girth is 4, so the Link

Condition is satisfied at ci for every i.
• By the first three steps, the complex of groups Y is developable, and its

universal cover Ỹ is a simplicial complex carrying a CAT(−1) metric on
which the fundamental group E acts faithfully, properly and cocompactly
by isometric automorphisms, see [BH99, Theorem II.12.28]. Moreover, since

all the links of Ỹ are 1-dimensional spherical buildings, it follows from [Tit81,

Theorem 1] that Ỹ is a 2-dimensional building. It is a hyperbolic Fuchsian
building of type (2, 4, 6) and the E-action on it is type-preserving. However

Ỹ is not thick as a building of type (2, 4, 6). If one discards the edges of

Ỹ contained in exactly two 2-simplices, then Ỹ becomes a thick building of
type (3, 4, 4) on which E acts in a non-type-preserving way.
• The final step is to check that E has property (T). This is achieved using

a straightforward computation based on the criterion established by I. Op-
penheim in [Opp15], see Proposition 6 below. This completes the proof of
Theorem 1.

2. Projective planes and dihedral groups

We recall that a graph is the incidence graph of a projective plane if and only
if it is bipartite, has diameter 3 and girth 6. We also recall that a difference set
in a group G is a subset ∆ of G such that every non-trivial element g of G can be
written in a unique way as g = σ−1τ with σ, τ ∈ ∆. Notice that G must have order
q2 + q + 1 where q = |∆| − 1.

Example 2. The set

∆ = {0, 1, 17, 39, 41, 44, 48, 54, 62}
= {0, 1, 17,−34,−32,−29,−25,−19,−11}

is a difference set in the cyclic group Z/73Z.

Every difference set in a group G gives rise to a projective plane; conversely, every
projective plane admitting an automorphism group acting sharply transitively on
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its points gives rise to a difference set. Moreover, for every prime power q, the
Desarguesian plane of order q, i.e. the projective plane over the field Fq of
order q, has a cyclic automorphism group acting sharply transitively on its points.
In particular the cyclic group of order q2 + q + 1 has a difference set. We refer to
[BCL, Lemma D.1] and [Dem68, pp. 105–106] for proofs of those assertions.

Given a group G and a collection {Pi | i ∈ I} of subgroups of G, the coset graph
of G with respect to {Pi | i ∈ I} is the bipartite graph whose vertex set is the union
of G with

⋃
i∈I G/Pi, and where the element g ∈ G forms an edge with the coset

hPi if and only if g ∈ hPi.

Proposition 3. Let q be a prime power and let n = q2 + q + 1. Let D2n = 〈r, t |
rn, t2, trtr〉 be the dihedral group of order 2n, and let ∆ be a difference set in the
cyclic group Z/nZ. Then:

(i) The Cayley graph of D2n with respect to the set {trσ | σ ∈ ∆} is the incidence
graph of a projective plane of order q.

(ii) The coset graph of D2n with respect to the subgroups {〈trσ〉 | σ ∈ ∆} is the first
barycentric subdivision of the incidence graph of a projective plane of order q.

Proof. Since any reflection in D2n has non-trivial image in the quotient D2n/〈r〉, it
follows that any loop in the Cayley graph G of D2n with respect to the set {trσ |
σ ∈ ∆} has even length. In particular G is bipartite. If G contains a loop of length 4
through the identity, then there exist σ1, . . . , σ4 ∈ ∆ with 1 = trσ1trσ2trσ3trσ4 .
Hence r−σ1+σ2r−σ3+σ4 = 1. Since ∆ is a difference set, we must have σ1 = σ4 and
σ2 = σ3, so that the loop was a backtracking path. Thus G has girth at least 6.
Observing that G is a vertex-transitive bipartite graph of degree q+ 1, we infer that
the the total number of vertices at distance exactly 2 from the identity vertex in G
is q(q + 1). Since the total number of vertices of G is 2(q2 + q + 1) and since G is
bipartite, we deduce that G has diameter 3 and girth 6. This proves assertion (i).
Assertion (ii) follows from (i) since the coset graph in question is the first barycentric
subdivision of G. �

3. Generalized quadrangles and Heisenberg groups

We recall that a graph is the incidence graph of a generalized quadrangle if and
only if it is bipartite, has diameter 4 and girth 8. The order of a finite generalized
quadrangle is the pair (s, t) such that the vertex degrees of the incidence graph of
the quadrangle are s+ 1 and t+ 1.

The following observation is closely related to a result of W. Kantor [Kan80,
Theorem 2]. It allows one to recognize when a coset graph (which is automatically
bipartite) is the incidence graph of a generalized quadrangle.

Proposition 4. Let G be the coset graph of a group G with respect to a collection
{Pi | i ∈ I} of subgroups.

(i) If Pi ∩ Pj = {1} for all distinct i, j ∈ I, then G has girth ≥ 6.
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(ii) If PiPj ∩ Pk = {1} for all distinct i, j, k ∈ I, then G has girth ≥ 8.
(iii) Let s = |I| − 1 and suppose that t = |Pi| − 1 for all i ∈ I. If the condition (ii)

holds and if in addition G is finite of order |G| = (1 + t)(1 + st), then G is the
incidence graph of a generalized quadrangle of order (s, t).

Proof. The proof is a direct computation similar to the proof of Proposition 3. �

The following consequence allows one to recover a family of finite generalized
quadrangles that is well-known to the experts; it was first discovered by S. Payne
[Pay71]. The right choice of p + 2 cyclic subgroups was recorded in [Ess13, Theo-
rem 3.8].

Corollary 5. Let p be an odd prime and H(Fp) = 〈x, y | xp, yp, [x, z], [y, z]〉 be the
Heisenberg group over Fp, where z = [x, y]. Then the coset graph of H(Fp) with
respect to the collection {〈x〉, 〈z〉} ∪ {〈xayz−a

2 〉 | a = 0, . . . p − 1} of p + 2 cyclic
subgroups of order p is the incidence graph of a generalized quadrangle of order
(p+ 1, p− 1).

Proof. One readily checks that the conditions from Proposition 4 are satisfied. �

4. The spectral criterion for property (T)

The following criterion for property (T) follows easily from the main result of
[Opp15].

Proposition 6. Let X be a hyperbolic Fuchsian building of type (3, 4, 4) and Γ be
a discrete group acting propertly, cocompactly on X by automorphisms. Assume
that the projective plane residues of X have order p + 1 and that the generalized
quadrangle residues of X have order (p + 1, p− 1). If p ≥ 6, then Γ has Kazdhan’s
property (T).

Proof. We recall from [FH64] that the smallest positive eigenvalue of the Laplacian
of the incidence graph of a projection plane of order p + 1 (resp. a generalized

quadrangle of order (p + 1, p − 1)) is λP = 1 −
√
p+1
p+2

(resp. λQ = 1 −
√

2
p+2

). By

[Opp15, Theorem 1], the group Γ has property (T) provided that the following two
conditions hold:

• λP + 2λQ > 3/2,
• (λP + λQ − 1)2 + 2(λP + λQ − 1)(2λQ − 1) > 0.

A straightforward computation shows that the first condition holds for all integer
p ≥ 5, while the second holds for all p ≥ 6. �

5. Variations on the same theme

There is a certain amount of flexibility in the construction of the group E which
can be exploited to provide many more infinite hyperbolic Kazhdan groups similar
to E. The vertex groups Eci need not be cyclic: they could also be chosen to be
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the dihedral group D14 of order 14. One could also permute the edge groups Eaci
arbitrarily without changing Ebci . The specific choice for the group E in Theorem 1
was made in order to minimize the maximal length of a relation.

Let us note that one can also obtain larger siblings of E as follows. For any
Mersenne prime p, define a simple complex of groups consisting of p+ 2 hyperbolic
triangles of type (2, 4, 6) glued along their hypothenuse. The two acute vertex
groups are a Heisenberg group over Fp and a dihedral group D2n of order 2n, where
n = (p+1)2+p+2, respectively. The other p+2 vertex groups are cyclic or dihedral
of order 2p. The edge groups are chosen using Proposition 3 and Corollary 5 so that
the Link Condition is satisfied at every vertex. We need p to be a Mersenne prime
since p + 1 must be a prime power for Proposition 3 to apply. The fundamental
group of that complex is always hyperbolic, and it has property (T) for all p ≥ 7 by
Proposition 6.

We finish this note by recording another observation that follows from combining
Proposition 3 with M. Bourdon’s construction from [Bou00, §1.5.3] and its extension

due to J. Swiatkowski [Ś01].

Proposition 7. Let L be the incidence graph of a finite generalized n-gon of order
(s, t) with n ≥ 3. Assume that t is a prime power.

Then there is a group Γ acting faithfully, properly and cocompactly (but not type
preservingly) on a thick locally finite triangle building X of type (3, n, n) admitting
L as the link of a vertex.

Proof. We follow the construction described in [Ś01, §5.3] in order to build Γ as the
fundamental group of a simple complex of finite groups. The underlying complex
Y is the simplicial cone over the graph L. Let V = V1 ∪ V2 be the bipartition of
the vertex set of L, so that every edge in L joins a vertex in V1 to a vertex in V2,
every vertex in V1 has degree s + 1 and every vertex in V2 has degree t + 1. To
each vertex v in V2, we define the vertex group Γv as a dihedral group of order
2(t2 + t + 1). To each edge e belonging to the set EL(v) of edges of L emanating
from v, we define Γe as a cyclic group of order 2. For all e ∈ EL(v) we define
the inclusion of Γe into Γv in such a way that the coset graph of Γv with respect
to {Γe | e ∈ EL(v)} is the first barycentric subdivision of the incidence graph of
the Desarguesian projective plane of order t. Such a choice is possible in view of
Proposition 3; this is where we use the hypothesis that t is a prime power. For
v ∈ V1 we define the vertex group Γv to be cyclic of order 2, and identify Γv with all
edge groups Γe with e ∈ EL(v). The groups attached to all the other simplices of Y
are trivial. By [BH99, Theorem II.12.28], the simple complex of groups defined in
this way is developable. By [Tit81, Theorem 1], the univseral cover Ỹ is a non-thick
triangle building of type (2, 6, n). Upon discarding the edges of Ỹ that cover edges
of L, we may view Ỹ is a thick triangle building of type (3, n, n) on which Γ acts
faithfully, properly and cocompactly, but not type-preservingly. �
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The difference between Bourdon’s construction [Bou00, §1.5.3] and Proposition 7
is that the former yields Fuchsian buildings of type (2, n, n).

Remark 8. Proposition 7 comes close to a solution of a problem posed by W. Kan-
tor [Kan86, Problem C.6.7]. It notably implies that, all finite projective planes
satisfying the Prime Power Conjecture appear as residue planes in Ã2-buildings ad-
mitting a discrete cocompact group of automorphisms. In particular, all known
non-Desarguesian finite projective planes do. This provides a construction of an
infinite family of cocompact lattices in exotic Ã2-buildings of arbitrarily large thick-
ness, where exotic means non-isomorphic to the Bruhat–Tits building of a simple
algebraic group over a local field. In particular, the main result of [BCL] applies to
those lattices, which ensures that they do not admit any finite-dimensional represen-
tation with infinite image over any field. The first construction of an infinite family
of cocompact lattices in exotic Ã2-buildings was obtained in [BCL, Appendix D];
since then another source of cocompact lattices in exotic Ã2-buildings of arbitrarily
large thickness has been identified by N. Radu [Rad17b]. The first example of a
cocompact lattice in an Ã2-building admitting non-Desarguesian residue planes is
due to him [Rad17a]. That example remains the only known Ã2-building with a
cocompact lattice where all residue planes are non-Desarguesian.
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[BH99] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Math-
ematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486 3, 4, 7

[Bor63] Armand Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963),
111–122. MR 0146301 1



A SMALL HYPERBOLIC KAZHDAN GROUP 9

[Bou00] Marc Bourdon, Sur les immeubles fuchsiens et leur type de quasi-isométrie, Ergodic
Theory Dynam. Systems 20 (2000), no. 2, 343–364. MR 1756974 2, 7, 8
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