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Reinforcement learning techniques propose an alternative to the potentially expensive use
of model predictive control. This research uses reinforcement learning techniques to develop
a control policy to reduce the unsteady turbulent loads on a 2D airfoil. The learned control
strategy compares well with the classical linear-quadratic-Gaussian control, when applied to
the turbulence. When tested with a discrete gust, the learned controller performs relatively
poorly.

Nomenclature

A,Ad,Ae = Continuous time, discrete time, and extended state evolution matrices
B,Bd,Be = Continuous time, discrete time, and extended control matrices
B′,B′d,B

′
e = Continuous time, discrete time, and extended turbulence generation matrices

C = Sensing matrix
CL = Lift coefficient, lift / (dynamic pressure * chord length)
I = Identity matrix
Lw = Turbulence length scale, m
Q = Action-value function
Q = State cost matrix
U = Freestream velocity, m/s
c = Chord length of the airfoil, m
f() = Constants related to the flap hinge position
ie = Episode index
ne = Total number of episodes
u = Control input: acceleration of the flap, m/s
w = Velocity perturbations normal to the freestream, m/s
x = State of the airfoil system
y = Observation of the airfoil system
z() = Parameters to model the wake’s influence on the airfoil
α = Angle of attack, radians
β = Flap deflection angle, radians
βmax = Maximum flap deflection, radians
Ûβmax = Maximum flap deflection speed, radians/s
Üβmax = Maximum flap deflection acceleration, radians/s2

ε = Reinforcement learning action-choice parameter
σw = Turbulence intensity, m/s
∆t = Simulation time step duration, s
Û() = Derivative with respect to time
Ü() = Second derivative with respect to time

I. Introduction

This is an attempt to alleviate the time-varying loads on an airfoil in turbulent flow using a reinforcement-learned
policy to dictate its flap motion, rather than classical techniques such as model predictive control. The system in
∗Post-doctoral researcher, Department of Thermodynamics and Fluid Mechanics, esteban.hufstedler@uclouvain.be.
†Professor, Department of Thermodynamics and Fluid Mechanics, philippe.chatelain@uclouvain.be.

1



question is an airfoil with a flap, exposed to oncoming normal-velocity perturbations. The airfoil’s flap is limited: its
deflection, speed, and acceleration are limited in magnitude. The controllers sense the instantaneous flap position,
speed, and some oncoming perturbations, and apply an acceleration to the flap. As a baseline, the learned policies are
compared to linear-quadratic-Gaussian controllers.

Rejection of loads due to atmospheric unsteadiness is a lively topic of research. Regan and Jutte[1] describe a
range of benefits of loads alleviation: reduction in structural weight due to reduction of loads, reduced fatigue of
wings, improved ride quality, and more. These approaches typically involve measurements of local quantities, but some
research includes observations of the upstream flow conditions. The von Kármán turbulence spectrum[2] is often used find more

examples of
load rejec-
tion?

find more
examples of
load rejec-
tion?

to model such unsteadiness, providing an input to simulations of gust response. Another popular type of unsteadiness is
the discrete one-minus-cosine gust[3].

Thin airfoil theory[4] provides relatively simple methods of modeling high-Reynolds number flow around an airfoil.
This assumes inviscid, attached flow over the airfoil, and a wake that extends from the trailing edge. In unsteady thin
airfoil theory, the wake evolves over time in response to the motion of the airfoil or oncoming velocity perturbations. A
key result of the unsteadiness is the asymptotic approach to, rather than instantaneous achievement of, the steady-state lift
coefficient. The Wagner[5] and Küssner[6] functions were developed to describe these unsteady effects. Leishman[7]
developed a state-space model of these functions, allowing for more efficient modeling of unsteady thin airfoil theory.
This model included a set of wake-capturing parameters, yielding a model of the time-varying lift coefficient, CL .

The baseline controller in this study used linear-quadratic-Gaussian (LQG) control. This classical approach
optimally controls a system with limited observations, including the possibility that the system may be perturbed by
normally-distributed noise.

Reinforcement learning[8] (RL) is an approach for generating control strategies based on interaction with an
environment. The learning agent performs actions in the environment, and is given a numerical reward. The goal is
for the agent to maximize its cumulative reward. The agent develops a ‘policy’ which determines what actions it will
perform. It initially knows nothing of the environment, and must explore the environment (by performing new actions
with unknown rewards) and exploit it (performing known, rewarding actions). This is a technique of learning by trial
and error, rather than mathematical analysis. As such, it can discover control methods for systems that are difficult to
mathematically analyze. This may be useful for controlling systems that are nonlinear or limited in their actuation.

This paper uses Q-learning; a type of RL where an agent attempts to learn how valuable each possible action is from
each state it has observed. This results in the action-value function, Q(s, a), that maps a given state, s, and action, a, to a
numerical value. At each timestep, a RL agent must observe its environment, choose an action, perform the action, and
then obtain a reward and make a new observation of the environment. From this sequence of observation, action, reward,
and observation, it updates its estimate of Q. Here, the Q function was learned with the Double Deep-Q Network[9]
(DDQN) approach. The basic deep Q network approach uses a multilayer artificial neural network to approximate the Q
function and choose its actions. The DDQN improves on this by using two separate networks: the evaluation network
is trained over time and is used to choose actions, and the target network is used to estimate the value of the actions.
Periodically, the properties of the evaluation network are copied to the target network. This separation and periodic
replacement makes the system less overoptimistic, resulting in better performance. This algorithm includes ‘experience
replay’, where the RL agent maintains a buffer of previous experiences, and periodically trains itself on a randomly
selected set of these memories. In this study, the agent chose actions via the epsilon-greedy method: it picked the most
rewarding action with probability 1 − ε , or a uniformly random action with probability ε .

This paper is organized in the following manner. First, the aerodynamic model of the airfoil is presented in section
II. The different control schemes are introduced in section III. Section IV describes the simulation parameters, and
section V presents the results.

II. Numerical Model of the Airfoil System
The airfoil, seen in Figure 1, is modeled with unsteady thin airfoil theory. It has chord length c, steady angle of

attack α, and time-varying flap deflection β. It can be controlled by applying an angular acceleration Üβ. The flap is
limited to deflections of |β | ≤ βmax , speeds of | Ûβ| ≤ Ûβmax , and accelerations of | Üβ| ≤ Üβmax . If the flap reaches its
angular maximum, it stops suddenly.

The streamwise velocity, U, is constant. The oncoming flow carries vertical velocity perturbations, w(t), which
cause unwanted fluctuations in the lift. This turbulence is generated using white noise applied to transfer functions
which approximate the von Kármán turbulence spectrum, with length scale Lw and intensity σw . This turbulence is
‘frozen:’ it does not evolve as it convects downstream and interacts with the airfoil. The unsteady effects of the wake are
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Fig. 1 Flapped airfoil in freestream, with incoming velocity perturbations.

captured, however, using Leishman’s indicial approach of integrating wake-capturing parameters, which are denoted z().

A. Continuous-time evolution
The state of the system is

x =
[
β Ûβ zwag,1 zwag,2 zkus,1 zkus,2 CL w

]T
, (1)

which evolves as

Ûx = Ax + B Üβ(t) + B′ Ûw(t), (2)

where Üβ(t) is the applied control, which accelerates the flap angle. The matrices A, B, and B′ are defined in the
Appendix. With steady conditions, the lift coefficient simplifies to

CL = 2π
(
α +

w

U

)
+ 2 f10β, (3)

where f10 is a constant (based on the flap length) which is defined in the Appendix.

1. Discrete-time evolution
The system was simulated in discrete time steps of length ∆t, which enables us to easily include observations of the

oncoming flow perturbations. The discrete-time evolution was approximated using Euler integration from timestep i to
i + 1 as

xi+1 = (I + A∆t)xi + (B∆t) Üβi + (B′∆t) Ûwi, (4)
= Adxi + Bd Üβi + B′d Ûwi . (5)

To include observations of the upstream turbulence, these matrices are extended to include N upcoming velocity
perturbations:


x

w+1
...

w+N

 i+1

=


Ad′ 0
0 I
0 0




x
w+1
...

w+N

 i
+

[
Bd

0

]
Üβi +


0
...

1

 wnew,i, (6)

xe,i+1 = Aexe,i + Be Üβi + B′ewnew,i, (7)

where Ad′ is Ad, but with the lower-right entry set equal to zero. The wnew,i is the newest value of the upstream
turbulence.

The controllers do not directly access the state, and instead observe y:

y = Cxe, (8)

where C extracts β, Ûβ, CL , and some number of the oncoming velocity perturbations.
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III. Control methods
Three control methods were examined: LQG control of the full system, LQG control of a simplified quasi-steady

version of the system (LQG-QS), and the RL approach. The RL control was limited to three values of actuation,
compared to the continuous control available to the LQG approaches.

A. Linear-Quadratic-Gaussian Control
This unsteady airfoil model is linear time-invariant, which simplifies the analysis. Applying LQG control to the

extended system gives the feedback gain, which defines the control. In this study, this was approximated through iteration
of the forward and backward Riccati equations. The state cost matrix Q penalizes the lift coefficient error (CL −CL(0))2
with a value of 1, and the use of control, Üβ2 with a value of 5. The state noise and process noise covariance matrices are
10−4 times the identity matrix. If the LQG controller commands a | Üβ | > Üβmax , the system will only accelerate at Üβmax .

To examine the importance of wake delay effects, LQG was also performed using system matrices corresponding to
steady thin airfoil theory. This is referred to as quasi-steady control, or LQG-QS.

B. Reinforcement-Learned Control
This implementation of Q-learning allowed for three discrete actions: no flap acceleration, or accelerating the flap

by ± Üβmax . To mimic the information retained by the Kalman filter, the RL state contains the observed β, Ûβ, CL , and
velocity perturbations of the 50 previous timesteps. To encourage exploration at the start of the learning process and
exploitation of rewarding behaviors at the end, the value of ε was chosen to decrease from ε0=0.5 to ε f inal=0.01. The
value at episode number ie is

ε = ε0 exp
(
−

ie
ne

log
(

ε0
ε f inal

))
, (9)

where ne is the maximum number of episodes.
Two types of agents were trained, with different reward functions,

− |CL − CL(0)|p , (10)

where p is 1 or 2. The power of two emphasizes reduction of large deviations. These are referred to as RL Agents 1 and
2.

The DDQN network involves a number of parameters. At each timestep, an agent stored its observations in the
memory buffer, which could hold 1e5 observations. The networks were implemented in Keras[10] as two dense layers
of 32 neurons each. The evaluation network was trained every 50 timesteps using an Adam optimizer with learning rate
1e-4, discounting parameter of 0.9, batch size of 32. The evaluation network was copied to the training network every
100 timesteps. Training was performed using an Adam optimizer.

When the agents were evaluated, ε was set to zero to ensure deterministic action choices.

IV. Simulation Parameters
The freestream speed, chord length, and flap length were modeled on those of a Piper Cub light aircraft flying near

its stall speed of 16 km/h, with a chord length of 1.54 m and a flap length of 24%. The flap deflection is limited to ± 10°
to maintain approximately attached flow. The maximum flap deflection speed is 20°/s, and maximum flap acceleration
is 160°/s2. The turbulence intensity and length scales were modeled on von Kármán turbulence at an altitude of 1000
ft[11].

Since this is a model of inviscid and incompressible flow, the freestream velocity and chord length were set equal to
unity in the simulation, and other parameters were nondimensionalized by the physical chord length and freestream
speed. These parameters are listed in Table 1.

The RL agents were trained over the course of 1000 episodes of 4000 time steps each, totaling 4x106 timesteps.
Each training episode had a random σw between 0.46 and 1.34 U. The effectiveness of each control scheme was tested
with episodes of 10000 time steps, or 1000 convective time units, for each evaluated σw .
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Parameter Value(s) or range

Velocity sensing distance upstream 5c
∆t 0.1 c/U

Training Episodes 1000
Training episode length 4000 time steps
Evaluation episode length 10000 time steps

Training σw 0.46 to 1.34 U
Lw 200 c
βmax 10°
Ûβmax 1.8 ° U/c
Üβmax 1.3 ° (U/c)2

Table 1 Simulation parameters

V. Results
A series of simulations were performed. First, the effect of different sensing positions was examined. Second, the

amount of saturation of the LQG controller was found. Next, the RL agents were trained to control the turbulent lift
fluctuations, and their effectiveness compared to the LQG controllers. Finally, these controllers were applied to the
one-minus-cosine gust scenario.

A. Effect of sensing positions
The LQG and LQG-QS controllers were applied in a weakly turbulent flow to examine the importance of sensor

positions. Two types of tests were conducted: ‘dense’ sensing where the perturbations were measured at every spacing
of U∆t until a maximum position, and sensing which only measured at that furthest point. Figure 2 displays the
effectiveness of these sensing methods for a range of furthest points, presented as the root mean square (RMS) of the
controlled CL , normalized by the RMS of the uncontrolled CL .

Both control techniques reduced the variation in lift, but the inclusion of the unsteady state variables in the full LQG
yielded superior results. Looking at the LQG results, it was useful to sense upstream of the airfoil, but with diminishing
returns. In this case, it was not useful to have sensors beyond 5c upstream. This length is related to how long it takes to
deflect the flap, rather than needing to know about distant turbulence. Additionally, since the turbulence was frozen,
having one sensor was nearly as useful as having many. As a result, the rest of the simulations in this paper use a single
sensor 5c upstream of the airfoil.
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Fig. 2 Effect of number of sensing distance and number of sensors. Turbulence intensity σw = 0.4
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B. Saturation of LQG controller
Since the available control effort was limited, the LQG controller would attempt to command impossible accelerations

in response to strong turbulence. Figure 3 shows the relative frequency of these impossible commands. The controller
was saturated nearly 20% of the time with the strongest tested turbulence.
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Fig. 3 Percent of time the LQG controller was saturated

C. Reinforcment Learning Results
The results of the different control techniques are shown in Figure 4. The absolute RMS of CL is plotted in Figure

4a, and Figure 4b is normalized by the no-control RMS. Above σw=0.8, the RL agents performed as well as the LQG
controller. Below that intensity, the three approaches diffeedr. RL agent 2, with a reward function that emphasizes
rejecting large disturbances, did not learn to control weak turbulence well. RL agent 1, in contrast, reduced the variation
in CL even more than the LQG controller, until the disturbances were extremely weak. This is likely because the use of
control was penalized with the LQG controller, but not with the RL agent.
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Fig. 4 RMS of CL , with and without normalization, for variable σw . Note log and linear y-axes.

D. Discrete gusts
The effect of a strong discrete one-minus-cosine gust is shown in Figure 5. The LQG controller was the most

effective, reducing the magnitude of lift variation by 90%. The worst was RL agent 1, which reduced the peak magnitude
by 19%. The quadratic RL agent reduced the lift variation by 48%. The relative ineffectiveness of the RL agents
demonstrates the risk of applying RL control to situations they have not been trained for. Also, both RL agents show
some sawtooth-like behavior, as the discrete actions make it difficult to smoothly follow a curve.
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Fig. 5 CL response to a one-minus-cosine gust, velocity amplitude 0.1U

VI. Conclusion
Reinforcement learning provides a means to generate effective control policies without understanding the dynamics

of the system. Application of such techniques successfully reduced lift fluctuations on a simple model of an airfoil in
von Kármán turbulence, with performance comparable to LQG control. Unfortunately, the RL control methods were
less effective when applied to circumstances beyond their training.

Future extensions of this work may involve two main thrusts: improving the system model, or improving the
learning techniques. To make the system more physically relevant, the sensing could model LiDAR (light detection and
ranging) instead of point measurements, and include sensor noise. The turbulence could also be modified, such that it is
two-dimensional or evolves over time. A further elaboration could include pitching and heaving of the airfoil, as it
attempts to avoid patches of upcoming turbulence. More advanced RL strategies would be useful, such as those that
allow for continuous values of control input.

Appendix
This appendix provides the values of the state evolution matrices, based on Leishman’s approach. The f() parameters

depend on the position of the flap hinge. With xh as the distance from the leading edge of the airfoil to the flap:

e = 2
xh
c
− 1, (11)

f4 = e
√

1 − e2 − arccos(e), (12)

f10 =
√

1 − e2 + arccos(e), (13)

f11 = (1 − 2e) arccos(e) + (2 − e)
√

1 − e2. (14)
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The state evolution matrices are

d
dt



β

Ûβ

zwag,1

zwag,2

zkus,1
zkus,2
CL

w


=



0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
f10
π

c f11
4πU −0.07419U2

c2 −0.7774U
c 0 0 0 0

0 0 0 0 0 1 0 0
0 0 0 0 −1.004U2

c2 −3.883U
c 0 1

U

0.4388 f10U
c f10 + 0.1097 f11 −0.1023U3

c3 −0.8387U2

c2 −10.59U3

c3 −34.62U2

c2 0 10.54 1
c

0 0 0 0 0 0 0 0





β

Ûβ

zwag,1

zwag,2

zkus,1
zkus,2
CL

w


...

(15)

+



0
1
0
0
0
0

− f4 c
2 +

c f11
4U

0



Üβ(t) +



0
0
0
0
0
0
0
1


Ûw(t), (16)

x = Ax + B Üβ(t) + B′ Ûw(t), (17)

The z() parameters are initialized as if the airfoil has been sitting at a steady state for infinite time:

zwag,1(0) = 4.290
c2(πα + f10β(0))

U2 (18)

zwag,2(0) = 0 (19)

zkus,1(0) = 0.9959
c2w(0)

U3 (20)

zkus,2(0) = 0 (21)
(22)
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