
Vol.:(0123456789)

Evolutionary Ecology (2019) 33:825–838
https://doi.org/10.1007/s10682-019-10012-5

1 3

ORIGINAL PAPER

Fitness costs of the cultivable symbiont Serratia symbiotica 
and its phenotypic consequences to aphids in presence 
of environmental stressors

Inès Pons1 · François Renoz1 · Thierry Hance1

Received: 16 June 2019 / Accepted: 3 October 2019 / Published online: 21 October 2019 
© Springer Nature Switzerland AG 2019

Abstract
Associations between symbiotic microorganisms and animals are ubiquitous and hosts may 
benefit from hosting microbial communities through enhanced protection to environmental 
stresses or resource exploitation. Like many insects, aphids are hosts of a wide diversity 
of heritable symbionts that can be important drivers of their evolutionary ecology. Ser-
ratia symbiotica is one of the most common symbiont associated with aphids and includes 
a great variety of strains whose degree of interdependence on hosts varies significantly. 
Among these strains, some are gut-associated and have been isolated from aphids and cul-
tivated. One of these strains (CWBI-2.3T) confers immediate protection against parasitoids. 
Here, we investigated additional associated phenotypes to elucidate the implication of cul-
tivable S. symbiotica in the aphid evolutionary ecology. We show that under benign condi-
tions, the aphids tended to suffer from reduced survival and fecundity when harboring the 
symbiont. We also demonstrate that gut infection with cultivable S. symbiotica does not 
protect aphids from the fungal pathogen Zoophtora occidentalis and from the lethal patho-
gen Serratia marcescens. However, while the bacterium is costly for aphids, this effect is 
no longer observed in the presence of the fungus, suggesting a negative effect of S. symbi-
otica on the latter. Our results further demonstrate that the cultivable S. symbiotica strain 
does not confer benefits to its hosts after the aphids were heat-stressed. These findings 
exposed that cultivable S. symbiotica does not have the same fitness effects on aphids as 
endosymbiotic strains, highlighting the significance of considering intraspecific variation 
of symbionts when studying their associated extended phenotypes.
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Introduction

Insects are considered as the most diverse animal group and during their long evolution 
have colonized every imaginable ecological land niche (Engel 2015). However, in many 
cases, the evolutionary radiation has been made possible through their associations with 
symbiotic partners. For instance, the success of insects that feed on a nutritionally lim-
ited diet is partly due to their association with a large number of symbionts provid-
ing them with essential nutrients (Douglas 2009). These obligate symbionts are thus 
vital for the survival and reproduction of their host (Moran et al. 2008). Each partner 
becomes a permanent element of the environment of the other and when the evolution-
ary influence is reciprocal, co-evolutionary process occurs (Selosse 2001). Insects can 
also host facultative symbionts, whose presence is not indispensable for the host but 
may have implications for many of their traits (Sachs et  al. 2011; White et  al. 2013). 
In the case of facultative mutualisms, not all individuals in the same insect populations 
harbor such symbionts, and these relationships have evolved depending on environmen-
tal pressures explaining prevalence level and their persistence in the host populations 
(Sicard et al. 2014).

The spread, fixation, and evolution of symbioses depend to a large extent on the reli-
ability of the transmission mechanisms (Bright and Bulgheresi 2010). Facultative sym-
bionts are usually vertically transmitted from mother to offspring, although horizontal 
transfers also occur at lower frequencies (Gehrer and Vorburger 2012; Henry et al. 2013; 
Pons et al. 2019a). One of the strategies used by facultative symbionts to maximize their 
vertical transmission is to manipulate the reproduction of their insect hosts. This is the 
case of the symbiont Wolbachia that has been described as a master reproductive para-
site inducing a diversity of sex manipulations to promote its spread in host populations 
(Werren et al. 2008; Sicard et al. 2014). An alternative strategy that fosters the propaga-
tion of facultative symbionts in insect populations is the ability of these microorgan-
isms to confer beneficial effects to their hosts (Oliver et al. 2014; Zug and Hammerstein 
2015). Many symbiont species can affect a wide range of life-history and ecologically 
important traits of their hosts, playing a significant role in their ecology and evolution 
(Duron and Hurst 2013; Oliver et al. 2014).

Aphids represent a valuable model to investigate the mechanisms of mutualist associa-
tions in insects. Almost all aphid species harbor an ancient obligate symbiont Buchnera 
aphidicola for delivering essential amino acids that are deficient in its host diet (Douglas 
1998). In addition, aphids can also harbor a wide variety of facultative symbionts that are 
involved in more recent associations (Oliver et al. 2010). Unlike obligate symbionts that 
are hosted in specialized cells called bacteriocytes, facultative partners can inhabit sheath 
cells, hemolymph, secondary bacteriocytes and gut (Buchner 1965; Moran et  al. 2005; 
Renoz et  al. 2018). Facultative symbionts have been generally studied in the pea aphid 
Acyrthosiphon pisum model, which is known to host at least nine different symbionts (Guo 
et al. 2017). In this aphid species, they can confer an array of extended phenotypes having 
the potential to increase its fitness in certain ecological context, such as their resistance 
to parasites (Oliver et al. 2003; Vorburger et al. 2010), a capacity to withstand heat shock 
(Burke et  al. 2009; Russell and Moran 2006), their performance on different host plants 
(Tsuchida et al. 2004; Wagner et al. 2015), the frequency of sexual reproduction (Simon 
et al. 2011) and body coloration (Tsuchida et al. 2010). However, these symbionts can also 
impose fitness costs on their hosts that make them parasitic (Oliver et al. 2008; Vorburger 
et al. 2013; Polin et al. 2014; Pons et al. 2019b).
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S. symbiotica is of great interest to study the role of facultative symbionts in aphid ecol-
ogy and evolution, because it comprises a variety of strains associated with very distinct 
biological characteristics and localizations (Renoz et al. 2018). Studies already highlighted 
that the endosymbiont S. symbiotica can have a nutritional role (Lamelas et al. 2011), but 
also confer protection for their hosts against parasitoids (Oliver et  al. 2003), as well as 
under heat shock (Burke et al. 2009; Heyworth and Ferrari 2015). Some strains are also 
gut-associated (Renoz et al. 2018) and have recently been isolated from aphids in the Aphis 
genus and cultivated freely on a pure artificial medium (Sabri et al. 2011; Grigorescu et al. 
2017). It has been suggested that they are in the early stages of symbiotic life with aphids 
(Manzano-Marín et al. 2016; Pons et al. 2019b) and in previous studies, we showed that 
in laboratory conditions cultivable S. symbiotica is potentially extracellularly transmitted, 
via contamination with honeydew (Pons et al. 2019b) and through the plant phloem (Pons 
et al. 2019a). We also demonstrated that artificial gut colonization by cultivable S. symbi-
otica induces fitness costs to their hosts in the absence of stresses, but can offer an indirect 
immediate protection against parasitoids (Pons et al. 2019b). Despite its costs, the presence 
of cultivable S. symbiotica in natural aphid populations (Renoz et al. 2018) could be due 
to the diverse benefits it brings to its host, allowing to be selected in different ecological 
scenarios (Heyworth and Ferrari 2015; Pons et  al. 2019b). Understanding the additional 
beneficial effects of cultivable S. symbiotica could thus be important 1) to explain why this 
gut-associated bacterium spread in aphid populations despite its costs and 2) to clarify its 
biological role and implication in the aphid evolutionary ecology. Here, we hypothesize 
that the aphid will be protected by cultivable S. symbiotica during heat stress, as found for 
other endosymbiotic strains (Russell and Moran 2006; Burke et al. 2009), and the existence 
of antimicrobial effectors in the cultivable strain (CWBI-2.3T) genome (Foray et al. 2014; 
Renoz et al. 2017) suggests a probiotic effect. Alternatively, in view of its costs (Pons et al. 
2019b), an additional stress could be more detrimental for aphid hosts if cultivable S. sym-
biotica does not bring benefits.

In the present work, we investigated experimentally if the cultivable S. symbiotica can 
provide multiple ecological benefits to the aphid host, in addition to the protection against 
parasitoids already shown (Pons et  al. 2019b). We examined whether cultivable S. sym-
biotica infection results in increased aphid protection against a natural enemy, the fungal 
pathogen Zoophthora occidentalis and resistance against a lethal bacterial pathogen Ser-
ratia marcescens. Moreover, we tested whether cultivable S. symbiotica infection offers 
tolerance to its host under thermal stress. Indirectly, we also analyzed the constitutive cost 
of harboring cultivable S. symbiotica. In doing so, we have contributed an account of cul-
tivable S. symbiotica induced effects on the aphid phenotype in an attempt to determine its 
propagation strategy in nature.

Materials and methods

Aphids and cultivable S. symbiotica symbiont

The clone A06–407 of Aphis fabae used in this study was originally collected from Che-
nopodium album in Switzerland and provided by Dr. Christophe Vorburger (Eawag, Swit-
zerland). This clone was found to be uninfected with any known facultative symbionts of 
aphids (Vorburger et al. 2009). Aphids were reared through parthenogenetic reproduction 
on seedlings of Vicia faba at 18 ± 1 °C under a long-day regimen (16 h light, 8 h dark) and 
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65 ± 3% of humidity. The cultivable S. symbiotica strain CWBI-2.3T, isolated from a field-
collected A. fabae (Sabri et al. 2011; Foray et al. 2014), was used in this study. This strain 
was preserved in frozen stocks at − 80  °C and cultured at 20  °C with 863 medium (1% 
yeast extract, 1% casein peptone, 1% glucose) as described in Sabri et al. (2011).

Pathogens

For the fungal pathogen infection, the entomopathogenic fungus Zoophtora occidentalis 
was used. The fungus isolate was obtained from the USDA ARS Collection of Entomopath-
ogenic Fungal Cultures (New York) as ARSEF 3073. We cultured the fungal pathogen on 
plates of SDAEY for 2 weeks at 20 °C (Parker et al. 2013; Barribeau et al. 2014). For the 
bacterial pathogen infection, the entomopathogenic S. marcescens strain Db11 was used. 
This strain is a spontaneous streptomycin-resistant mutant of Db10 originally isolated from 
a moribund fly (Flyg et al. 1980). S. marcescens strain Db11 was preserved in frozen stocks 
at − 80 °C and cultured at 37 °C with LB medium with streptomycin (100 µg/ml).

Aphid oral infection

To check the integrity of our population of A. fabae before administration of bacteria and 
the presence of S. symbiotica in aphids after inoculation procedure, DNA from individual 
aphids was extracted by using the QIAamp tissue kit (Qiagen). A diagnostic PCR was then 
performed as described in Fukatsu et al. (2000), Pons et al. (2019b).

Oral infection of cultivable S. symbiotica was performed by feeding aphid hosts on an 
artificial medium containing the bacterium to ensure its presence in the aphid digestive 
tract (Altincicek et al. 2011). In a first time, the bacterium was grown to an early log phase 
on 863 medium (without antibiotic) (Sabri et  al. 2011) on a gyratory shaker (160  rpm) 
at 20 °C. When reaching an optical density (OD) between 0.5 and 0.7 at 600 nm during 
the logarithmic growth phase, bacteria were centrifuged. Symbiont cells were then washed 
with sterile PBS (Sigma) and suspended in the buffer to obtain an OD of 1 at 600 nm. To 
standardize aphid individuals, reproductive mature females of A. fabae were left on young 
V. faba plants for 24 h to produce nymphs. After removal of the adult insects, the newborn 
nymphs were kept on the same plants for 4 days prior to infection experiments (only 2 days 
for the heat shock experiment). Third-instar aphid nymphs were then fed on an artificial 
diet (Cambier et al. 2001) containing a solution with the bacterium (or sterile PBS for the 
control) for 24 h.

Performance after a heat shock

The capacity of S. symbiotica to improve the heat stress tolerance of its aphid host was tested 
according to the infection status. Two-day-old aphid nymphs were standardized and fed on 
an artificial diet (20 ml) (Cambier et al. 2001) with a solution containing the cultivable S. 
symbiotica (100 µl) (only sterile PBS solution for the control) for 24 h (approximately 106 
CFU/ml of diet). This step yielded two aphid populations with different symbiotic status: one 
uninfected population (control) and one population infected with cultivable S. symbiotica. 
Each population was divided into two treatment groups: one group exposed to 18 °C (control 
treatment) and the other group exposed to a heat shock stress as carried out in Montllor et al. 
(2002), Russell and Moran (2006), Heyworth and Ferrari 2015). After the oral ingestion, 6 to 
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10 three-day-old aphids (reared at 18 °C) were immediately transferred on a V. faba seedling 
with a vented 2 L cage formed by plastic bag covering the pot in climatic chambers. During 
the heat shock treatment, the temperature rose steadily from 18 to 38 °C over a period of 2 h. 
The temperature was maintained for 4 h and then decreased to 18 °C for another 2 h. After 
the treatment, the plants were changed to ensure consistent plant quality. The proportion of 
surviving aphids was counted 7 days after the treatment and 5 surviving wingless aphids per 
pot were then individually placed on a novel plant and number of offspring per female was 
recorded every 5 days during 25 days. Six repetitions per modality were performed (corre-
sponding to 56 aphids for survival rate and 30 aphids for fecundity).

Resistance to an entomopathogenic fungus

To investigate its potential antifungal role, the impact of the entomopathogenic fungus Z. 
occidentalis was evaluated on fitness of aphids with cultivable S. symbiotica versus with-
out the symbiont (control) (Parker et al. 2013; Heyworth and Ferrari 2015). Third-instar 
aphid nymphs were standardized and fed for 24 h on an artificial diet (20 ml) (Cambier 
et al. 2001) with a solution containing the cultivable S. symbiotica (100 µl) (or sterile PBS 
solution for the control; approximately 106 CFU/ml of diet). Two infectious statuses were 
tested: without cultivable S. symbiotica (control) and with cultivable S. symbiotica. These 
two populations were divided into two treatments: one group exposed to the fungus and 
one group not exposed to the fungus (control). Before fungal infection, a small piece of 
fungal mycelium (5 mm2) was cut with a sterile scissor and placed onto 1.5% tap water 
agar overnight at 20 °C and at high humidity to provoke the sporulation of the fungus. At 
the infection time, 3 to 5 aphids with or without cultivable S. symbiotica were placed at 
the bottom of a hollow tube and the agar plate was inverted over the tube for 90 min. To 
ensure that each aphid group was exposed to an equal dose of fungal spores, the different 
plates were rotated during the treatment. After exposure, aphids were then placed on V. 
faba plants during 10 days and the survival of each aphid was recorded. Every 2 days, the 
different groups of aphids were checked and fungus-killed aphids were removed. Sixteen 
repetitions were performed for the aphids exposed to fungal treatment and twelve repeti-
tions were performed for the aphids exposed to control treatment.

Resistance to a pathogenic bacterium

To investigate the existence of probiotic effects associated with the cultivable S. symbiotica, 
the impact of the pathogenic bacterium S. marcescens was estimated on fitness of aphids 
with cultivable S. symbiotica versus without the symbiont (control). Two experiments were 
conducted. In the first experiment, third standardized instar aphid nymphs were fed for 24 h 
on an artificial diet (Cambier et al. 2001) containing either the cultivable S. symbiotica and 
the pathogenic bacterium S. marcescens or only the pathogen. Different concentrations of S. 
marcescens were administered. One hundred μl of solution with the cultivable S. symbiotica 
bacterium and 10 μl or 1 μl of solution with the S. marcescens bacterium were mixed with 
20 ml aphid diet (approximately 106 CFU/ml of diet for S. symbiotica and S. marcescens 
(10 μl) and 105 CFU/ml of diet for S. marcescens (1 μl)). For the control treatment, 100 μl 
of sterile PBS solution and 10 μl or 1 μl of solution with the S. marcescens bacterium were 
mixed with 20 ml aphid diet. After the oral infection, aphids were placed on a V. faba plant 
and the proportion of survivors was counted during 3 days because aphids do not usually 
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survive after a 3-day infection with the pathogenic bacterium S. marcescens. Seven repeti-
tions per modality were performed with 5 aphids per repetitions.

In the second experiment, a delay of 6 days was observed between S. symbiotica and S. 
marcescens infection to allow the symbiotic bacterium to establish in the aphid gut before 
the pathogen infection. Indeed, studies already showed that cultivable S. symbiotica is 
capable to colonize the aphid gut in a few days and persists throughout the life of aphid 
hosts (Renoz et al. 2015; Pons et al. 2019b). Third instar standardized aphid nymphs were 
fed on an artificial diet (Cambier et al. 2001) with a solution with cultivable S. symbiotica 
or without the symbiont. To achieve this task, 100 μl of solution with the cultivable bac-
terium or PBS (control) were mixed with 20 ml aphid diet (approximately 106 CFU/ml of 
diet). During the 6-day wait period, aphids were transferred from the artificial diet to plants 
and after this delay, the aphids were fed on the artificial diet containing 10 μl of solution 
with the S. marcescens bacterium mixed in 20 ml aphid diet (approximately 106 CFU/ml 
of diet). After the oral infection, aphids were placed on a V. faba plant and the proportion 
of survivors was also counted during 3 days. Six repetitions per modality were performed 
with 5 aphids per repetitions.

Statistical analysis

Aphid survival was analyzed using generalized linear models (GLM) with a binomial error 
structure and a logit-link function. The number of offspring was analyzed using a general 
linear model (LM) framework, after verification of normality of the data. The presence of 
the cultivable S. symbiotica, the stress treatment and their interactions were the explana-
tory variables for the heat-shock and the fungal exposure experiments. The presence of 
the cultivable S. symbiotica, the concentration of S. marcescens, the initial installation of 
cultivable S. symbiotica and their interactions were the explanatory variables for the patho-
genic ingestion experiment. For the fungal exposure experiment, the post hoc Tukey HSD 
test was performed using “glht” function. Statistical analyses were performed using the 
software R version 3.5.3 (R Core team 2018), using multcomp package for post hoc Tukey 
test (Hothorn 2007) and GrapheR package for graphics (Hervé 2011).

Results

Performance after a heat shock

Heat shock significantly affected survival of aphids, whether infected or not by the culti-
vable S. symbiotica (GLM, df = 1, χ2 = − 2.74, P = 0.0062). A reduction of about 20% of 
survival of uninfected aphids and about 10% of survival of infected aphids were observed 
when exposed to heat stress compared to survival of aphids without stress (Fig. 1a). How-
ever, cultivable S. symbiotica did not have a significant effect on aphid survival under both 
treatments (heat shock and control) (GLM,  df = 1, χ2 = − 0.17, P = 0.87, Fig. 1a).

Heat shock had a significant effect on the aphid fecundity, whether or not infected by 
cultivable S. symbiotica (LM,  df = 1, F = 36.01, P < 0.001). Fecundity was lowered by a 
little less than an half for aphids exposed to heat stress compared to aphids not exposed to 
stress under both conditions (infected or uninfected by the bacterium; Fig. 1b). Moreover, 
cultivable S. symbiotica had a significant negative effect on aphid fecundity under both 
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treatments (LM,  df = 1, F = 99.76, P < 0.001, Fig.  1b). Fecundity was lowered by more 
than an half for infected aphids compared to uninfected aphids (Fig. 1b).

Resistance to Zoophtora occidentalis

The interaction between aphid symbiotic status and Z. occidentalis infestation had a sig-
nificant effect on aphid survival (GLM,  df = 1, χ2 = 2.88, P = 0.0034). Aphids with culti-
vable S. symbiotica had a significantly lower survival than aphids without the symbiont in 
the control condition (GLM,  df = 1, χ2 = − 3.2, P = 0.0075), with a reduction of about 30% 
of survival of aphids with the symbiont (Fig. 2). When exposed to Z. occidentalis, the sur-
vival of aphids without cultivable S. symbiotica was significantly lower than that of aphids 
without the symbiont in the control condition (GLM,  df = 1, χ2 = − 2.68, P = 0.037), with 
a reduction of about 20% of aphid survival exposed to the fungus (Fig. 2). This suggests 
that the fungus had a negative effect on aphids. However, when aphids were exposed to the 
fungus, no significant difference was observed between aphids with cultivable S. symbiot-
ica and aphids without cultivable S. symbiotica (GLM,  df = 1, χ2 = 0.61, P = 0.93; Fig. 2). 
Moreover, survival of aphids with the symbiont was not significantly different between 
aphids exposed to the fungus and aphids exposed to the control condition (GLM,  df = 1, 
χ2 = 1.36, P = 0.53, Fig. 2). These results do not show a clear protection of the cultivable S. 
symbiotica to its host against the fungus but still suggest that cultivable S. symbiotica may 
interfere with fungal proliferation, such that aphids infected by the fungus suffer no addi-
tional mortality in the presence of the symbiont.

Resistance to Serratia marcescens

The mortality rate of aphids having ingested S. marcescens was over 80% in the 3 
days following infection (Fig.  3), suggesting that this pathogenic bacterium is highly 
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virulent in A. fabae aphids. The cultivable S. symbiotica strain did not have a significant 
effect on the survival of aphids exposed to the pathogen S. marcescens (GLM,  df = 1, 
χ2 = 0.39, P = 0.70), meaning that the cultivable strain does not have a beneficial effect 
against this virulent bacterium. The survival rate did not exceed 14%, whether or not the 
aphids were infected by the cultivable S. symbiotica (Fig. 3). Moreover, the survival rate 
of aphids with or without cultivable S. symbiotica was not significantly different when 

Fig. 2   Effect of cultivable S. 
symbiotica on survival rate 
of A. fabae aphids exposed to 
the entomopathogenic fungus 
Zoophthora occidentalis after 
10 days. Two symbiotic statuses 
were used: uninfected aphids 
(S−) and aphids infected by 
cultivable S. symbiotica (CWBI-
2.3T; S+) (3 to 5 aphids per 
repetition and 16 repetitions for 
the fungal treatment per modal-
ity/12 repetitions for the control 
treatment per modality). Error 
bars depict the standard error. 
Significant differences are shown 
(NS not significant; *P < 0.05; 
**P < 0.01)
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taking into account the different concentrations of the pathogenic bacterium (GLM,  
df = 1, χ2 = − 0.50, P = 0.61; Fig. 3), as well as the presence of the cultivable S. symbiot-
ica in the aphid guts before S. marcescens infection (GLM,  df = 1, χ2 = − 0.68, P = 0.50; 
Fig. 3).

Discussion

It has already been demonstrated that the cultivable S. symbiotica strain CWBI-2.3T can 
offer an indirect immediate protection against parasitoids (Pons et  al. 2019b). However, 
some studies showed that one symbiont strain can simultaneously confer multiple ecologi-
cal benefits to its aphid host (Heyworth and Ferrari 2015). In this study, we thus investi-
gated some phenotypic effects possibly associated with the presence of this cultivable S. 
symbiotica strain colonizing the aphid gut to explain the bacterium distribution in natural 
populations and clarify its impact on the aphid evolutionary ecology. Moreover, under-
standing the associated phenotypes of this cultivable symbiont could be an important step 
in understanding mechanisms that drive the evolutionary transition in which free-living 
bacteria evolve to form durable endosymbiotic associations with hosts.

The niche-specific benefits conferred by facultative symbionts to their aphid hosts can 
clarify why they are found at high frequencies in some populations (Heyworth and Ferrari 
2015; Guo et al. 2017). Indeed, despite costs, facultative symbionts can be selected for in 
different ecological scenarios (Oliver et al. 2014). Here, we can confirm that under non-
stringent conditions, cultivable S. symbiotica is costly in terms of fitness for its aphid host 
(Pons et al. 2019b). Generally, costs of this magnitude have previously been described for 
artificial host–symbiont associations (Oliver et al. 2008; Vorburger et al. 2013; Polin et al. 
2014; Cayetano et al. 2015), which can be the consequence of incompatibilities between 
particular genotypes. In fact, incompatibilities between host and symbiont genotypes may 
be a force limiting the spread of symbionts among insect populations (Oliver et al. 2014; 
Leclair et al. 2016). These high costs can thus outweigh certain of the benefits delivered 
by the cultivable bacterium. Nevertheless, this pathogenicity can be a transient effect, and 
if the bacterium has the potential to damage its host, it is most probable to happen directly 
after being acquired. For instance, the detrimental effects associated with the establishment 
of certain H. defensa strains in new aphid host have been observed to decline in subsequent 
generations (Niepoth et al. 2018). Moreover, in a novel host species of Drosophila, Spiro-
plasma had also fitness costs that were reduced some generations after infection (Nakay-
ama et al. 2015).

Even if the symbiotic bacterium affects aphid fitness traits, under fungal pathogen Z. 
occidentalis exposition, the effect of the pathogen is not added to the negative effect of the 
cultivable S. symbiotica. One explanation is that the potential protection provided by the 
cultivable S. symbiotica is not observed because its fitness cost is too much for its host and/
or the symbiotic bacterium has a negative effect on the fungus, preventing its proliferation. 
Indeed, the genome and proteome analyses of the cultivable strain (CWBI-2.3T) showed 
the existence of antimicrobial effectors such as chitinases (Foray et al. 2014; Renoz et al. 
2017), which is known to attack the fungal cell wall composed in part of chitin (Adams 
2004), suggesting that cultivable S. symbiotica could have a fungicide role. To confirm the 
assumption, fungal antagonistic assays will have to be realized (Li et al. 2015) and other 
experiments should be performed when the association is maintained and thus less costly 
for aphids and/or with other fungi and host aphids. Other facultative symbionts are also 
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known to protect aphid hosts against entomopathogenic fungi (Parker et  al. 2013; Hey-
worth and Ferrari 2015; Guo et al. 2017). For instance, some studies showed that the sym-
biont Regiella insecticola can provide protection to aphids against fungal entomopatho-
gens Z. occidentalis and Pandora neoaphidis (Ferrari et al. 2004; Scarborough et al. 2005; 
Parker et al. 2013). However, in this case, the symbiont is present in the host hemolymph 
and not in the aphid gut like in our case.

Our results showed that cultivable S. symbiotica did not offer any protection to the aphid 
host in case of heat stress and pathogen bacteria presence under standard lab conditions. 
Some studies already described that the endosymbiont S. symbiotica can increase host sur-
vival and/or reproduction after a heat shock (Montllor et al. 2002; Russell and Moran 2006; 
Burke et  al. 2009), but the protection mechanisms are not completely explained (Renoz 
et al. 2019). The hypothesis that has been advanced is that S. symbiotica increase host tol-
erance after a heat shock by releasing metabolites as a result of cell lysis, thus preserving 
the integrity of the bacteriocyte of the obligate symbiont (Burke et al. 2009). In our case, 
we showed that cultivable S. symbiotica does not provide protection to its host against ther-
mal stress. These results probably reflect the severe fitness costs associated with the culti-
vable bacterium and that this protection effect can vary depending on the strain but also the 
nature of the association. The results are therefore consistent with the protection hypothesis 
as previously discussed. In fact, the difference of protection between cultivable strains and 
uncultivable S. symbiotica strains may be due to the presence of the uncultivable bacte-
ria in aphid hemolymph and around bacteriocytes of the obligate symbiont (Oliver et al. 
2014), while cultivable S. symbiotica are dwelling in aphid gut.

Colonization of the gut with mutualistic bacteria can increase the resistance of the 
insect hosts against parasite and/or pathogen invasions (Engel and Moran 2013), particu-
larly when the pathogen acquisition is done through nutrition. The genome analyses of 
the cultivable S. symbiotica strain (CWBI-2.3T) showed the existence of antibiotics (Foray 
et  al. 2014; Renoz et  al. 2017), suggesting a probiotic effect. Here, we showed that the 
pathogenic bacterium S. marcescens is extremely virulent for the aphids as showed in 
Renoz et al. (2015) and that the cultivable S. symbiotica does not provide protection to its 
host against S. marcescens. This virulent pathogen is known to be able to quickly pass the 
multiple physical and immune barriers protecting the gut and penetrate the body cavity, 
involving proteases and chitinases (Flyg et al. 1980; Nehme et al. 2007). Our hypothesis is 
that S. marcescens kills and/or inhibits the development of S. symbiotica in aphids, killing 
the hosts in few days as in aphids not infected with cultivable S. symbiotica. Quantitative 
PCR study could confirm this hypothesis. However, although few studies have been con-
ducted in insects, it has been shown that the insect gut microbiota can provide a buffering 
action to help prevent the proliferation of bacterial pathogens (Dillon and Dillon 2004). 
We could thus test if the protection is improved when cultivable S. symbiotica bacterium 
settles longer in the aphid gut. In this study, we showed that cultivable S. symbiotica does 
not protect aphids from both pathogens S. marcescens and Z. occidentalis. However, fur-
ther studies are needed to test if the cultivable bacterium is able to protect its host against 
other pathogenic strains because individual strains can provide narrow spectrum protection 
against specific fungal and bacterial pathogens.

The cultivable S. symbiotica is gut-associated and uses extracellular transmission 
routes (Pons et al. 2019a, b), suggesting that the bacterium is not reliably present in the 
aphid through generations (Salem et al. 2015). A low reliance on symbiotic associates 
is thus less likely to evolve and could explain these fewer benefits. However, so that 
the association is maintained in natural aphid population, the cultivable S. symbiotica 
could also provide some untested benefits, such as nutritional role and modification 
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of host dietary range (Henry et  al. 2015). Indeed, given its localization, it cannot be 
ruled out that the cultivable bacterium has a nutritional function, as suggested in Skaljac 
et al. (2019). For the time being, the nutritional role of S. symbiotica has been consid-
ered in the co-obligate association context (Lamelas et al. 2011; Manzano-Marín et al. 
2016), but the gut-associated strain brings new perspectives. In fact, gut symbionts are 
often regarded as important contributors to the nutrition of their hosts (Dillon and Dil-
lon 2004; Engel and Moran 2013). Further experiments are thus necessary to clarify its 
nutritional function, especially as, in comparison to the more tremendously reduced S. 
symbiotica genomes, cultivable S. symbiotica has preserved a large repertoire of genes 
related to the synthesis of most essential amino acids and vitamins (Manzano-Marín 
et al. 2016).

To conclude, we examined phenotypic traits possibly conferred by cultivable S. sym-
biotica to explain its presence and distribution in aphid populations, which contributes 
to our understanding of the mechanisms that shape symbiosis in aphids. This symbi-
ont offers a unique opportunity to compare and contrast aphid symbiont strains that are 
free-living and having horizontal transmission to maternally-transmitted strains living 
in hemolymph and intracellularly reported in the literature. It is therefore a relevant 
model to better understand how symbiotic and more particularly endosymbiotic asso-
ciations appear and evolve in insects. We confirmed that under benign conditions, the 
aphids tended to suffer from reduced survival and fecundity when harboring cultivable 
S. symbiotica. We also revealed that gut infection with cultivable S. symbiotica does not 
offer any real benefits to the aphid host for the phenotypes tested, although the bacte-
rium could have a negative effect on the fungus. Due to the localization of cultivable S. 
symbiotica in the aphid gut, other associated phenotypes and/or additional fitness indi-
ces should be studied to better explain the spread strategy of the bacterium in natural 
aphid populations. Indeed, although the gut microorganisms have been studied in few 
insects, studies clearly showed that gut bacteria are crucial for the nutrition, physiology, 
pathogen protection and immune responses of many insect species (Engel and Moran 
2013). Moreover, it would be interesting to test the effect of cultivable S. symbiotica 
with other aphid clones because studies have already shown that the efficiency of the 
infection and the associated effects seem to depend on the combination of aphid genetic 
background and symbiont strains (Russell and Moran 2005; Vorburger et al. 2009; Oli-
ver et al. 2010; Leclair et al. 2016; Niepoth et al. 2018), but the underlying mechanisms 
are not yet known. The different phenotypic effects observed in this study could also be 
derived from the association between cultivable S. symbiotica and bacteria from plants 
in the aphid gut. The study highlights the significance of considering intraspecific vari-
ation of symbionts when studying their associated extended phenotypes and shows that 
further studies are required to improve the perception of cultivable S. symbiotica and 
more particularly, the nature of aphid symbiosis.
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