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Abstract. A theorem of Pfister asserts that every 12-dimensional quadratic form with triv-

ial discriminant and trivial Clifford invariant over a field of characteristic different from 2
decomposes as a tensor product of a binary quadratic form and a 6-dimensional quadratic

form with trivial discriminant. The main result of the paper extends Pfister’s result to or-

thogonal involutions : every central simple algebra of degree 12 with orthogonal involution
of trivial discriminant and trivial Clifford invariant decomposes into a tensor product of a

quaternion algebra and a central simple algebra of degree 6 with orthogonal involutions. This

decomposition is used to establish a criterion for the existence of orthogonal involutions with
trivial invariants on algebras of degree 12, and to calculate the f3-invariant of the involution

if the algebra has index 2.

Every semi-simple algebraic group of classical type can be described in terms of a central
simple algebra with involution, except for groups of type D in characteristic 2, where the
involution should be replaced by a so-called quadratic pair [7, §26]. When the base field has
characteristic 0, this was first observed by Weil [15] in the 60’s for adjoint groups. In particular,
over a field of characteristic different from 2, groups of type Dn are quotients of the Spin group
of a degree 2n algebra with orthogonal involution. If the algebra is the endormophism ring of
some 2n-dimensional vector-space V , the involution is adjoint to a quadratic form q defined on
V , unique up to a scalar factor, and the corresponding groups are quotients of the Spin group
of this quadratic form.

Algebraic groups of low rank, and the corresponding algebras with involution, which have
degree ≤ 14, play a special role in the theory. Indeed, these groups have specific properties,
which in turn produce efficient tools to study and describe the underlying algebraic objects.
In particular, we may mention the so-called exceptional isomorphisms, with consequences on
algebras with involution explored in [7, § 15], triality, that is the action of the symmetric group
in three letters on the Dynkin diagram D4, see [7, Chapter X], and the existence of an open
orbit for some representations of algebraic groups of low rank, allowing to view torsors under
those groups as torsors under the stabilizer, see Garibaldi [3, Th. 9.3].

Even though they were first studied independently, these facts are related to the classification
theorems describing quadratic forms of even dimension ≤ 12 with trivial discriminant and trivial
Clifford invariant, which were proved by Pfister in 1966 [8], see also [6, Th. 8.1.1]. It appears
that those forms always contain a nontrivial subform of even dimension and trivial discriminant,
and admit a diagonalisation of a special shape, depending on the dimension of the form. In
particular, the number of parameters required to describe such a form in general is less than what
one may expect in view of the dimension. An analogous statement was obtained by Rost [12],
more than thirty years later, for quadratic forms of dimension 14 (see also [3, Th. 21.3]),
based on the representation argument mentioned above. From the point of view of algebraic
groups, it is clear that those results do not extend to higher dimensional quadratic forms. This
was formally proved by Merkurjev and Chernousov in [2], where they compute the essential
dimension of a split spinor group Spinn, for n ≥ 15. Roughly speaking, since torsors under
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Spinn are closely related to n-dimensional quadratic forms with trivial discriminant and trivial
Clifford invariant, this essential dimension provides a measure of the number of parameters
required to describe such a form in general. It follows from this computation that a general
quadratic form of dimension ≥ 15 does not contain a subform of a given dimension and with
trivial discriminant, with two possible exceptions (see [2, Th. 4.2] for a precise statement).

As opposed to this, Pfister’s theorem does extend to algebras with orthogonal involutions.
This was already known in dimension ≤ 10, and partial results in dimension 12 were discussed
in [4] and [10]. The main result of this paper is Theorem 1.3, which is an improved version of
these dimension 12 analogues, obtained by using the descent theorem for unitary involutions
in degree 6 proven in [11, Th. 1.3]. This new statement is closer to Pfister’s original result,
which asserts that every 12-dimensional quadratic form with trivial discriminant and trivial
Clifford invariant over a field of characteristic different from 2 decomposes as a tensor product
of a binary quadratic form and a 6-dimensional quadratic form with trivial discriminant.

As a consequence, we characterize in Corollary 2.1 the biquaternion F -algebras D such that
the matrix algebra M3(D) carries an orthogonal involution with trivial discriminant and trivial
Clifford algebra. This property turns out to hold for every biquaternion F -algebra if the 2-
cohomological dimension of F is at most 2; we show in Example 2.2 that it fails for certain
totally ramified biquaternion F -algebras.

Another use of Theorem 1.3 is for the computation of a certain cohomological invariant.
Recall from [10] that a cohomological invariant of degree 3 for orthogonal involutions with
trivial discriminant and trivial Clifford invariant is defined on the model of the Arason invariant
e3 of quadratic forms. The generalized Arason invariant takes its values in a quotient of the
third Galois cohomology group of µ⊗2

4 ; taking the square of a representative yields an invariant
f3 with values in the cohomology of µ2. We show in Theorem 2.3 how this invariant can be
calculated from a tensor product decomposition afforded by Theorem 1.3.

Throughout, F is a field of characteristic different from 2, and (A, σ) is a central simple
F -algebra with orthogonal involution. A possible characterization of (A, σ) is the existence of
a finite Galois extension L/F and a quadratic space (V, ϕ) over L such that

A⊗F L ' EndL(V ) and σ ⊗ Id = adϕ

where adϕ is the involution adjoint to ϕ (or, more precisely, to its polar bilinear form). We
generally follow the notation used in [7], to which we refer for background information on
involutions on central simple algebras. In particular, for any field K containing F , we write
(A, σ)K for the K-algebra with involution (A⊗F K,σ⊗ Id). If ϕ is a (nondegenerate) quadratic
form on some F -vector space V , we write Adϕ for (EndF (V ), adϕ). The discriminant of a
quadratic form and the even part of its Clifford algebra, which are invariant under similitudes,
and may therefore be considered as invariants of the involution adϕ, extend to non-split algebras
with orthogonal involution [7, §7,8].

For i ≥ 1, we let Hi(F ) denote the Galois cohomology group Hi(F, µ2) and identify H1(F )
with F×/F×2 (written additively) and H2(F ) with the 2-torsion subgroup of the Brauer group
of F . For a ∈ F× and A a central simple F -algebra of exponent 1 or 2, we write (a) for the
square-class of a and [A] for the Brauer class of A. For every orthogonal involution σ on a
central simple F -algebra A of even degree, we let e1(σ) ∈ H1(F ) denote the discriminant of σ.
If e1(σ) = 0, the Clifford invariant e2(σ) ∈ H2(F )/{0, [A]} is the coset represented by any of
the two components of the Clifford algebra C(A, σ).

1. Decomposability

Our first decomposition result does not require triviality of the Clifford invariant. It is
premised instead on the existence of a quadratic extension making the involution hyperbolic,
i.e., adjoint to a hyperbolic hermitian form.
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Proposition 1.1. Let (A, σ) be a central simple F -algebra with orthogonal involution of de-

gree 12, and let K = F (
√
d) be a quadratic field extension of F . If A is split, assume additionally

that σ is not adjoint to a quadratic form of odd Witt index.

(i) The algebra with involution (A, σ)K is hyperbolic if and only if (A, σ) decomposes as

(A, σ) = (A0, σ0)⊗ (H, ρ)

where (A0, σ0) is a central simple algebra with orthogonal involution of degree 6 and
(H, ρ) is a quaternion algebra with orthogonal involution of discriminant (d).

(ii) The algebra with involution (A, σ)K is split and hyperbolic if and only if (A, σ) decom-
poses as

(A, σ) = Adϕ ⊗ (H, ρ)

where ϕ is a quadratic form of dimension 6 and (H, ρ) is a quaternion algebra with
orthogonal involution of discriminant (d).

Proof. (i) The condition is obviously sufficient, since (H, ρ)K is hyperbolic. Assume conversely
that (A, σ)K is hyperbolic. By [1, Th. 3.3], this means A contains a skew-symmetric element
δ with square d. Writing ι for the nontrivial automorphism of K, we may then identify (K, ι)
with a subalgebra of (A, σ). Let B be the centralizer of K in A. The involution σ induces an
involution τ of B, which restricts to ι on K. Hence by the descent theorem of [11, Th. 1.3],
(B, τ) = (A0, σ0)⊗F (K, ι), for some algebra with orthogonal involution (A0, σ0). The centralizer
of A0 in A is a quaternion algebra H, which contains K, and by the double centralizer theorem,
we have A = A0 ⊗H. Moreover, since A0 is σ-stable, H also is, and we get a decomposition

(A, σ) = (A0, σ0)⊗ (H, ρ),

with σ0 and ρ of orthogonal type, and (H, ρ) ⊃ (K, ι). The latter inclusion shows that e1(ρ) =
(d), and the proof of (i) is complete.

(ii) As in (i), the condition is sufficient because (H, ρ)K is hyperbolic. For the converse,
we modify the argument in (i), taking into account the additional hypothesis that AK is split.
From this hypothesis, it follows that the algebra B is split, hence we may identify B = EndK(V )
for some K-vector space V , and τ = adh for some hermitian form h on V . Fix an orthogonal
basis (e1, . . . , e6) of V . The form h restricts to a symmetric bilinear form on the F -vector
space V0 spanned by e1, . . . , e6, and we may take A0 = EndF (V0) in the proof of (i). Thus,
(A0, σ0) = Adϕ where ϕ(x) = h(x, x) on V0. �

Remark 1.2. Let (A, σ) be a central simple F -algebra with orthogonal involution of degree 4m
for some integer m (excluding the case where A is split and σ is adjoint to a quadratic form of
odd Witt index). We compare the following statements:

(a) (A, σ) = (A0, σ0)⊗(H, ρ) for some quaternion algebra with orthogonal involution (H, ρ);
(b) there exists a quadratic field extension K of F such that (A, σ)K is hyperbolic;
(c) e1(σ) = 0.

The implication (a) ⇒ (b) always holds, for we may take for K the subfield of H generated by
a skew-symmetric element. (If the skew-symmetric elements in H do not generate a field, then
(H, ρ) is hyperbolic and (b) clearly holds.) The implication (b) ⇒ (c) can be derived from the
first step in the proof of Proposition 1.1 as follows: if (A, σ)K is hyperbolic, then (K, ι) embeds
in (A, σ) by [1, Th. 3.3], hence A contains a skew-symmetric element α such that α2 ∈ F×.
Let α2 = a. The reduced norm NrdA(α) is (−a)2m and by definition e1(σ) =

(
NrdA(α)

)
, so

e1(σ) = 0.
On the other hand, taking for A an indecomposable algebra of degree 8 yields examples

where (b) holds but (a) does not (see [9, Ex. 3.6]), whereas Proposition 1.1 shows that (a) and
(b) are equivalent when degA = 12. The implication (c) ⇒ (b) does not hold, even when A is
split of degree 12: for instance, any quadratic form which is the orthogonal sum of a 3-fold and
a 2-fold Pfister form is a 12-dimensional quadratic form with trivial discriminant, which need
not be hyperbolic over a quadratic field extension of the base field. For an explicit example,



4 A. QUÉGUINER-MATHIEU AND J.-P. TIGNOL

consider for instance ϕ = π3 ⊕ 〈〈x, y〉〉 over F = k((x))((y)), where π3 is an arbitrary anisotropic
3-fold Pfister form over k.

Note also that Tao’s computation in [13] shows that when (a) holds, then e2(σ) is represented
by [H] + (d, d0) where e1(ρ) = (d) and e1(σ0) = (d0). It is therefore easy to see that (a) does
not imply e2(σ) = 0.

By contrast, the condition e1(σ) = e2(σ) = 0 turns out to be sufficient for the existence of
a quadratic extension K such that (A, σ)K is hyperbolic (hence also for a decomposition as in
Proposition 1.1(i)) when degA = 12. The following result may be regarded as a generalization
of Pfister’s theorem on 12-dimensional quadratic forms with trivial discriminant and trivial
Clifford invariant.

Theorem 1.3. Let (A, σ) be a central simple algebra with orthogonal involution of degree 12.
The following conditions are equivalent:

(a) e1(σ) = e2(σ) = 0;
(b) there exists a central simple algebra with orthogonal involution (A0, σ0) of degree 6 and

a quaternion algebra with orthogonal involution (H, ρ) such that, writing e1(ρ) = (d)
and e1(σ0) = (d0),

(A, σ) = (A0, σ0)⊗ (H, ρ) and H = (d, d0).

Proof. That (b) implies (a) follows from the computation of the discriminant and the Clifford
algebra of decomposable algebras with involution, see [7, (7.3)] and [13].

The first part of the argument for the converse is borrowed from [4]. More precisely, assume
condition (a) holds. Then one of the half-spin representations V of Spin(A, σ) is defined over
F . By a classical result in representation theory, since the degree of A is 12, Spin(A, σ) has
an open orbit in P(V )(Falg), where Falg is an algebraic closure of F . Using this open orbit,

Garibaldi produced in (loc. cit., proof of Th. 3.1) a quadratic field extension K = F (
√
d) of F

over which σ is hyperbolic. Therefore, Proposition 1.1 applies and yields a decomposition

(A, σ) = (A0, σ0)⊗ (H, ρ)

for some algebra with orthogonal involution (A0, σ0) of degree 6 and some quaternion algebra
with orthogonal involution (H, ρ) such that e1(ρ) = (d). Let e1(σ0) = (d0). Tao’s computation
in [13] shows that the Clifford algebra of (A, σ) has two components, which are Brauer-equivalent
to [H] + (d, d0) and [A0] + (d, d0). Therefore, the triviality of e2(σ) implies that (d, d0) = [H]
or [A0]. The proof is complete if the first equation holds.

For the rest of the proof, assume (d, d0) = [A0]. Then K splits A0 as well as H, hence it
splits A. Therefore, by Proposition 1.1, we may assume (A0, σ0) = Adϕ for some 6-dimensional
quadratic form ϕ. Let 〈λ1, . . . , λ6〉 be a diagonalization of ϕ and let q ∈ H be such that
ρ(x) = qxq−1 for x ∈ H. Then (d0) = (−λ1 · · ·λ6), F (q) ' K, and (A, σ) ' Adh for the
skew-hermitian form h = 〈λ1q, . . . , λ6q〉. Let u ∈ H× be a quaternion that anticommutes with
q, and let c = u2 ∈ F×. Then [H] = (c, d) and

ux · q · ux = x · cq · x for x ∈ H,
hence the skew-hermitian forms 〈q〉 and 〈cq〉 are isometric. Therefore,

h ' 〈λ1q, . . . , λ5q, cλ6q〉 ' ϕ′ ⊗ 〈q〉 for ϕ′ = 〈λ1, . . . , λ5, cλ6〉,
and we have another decomposition

(A, σ) ' Adϕ′ ⊗ (H, ρ), with e1(ϕ′) = (cd0).

Since (d, d0) = [A0] = 0 and [H] = (c, d), it follows that
(
e1(ϕ′), e1(ρ)

)
= [H], hence the latter

decomposition satisfies the conditions in (b). �

To emphasize the analogy between Theorem 1.3 and Pfister’s result in [8, pp. 123–124],
we derive an additive decomposition of (A, σ) from the multiplicative decomposition in The-
orem 1.3(b). Since degA0 = 6 and 2[A0] = 0, there is a quaternion algebra H ′ such that



DECOMPOSABILITY OF ORTHOGONAL INVOLUTIONS IN DEGREE 12 5

A0 ' M3(H ′). The involution σ0 is adjoint to some skew-hermitian form h over (H ′, ). Pick
a diagonalization h = 〈q1, q2, q3〉, for some pure quaternions qi ∈ H ′. Denote ai = q2

i , and
consider bi ∈ F× for i = 1, 2, 3 such that H ′ = (a1, b1) = (a2, b2) = (a3, b3). Since e1(σ0) = d0,
we have (a1a2a3) = (d0). The algebra with involution (M3(H ′), adh) is an orthogonal sum of
the (H ′, ρi), where ρi = Int(qi) ◦ has discriminant ai. This yields an additive decomposition
of (A, σ), namely (in the notation of [10, §3.1])

(1) (A, σ) ∈ �3
i=1(H ′, ρi)⊗ (H, ρ).

Each term in this decomposition is a central simple algebra of degree 4 with orthogonal involu-
tion of trivial discriminant. It can be rewritten as a tensor product of two quaternion algebras
with canonical involution

(2) (H ′, ρi)⊗ (H, ρ) ' (Hi, )⊗ (Qi, )

with Hi = (aid0, d) and Qi = (ai, bid). (This follows from a calculation of Clifford algebras or,
more elementarily, from a suitable choice of base change.) We thus recover the decomposition
in Corollary 3.3 of [10].

If A is split, hence (A, σ) = Adψ for some 12-dimensional form ψ of trivial discriminant and
Clifford invariant, then H ' H ′, hence each term on the right side of (1) can be written as
Adπi

for some 2-fold Pfister form πi, and (1) yields

(3) ψ ' 〈α1〉π1 ⊥ 〈α2〉π2 ⊥ 〈α3〉π3

for some α1, α2, α3 ∈ F×. We thus get a decomposition of ψ as in [8, p. 124]. Note moreover

that each summand (H ′, ρi)⊗ (H, ρ) becomes hyperbolic over K = F (
√
d), hence πi ' 〈〈βi, d〉〉

for some βi ∈ F×. Since e2(ψ) = e2(π1) + e2(π2) + e3(π3) = 0, we may assume (β1β2β3) = 0.
Equation (3) can be rewritten as

(4) ψ ' (〈α1〉〈〈β1〉〉 ⊥ 〈α2〉〈〈β2〉〉 ⊥ 〈α3〉〈〈β3〉〉)⊗ 〈〈d〉〉 with (β1β2β3) = 0.

2. Applications

2.1. Existence of orthogonal involutions with trivial invariants. As a corollary of The-
orem 1.3, we characterize the biquaternion algebras D such that M3(D) carries an orthogonal
involution with trivial discriminant and Clifford invariant.

Corollary 2.1. Let D be a biquaternion F -algebra. There exists an orthogonal involution
on M3(D) having trivial discriminant and trivial Clifford invariant if and only if D admits a
decomposition into quaternion algebras D = H ′ ⊗ H such that the reduced norm nH′ and the
pure subform n0

H of the reduced norm nH (i.e., its restriction to the pure quaternions) have a
common nonzero value.

If I3F = 0, this condition holds for every biquaternion F -algebra D.

Proof. Assume first there exists an orthogonal involution σ on M3(D) which has trivial dis-
criminant and trivial Clifford invariant. The algebra with involution (M3(D), σ) admits a de-
composition as in Theorem 1.3, with A0 = M3(H ′) for some quaternion algebra H ′. Consider
the discriminant d0 of the involution σ0. We have d0 = −NrdM3(H′)(s), where s ∈ M3(H ′)
is any invertible skew-symmetric element, hence d0 is a value of nH′ by [5, Lemma 2.6.4]. In
addition, d0 = j2 for some pure quaternion j ∈ H = (d, d0). Therefore d0 = −n0

H(j), so the
quadratic forms nH′ and n0

H share −d0 as a common nonzero value.
To prove the converse, assume D = H ′⊗H for some quaternion algebras H and H ′, such that

there exists a quaternion q ∈ H ′ and a pure quaternion j ∈ H satisfying nH′(q) = nH(j) 6= 0.
Let d0 = j2 = −nH′(q), and let H ′0 ⊂ H ′ be the vector subspace of pure quaternions. Pick an
arbitrary invertible q3 ∈ H ′0. The vector space qq−1

3 H ′0 ⊂ H ′ has dimension 3, hence

dim(qq−1
3 H ′0 ∩H ′0) ≥ 2.
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Since dimH ′0 = 3, the Witt index of n0
H′ is at most 1, hence qq−1

3 H ′0 ∩H ′0 contains anisotropic

vectors. Therefore, there exist q1, q2 ∈ H ′0 invertible such that qq−1
3 q−1

2 = q1, i.e., q = q1q2q3.
Then d0 = −nH′(q) is the discriminant of the involution adjoint to the skew-hermitian form
h = 〈q1, q2, q3〉 over (H ′, ). Pick a pure quaternion i which anticommutes with j, and define
ρ = Int(i) ◦ . We get that H = (d, d0), where d = i2 = −nH(i) is the discriminant of the
orthogonal involution ρ on H. The involution σ = adh ⊗ ρ on M3(H ′)⊗H = M3(D) satisfies

(M3(D), σ) = (M3(H ′), adh)⊗ (H, ρ) with [H] = (d, d0).

Therefore, Theorem 1.3 shows that e1(σ) = e2(σ) = 0.
If I3(F ) = 0, then the reduced norm form of every quaternion algebra represents every

nonzero element in F , hence the condition holds for every biquaternion F -algebra D. �

Example 2.2. Let F0 be an arbitrary field of characteristic different from 2, and let F =
F0((x1))((y1))((x2))((y2)) be the field of iterated Laurent series in four variables over F0. The bi-
quaternion algebraD = (x1, y1)⊗(x2, y2) carries a unique valuation v extending the (x1, . . . , y2)-
adic valuation on F , and it is totally ramified over F . We claim that M3(D) does not carry
any orthogonal involution with trivial discriminant and trivial Clifford invariant. To see this
as a consequence of Corollary 2.1, consider a decomposition D = H ′ ⊗ H into quaternion
subalgebras. Let ΓD, ΓH′ , ΓH , ΓF be the value groups of D, H ′, H, F for the valuation v,
so ΓF = Z4 and ΓD = ( 1

2Z)4. By [14, Cor. 8.11] we have ΓD/ΓF = (ΓH′/ΓF ) ⊕ (ΓH/ΓF ),

hence ΓH′ ∩ ΓH = ΓF . For x ∈ H ′
×

we have v(x) = 1
2v
(
nH′(x)

)
by [14, Th. 1.4], hence

v
(
nH′(x)

)
∈ 2ΓH′ . Similarly, v

(
nH(y)

)
∈ 2ΓH for y ∈ H×. But the valuation on H is an

“armature gauge” as defined on [14, p. 339], which means that for every standard quaternion
basis 1, i, j, k of H and λ0, . . . , λ3 ∈ F

v(λ0 + λ1i+ λ2j + λ3k) = min{v(λ0), v(λ1i), v(λ2j), v(λ3k)}.

Since H is totally ramified over F , v(1), v(i), v(j), and v(k) are in different cosets of ΓD modulo
ΓF . Therefore, if y ∈ H× is a pure quaternion, then v(y) /∈ ΓF , hence v

(
nH(y)

)
∈ 2ΓH \ 2ΓF .

In conclusion, it is impossible to find x ∈ H ′× and y ∈ H0 such that nH′(x) = nH(y), because
2ΓH′ ∩ 2ΓH = 2ΓF .

2.2. A formula for the f3-invariant. In the situation of Theorem 1.3, the algebras H and A0

occurring in the decomposition of (A, σ) with e1(σ) = e2(σ) = 0 are not uniquely determined,
even up to Brauer-equivalence. Take for instance an arbitrary quaternion algebra H = (d, d0)
with an orthogonal involution ρ of discriminant (d). As −d0 is represented by the reduced
norm form nH , we may argue as in the proof of Corollary 2.1 to find pure quaternions q1, q2,
q3 ∈ H such that nH(q1q2q3) = −d0. On A0 = M3(H), the orthogonal involution σ0 adjoint to
the skew-hermitian form 〈q1, q2, q3〉 has discriminant (d0). Therefore, (A, σ) = (A0, σ0)⊗ (H, ρ)
satisfies the conditions of Theorem 1.3. But A is split since A0 and H0 are Brauer-equivalent,
hence (A, σ) ' Adψ for some 12-dimensional quadratic form ψ with e1(ψ) = e2(ψ) = 0. By
Pfister’s result (see (4)), there is a decomposition ψ ' ψ0 ⊗ β for some 6-dimensional form ψ0

with e1(ψ0) = 0 and some 2-dimensional form β, hence another decomposition of (A, σ) as in
Theorem 1.3:

(A0, σ0)⊗ (H, ρ) = (A, σ) ' Adψ0 ⊗Adβ .

Nevertheless, we show in this section that the invariant f3(σ) defined in [10, Def. 2.4] can
be calculated from any decomposition as in Theorem 1.3, and can thus yield some information
on the possible decompositions. The main ingredient of the proof is Theorem 5.4 in [10],
which shows that f3(σ) is the Arason invariant of the sum of the norm forms of all quaternion
algebras in a given decomposition group of (A, σ). Since the f3 invariant is defined only when
the underlying central simple algebra carries a hyperbolic involution, we need to assume in the
following statement, which is the main result of this section, that the index of A is at most 2.
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Theorem 2.3. Let (A, σ) be a central simple algebra of degree 12 and index ≤ 2 with an orthog-
onal involution with trivial discriminant and trivial Clifford invariant. Pick a decomposition of
(A, σ) as in Theorem 1.3,

(A, σ) ' (A0, σ0)⊗ (H, ρ)

where (A0, σ0) is a central simple algebra with orthogonal involution of degree 6 and (H, ρ) is a
quaternion algebra with orthogonal involution, and H = (d, d0) with e1(ρ) = d and e1(σ0) = d0.
Let Q and H ′ be the quaternion algebras that are Brauer-equivalent to A and A0 respectively,
and let nQ, nH′ , nH be the reduced norm forms of Q, H ′ and H respectively. With this notation,

(5) f3(σ) = e3(nQ − nH − 〈d〉nH′) ∈ H3(F ).

(Note that nQ−nH −〈d〉nH′ ∈ I3F because [Q] + [H] + [H ′] = 0.) Moreover, if c ∈ F× is such
that H, H ′ and Q are all split by F (

√
c), and e ∈ F× is such that H = (c, e), then

(6) f3(σ) = (de) · [Q] = (de) · [H ′].

Proof. Consider the additive decomposition of (A, σ) in (1). Together with (2), it shows that

{0, [Q], [Q1], [H1], [Q2], [H2], [Q3], [H3]}

is a decomposition group of (A, σ) as defined in [10, Def. 3.6]. As a result, Theorem 5.4 in [10]
yields

f3(σ) = e3

(
nQ +

3∑
i=1

nHi
+

3∑
i=1

nQi

)
.

In order to compute the Arason invariant of this quadratic form, we use the following identity
in the Witt group of F :

〈〈λ, µν〉〉 = 〈〈λ, µ〉〉+ 〈µ〉〈〈λ, ν〉〉.
In particular, it shows that for i = 1, 2, and 3, we have

nHi
= 〈〈ai, d〉〉+ 〈ai〉nH and nQi

= 〈〈ai, d〉〉+ 〈d〉nH′ .

Therefore,

(7)

3∑
i=1

nHi +

3∑
i=1

nQi = 〈a1, a2, a3〉nH + 〈d, d, d〉nH′ +

3∑
i=1

〈〈−1, ai, d〉〉.

Recall that (d0) = (a1a2a3), hence

〈a1, a2, a3〉nH ≡ 〈−d0〉nH mod I4F.

Similarly,

〈d, d, d〉nH′ ≡ 〈−d〉nH′ mod I4F.

Therefore, (7) yields

e3

(
nQ +

3∑
i=1

nHi +

3∑
i=1

nQi

)
= e3(nQ − 〈d0〉nH − 〈d〉nH′) +

3∑
i=1

(−1, ai, d)

= e3(nQ − nH − 〈d〉nH′) + (d0) · [H] + (−1, d0, d).

Now, since H = (d, d0) and (d0, d0) = (−1, d0), the last two terms on the right side of the last
displayed equation cancel, and Formula (5) is proved.

To obtain Formula (6), choose c ∈ F× such that F (
√
c) splits Q, H, and H ′, and let e,

e′ ∈ F× be such that H = (c, e) and H ′ = (c, e′), hence Q = (c, ee′). Then

nQ − nH − 〈d〉nH′ = 〈〈c, ee′〉〉 − 〈〈c, e〉〉 − 〈d〉〈〈c, e′〉〉
= 〈〈c〉〉〈e,−ee′,−d, de′〉
= 〈e〉〈〈c, e′, de〉〉.
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Therefore, f3(σ) = (c, e′, de) = (de) · [H ′]. As H = (c, e) = (d, d0), we have

(d) · [H] = (−1) · [H] = (e) · [H],

hence (de) · [H] = 0 and (de) · [H ′] = (de) · [Q]. Formula (6) is thus proved. �

Corollary 2.4. With the notation of Theorem 2.3, we have f3(σ) = 0 if any of the following
conditions holds:

(i) A is split;
(ii) A0 is split;
(iii) A0 is split by F (

√
d0).

Proof. Formula (6) readily shows that f3(σ) = 0 when (i) or (ii) holds. In case (iii) we may
take c = d0 and e = d in Formula (6) to obtain f3(σ) = 0.

Alternatively, in case (i) we may argue that (A, σ) = Adψ for some quadratic form ψ ∈ I3F ,
hence e3(σ) = e3(ψ) ∈ H3(F, µ2) and therefore f3(σ) = 0 by definition. Also, in case (ii) (A, σ)

is split and hyperbolic over F (
√
d), hence f3(σ) = 0 by [10, Prop. 5.6]. �

By contrast, f3(σ) does not necessarily vanish when H is split. In that case we may choose
e = 1 in Formula (6) and derive the following: if (A, σ) = (A0, σ0)⊗ Ad〈〈d〉〉 and e1(σ0) = (d0)
is such that (d, d0) is split, then

f3(σ) = (d) · [A0].

This also follows from [10, Cor. 2.18].
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[4] S. Garibaldi and A. Quéguiner-Mathieu, Pfister’s theorem for orthogonal involutions of degree 12, Proc.

Amer. Math. Soc. 137 (2009), no. 4, 1215–1222.
[5] P. Gille and T. Szamuely, Central simple algebras and Galois cohomology, second edition, Cambridge

Studies in Advanced Mathematics, 165, Cambridge University Press, Cambridge, 2017.

[6] B. Kahn, Formes quadratiques sur un corps. Cours Spécialisés, 15. Société Mathématique de France, Paris,
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[10] A. Quéguiner-Mathieu and J.-P. Tignol, The Arason invariant of orthogonal involutions of degree 12 and

8, and quaternionic subgroups of the Brauer group. Doc. Math. 2015, Extra vol.: Alexander S. Merkurjev’s

sixtieth birthday, 529–576.
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