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Abstract
Stochastic Constraint Optimisation Problems
(SCOPs), such as the viral marketing problem and
transmission grid reliability problem, arise in fields
such as industry, governance and science. The re-
cently proposed Stochastic Constraint Probabilistic
Prolog (SC-ProbLog) language makes it possible
to model and solve such SCOPs. Solving SCOPs
exactly is NP-hard, and to solve real-world prob-
lems, exact SCOP solving methods must employ
highly optimised heuristics. We propose to follow
the principle of Programming by Optimisation
(PbO): we expose the design choices of a recently
proposed SCOP solving method and optimise these
using Automated Algorithm Configuration (AAC).
For a set of viral marketing problems, our opti-
mised SCOP solver runs up to 26 times faster and
solves almost two thirds of the instances that could
not be solved within a cutoff time of ten minutes,
by an expert-chosen default configuration of the
solver. For a set of transmission grid reliability
problems, the optimised configuration solves ten
percent more instances overall, and solves some
instances up to ten times faster.

1 Introduction
Problems in which we have to make optimal decisions under
constraints and uncertainty are common in fields like indus-
try, governance and science.

Consider for example the viral marketing problem, a well-
known problem in the data mining literature [Kempe et al.,
2003]. We are given a probabilistic network, where nodes
correspond to people and the directed edges to stochastic in-
fluence relationships, indicating how likely a person is to in-
fluence another. We want to leverage word-of-mouth to pro-
mote a new product in the network. We are given k free sam-
ples to distribute to people in the network, to start this pro-
cess. Which group of k people is the most influential?

Another example is the transmission grid reliability prob-
lem [Duenas-Osorio et al., 2017]. Here we are given a pow-
ergrid, where nodes correspond to consumers and produc-
ers of power, and edges to powerlines. In the event of a
natural disaster, like an earthquake or hurricane, powerlines

might break. If too many of them do, consumers may be-
come disconnected and lose power. Each powerline has a
certain probability of remaining intact during a disaster. By
reinforcing powerlines we can increase this probability. This
can be expensive, but we are given a budget for powerline
maintenance. Which powerlines do we reinforce such that
we maximise the expected number of power consumers that
are still connected to a power source after a disaster, while
not exceeding our budget?

Constraint optimisation problems that involve a constraint
or objective function with a stochastic component, are called
Stochastic Constraint Optimisation Problems (SCOPs).

A recently developed method for solving SCOPs exactly
leverages modelling and solving techniques from the fields of
Constraint Programming (CP) and Probabilistic Logic Pro-
gramming (PLP) to solve such SCOPs [Latour et al., 2019].
This method consists of three stages: modelling the problem
in a logic program, compiling its probability distribution to a
data structure that supports tractable probabilistic inference,
and finally searching for an optimal solution, in a way that
takes advantage of specific properties of this data structure.

While this method has shown its merit in a proof of prin-
ciple, it has not been optimised yet. Since solving a prob-
lem such as the viral marketing problem is an NP-hard
task [Kempe et al., 2003], the optimisation of the solving al-
gorithm is key, lest we can only solve the smallest of prob-
lems.

The proposed solution to this problem is two-fold. First,
many design choices are hard-coded in the current solver.
We apply the principle of Programming by Optimisation
(PbO) [Hoos, 2012] by first exposing those choices as pa-
rameters and providing alternatives to these choices, and then
applying automated algorithm configuration (AAC) [Hoos,
2011] to find which combination of those design choices per-
forms best on a given set of problems.

Our contributions are the following: 1) We apply PbO to
the pipeline presented by Latour et al. [2019]: we expose pa-
rameters for configuration and implement alternative design
choices, before using AAC to optimise the resulting solver1;
2) we show that the automatically configured version of this
SCOP solver outperforms the hand-configured version pre-
sented earlier by Latour et al. [2019].

The remainder of this study is organised as follows. We

1Available from ada.liacs.nl/projects/scop-solver.
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provide a definition of the SCOPs we study in Section 2,
along with an outline of the SCOP solver. Section 3 provides
a short introduction to PbO and AAC, and in Section 4 we
list the different parameters and design choices we consider
in this work. We present experimental results in Section 5
and provide general conclusions and some thoughts on future
work in Section 6.

2 SCOPs
Stochastic Constraint Optimisation Problems (SCOPs) are
found in diverse areas of application, including industry, gov-
ernance and science. In this section, we show how to model
problems such as the viral marketing problem as SCOPs and
provide a short overview of the recently proposed SCOP
solver whose automatic configuration we study in this work.
We refer the reader to recent work by Latour et al. [2019] for
a detailed discussion of that solver.

2.1 Problem Description
In the viral marketing problem, our goal is to maximise the
expected number of people buying our product (the optimisa-
tion criterion). We rely on word-of-mouth for people who buy
our product to turn other people in their social network into
new buyers. Specifically, we assume stochastic relationships
between people that determine how likely they are to be in-
fluenced by their acquaintances. We start the word-of-mouth
process by distributing at most k ∈ N+ free samples (the
constraint) of our product to people in the network. For sim-
plicity, we assume that any person who receives a free sample
will love it and buy it in the future. Similarly, we assume that
if a person u buys the product and person u influences v, v
will also buy the product.

We model this problem as a SCOP using two types
of Boolean variables: decision variables, which represent
whether or not a person receives a free sample, and stochastic
variables, which represent whether a person has influence on
another. Each stochastic variable has an independent proba-
bility of either being True or False, while the values of the
decision variables are determined by choice. An assignment
of truth values to a set of decision variables is called a strategy
σ. The objective is to maximise the objective function∑

i

ρi · vi, (1)

where vi can be either the value assigned to decision vari-
able i or a conditional probability P (φi | σ); this conditional
probability represents the probability of an event φi happen-
ing, given a strategy σ. The meaning of φi is further specified
depending on the context of the problem. With each vi we
can associate a reward ρi ∈ R+, such that the objective func-
tion represents expected utility. In the following, we assume
ρi = 1 for simplicity.

In practice, we are often only interested in a subset of
events. We call this subset the set of interest, Φ.

The cardinality of a solution is the number of decision vari-
ables that are chosen to be True in the strategy σ. To model
the limited supply of free samples, we place an upper bound
on the cardinality, in the form of a linear constraint.
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Figure 1: Social network of four persons {a, b, c, d}. Edges repre-
sent the stochastic influence a person has on another.

We solve this SCOP by converting the objective function
from Equation (1) into the stochastic constraint∑

i

ρi · vi > θ (2)

and solving the resulting constraint satisfaction problem re-
peatedly, for increasing θ ∈ R+, until no solution can be
found. Here, θ takes the best value for

∑
i ρi · vi found so far

for a valid solution.

Example 2.1. We formulate a viral marketing problem for
the network of Figure 1 as follows. For every node i, we de-
fine a decision variable di, and for every edge (i, j) a stochas-
tic variable tij with a probability of evaluating to True that is
equal to the label on edge (i, j) in Figure 1. We represent
the event that person i buys our product with a propositional
formula φi over decision variables and stochastic variables.

Suppose that the people in this network can be divided in
two categories, based on geographical location, and our prod-
uct is only sold in one of the two geographical locations. We
then only care about turning people in that location into cus-
tomers. We model this by defining our set of interest to be,
e.g., Φ = {φa, φb}.

The objective is to find a strategy σ that maximises∑
φ∈Φ P (φ | σ). Finally, we constrain the number of peo-

ple that receive a free sample:
∑
i∈{a,b,c,d} di ≤ k.

Note that in this viral marketing problem, the decision vari-
ables are associated with the nodes in the network. We also
study a power transmission grid reliability problem, in which
the decision variables are associated with the edges of the
probabilistic network, instead.

In this problem we are given a network in which nodes
represent power producers (such as powerplants), power con-
sumers or intermediate grid nodes. The nodes are connected
by powerlines. We want to maximise the expected number
of consumers that are still connected to at least one power
producer in the case of a natural disaster, during which pow-
erlines can break. Each powerline has a probability that it re-
mains intact during a natural disaster. By reinforcing a pow-
erline, we can increase this probability. We are given a budget
for such reinforcements. Which powerlines do we reinforce
such that we maximise the number of consumers that are still
connected to producers after a natural disaster, while respect-
ing our budget?

Example 2.2. For the network in Figure 2, we model this
problem as follows. For every powerline l we define a deci-
sion variable dl that indicates if the powerline is chosen to be
reinforced, and a stochastic variable tl, which indicates if the
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Figure 2: Network of powerlines between a producer a, three con-
sumers {c, d, e} and an intermediate grid node b.

powerline remains intact after a disaster. In our model, the
probability pl that tl is True is defined as

pl =

{
pl,1 if dl = False;

pl,2 otherwise,

with pl,1 < pl,2. We represent the event that a power con-
sumer i is still connected to at least one power producer with a
propositional formula φi over decision variables and stochas-
tic variables. We define a set of interest Φ = {φd, φe},
if we are only interested in a specific subset of power con-
sumers. The objective is to find a strategy σ that maximises∑
φ∈Φ P (φ | σ). We constrain the powerlines that we rein-

force:
∑
l∈lines dl · γl ≤ β, where β ∈ R+ is our budget, and

γl is the cost for reinforcing powerline l.

2.2 Solving SCOPs
In the following, we study the automatic configuration of a
recently developed solving method for a sub-class of SCOP:
those whose underlying probability distribution has a mono-
tonic property [Latour et al., 2019]. We will refer to this
method as SCOP SOLVER. In this section we provide a high-
level overview of the three stages of SCOP SOLVER: mod-
elling, compilation and solving.

The modelling stage uses the probabilistic programming
language SC-ProbLog [Latour et al., 2017], an extension of
ProbLog [De Raedt et al., 2007].

In the compilation stage, SC-ProbLog uses knowledge
compilation [Darwiche and Marquis, 2001] to obtain a com-
pact representation of the probability distribution in the form
of an Ordered Binary Decision Diagram (OBDD) [Bryant,
1986]. OBDDs are undirected acyclic graphs that allow
online tractable probabilistic inference, a task which is #P-
complete [Roth, 1996] in general, at the cost of compilation.
Once compiled, OBDDs allow the user to evaluate the quality
of any strategy σ in time linear in the size of the OBDD (by
a bottom-up traversal of the arithmetic circuit associated with
the OBDD), making knowledge compilation widely used for
probabilistic inference [De Raedt et al., 2008].

For the solving stage, Latour et al. [2019] propose to lever-
age the search and propagation technology of Constraint Pro-
gramming (CP) to efficiently traverse the search space of pos-
sible solutions to find the optimal strategy σ∗. A CP solver
induces the search tree by branching: assigning either True
or False to decision variables, to obtain a partial assignment
σ′ and propagating the consequences. This process continues
until either a solution is found or σ′ leads to a violation of
one or more constraints, at which point the solver backtracks
to explore another part of the search space.

In this work, we apply PbO to the compilation and solving
stages of SCOP SOLVER. We describe parameters and design
choices relevant to these stages in Section 4.

3 Programming by Optimisation
To improve the performance of SCOP SOLVER, we apply the
Programming by Optimisation paradigm. We provide an in-
troduction to this concept, and then an introduction to auto-
mated algorithm configuration, which critically enables PbO.
We close the section with a discussion of our choice for a
specific tool for automatically configuring SCOP SOLVER.

3.1 Programming by Optimisation
During algorithm or sofware development, there are typically
multiple possible ways of achieving each subtask. However,
often only one of these design choices is implemented in
the final version of an algorithm or software system. This
choice is often made based on limited experimentation, with
a specific application in mind, while the alternatives are aban-
doned. These design choices have no effect on correctness,
but can affect performance, especially when dealing with
computationally challenging problems.

The paradigm of Programming by Optimisation
(PbO) [Hoos, 2012] introduces a different approach to
design choices. Developers who take a PbO-based approach
to software or algorithm design, implement multiple alterna-
tives for many element or components. They provide the end
user with the choice between these options, by exposing them
as a configurable parameters. Following the PbO paradigm,
developers focus on exploring alternatives for design choices
instead of determining the best instantiations for specific
applications. Moreover, expanding the design space of a
given algorithm or software system and exposing choices as
configurable parameters provides the basis for using auto-
mated algorithm configuration techniques for performance
optimisation. The existence of effective automated algorithm
configuration procedures hence critically enables PbO-based
algorithm and software design.

3.2 Automated Algorithm Configuration
When the PbO paradigm is followed, the resulting algorithm
comes with a set of parameters. The parameter settings of
such an algorithm (its configuration) can have a substantial
impact on its performance, and the optimal choice may vary
for different sets of problems. This also applies to many state-
of-the-art algorithms that naturally come with many param-
eters. Using the right parameter setting is then critical for
reaching state-of-the-art performance – even more so for NP-
hard problems, such as SCOPs. The process of finding an
optimal configuration for a problem set is called automated
algorithm configuration (AAC) [Hoos, 2011].

The algorithm configuration problem is defined as follows.
Given:
• a target algorithm A;
• a list of parameters q1, . . . , qn of A;
• a configuration space C that defines for each q`, for` ∈
{1, . . . , n}, its domain (e.g., integer, real-valued or cat-
egorical) and possible values; each set of such values is
a configuration c ∈ C;
• a set of problem instances I;
• a performance metric m that measures the performance

of the target algorithmA on the instances of I for a given
configuration c,



find a configuration c∗ ∈ C that optimises performance met-
ric m of A on I .

This configuration is expected to be one that performs well
on instances similar to the ones in I . To tackle the configu-
ration problem, many different algorithms have been devel-
oped, and we refer to those as configurators.

3.3 Application to SCOPs
As explained above, AAC is an essential tool for PbO-based
software development. It has been applied successfully to
algorithms that solve NP-hard problems, such as the Boolean
satisfiability problem (SAT) [Hutter et al., 2017] and the trav-
elling salesperson problem (TSP) [López-Ibánez et al., 2011].
Hence, we expect it to also be beneficial to NP-hard prob-
lems, such as SCOPs.

There are several state-of-the-art configurators avail-
able [Balaprakash et al., 2007; Hutter et al., 2011; Ansótegui
et al., 2015]. In particular, SMAC [Hutter et al., 2011] and
GGA++ [Ansótegui et al., 2015] are model-based: They build
a model that captures the dependency of the performance
of the target algorithm on its configuration. This model is
used to predict the performance of configurations on multiple
instances and to select promising candidate configurations.
This method supports diversity of domains of parameters and
conditional parameters, whose activation depends on other
parameters’ values.

Because of the nature of the parameters of SCOP SOLVER
(Section 2.2), we expect that such a model-based search strat-
egy would yield the best results. We chose the general-
purpose configurator SMAC, because it is one of the best-
performing configurators and is freely available.

4 Approach
In the development of SCOP SOLVER (Section 2.2), choices
were made on how to approach certain tasks. We refer to
these choices as design choices. We add alternative design
choices and expose hard-coded choices as parameters, for the
compilation and solving stages of the solver. This enables us
to apply AAC to optimise SCOP SOLVER. In this section we
discuss the different design choices we consider in this work.

4.1 Compilation Stage
The variable order, which specifies the order in which vari-
ables are encountered during the traversal of the OBDD from
root to leaves, has a significant impact on the shape and size
of an OBDD. Finding the optimal order is an NP-complete
problem, and many different OBDD minimisation algorithms
exist [Bollig and Wegener, 1996].

The configuration space we consider for the compilation
stage of SCOP SOLVER consists of: a Boolean variable that
indicates whether to minimise an OBDD, or to leave it with
default variable order; the different OBDD minimisation al-
gorithms; and their parameters. We summarise this configu-
ration space in Table 1.

4.2 Solving Stage
During the solving stage, branching heuristics determine how
SCOP SOLVER traverses the search space. A CP search al-
gorithm uses branching heuristics to decide in which order

unbound decision variables are instantiated and to decide for
each variable which value to explore first: True or False. In
our description of the heuristics below, we describe how the
next decision variable is chosen, and indicate which value is
assigned to that decision variable first. After backtracking,
the CP search algorithm may assign the other value.

Existing heuristics
Latour et al. [2019] describe six different branching heuris-
tics. Top-0 (Bottom-0) branches on the highest (lowest) un-
bound decision variable in the OBDD’s variable order and
assigns to this variable the value False (True) first. These
heuristics are static, and inspired by the size and shape of the
OBDD.

Derivative-0 and Derivative-1 are regret-based heuristics,
aiming to quickly find a high-quality solution. The regret
is defined as the change in objective value for a change in
strategy, and is called the derivative of a decision variable.
Derivatives are recomputed at each node of the search tree.
The heuristic Derivative-0 (Derivative-1) assigns first the
value False (True) to the variable with the smallest (largest)
absolute derivative. These heuristics are dynamic (they are
(re)computed during search) and based on the relative signif-
icance of the decision variables at each point in the search.

New heuristics
We propose four new heuristics that take a different approach:
they are derived directly from the (social) network on which
the viral marketing problem is defined.

Two heuristics select decision variables based on the de-
gree of their corresponding nodes. Degree-0 (Degree-1) as-
signs first the value False (True) to the variable with the
smallest (largest) degree.

The third and fourth heuristic use an approximation of the
influence for the nodes that correspond to the decision vari-
ables, inspired by work on social influence [Borgs et al.,
2014]. We calculate the influence of a node i by starting
n walks through the graph starting at i, where n is the de-
gree of i. We include each node j according to the prob-
ability on the label of the edge (i, j) and repeat this pro-
cess recursively for each j that has been included. The
influence of node i is the number of unique nodes visited
during these walks. We limit each path length by a maxi-
mum of MaxDepth (a configurable parameter of this heuris-
tic). Hence, this influence approximation measures the ex-
pected number of people each person can influence in their
MaxDepth-neighbourhood. Influence-0 (Influence-1) first
assigns the value False (true) to the variable with the smallest
(largest) influence.

Translating new heuristics
The four new heuristics (Degree-0, Degree-1, Influence-0 and
Influence-1) are defined with a variable marketing problem in
mind as application. In these problems, each decision vari-
able corresponds to a node in the network. However, for the
transmission grid reliability problem, the decision variables
correspond to an edge instead. To translate these heuristics
such that they can be used to select edges from the network,
we do the following: if node i has the value X and node j the
value Y according to the chosen heuristic, then edge (i, j)
receives the value X + Y for this same heuristic.



Compilation stage
Minimise, domain: {False, True}
Minimise the OBDD.

VarOrder, domain: {Sif, GSif, WP, SA, GA, Rand}
Sifting (Sif ) [Rudell, 1993], Group Sifting (GSif ) [Panda and
Somenzi, 1995], Window Permutation (WP) [Ishiura et al.,
1991], Genetic Algorithm (GA) [Drechsler et al., 1996], Simu-
lated Annealing (SA) [Bollig et al., 1995], Random (Rand).

Converging, domain: {False, True}
Repeat variable reordering algorithm until no improvement in
OBDD size is found (if VarOrder ∈ {Sif, GSif, WP}).

SymSifting, domain: {False, True}
If the size of the OBDD is invariant under swapping two variables
in the variable order, group them together and swap as a group,
not individually (if VarOrder ∈ {Sif, GSif}).

MaxSwap, domain: N+

Upper bound on number of times two variables can be swapped
in the variable order (if VarOrder ∈ {Sif,GSif}).

MaxSift, domain: N+

Upper bound on number of variables that are sifted, i.e. moved up
and/or down the variable order by swapping with other variables
(if VarOrder ∈ {Sif, GSif}).

MaxGrowth, domain: R+

Maximum relative increase of OBDD size during minimisation
(if VarOrder ∈ {Sif,GSif}).

WSizes, domain: {2, 3, 4}
Evaluate different permutations of WSizes consecutive vari-
ables in the variable order at a time (if VarOrder = WP).

Solving stage
BranchHeur, domain: {Top-0, Top-1, Bottom-0, Bottom-
1, Derivative-0, Derivative-1, Degree-0, Degree-1, Influence-0,
Influence-1}
Branching heuristics used for selection of variables and values.

MaxDepth, domain: N+

Maximum length of paths traversed
(if BranchHeur ∈ {Influence-0,Influence-1}).

Table 1: SCOP SOLVER parameters, their domains, short descriptions, and conditions. Except for MINIMISE itself, all compilation stage
parameters are conditioned on MINIMISE = True.

For the influence-based heuristics we do not perform ran-
dom walks, but simply sum the sizes of the MaxDepth-
neighbourhoods of the endpoints of each line. This is be-
cause, in our dataset, pl,1 is the same for each line l, and be-
cause the value of the probability on each line of the network
depends on the value of the associated decision variable.

5 Experiments
In this section, we describe the automated configuration of
SCOP SOLVER and its experimental evaluation.

Our experiments are guided by the hypothesis that expos-
ing parameters of SCOP SOLVER, providing alternative de-
sign choices and automatically configuring the resulting al-
gorithm for any set of given SCOP instances, provides a con-
figured SCOP SOLVER that outperforms the original in terms
of running time and number of solved instances for a given
cutoff time.

5.1 Datasets
To test our hypothesis, we have performed experiments on
two different datasets. We summarise some characteristics of
these datasets in Table 2.

Viral marketing dataset
We formulated a viral marketing problem on directed
multi-graph data from Facebook representing user interac-
tions [Viswanath et al., 2009]. This dataset consists of 46 952
nodes (users) and 876 993 edges (wall posts). We used com-
munity detection [Blondel et al., 2008] to extract all commu-
nities of twenty to thirty nodes.

To convert these communities into probabilistic networks,
we used the independent cascade model for spread of influ-
ence [Kempe et al., 2003]. When a user posts multiple mes-
sages on the wall of another user, there are multiple (parallel)

Dataset Size training Size test Problem size (# nodes)

Vm 197 196 20–30
Pg 68 68 20–100

Table 2: Size of the training and test of both the Viral marketing
(Vm) dataset and Powergrid (Pg) dataset and the size of the individ-
ual problem instances.

edges between these two users. Parallel edges from node u to
v are replaced by a single edge with weight of 1− (1−p)cuv ,
where cuv is the number of edges from u to v, and p = 0.1 is
a constant probability, which is interpreted as the probability
a single wall post has to influence the user that receives it.

The set of interest Φ on which we define our objective func-
tion consists of the fifty percent highest-degree nodes in a
community. We chose an upper bound of k = 10 on the car-
dinality of the solution for all networks.

The resulting set contains 393 problem instances, which we
divided into a training and test set such that their distributions
of communities with different numbers of nodes are the same.

Powergrid dataset
The instances of the transmission grid reliability problem
are defined on network models of the European and North-
American high-voltage power grids [Wiegmans, 2016], ex-
tracted by GridKit2. These networks are undirected graphs
consisting of power producers, consumers and minor grid
nodes (nodes) and powerlines that connect them (edges).

For each powergrid from a single European country or
North-American state, we extracted the greatest connected
components that contain at least one power producer. We se-

2Available from github.com/bdw/GridKit.

github.com/bdw/GridKit


lected the components that have at least twenty, and at most
one hundred nodes, resulting in a set of 34 networks. The
set of interest Φ, consists of a randomly selected set of power
consumers for each network. The size of this set is equal to
50% of the total number of power consumers in each network.

We used a probability of 0.4 that a powerline remains intact
during a natural disaster and 0.875 if it is reinforced [Duenas-
Osorio et al., 2017]. We assume a uniform cost of γl = 1 for
reinforcing a powerline l. We chose a budget of β = 10 for
all problem instances.

For each of the 34 networks, we created four instances with
a different Φ, which are distributed equally over our training
and test sets.

5.2 Hardware and Software

For our experiments we used SMAC [Hutter et al., 2011], as
stated in Section 3.2.

SCOP SOLVER makes use of an SC-ProbLog ver-
sion based on ProbLog 2.1 [Fierens et al., 2015] for
modelling, the dd 0.5.4 library [Filippidis, 2018] for
OBDD compilation and the Scala 2.12 library OscaR
4.0.0 [OscaR Team, 2012] for solving. We used the Cython
binding of the dd library to CUDD 3.0.0 [Somenzi, 2004]
for the implementation of alternative minimisation methods
for the OBDDs. Our configuration experiments were run on
a cluster with 32 nodes, each equipped with 94 GB RAM and
two Intel Xeon E5-2683 CPUs with 16 cores, running at 3.0
GHz using CentOS Linux 7.6.1810; for our configuration ex-
periments, we used SMAC v3.

5.3 Experimental Protocol

For each of the datasets described in Section 5.1, we per-
formed fifteen independent 48-hour runs of SMAC on the
training set. We minimised PAR10 (penalised average run-
ning time with penalty factor 10) and a cutoff time of 600
CPU seconds, meaning that we measured the average run-
ning time of SCOP SOLVER over all instances in a given set
and counted each timed-out run as ten times the cutoff time.

The cutoff time was selected based on initial experiments
on the viral marketing dataset, such that a reasonable success
rate was achieved for the default configuration. The time limit
for each SMAC run was adjusted according to the cutoff time,
following the example of scenarios with a similar cutoff time
from a well-known configuration library [Hutter et al., 2014].

For each of these fifteen runs, we evaluated the final in-
cumbent (the configuration with the best PAR10 value) on
the training set and selected the configuration with the best
performance. We then evaluated this optimised configuration
on the test set and comparing it with the default configuration.
We note that the default configuration of SCOP SOLVER was
based on the results from previous experiments performed by
Latour et al. [2019], thus providing a strong baseline for our
configuration experiments.

5.4 Results

In this subsection we present and discuss the results from our
experiments.

All instances Solved instances
Configuration Training Test Training Test

Vm Default 1030.6 822.1 89.8 90.2
Optimised 298.4 204.5 25.2 21.5

Pg Default 3294.8 3283.0 113.2 104.2
Optimised 3105.7 2928.6 52.6 32.6

Table 3: PAR10 values with a cutoff of 600 seconds of both con-
figurations on the instances from the Viral marketing (Vm) dataset
and Powergrid (Pg) dataset on all instances and only the instaces that
were solved by either configuration within the cutoff time.

Viral marketing dataset results
To test our hypothesis on the dataset of viral marketing prob-
lems, we evaluated the performance of the optimised config-
uration and that of the default configuration on both the train-
ing and test set of viral marketing data.

The running times of these two configurations on the train-
ing set and test set are shown in Figure 3a. The optimised
configuration is able to find a solution up to 26 times faster
than the default configuration. For the majority of instances,
the speedup ranges from zero- to ten-fold. As the running
time of the default configuration increases, the speedup also
tends to increase. There are no instances that can be solved
by the default, but not by the optimised configuration.

The PAR10 values for both configurations are shown in Ta-
ble 3. Compared to the default configuration, the optimised
configuration yields a 71% decrease in the PAR10 for the
training set, and a 75% decrease for the test set. There are
more than twice as many time-outs on the training than on
the test set for the optimised configuration, compared to 30%
more timeouts for the default configuration; this indicates that
the instances in the training set seem to be slightly harder to
solve than those in the test set.

Table 3 also shows the PAR10 values for those instances
that were solved by either the default, the optimised con-
figuration, or both. From these values we conclude that the
speedup for the solved instances is similar to that of the over-
all speedup.

Powergrid dataset results
We also evaluated the performance of the optimised configu-
ration from the powergrid data and compared it to that of the
default configuration. The running times of these two config-
urations on the training and test data are shown in Figure 3b.

The default configuration outperforms the optimised con-
figuration on a few instances, of which the majority is solved
within ten CPU seconds. There is a single test set instance
that is only solved by the default configuration within the cut-
off time. For all other instances, the optimised configuration
outperforms the default configuration with a speedup ranging
from zero- to ten-fold and solves 6 more instances (out of a
136 in total) than the default configuration.

If we consider the PAR10 values reported in Table 3, the
optimised configuration yields a decrease of 6% in the PAR10
value for the training set and a decrease of 11% for the test
set. The speedup in PAR10 on the instances that are solved
by either configuration is much higher (two- and three-fold
for training and test set, respectively) than the speedup over
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(a) Viral marketing dataset. The optimised configuration has 14 time-
outs on the training and 6 on the test set. The default configuration
has 33 timeouts on the training and 26 on the test set.
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(b) Powergrid dataset. The optimised configuration has 35 timeouts
on the training and 33 on the test set. The default configuration has
37 timeouts each on the training and test set.

Figure 3: Running time [CPU s] of both configurations on both datasets, with a cutoff time of 600 seconds (indicated by dotted lines). The
diagonal lines represent differences in running time of factors of 0, 10 and 100.

all instances.

Analysis and Discussion
The default configuration to which we compare the opti-
mised configurations from both datasets uses Derivative-1 for
branching and does not perform any OBDD minimisation.
Both optimised configurations perform OBDD minimisation
using the symmetric, converging variant of the Sifting algo-
rithm with specifically tuned parameters. The optimised con-
figuration for the viral marketing and powergrid datasets use
Degree-1 and Derivative-1 for branching, respectively.

On both datasets, the optimised configuration outperforms
the default configuration, which confirms our hypothesis for
these sets of SCOPs. We attribute this to the fact that by ap-
plying AAC, we found a previously unexplored configuration
of our highly parametric SCOP SOLVER framework that is
better suited to the problems from these datasets than the de-
fault configuration. Specifically, the optimised configuration
for the compilation stage results in better performance than
the default on the powergrid dataset. For the viral marketing
dataset, the branching heuristic also differs.

While the optimised configuration outperforms the default
on the powergrid dataset, the improvement is less pronounced
than that observed for the viral marketing dataset. We suspect
this has two reasons.

First, the problem instances from this dataset are on aver-
age harder to solve than the viral marketing instances. Ac-
cording to the PAR10 values of the default configuration
on the test set, the powergrid dataset is three times as dif-
ficult. This difficulty leads to a low success rate, which
hurts the quality of the configuration process. We expect
that by increasing the cutoff time, the success rate could de-
crease. Consequently, SMAC obtains more information from
the training set, which improves its ability to find promising
configurations and possibly also the performance of the opti-
mised configuration.

Second, the new heuristics we introduced in Section 4
were inspired by the application to viral marketing problems,
specifically to approximate the influence of nodes, and end
up being used only in the optimised configuration for the vi-
ral marketing dataset. We expect that implementing heuris-

tics specifically aimed at solving SCOPs with decision vari-
ables on edges, such as the transmission grid reliability prob-
lem, would result in further performance increases for con-
figurations optimised for this problem. An example of such
a heuristic would be the betweenness centrality of an edge,
which can be approximated such that is easy to compute, sim-
ilar to the degree of a node.

6 Conclusion and Future Work
We presented an approach to automatically optimise the
configuration of a high-performance method for solv-
ing SCOPs [Latour et al., 2019]. Following the PbO
paradigm [Hoos, 2012], we considered alternatives to the de-
sign choices made for several key components of this method
and exposed those as parameters. We then applied automated
algorithm configuration to the resulting, highly parametric al-
gorithm framework, using SMAC [Hutter et al., 2011], in or-
der to optimise its configuration for a set of SCOPs. We eval-
uated the running time of the automatically configured solver
against that of expert-chosen default settings, namely was the
best performing configuration from the experiments of Latour
et al. [2019], on two benchmarks.

On a set of viral marketing problems, the optimised config-
uration solved 13% more instances than the default configu-
ration within a cutoff time of ten minutes, and achieved up to
a 26-fold speedup on the solved instances. For a set of power
transmission grid reliability problems, the optimised configu-
ration solved 10% more instances within the same cutoff time
and achieved up to a 10-fold speedup on the solved instances.

In future work, we aim to improve the quality of the
branching heuristics, specifically developing heuristics aimed
at the power transmission grid reliability problem. We will
also consider other techniques that might result in increased
performance, such as the grouping of decision variables to-
gether in the OBDD’s variable order. To compare our ap-
proaches to other state-of-the-art SCOP solving techniques,
we intend to evaluate a previously developed decomposition
method that leverages existing MIP solvers [Latour et al.,
2017], since previous work as shown the successful appli-
cation of AAC on MIP solvers [Hutter et al., 2010]. Fi-



nally, we will perform experiments in which we include in-
stance features for the problems under consideration, such as
graph statistics. These features are used by SMAC to pre-
dict the performance of a configuration on different problem
instances and are expected to improve the configuration pro-
cess.
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