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Abstract. This paper investigates data-driven methods to predict fail-
ures of a rotating condenser (RotCo) inside a synchrocyclotron for a
proton therapy treatment system [12]. Downtime caused by a failure of
the system can lead to significant delays in the treatment of the patients,
which is why having a reliable predictive maintenance system is essential.
The condenser rotates at high speed and rolling bearing elements are re-
sponsible for maintaining low friction between the moving components.
The aim is to predict failures of the bearing box which contains the shaft
and the bearing elements. Several sensors within the cyclotron are con-
stantly measuring multiple relevant signals but, notably, vibration data
is not available. We leverage those time-series data to predict a few days
in advance whether a failure is likely to happen. To do this, we propose a
two-level approach that relies on combining the output of a classifier with
an aggregator based on a custom business metric specifically designed for
this problem.

Keywords: Predictive maintenance · Rotating machine · Machine learn-
ing · Time series

1 Introduction to our predictive maintenance problem

Downtime caused by the failure of a component of a proton therapy system can
lead to delays in the treatment of patients. We investigate one of the component
subjected to failure, called the RotCo (for Rotating Condenser) and try to pre-
dict a few days in advance whether a failure is likely to happen.

The RotCo is composed of a stator and a rotor with eight blades and rotates at a
constant speed of 7500 RPM, giving a repetition rate of 1kHz. We are interested
in predicting the state of a specific sub-device of the RotCo, the bearing box
which contains the bearing elements, that shows signs of weaknesses visible to
operators only few hours before the failure happens. A vast scientific literature
exists for the diagnostics and prognosis of bearing elements. However, nearly all
the research of the subject is based on vibration data, which are not available
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in our situtation. Hence, we must follow a different kind of approach: we chose
a purely data-driven framework based on machine-learning.

Eight sensors constantly measure the health of the RotCo at a rate of 1Hz.
The signals measured and their descriptions are shown in Table 1 below.

Table 1: Description of available signals.
Name Description

Speed Speed at which the rotor is rotating

Torque Torque applied to the rotor

Current DC component of the current

Voltage DC component of the voltage

Bearing Temperature Temperature inside the bearing box

Motor Temperature Temperature of the motor

Pyrometer Temperature Temperature of the rotor measured via infrared.

Vacuum Pressure inside the vacuum chamber (vacuum measurement is
impacted when the bearing box friction generates gas release).

From those time-series signals, we want to predict whether the machine is
going to fail in the next days ahead. The business need is to detect a failure
five days in advance (seven days being even better) so that if a sign of failure
is detected on a Monday, a maintenance can be scheduled in the week-end to
limit the downtime. Based on theses business considerations, a specific metric
was designed to evaluate the performance of a given prediction method and is
depicted in Fig. 1. It provides a score between zero and one (higher is better)
computed from a piecewise-linear function of the number of days between the
prediction and the actual failure:

– A prediction 7 days ahead gives a perfect score.
– Predictions between 7 and 0 days assign a score that decreases linearly to

zero (with a slightly higher slope between 7 and 5 days).
– Similarly, predictions ranging from 7 to 15 days are assigned a score linearly

decreasing from 1 to 0 (with a slightly higher slope between 7 and 10 days).
– Finally, predicting a failure more than 15 days in advance leads to a zero

score to reflect the unexploited lifetime.

2 Previous work

There exists multiple ways to tackle a predictive maintenance problem, coming
from different research fields and answering different kind of questions. A large
number of works can be found in the literature, and many surveys are available:
Jardine et al. [6], Peng et al. [13], Ahmad and Kamaruddin [1] (the latter fo-
cusing on signal monitoring methods), or more recently [14] from Shin and Jun.
Those reviews split the predictive maintenance program into essentially three
parts: data acquisition, data processing and maintenance decision making.
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Fig. 1: Business metric used to evaluate the performance of failure predictions.

Viewed at a conceptual level, techniques for maintenance decision making can
be split into three categories:

1. Anomaly detection techniques [2] consist in attempting to flag anomalous
behavior and isolate or identify faults, and is sometimes referred to as diag-
nostics in the literature.

2. Techniques based on classification [16] try to predict whether a system is
going to fail within a given time-window.

3. Techniques based on regression try to estimate the Remaining Useful Life
(RUL), i.e. how much lifetime remains before a failure, and is sometimes
referred to as prognostic in the literature [5, 9].

RUL estimation usually involves making an assumption of the degradation
process via health indicators (directly observed or created via feature engineer-
ing) and predict the remaining lifetime based on this assumption. We do not
make any assumption on the degradation process and therefore exclude this
approach. Then, as our metric for prediction quality clearly involves time, we
choose the classification approach over anomaly detection, where we will try to
predict whether a system is going to fail within a given time horizon. To fit the
classification setting we will label training data points as nominal or critical,
depending on whether failure occurs within that time horizon.

A second aspect, orthogonal the the above discussion, is the type of model used.
The literature distinguishes between physics-based models (e.g. [8], [11]), knowl-
edge based models (expert & fuzzy systems, e.g. [4]), threshold-based signal
processing (e.g. [1]), statistics models (e.g. [15] for a survey) and machine learn-
ing (ML)/Artificial intelligence (AI) models (e.g. [10]). We decided to choose the
machine learning approach because the system appears to be too complex to be
modelled from a physical point of view, and we have enough data to feed into a
ML model. We do not consider the threshold-based signal processing approach
as it is usually based on the vibration data that we lack.
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One interesting point is the fact that none of the above-mentioned surveys –
nor specific applications in the literature – seem to describe a classification ap-
proach based on a time horizon before the failure. On the one hand, classification
is usually used in a detection problem based on classifying different faults or dis-
criminating between a faulty system and an healthy one without notion of time.
On the other hand, when time is taken into account it seems to be always mod-
elled as a regression problem implementing the RUL. We found one instance
of previous work involving classification with a time-horizon for an electronic
device, that can be found in [16]. Their approach consists of training multiple
classifiers with different predictive horizons and chose the one that minimizes a
cost function. The device is then replaced when the optimal classifier detects a
faulty data point. The approach we describe is somehow comparable, with our
business metric replacing their cost function, albeit we combine our classifier
with a second-level aggregator (see Section 3.3).

Specific predictive maintenance techniques dedicated to rotating machines and
bearing elements also exist but almost always rely on vibration data which, as
mentioned before, are not available. For an overview on maintenance techniques
for rotary machinery, the reader can refer to [3, 7].

3 Description of our approach

3.1 Data acquisition

We collected about a year of data during which 9 replacements occurred. From
those 9 replacements, 8 were real failures and 1 was a preventive replacement.

Due to the high number of data points (for one year of data: about 30 mil-
lions points per signal), we decrease their number by computing averages over
30-second intervals, leading to about 500,000 data points per signal which is
more tractable. All experiments will be run using those.

3.2 Data processing and feature design

After cleaning the data and removing physically impossible values (due to sensor
errors), we create some new features in the time and frequency domain. Those
features are computed on adjacent non-overlapping 2-hour long time windows,
separately for each signal.

The time domain features used for this research are computed as follows: for
each signal, the following are computed over each time window (240 samples):
mean, standard deviation, skewness, kurtosis and sum of peaks, which is the
number of peaks occurring in a time window. A peak is defined as a local max-
imum (by comparison with its two neighbouring values) that is greater than
median(X) + 2mad(X), where median(X) and mad(X) are respectively the me-
dian and the median absolute deviation of the window.
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The frequency domain features are computed via Fourier transform of the time
window values (which contains 240 samples). Those amplitudes are split into five
frequency bins (i.e. 48 samples). Then, in each of those five bins, we compute the
average of the five largest amplitudes, and use those as features. This procedure
is used as a tradeoff between using the average and the peak amplitude inside
of each bin.

Independently of how those features are designed, we investigate two different
ways of handling each time-series: a simple approach where each data point con-
tains all features computed over a single two-hour time window for each signal,
and a history-enriched approach where we gather for each signal the twelve most
recent values of each feature (i.e. going 24 hours backwards in time), with the
objective of including enough details about the history without adding too many
variables (to avoid risking overfitting and/or excessive computational burden).
The simple approach thus contains 8×10 = 80 features (8 signals and 10 features,
being the 5 statistical and 5 frequency features) while the history-enriched case
contains 8×10×12 = 960 features (8 signals, 10 features and 12 time windows).

3.3 Two-level learning approach

Architecture description
We chose a two-level approach, depicted in Fig. 2, that consists of a support
vector machine (SVM) binary classifier at the lower level, trained to distinguish
between nominal and critical time windows, combined with a higher-level aggre-
gator. A Radial Basis Function (RBF) kernel is chosen for its general-purpose
and good accuracy. A one-level approach based on a multi-classifier SVM, where
each class corresponds to a certain range of days before failure, was also a pos-
sibility but would not have been fully compatible with the considered business
metric.

Processed 
Data

SVM 
classifier

Aggregator

STEP 1 STEP 2
SEQUENTIAL 
INPUT

SVM 
decision 
function Alarm signal

Threshold 
reached ?

NO

YES

Streamed 
data
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Fig. 2: Two-level approach

Data is first preprocessed and the features are extracted (see section 3.2
above). The processed data is then sent as input to the SVM (step 1 in Fig. 2)
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that classifies whether the data is critical or nominal.

The result of the SVM is then fed into the aggregator whose responsibility is to
decide whether to trigger an alarm or not. The output of the SVM fed into the
aggregator is not just its binary class output, but the distance to the hyperplane
defined by the decision function

f(x) =

n∑
i=1

αiK(xi, x) + b

where K(xi, x) = exp(−γ‖xi − x‖2) is the RBF kernel used in the SVM. The
aggregator computes a rolling average of the SVM decision function over 8 hours,
and raises an alarm if this average exceeds a predefined threshold. Based on the
distance interpretation of the decision function (margin) we selected a zero value
for the threshold.

Training phase and labelling
For training the SVM, we need to define a labelling. As explained in the in-
troduction, we label each data point as nominal or critical based on whether a
failure occurred during some fixed time horizon after the considered time win-
dow. As we do not have a precise idea of when the machine actually enters a
critical state (which may not even correspond to an actual physical condition),
we choose the length of that horizon somewhat arbitrarily to be equal to five
days. All data points between the failure date and 5 days before the failure date
will be marked as critical and the remaining points as nominal. Other lengths for
the labelling horizon have been tested in a preliminary analysis but performed
slightly worse.

The general architecture of the training process is depicted in Fig. 3. After data
is processed and labelled, it is split in 9 folds, where each fold is a run-to-failure
(or a run-to-preventive replacement in one case). Each fold is thus once used as
a test set. The SVM is trained on all other folds (STEP 1) and is used to predict
on the remaining fold. The output of the classification of this fold is fed to the
aggregator that triggers an alarm if it exceeds the zero threshold. As soon as
the alarm is triggered, we compute its difference in time with the actual failure,
from which we compute the business metric according to Fig.1. The business
score is then averaged on the 9 test folds.

Dimensionality reduction
To reduce the dimension of the problem, we use a backward feature selection pro-
cess with a wrapper approach. We start with all features included in the model
and recursively eliminate among all remaining signals or aggregation types the
one that increases the score the most (which indicates some level of overfitting
for the model with all features). We do this until the score starts to decrease. A
cross-validated grid search is done concurrently with the feature selection. The
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Fig. 3: Training process

principle is the following: We start with all features and recursively eliminate
one signal or one aggregation type, i.e. the candidates for removal are Speed,
Torque, Current, Voltage, Bearing Temperature, Motor Temperature, Pyrometer
temperature, Vacuum, mean, std, skewness, kurtosis, sum of peaks and frequency
bins 1,2,3,4,5. This gives a total of 18 candidates. Once we remove a candidate,
we remove all the features associated with it. When a signal is eliminated, we
remove all its aggregation and history, and when deleting an aggregation type,
we remove it in all signals and history. Hence, we remove multiple features per
selection step. The candidate removed is selected so as to maximize the business
metrics. The backward selection is stopped whenever the removal of a candidate
decreases the score by more than one percent.

This process is computationally intensive. Indeed, the first step of the feature
selection requires 18 evaluations on different sets of features and, for each set
of features, a grid search on the parameters of the SVM with a 9-fold cross-
validation is performed. Hyperparameters of the SVM are the penalty of mis-
classifying data points, C and the parameter of the RBF kernel γ. The grid
chosen is a logarithmic grid with the following values: C = [1, 10, 100, 103], and
γ = [10−5, 10−4, 10−3, 10−2]. Thus, the first step of the selection alone already
requires 18 feature sets × 16 parameters × 9 folds = 2, 592 fits. For each set of
features, we thus have 144 scores (from the grid search). For each hyperparam-
eter set, we take the average value across all folds and the score of the feature
set is chosen as the maximum value across the hyperparameters.
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4 Results

4.1 Feature selection

The results of the feature selection (with a cross-validated grid search) for the
history enriched case are shown in figure Fig. 4 (Top). Each point is an average
across 9-folds of the best SVM’s hyperparameters. As can be seen, removing a
candidate (there are several features per candidate) increases the business score
up to a certain value around 0.77 and finally starts to decrease after removing 11
candidates. The fact that the score increases is due to overfitting when too many
features are taken into account. This also means that not all features are relevant.
For example, the voltage is unnecessary and even detrimental to the classifier, as
removing this feature already increase the score by 0.13 in comparison with all
features taken into account. The remaining features after the selection process
are the following: Current, Bearing Temperature and Pyrometer Temperature
with the following aggregations: peaks, frequency bins 1 and 5, and standard de-
viation. This is a count of 144 (3 signals×4 aggregations×12 windows) features
out of the initial 960. The grid search of the hyperparameters of the SVM for
the final feature selection is shown in Fig. 4(Bottom).
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Fig. 4: (Top) Feature selection results (Bottom) Result of the grid search for the
final feature selection: business score w.r.t. γ and C SVM hyperparameters.

4.2 Comparison between simple and history-enriched approach

Table 2 shows results for both the simple approach (no history) and the history
enriched case, after feature selection and the hyperparameter grid search. Col-
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umn # days shows how many days in advance an alarm is triggered before the
system fails. Column Business shows the business score associated with it (as
in Fig. 1). Precision and recall scores (based on the 5-days labelling) are also
displayed. As we can see, the average business score for the history enriched
approach is 0.2 above the simple approach. Adding history (i.e. data from past
time windows) is therefore clearly beneficial.

Table 2: Results
Without history With history

Fold # days Business Precision Recall # days Business Precision Recall

1 2.42 0.43 1 0.46 2.63 0.47 0.96 0.57

2 0.5 0.1 1 0.16 4.17 0.75 1 0.55

3 17.13 0 0.31 0.09 18.96 0 0.32 0.26

4(P) NA 1 NA NA NA 1 0 NA

5 4.08 0.73 1 0.16 4.21 0.76 1 0.78

6 NA 0 0 0 7.92 0.94 0.08 0.02

7 6.54 0.97 0.75 1 6.54 0.98 0.61 0.32

8 7.54 0.96 0 0 8.21 0.91 0.52 0.72

9 5.87 0.94 0.42 0.08 6.92 0.99 0.42 0.33

Mean 5.51 0.57 0.56 0.24 7.44 0.76 0.61 0.44

The cross-validated result on each fold for the history enriched case is shown
in Fig. 5. For each fold, we plot the decision function from the SVM which
gives the distance to the separating hyperplane. Whenever a data point is below
zero, it is considered a nominal value and whenever it is strictly above zero,
it is considered a critical point. The output of the aggregator is shown as the
red solid line on the graph. Whenever this aggregate exceeds 0, we send an
alarm. As can be seen in the graph, an alarm is sent for all the run-to-failure
occurrences except the fourth graph which represents a preventive maintenance.
Looking at the results, we observe that our approach performs quite well. Indeed,
in 8 out of 9 cases, the algorithm detects a failure between 2.5 and 8 days in
advance (while in the remaining case it is detected 19 days in advance, which is
slightly too early for our business metric). The algorithm is therefore capable of
distinguishing abnormal behaviour and sending a preventive alarm several days
ahead of failures.

5 Conclusion and future works

We have shown that it is possible to mostly predict the failure of the rotating
condenser in a synchrocyclotron several days in advance, using a purely data-
driven approach based on the sampled signals that were provided to us. Indeed,
we observed a relatively low false alarm rate, as no false alarm was raised in 8
cases out of 9, and the only case for which the alarm was triggered too early
was at roughly 70% of the machine’s life, which remains acceptable. We achieved
this goal thanks to an original two-level approach based on the combination of a
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conventional binary classifier (SVM) and an aggregator, optimized with respect
to a custom business metric.

Comparing the performance of our approach with a one-step approach based
on a multi-classifier SVM is left for further research. The use of transfer learning
techniques to apply the learned model to other but similar machines could also
be investigated.
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Fig. 5: Results per fold: Green points are point classified as nominal, Orange points are
critical points, red solid line is the rolling average of the SVM output for eight hours,
vertical dashed red line mark 5 days before failure and the vertical dashed orange line
mark the alarm sent by the decision maker. On the x-axis we have the time and on the
y-axis, the decision function value of the SVM.
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