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Abstract—This paper analyzes the impact of the flux barriers
(FB) type and their parameterization on the torque optimization
of synchronous reluctance machines. Four different types are
considered: rectangular FB, round FB, hyperbolic FB, and finally
Joukowski FB, which follow the natural flux lines in a solid
rotor. A parameterization that simplifies the non-overlapping
constraints is introduced, and, for each of these types, the num-
ber of parameters is discussed. A multi-objective optimization
algorithm is run to maximize the mean torque while minimizing
the torque ripple. Evaluations are performed by a 2D nonlinear
finite element magnetic model. The obtained Pareto fronts show
that the optimization is able to reduce the torque ripple down
to about 4% for all the types, with little impact on the mean
torque. The round FB have the highest mean torque and a better
convergence speed than rectangular and hyperbolic FB, whereas
the Joukowski FB, with half as many parameters, reaches 98%
of the round FB torque. Also, the proposed parameterization
reaches the optimization convergence up to 3.5 times faster than
a conventional parameterization, for all the FB types.

I. INTRODUCTION

Synchronous reluctance motors (SynRM) have gained in-
terest over the years. Their low manufacturing cost and high
efficiency make them an interesting alternative to induction
motors. However, their power factor remains low and they
can suffer from high torque ripple. Therefore, a meticulous
design of the rotor is mandatory. In order to keep the number
of design parameters limited, several flux barriers (FB) types
are proposed in the literature. The most investigated ones are
the rectangular FB [1], the round FB [2], and the Joukowski
FB [3].

The choice of the flux barriers type is an important step
in the design of SynRM. This decision is made prior to the
parameterization of the rotor and the development of numer-
ical models, that will then be interfaced with an optimizer.
Therefore, analyzing the performances of another flux barriers
type requires to adapt the parameterization, the models, and
the interface with the optimizer. This time-consuming work
is rarely performed, which arbitrarily freezes the flux barriers
type at the early stages of the design phase. However, the
impact of the flux barriers type on the performances of the
machine is still poorly investigated. The only study found in
the literature is [4], where rectangular and round FB have been

compared. The current study extends this comparison by con-
sidering, in addition to rectangular and round FB, hyperbolic
and Joukowski FB. A multi-objective genetic algorithm is run
to maximize the mean torque while minimizing the torque
ripple. The comparison is performed based on the Pareto fronts
generated by the optimization algorithm.

Also, there are several ways to parameterize the flux bar-
riers. The geometric constraints can be obeyed either by
explicitly writing the expression of these constraints, or by pro-
viding a parameterization that implicitly complies with these
constraints. Although the different parameterizations lead to
the same geometry by the end of the design process, this
paper shows that the convergence speed is greatly impacted
by the parameterization. The hypervolume indicator is used to
compare the convergence speed of a direct parameterization,
where the design parameters are the positions and thicknesses
of the flux barriers, and an indirect parameterization, that
simplifies the geometric constraints.

II. FLUX BARRIER TYPES

The different flux barrier types investigated in this paper
are represented in Fig. 1. The rectangular FB (a) have straight
lines, which are interesting to position permanent magnets,
used in permanent magnet assisted synchronous reluctance
motors (PMASynRM). The round (b) and hyperbolic (c) FB
are defined by conics, the former using circles, the latter using
hyperbolas. Finally, the Joukowski FB (d) follow the natural
flux lines in a solid rotor. These flux lines are approximated
by using the Joukowski airfoil potential function [5]:
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Fig. 1. Flux barriers types. (a) Rectangular. (b) Round. (c) Hyperbolic. (d)
Joukowski.

III. PARAMETERIZATION

The flux barriers have to be positioned in the rotor yoke,
regardless of their type. With an unconstrained design space,
the optimizer might test several sets of parameters that could
result in an overlap between flux barriers. This can lead to
erroneous evaluation of the performances of the machine and
impacts negatively the convergence of the optimization. There
are two ways to prevent this problem from happening:

• By explicitly constraining the optimization problem to pa-
rameters that satisfy the non-overlapping constraints. De-
pending on the parameterization, these non-overlapping
constraints can be difficult to formulate or to comply with.

• By using an indirect parameterization that implicitly
obeys the non-overlapping constraints. This leads to a
more robust design space, but it also shapes the optimiza-
tion problem differently, which can become more prone
to local minima.

Both ways are implemented, described and compared.

A. Direct parameterization

The positions and thicknesses of the flux barriers are the
design parameters, as shown in Fig. 2. The parameters di and
ti correspond to the radial position and thickness of the flux
barrier i. Similarly, the parameters αi and ∆αi correspond
to the angular position and thickness of the tip of the flux
barrier i. Each flux barrier is numbered starting from the center
of the rotor. The non-overlapping constraints on the radial
direction can be explicitly written:{

di + ti < di+1 if i 6= n

di + ti < Rout otherwise
(3)
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Fig. 2. Direct parameterization for (a) hyperbolic FB (also applicable to
rectangular and round FB). (b) Joukowski FB.

with Rout the outer radius of the rotor and n the total number
of flux barriers. Similarly, the non-overlapping constraints on
the tangential direction are:αi + ∆αi <

1

2
· π/p if i = 1

αi + ∆αi < αi−1 otherwise.
(4)

In addition to the non-overlapping constraints (3) and (4),
all the parameters di, ti, αi, and ∆αi must be strictly positive.
These additional constraints are implicitly taken into account
when defining the bounds of the optimization variables.

The above-mentioned parameters, di, ti, αi, and ∆αi, define
two points in the radial direction and two points in the
tangential direction, per flux barrier. These points determine
the inner and outer boundaries of the flux barrier i at the center
and at the tip. Assuming a symmetric rotor, there only exists
a unique possibility to construct a rectangular, a round, or a
hyperbolic flux barrier passing through these points.

When considering the Joukowski flux barrier, the points
located at the center of the flux barriers are sufficient to
determine two flux lines along which the flux barrier is carved.
As a consequence, the angular parameters α and ∆α and
their associated constraint (4) do not apply to Joukowski flux
barriers. Ergo, the Joukowski type requires only 2 parameters
by flux barrier (di and ti), which is half as many parameters as
the other types (di, ti, αi, and ∆αi). Reducing the number of
parameters benefits the convergence speed of the optimization.

B. Indirect parameterization

In this parameterization, the positions and thicknesses of
the flux barriers are determined indirectly with a set of virtual
springs that mechanically repel constructive points that cannot
meet (Fig. 3). The stiffnesses Ki of these springs are the new
design parameters, which yields a parameter space with no
other internal constraint than the positiveness of the stiffnesses.
Another advantage is that all parameters have the same nature
(whereas geometrical parameters can be lengths or angles),
which basically acts as an implicit normalization of the design
space.



Fig. 3. Spring-based approach.
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Fig. 4. indirect parameterization for (a) hyperbolic FB (also applicable to
rectangular and round FB). (b) Joukowski FB.

The stiffness network can be solved explicitly:

xi = xi−1 +
Ki

m∑
k=1

Kk

L (5)

with x the position of the point, K the stiffness of the spring,
L the combined length of the springs, and m the number of
springs. As a consequence, it is not possible to modify the
position of a single point without modifying all the parameters
together. This shapes the optimization problem differently,
which has an impact on the optimization convergence.

This spring-based parameterization is applied to the differ-
ent flux barriers profiles in Fig. 4. Each set of springs positions
points in one direction, radially or tangentially, that define
the inner and outer boundaries of the flux barriers, at the
center and at the tip. By assuming a symmetric rotor, the
flux barriers can then be constructed in a unique way. This
way of constructing the geometry is the same as in the direct
parameterization, except that the position of the points are
determined indirectly by solving stiffness networks.

As it has been previously discussed, the points located
on the center of the flux barriers are sufficient to define
a Joukowski flux barrier. As a consequence, this type only
requires the radial set of springs, while the other types (rect-
angular, round, and hyperbolic) require both the radial and the
tangential sets.

IV. OPTIMIZATION

A NSGA-II [6] algorithm is run to maximize the mean
torque and to minimize the torque ripple. These quantities
are evaluated by a quasi-static 2D FEM nonlinear magnetic
model, which uses the nonlinear solver GetDP [7].
The search space is kept as wide as possible. The design
parameters boundaries are summarized for both the direct and
the indirect parameterizations in Table I and Table II. The

TABLE I
SEARCH SPACE BOUNDARIES FOR THE DIRECT PARAMETERIZATION

(i = 1, 2, ..., n)

Parameter Lower
bound

Upper
bound Units

di 0 100 mm
ti 0 40 mm
αi 0 π/4 rad
∆αi 0 π/12 rad

TABLE II
SEARCH SPACE BOUNDARIES FOR THE INDIRECT PARAMETERIZATION

(i = 1, 2, ..., 2n+ 1)

Parameter Lower
bound

Upper
bound Units

Kr,i 0.1 10 /
Kt,i 0.1 10 /

indirect and direct parameterizations have 4n+2 and 4n design
parameters, respectively (2n+ 1 and 2n in the special case of
Joukowski FB). The extra design parameters of the indirect
parameterization are not required to cover the entire design
space, the stiffness of a spring from each stiffness networks
(e.g., Kr,2n+1 and Kt,2n+1) could be arbitrarily frozen during
the optimization process. Nonetheless, the optimizations sys-
tematically got stucked in local minima when doing so. The
optimization convergence issues disappeared when keeping
these extra stiffnesses in the design space.

The external dimensions of the rotor are kept constant, with
a 50 mm inner radius and a 150 mm outer radius. The number
of flux barriers n is set to four. The motor has two pole pairs,
an airgap of 1.5 mm, and an outer radius of 250 mm. The 48
slots stator is fed by a three-phase sinusoidal current, which
has a peak current density of 8.5 A/mm2. This working point
leads to a high level of magnetic saturation in the rotor and
stator yokes. The current angle is adjusted to 60° to remain
close to the maximum torque per ampere control strategy.

V. RESULTS

The hypervolume indicator [8] is used to compare the
optimization convergence of the direct and indirect param-
eterizations. This single scalar metric, illustrated in Fig. 5,
measures both the proximity of the Pareto front to the true
Pareto front and the spread of solutions across the objective
space. The hypervolume is maximized if and only if the set
of solutions contains all true Pareto optimal points [9].

The hypervolume indicator is computed on the succes-
sive Pareto fronts obtained at each generation of the ge-
netic algorithm. The results are visible on Fig. 6. The pro-
posed parameterization, represented with the red dashed line,
persistently reaches the convergence faster than the direct
parameterization, represented with the blue solid line. The
converged value is identical for both parameterizations. Also,
the Joukowski flux barriers (d) reaches the convergence faster
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Fig. 5. Hypervolume for two objectives being minimized.
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Fig. 6. Evolution of the hypervolume over the generations, for both the direct
and indirect parameterizations. (a) Rectangular. (b) Round. (c) Hyperbolic. (d)
Joukowski.

than the rectangular (a), round (b), and hyperbolic (c) flux
barriers. These observations are quantified in Table III.

The maximum value reached by the hypervolume indicator
is not the same for the different flux barriers, which means
that the Pareto fronts are not identical either. These Pareto
fronts are visible in Fig. 7. The fronts are steep, a small
decrease of the mean torque drastically lowers the torque
ripple. All the types succeed to reach a torque ripple as low

TABLE III
NUMBER OF GENERATIONS BEFORE REACHING 98 % OF THE

HYPERVOLUME CONVERGENCE VALUE, DEPENDING ON THE FLUX
BARRIER TYPE AND THE PARAMETERIZATION.

Direct
parameterization

Indirect
parameterization

Rectangular 70 33
Round 46 13
Hyperbolic 43 16
Joukowski 27 8
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Fig. 7. Pareto fronts for the different flux barriers types.
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Fig. 8. Geometries selected from the Pareto fronts. (a) Rectangular. (b) Round.
(c) Hyperbolic. (d) Joukowski.

as 4 %. When considering the mean torque, the round flux
barriers outperforms all the other types. The least performing
type is the rectangular flux barriers. Nonetheless, less than
3 % variation on the mean torque is observed between these
two types. This difference is reduced to less than 1.5 % when
comparing round FB to Joukowski or hyperbolic FB.

The points marked with an ’x’ in Fig. 7 represent a decent
trade-off between the mean torque and the torque ripple, which
remains close to 5 %. The geometries corresponding to these
points are shown in Fig. 8.

VI. CONCLUSION

This paper has brought a comparison between the rectangu-
lar, hyperbolic, round, and Joukowski flux barriers. Two differ-
ent parameterizations have been described and implemented.
In the direct parameterization, the position and thicknesses of
the flux barriers are directly the design parameters of the rotor.
This parameterization includes several geometric constraints,



that can be simplified by using an indirect parameteriza-
tion. This last parameterization determines the position and
thicknesses of the flux barriers indirectly by solving stiffness
networks.

The results show that the flux barriers type has a limited
influence on the mean torque and nearly no impact on the
torque ripple. However, the FB type and its parameterization
affects the convergence speed of the optimization significantly.
The best convergence speed is obtained by the Joukowski
FB, which have similar mean torque to hyperbolic FB. The
round FB have the highest mean torque and come just next
to the Joukowski FB in terms of convergence speed. Finally,
the rectangular FB have the lowest mean torque and a lower
convergence speed than the other flux barrier types. In all
these cases, the spring parameterization proposed in this paper
considerably speeds up the optimization process.
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