
Computation of the maximal invariant set of linear systems with
quasi-smooth nonlinear constraints
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Abstract— In this paper, we consider the problem of com-
puting the maximal invariant set of linear systems with a class
of nonlinear constraints that admit quadratic relaxations. With
these quadratic relaxations, we are able to determine a sufficient
condition on the maximal invariant set. Using the sufficient
condition, a new algorithm is presented by solving a set of linear
matrix inequalities. Under mild assumptions, the proposed
algorithm will terminate in finite time. The performance of
this algorithm is demonstrated on several numerical examples.

I. INTRODUCTION

Invariant set theory is an important tool for stability
analysis and control design of constrained dynamical systems
and it has been successfully used to solve various problems
in system and control; see, for instance, [1]–[3] and the
references therein. An invariant set is a region such that
all trajectories generated by the dynamical system remain
in the set if their initial states lie within it. One well-known
application is in Model Predictive Control (MPC) [4], where
invariant sets are often used to ensure recursive feasibility
and stability.

Considerable research has been devoted to the charac-
terization and computation of invariant sets of constrained
systems. Recursive algorithms have been provided in [5]–[7]
to compute polyhedral invariant sets of linear systems. For
disturbed linear systems, robust invariant sets are introduced
and different algorithms have been proposed for computing
these sets in [8]–[13]. Methods to characterize and compute
invariant sets of nonlinear systems are also available in the
literature [14]–[20]. The study of invariant sets can also
be extended to hybrid systems. For instance, the works
[21]–[26] have investigated the computation of invariant sets
of switching systems. Among various invariant sets, the
maximal invariant set is of particular interest. The standard
algorithm for computing the maximal invariant set of linear
systems subject to polyhedral constraints is presented in
[5], [8] with sufficient conditions for finite determinability.
For switching linear systems, algorithms to compute the
maximal invariant set are also provided in the cases of
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polyhedral/convex constraints [21], [25], [26] and semialge-
braic constraints [23], [24]. In [19], an infinite-dimensional
convex characterization of the maximal invariant is derived
for polynomial systems with semialgebraic constraints. By
solving finite-dimensional relaxations, outer approximations
of the maximal invariant can be obtained. However, in
the case of general nonlinear constraints, computing the
maximal invariant set is still a challenging problem, even
for linear systems. In this paper, we aim to compute the
exact maximal invariant set of linear systems with a class
of nonlinear constraints. A new approach will be proposed
by solving a set of Linear Matrix Inequalities (LMI), which
are constructed by the use of the S-procedure [27]. Based
on the solution of these LMIs, a sufficient condition for the
maximal invariant set can be established. The tightness of
the sufficient condition largely depends on the conservatism
of the S-procedure [28]. Under mild assumptions, finite de-
terminability can be guaranteed with the proposed sufficient
condition.

The rest of the paper is organized as follows. This section
ends with the notations, followed by the next section on
the review of preliminary results on the invariant sets of
linear systems. Section III presents the proposed approach
for computing the maximal invariant set of linear systems
with nonlinear constraints. Several numerical examples are
provided Section IV. The last section concludes the work.
Some of the proofs are not given due to the page limitation.

The notations used in this paper are as follows. Non-
negative and positive integer sets are indicated respectively
by Z+

0 and Z+ with ZM := {1, 2, · · · ,M} and ZML :=
{L,L + 1, · · · ,M},M ≥ L, M,L ∈ Z+

0 . Sn denotes the
set of symmetric matrices in Rn×n. In (the subscription
is omitted when the dimension is clear from the context)
is the n × n identity matrix and 111n denote the vector of
n ones. For a square matrix Q, Q � (�)0 means Q is
positive definite (semi-definite). The p-norm of x ∈ Rn is
‖x‖p while ‖x‖2Q = xTQx for Q � 0. Additional notations
are introduced as required in the text.

II. PRELIMINARIES

This section reviews some known results on the invariant
sets of constrained discrete-time linear systems. We consider
the linear system

x(t+ 1) = Ax(t), ∀t ∈ Z+
0 , (1)

where x(t) ∈ Rn is the state vector. The system is subject
to state constraints: x(t) ∈ Ω, where Ω ⊆ Rn is a quadratic



set in the form of

Ω = {x ∈ Rn : xTQix+ 2qTi x ≤ 1, i ∈ Zp} (2)

where Qi ∈ Sn, qi ∈ Rn and p is the number of constraints.
When Qi = 0, for all i ∈ Zp, Ω becomes a polyhedron. More
generally, other nonlinear constraints may also be imposed
on the system:

x(t) ∈ Θ := {x ∈ Rn : Hi(x) ≤ 0, i ∈ Zm},∀t ∈ Z+
0 (3)

where Hi : Rn → R is a continuous nonlinear function and
m ∈ Z+ is the number of other nonlinear constraints. The
actual state constraint set is the intersection of Ω and Θ:

x(t) ∈ X := Ω
⋂

Θ,∀t ∈ Z+
0 (4)

For computational reasons, we treat quadratic constraints
and general nonlinear constraints differently. The following
assumptions are made.

Assumption 1: The matrix A is Schur stable, i.e., for any
eigenvalue λ of A, |λ| is smaller than one

Assumption 2: The set Ω is compact and contains the
origin in its interior. There exists an open ball B around
the origin and ε > 0 such that Hi(x) ≤ −ε for all x ∈ B
and i ∈ Zm.

Assumption 3: For all i ∈ Zm, Hi : Rn → R is a
continuous function and there exist a vector H∇i ∈ Rn and
a scalar Li ≥ 0 such that

|Hi(x)−Hi(0)− (H∇i )Tx| ≤ Li
2
‖x‖2 (5)

for all x ∈ Ω.
Assumptions 1 and 2 are standard and necessary for the

problem to be well-defined, see [5], [8]. We will refer
to a function satisfying (5) as a quasi-smooth function.
Clearly, for functions with Lipschitz continuous gradient, the
condition in Assumption 3 will be satisfied. Suppose that, for
any i ∈ Zm, Hi is a continuously differentiable function with
Lipschitz gradient:

‖∇Hi(x)−∇Hi(y)‖ ≤ Li‖x− y‖,∀x, y ∈ Ω, (6)

Assumption 3 is satisfied with H∇i = ∇Hi(0), see, e.g.,
Lemma 6.9.1 in [29]. For notational simplicity, let

q := [q1 q2 · · · qp] (7)
H(x) := (H1(x), H2(x), · · · , Hm(x)), (8)

where q ∈ Rn×p and H(x) ∈ Rm.
We will define the central topic of this paper.
Definition 1: [2], [4] The nonempty set Z ⊆ X is a CA-

invariant (constraint admissible invariant) set for system (1)
if and only if for any x ∈ Z one has that Ax ∈ Z.

With Assumptions 1 and 2, there often exist multiple CA-
invariant sets. In many applications, it is desirable to compute
the maximal CA-invariant set, which is defined below.

Definition 2: [5] The nonempty set O∞ is the maximal
CA-invariant set for system (1) if and only if O∞ is a CA-
invariant set and contains all CA-invariant sets in X .
It is a standard result that the maximal CA-invariant set exists
(see [5] for general conditions guaranteeing its existence),

and that it can be computed recursively by the following
iteration:

O0 := X (9)

Ok+1 := Ok
⋂
{x ∈ Rn : Ax ∈ Ok}, k ∈ Z+

0 . (10)

With these iterates, it is easy to verify that

Ok = {x ∈ Rn : A`x ∈ X, ` ∈ Zk0}. (11)

Thus, the maximal CA-invariant set can be expressed as

O∞ :=
⋂
k∈Z+

0

Ok = {x ∈ Rn : Akx ∈ X, k ∈ Z+
0 }. (12)

From Assumptions 1 and 2, the set O∞ defined in (12) has
the following properties [5]: (i) if Z ⊆ Rn is a CA-invariant
set of system (1), Z ⊆ O∞; (ii) there exists a finite k∗ such
that Ok∗+1 = Ok∗ ; (iii) for any k∗ satisfying (ii), it can be
shown that Ok = Ok∗ for all k ≥ k∗ and O∞ = Ok∗ . From
the these properties, the problem of computing O∞ boils
down to the search for a k∗ such that Ok∗+1 = Ok∗ . The
standard procedure is to increase k from 0 until Ok+1 = Ok,
which is equivalent to

Ok ⊆ {x ∈ Rn : Ak+1x ∈ X}, (13)

see [5] for details. This condition can be treated as a
stopping criterion for the algorithm in (9)-(10). Observe
that {x ∈ Rn : Ak+1x ∈ X} can be rewritten as
{x ∈ Rn : (Ak+1x)TQiA

k+1x + 2qTi A
k+1x ≤ 1i ∈

Zp, H(Ak+1x) ≤ 0},∀k ∈ Z+
0 . During the computation

procedure, we aim to find the minimal k satisfies (13). Let
kmin := arg mink∈Z+

0
{k : (13)}. O∞ can be determined for

any upper bound on kmin. To evaluate (13), we basically need
to solve a set of nonlinear optimization problems. For general
nonlinear constraints in (4), these problems are nonconvex
and it is difficult to reach the global optimality. For this
reason, we will aim to develop a sufficient condition for (13)
without solving nonconvex problems.

III. THE PROPOSED APPROACH

This section discusses the computation of the exact max-
imal CA-invariant set with nonlinear constraints. An algo-
rithm will be presented to compute an upper bound on kmin

and its finite determinability can be ensured under mild
assumptions.

For the quadratic (or linear) constraints, the following
nonlinear optimization problem is defined at the kth iteration
of (10):

gki := max
x

(Ak+1x)TQiA
k+1x+ 2qTi A

k+1x− 1 (14a)

s.t. x ∈ Ok (14b)

for i ∈ Zp. Let gkmax := maxi∈Zp gki for all k ∈ Z+
0 .

If gkmax ≤ 0 for some k ∈ Z+
0 , Ok ⊆ {x ∈ Rn :

(Ak+1x)TQiA
k+1x + 2qTi x ≤ 1, i ∈ Zp}. Similarly, for



other nonlinear constraints, the following nonlinear optimiza-
tion problem is defined at the kth iteration of (10):

hki := max
x

Hi(A
k+1x) (15a)

s.t. x ∈ Ok (15b)

for i ∈ Zm. Let hkmax := maxi∈Zm hki for all k ∈ Z+
0 . If

hkmax ≤ 0 for some k ∈ Z+
0 , Ok ⊆ {x ∈ Rn : H(Ak+1x) ≤

0}. Using (14) and (15), kmin can be determined via
mink∈Z+

0
{k : gkmax ≤ 0, hkmax ≤ 0}. To do so, we need in

principle to solve (14) and (15) and get their global optimal
solutions. However, for general nonlinear constraints, both
(14) and (15) are nonlinear nonconvex problems. Even if Ω
and Θ are convex sets, (14) and (15) are may not be convex
problems. Therefore, we do not attempt to solve (14) and (15)
directly. Instead, we will solve LMI problems that provide
upper bounds on their optimal values and obtain an upper
bound on kmin.

A. Quadratic constraints

Before we discuss general nonlinear functions, let us first
focus on quadratic functions. In this case, we assume that
Θ = Rn and X = Ω. For notational convenience, let

Q̄`i : =

(
(A`)TQiA

` (A`)T qi
qTi A

` −1

)
(16)

for all i ∈ Zp and ` ∈ Z+
0 . Following the definition above,

we can see that

Q̄`+1
i : =

(
AT 0
0 1

)
Q̄`i

(
A 0
0 1

)
(17)

for all i ∈ Zp and ` ∈ Z+
0 . Using the notations above, Ok at

the kth iteration can be rewritten as

{x ∈ Rn :

(
x
1

)T
Q̄`i

(
x
1

)
≤ 0, i ∈ Zp, ` ∈ Zk0} (18)

From the S-procedure, see Section 2.6.3 in [27], the follow-
ing lemma can be obtained.

Lemma 1: Suppose Θ = Rn and X = Ω. Let Q̄ki be
defined in (16) and the set Ok be defined by the procedure
in (9)-(10) for all k ∈ Z+

0 . For any i ∈ Zp, if there exists
a non-negative sequence {τ i(j,`+1) ≥ 0, j ∈ Zp, ` ∈ Zk0} for
some k ∈ Z+

0 such that

Q̄k+1
i �

p∑
j=1

k∑
`=0

τ i(j,`+1)Q̄
`
j , (19)

then, (Ak+1x)TQiA
k+1x + 2qTi A

k+1x − 1 ≤ 0 for any
x ∈ Ok.

As we have seen, under Assumptions 1 and 2, the formal
algorithm described in (9)-(10) always terminate in finite
time. This algorithm is easily implementable when X is a
polyhedron, see [2], [5]. In many cases, it is not directly
implementable because of the nonlinearity in X . Even if X is
convex, the optimization problem (14) is still non-convex and
it is difficult to find the global optimum. However, the same
algorithm with (19) would be implementable, since these

inequalities are LMIs, which can be efficiently solved using
interior point methods [27]. To recover the nice finiteness
property of the former algorithm, an additional assumption
is needed.

Assumption 4: There exists Dx > 0 such that ‖x‖2 ≤ Dx

for all x ∈ Ω.
This assumption is made completely without loss of gen-

erality for the compact set Ω as we can always add the
redundant ball constraint of the form ‖x‖2 ≤ Dx to Ω. With
this additional assumption, we can let Q1 = 1

Dx
I and q1 = 0

in (2). We now show the finiteness property of the former
algorithm still holds for the LMI version.

Lemma 2: Suppose Assumptions 1, 2 and 4 hold, Θ =
Rn, and X = Ω. Let Q1 = 1

Dx
I and q1 = 0 in (2). For

any i ∈ Zp, there always exists some finite k such that the
LMI (19) holds for some non-negative sequence {τ i(j,`+1) ≥
0, j ∈ Zp, ` ∈ Zk0}.
Proof of Lemma 2: Since Q1 = 1

Dx
I and q1 = 0, for any

k ∈ Z+
0 , one choice of the sequence {τ i(j,`+1) ≥ 0, j ∈

Zp, ` ∈ Zk0} in (19) can be given as:

τ i(1,1) = β, τ i(j,`+1) = 0,∀(j, `) 6= (1, 0) (20)

for some 0 < β < 1. With this choice, the LMI (19) reduces
to(

(Ak+1)TQiA
k+1 (Ak+1)T qi

qTi A
k+1 −1

)
� β

(
1
Dx
I 0

0 −1

)
(21)

From Assumption 1, Ak+1 goes to 0 as k increases. Hence,
there always exists a k such that (21) holds. �

Based on Lemma 2, the following LMI optimization
problem is defined for all i ∈ Zp and k ∈ Z+

0 :

rki := min
r,τ i∈Rp×(k+1)

r (22a)

s.t. τ i ≥ 0, (22b)

Q̄k+1
i �

p∑
j=1

k∑
`=0

τ i(j,`+1)Q̄
`
j + rI (22c)

where τ i denote the matrix expression of the sequence
{τ i(j,`+1) ≥ 0, j ∈ Zp, ` ∈ Zk0}, i.e., the (j, `+ 1)th entry of
τ i is τ i(j,`+1). The properties of this LMI problem are stated
in the following lemma.

Lemma 3: Suppose Assumptions 1, 2 and 4 hold, Θ =
Rn, and X = Ω. Let rki be defined in (22) for all i ∈ Zp
and k ∈ Z+

0 . Then, for all i ∈ Zp, there exists a finite k̄i
such that rk̄ii ≤ 0 and rki ≤ 0 for all k ≥ k̄i.
Proof of Lemma 3: Only a sketch of the proof is given. From
Lemma 2, there always exist a finite k̄i and a non-negative
sequence {τ̄ i(j,`+1) ≥ 0, j ∈ Zp, ` ∈ Zk̄i0 } such that (19)
holds. With this sequence, it is easy to verify that (0, τ̄ i) is
a feasible solution to (22). From the optimality, rk̄ii ≤ 0. To
show that rki ≤ 0 for all k ≥ k̄i, we only need to show
that rk̄ii ≤ 0 implies rk̄i+1

i ≤ 0. Let τ̂ i(j,`+1) := τ̄ i(j,`) for all
` ∈ Zk̄i+1 and τ̂ i(j,1) := 0 for all j ∈ Zp. It can be shown
that (0, τ̂ i) is a feasible solution to (22). From the optimality,



we can get rk̄i+1
i ≤ 0 all i ∈ Zp. By induction, rki ≤ 0 for

all k ≥ k̄i all i ∈ Zp. �
In the following theorem, we show that the LMI problem

(22) can be used to establish a stopping criterion for the
algorithm summarized in (9)-(10).

Theorem 1: Suppose Assumptions 1, 2 and 4 hold, Θ =
Rn, and X = Ω. Let the set Ok be defined by the procedure
in (9)-(10) for all k ∈ Z+

0 . For all i ∈ Zp and k ∈ Z+
0 , define

rki in (22) and let rkmax := maxi∈Zp rki . Then, there exists
some finite k∗ such that rk

∗

max ≤ 0 and O∞ = Ok∗ .
Based on the discussion above, the algorithm to compute

the maximal CA-invariant set with quadratic constraints is
summarized in the Algorithm 1.

Algorithm 1 Computation of the maximal CA-invariant set
with quadratic constraints

Input: A and {Qi, qi}pi=1

Output: Ok∗
1: Initialization: let X := {x ∈ Rn : xTQix + 2qTi x ≤

1, i ∈ Zp}, and set k = 0 and O0 = X;
2: Obtain rki from (22) for all i ∈ Zp;
3: Let rkmax := maxi∈Zp rki . If rkmax ≤ 0, let k∗ = k

and terminate; otherwise, let Ok+1 := Ok
⋂
{x ∈ Rn :

Ak+1x ∈ X}, set k ← k + 1 and go to Step 2.

As (14) is not directly solved, the k∗ obtained from
Algorithm 1 is an upper bound on kmin. For a loose upper
bound k∗, the description of Ok∗ may not be tight enough
though it is still true that Ok∗ = O∞. However, in some
cases, k∗ is not necessarily a loose upper bound. It can be
close or equal to kmin. One example is the case with only
linear constraints, i.e., Θ = Rn and Qi = 0 for all i ∈ Zp.
In the absence of quadratic and nonlinear constraints, the k∗

obtained from Algorithm 1 is exactly equal to kmin, as stated
in the proposition below. In this case, Assumption 4 is not
needed as the constraints are all linear.

Proposition 1: Suppose Assumption 1 holds, Θ = Rn and
Qi = 0 for all i ∈ Zp. The constraint set X can be expressed
as {x ∈ Rn : 2qTx ≤ 111p} without any nonlinear constraint.
Let {rkmax, Ok} be generated by Algorithm 1. For any k ∈
Z+

0 , rkmax ≤ 0 if and only if Ok ⊆ {x ∈ Rn : Ak+1x ∈ X}.
Proposition 1 suggests that the conservatism of k∗ ob-

tained from Algorithm 1 depends on the loss of the S-
procedure in Lemma 1. If the LMI (19) is a necessary
and sufficient condition of the set inclusion in (13), the
S-procedure is lossless and k∗ is exactly equal to kmin.
However, for general quadratic constraints, this is not true,
see, e.g., [28]. More precisely, k∗ can be larger than kmin in
most of the cases. However, the size of the resulting O∞ is
not affected although there are redundant constraints in the
description of the set.

B. Quasi-smooth nonlinear constraints

In the rest of this section, the proposed approach will
be employed to handle general nonlinear constraints that
satisfy Assumption 3. This is possible by making use of

the quadratic upper and lower bounds in (5). With these
quadratic bounds, we are able to establish the quadratic
relaxations of (15) and apply the idea above. For notational
simplicity, let

Hu
i (x) : = Hi(0) + (H∇i )Tx+

Li
2
‖x‖2

=

(
x
1

)T ( Li

2 I
1
2H
∇
i

1
2 (H∇i )T Hi(0)

)(
x
1

)
(23)

H l
i(x) : = Hi(0) + (H∇i )Tx− Li

2
‖x‖2

=

(
x
1

)T ( −Li

2 I
1
2H
∇
i

1
2 (H∇i )T Hi(0)

)(
x
1

)
(24)

for all i ∈ Zm. With the quadratic lower bounds above, a
relaxed quadratic constraint set of Ok can be obtained for
all k ∈ Z+

0 :

Õk := {x ∈ Rn :

(
x
1

)T
Q̄`i

(
x
1

)
≤ 0, i ∈ Zp,

H l(A`x) ≤ 0, ` ∈ Zk0} (25)

where H l(A`x) := (H l
1(A`x), H l

2(A`x), · · · , H l
m(A`x)).

Based on this relaxed constraint set, a modification of (14)
can be given by

ḡki := max
x

(Ak+1x)TQiA
k+1x+ 2qTi A

k+1x− 1 (26a)

s.t. x ∈ Õk (26b)

for any i ∈ Zp and k ∈ Z+
0 . As Ok ⊆ Õk, ḡki ≥ gki for

all i ∈ Zp and k ∈ Z+
0 . Similarly, we can also modify (15)

using the relaxed set. Since the cost function of (15) is also
nonlinear, we will replace it by its quadratic upper bound
(23). With the relaxed set and the quadratic upper bound of
the cost function, the corresponding modification of (15) is
given by

h̄ki := max
x

Hu
i (Ak+1x) (27a)

s.t. x ∈ Õk (27b)

for all i ∈ Zm. Again, we can see that h̄ki ≥ hki for all
i ∈ Zm and k ∈ Z+

0 . Using the S-procedure, the following
lemma can be obtained immediately.

Lemma 4: Suppose Assumption 3 holds. Let the set Ok be
defined by the procedure in (9)-(10) and the relaxed quadratic
set Õk be defined in (25) using the quadratic lower bounds
(24) for all k ∈ Z+

0 . The following results hold.
(i) For any i ∈ Zp, if there exist some non-negative
sequences {τ i(j,`+1) ≥ 0, j ∈ Zp, ` ∈ Zk0} and {πi(j,`+1) ≥
0, j ∈ Zm, ` ∈ Zk0} for some k ∈ Z+

0 such that

Q̄k+1
i �

k∑
`=0

p∑
j=1

τ i(j,`+1)Q̄
`
j (28)

+

k∑
`=0

m∑
j=1

πi
(j,`+1)

(
−Lj

2
(A`)TA` 1

2
(A`)TH∇

j
1
2
(H∇

j )TA` Hj(0)

)

holds, then, (Ak+1x)TQiA
k+1x + 2qTi A

k+1x − 1 ≤ 0 for
any x ∈ Ok.
(ii) For any i ∈ Zm, if there exist some non-negative



sequences {τ i(j,`+1) ≥ 0, j ∈ Zp, ` ∈ Zk0} and {πi(j,`+1) ≥
0, j ∈ Zm, ` ∈ Zk0} for some k ∈ Z+

0 such that(
Li
2

(Ak+1)TAk+1 1
2
(Ak+1)TH∇

i
1
2
(H∇

i )TAk+1 Hi(0)

)
�

k∑
`=0

p∑
j=1

τ i(j,`+1)Q̄
`
j

+

k∑
`=0

m∑
j=1

πi
(j,`+1)

(
−Lj

2
(A`)TA` 1

2
(A`)TH∇

j
1
2
(H∇

j )TA` Hj(0)

)
(29)

holds, then, Hi(A
k+1x) ≤ 0 for any x ∈ Ok.

From the lemma above, we can see that it is also possible
to implement the formal algorithm in (9)-(10) using the LMIs
in (28)-(29) for general nonlinear constraints that satisfy
Assumption 3. The finiteness of the algorithm is discussed
in the next lemma.

Lemma 5: Suppose Assumptions 1-4 hold, the relaxed
quadratic set Õk is defined in (25) using the quadratic lower
bounds (24) for all k ∈ Z+

0 . Then, the following results hold.
(i) For any i ∈ Zp, there always exists some finite k such
that (28) holds for some non-negative sequences {τ i(j,`+1) ≥
0, j ∈ Zp, ` ∈ Zk0} and {πi(j,`+1) ≥ 0, j ∈ Zm, ` ∈ Zk0}.
(ii) For any i ∈ Zm, there always exists some finite k such
that (29) holds for some non-negative sequences {τ i(j,`+1) ≥
0, j ∈ Zp, ` ∈ Zk0} and {πi(j,`+1) ≥ 0, j ∈ Zm, ` ∈ Zk0}.

Based on Lemma 5, we can define LMI problems for
both quadratic and nonlinear constraints. For the quadratic
constraints, let us define:

rki := min
r,τ i∈Rp×(k+1),πi∈Rm×(k+1)

r (30a)

s.t. τ i ≥ 0, πi ≥ 0, (30b)

Q̄k+1
i � rI +

k∑
`=0

p∑
j=1

τ i(j,`+1)Q̄
`
j (30c)

+

k∑
`=0

m∑
j=1

πi(j,`+1)

(
−Lj

2 (A`)TA` 1
2 (A`)TH∇j

1
2 (H∇j )TA` Hj(0)

)
for all i ∈ Zp and k ∈ Z+

0 with τ i and πi being the reshaping
matrix of the sequences {τ i(j,`+1) ≥ 0, j ∈ Zp, ` ∈ Zk0}
and {πi(j,`+1) ≥ 0, j ∈ Zm, ` ∈ Zk0}. For the nonlinear
constraints, let us define:

r̃ki := min
r̃,τ i∈Rp×(k+1),πi∈Rm×(k+1)

r̃ (31a)

s.t. τ i ≥ 0, πi ≥ 0, (31b)(
Li

2 (Ak+1)TAk+1 1
2 (Ak+1)TH∇i

1
2 (H∇i )TAk+1 Hi(0)

)
(31c)

�r̃I +

k∑
`=0

p∑
j=1

τ i(j,`+1)Q̄
`
j

+

k∑
`=0

m∑
j=1

πi(j,`+1)

(
−Lj

2 (A`)TA` 1
2 (A`)TH∇j

1
2 (H∇j )TA` Hj(0)

)
for all i ∈ Zm and k ∈ Z+

0 . The properties of these LMI
problems are given in the following lemma.

Lemma 6: Suppose Assumptions 1-4 hold. The LMI prob-
lems defined in (30) and (31) have the following properties.

(i) For all i ∈ Zp, let rki be defined in (30), then there exists
a finite k∗i such that rk

∗
i
i ≤ 0 and rki ≤ 0 for all k ≥ k∗i .

(ii) For all i ∈ Zm, let r̃ki be defined in (31), then there exists
a finite k̃∗i such that r̃k̃

∗
i
i ≤ 0 and r̃ki ≤ 0 for all k ≥ k̃∗i .

Based on Lemmas 4 - 6, the algorithm for computing
the maximal CA-invariant set with nonlinear constraints is
summarized in Algorithm 2.

Algorithm 2 Computation of the maximal constraint admis-
sible invariant set with nonlinear constraints

Input: A, {Qi, qi}pi=1, and {Hi(x)}mi=1

Output: Ok∗
1: Initialization: let X := {x ∈ Rn : (x)TQix + 2qTi x ≤

1, i ∈ Zp, H(x) ≤ 0}, and set k = 0 and O0 = X;
2: Obtain rki from (30) for all i ∈ Zp;
3: Obtain r̃ki from (31) for all i ∈ Zm;
4: Let rkmax := maxi∈Zp rki and r̃kmax := maxi∈Zm r̃ki . If
rkmax ≤ 0 and r̃kmax ≤ 0, let k∗ = k and terminate;
otherwise, let Ok+1 := Ok

⋂
{x ∈ Rn : Ak+1x ∈ X},

set k ← k + 1 and go to Step 2.

Similar to Algorithm 1, Algorithm 2 will also terminate
after a finite time as stated in the next theorem.

Theorem 2: Suppose Assumptions 1-4 hold, let
{rkmax, r̃

k
max, Ok} be generated from Algorithm 2. Then,

there exists some finite k∗ such that rk
∗

max ≤ 0 and r̃k
∗

max ≤ 0
and O∞ = Ok∗ .

IV. NUMERICAL EXAMPLES

We consider the linear system studied in [23, Example 1]:
A = [1.0216 0.3234;−0.6597 0.5226]. In the first example,
we consider the case when the constraint set is the unit circle
given by Ω := {x ∈ R2 : xTx ≤ 1} and Θ = Rn. Algorithm
1 is used to the maximal CA-invariant set and the result
is given in Figure 1. It can been seen from Figure 1 that
Algorithm 1 takes 3 iterations to obtain this set. For the
same setting, the algorithm in [23] takes 6 iterations.

-3 -2 -1 0 1 2 3
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-2

-1

0
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2
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Fig. 1: The maximal CA-invariant set of Example 1.

In the second example, we consider more quadratic con-
straints. Let the quadratic constraint set be Ω := {x ∈ R2 :
xTx ≤ 1, 2x2

1 − x2
2 + 0.4x1x2 ≤ 1, (x1 + 0.5)2 + x2

2 ≥
1
16 , (x1 − 0.5)2 + x2

2 ≥ 1
16}. Note that there are 4 quadratic

constraints and that this set is nonconvex. Using Algorithm
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Fig. 2: The maximal CA-invariant set of Example 2

1, the maximal CA-invariant set can be obtained within 8
iterations and it is shown in Figure 2.

In the third example, we also consider a nonlinear con-
straint in addition to the quadratic constraints in the second
example. Let Θ = {x ∈ R2 : H1(x) :=

√
x2

1 + x2
2 + 1 +

2x1 + 2x2 − 2 ≤ 0}. It is easy to very that Assumption 3 is
satisfied with H∇1 = [2 2]T and L1 = 1. Using Algorithm
2, the maximal CA-invariant set can be obtained within 8
iterations and it is shown in Figure 3.
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Fig. 3: The maximal CA-invariant set of Example 3: (a)
shows Ω

⋂
Θ and (b) O∞.

V. CONCLUSIONS

We have studied the computation of the maximal invariant
set of linear systems with a class of nonlinear constraints,
where the nonlinear functions have quadratic lower and upper
bounds. By the use of these quadratic bounds, a sufficient
condition is developed for computing the maximal invariant
set. Based on this sufficient condition, a new algorithm is
presented by solving a set of LMIs. Under mild assump-
tions, finite determinability can be guaranteed. Finally, we
have illustrated the proposed algorithm by several numerical
examples.
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