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A new process—the factorial hidden Markov volatility (FHMV) model—is proposed to model financial
returns or realized variances. Its dynamics are driven by a latent volatility process specified as a prod-
uct of three components: a Markov chain controlling volatility persistence, an independent discrete pro-
cess capable of generating jumps in the volatility, and a predictable (data-driven) process capturing the
leverage effect. An economic interpretation is attached to each one of these components. Moreover, the
Markov chain and jump components allow volatility to switch abruptly between thousands of states, and
the transition matrix of the model is structured to generate a high degree of volatility persistence. An empir-
ical study on six financial time series shows that the FHMV process compares favorably to state-of-the-art
volatility models in terms of in-sample fit and out-of-sample forecasting performance over time horizons
ranging from 1 to 100 days. Supplementary materials for this article are available online.
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1. INTRODUCTION

Building on the seminal contribution of Goldfeld and Quandt
(1973), Hamilton (1989) popularized the use of regime-
switching models in economics and finance. These models
allow us to model sharp changes in the dynamics of economic
or financial time series by introducing a finite-valued latent
stochastic process that governs the evolution of the parameters
of the time series model. In most applications this latent pro-
cess is a Markov chain and, consequently, Markov-switching
and hiddenMarkovmodels are sometimes used interchangeably
with regime-switching models. In the past 25 years, the empha-
sis in the literature has been on models with a relatively low
number of states—between two and four (e.g., Ang and Bekaert
2002; Dai, Singleton, and Yang 2007; Bauwens, Dufays, and
Rombouts 2014). On one hand, this choice ismotivated by parsi-
mony because the number of parameters in the transition matrix
of the Markov chain increases quadratically with the number of
states. On the other hand, it is generally easier to attach an eco-
nomic interpretation to a low-dimensional state space (e.g., a
Markov chain with two states can be used to represent bull and
bear market regimes).
Rydén, Teräsvirta, and Åsbrink (1998) showed that hidden

Markov models can reproduce reasonably well most of the
stylized facts of financial return series. However, they also
argue that the model seems to be “doomed from the start”
for replicating the high degree of persistence in volatility

that is empirically observed. This is because, similarly to
traditional stationary autoregressive moving-average models,
regime-switching models based on a Markovian switching
process have a short memory, that is, they can only generate an
autocorrelation function that eventually decays exponentially.
However, at finite lags the decay in this autocorrelation function
can still potentially be quite slow. For instance, past research
has shown that a time series generated with a short memory
process contaminated by occasional breaks can exhibit statisti-
cal properties that are akin to those that would be obtained from
a genuine long memory process (e.g., Diebold and Inoue 2001;
Granger and Hyung 2004; Mikosch and Starica 2004; Starica
and Granger 2005; Perron and Qu 2010). This observation
explains why several studies in financial econometrics consider
models in which a low-dimensional regime-switching process
is used as a way to govern time-variation in the parameters of an
existing econometric model. An example of such a combination
is the regime-switching generalized autoregressive conditional
heteroscedasticity (GARCH) model (Gray 1996; Haas, Mittnik,
and Paolella 2004).
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An alternative to these types of models is to consider regime-
switching processes with a high-dimensional finite state space,
such as Markov-switching multifractal (MSM) model proposed
by Calvet and Fisher (2004). These authors demonstrated that
this process has the ability to generate a high degree of volatil-
ity persistence and show that it outperforms GARCH, fraction-
ally integrated GARCH, as well as regime-switching GARCH
models, whenmodeling exchange rate volatility. Although these
empirical results offer a motivation for considering pure regime-
switching specifications with a large number of states, very few
models of this type have since been proposed in the literature.
Building on the MSM approach, the objective of this article

is to propose a new parsimonious regime-switching volatility
model with a high-dimensional finite state space: the factorial
hiddenMarkov volatility (FHMV)model. The volatility dynam-
ics in this model originate from the product of three compo-
nents: a high-dimensional Markov chain driving volatility per-
sistence, a jump process capable of generating nonpersistent
changes in volatility, and a data-driven component capturing the
leverage effect. The structure of the Markov chain component
shares some similarities with the structure of the MSM model,
because it is constructed by multiplying a large number of inde-
pendent two-state Markov chains. However, the specific formu-
lation that we adopt leads to four important differences. First, all
of our two-state Markov chains are not constrained to take iden-
tical values as in the MSM model. As a consequence, the sup-
port of the volatility distribution in the FHMVmodel comprises
thousands of points, whereas the MSMmodels implemented by
Calvet and Fisher (2004) only allows the volatility process to
switch between at most 11 different values. Second, the transi-
tionmatrix of ourMarkov chain component is structured in such
a way that the multiplicity of the second largest eigenvalue can
be greater than one. This distinctive characteristic enables us to
generate a high degree of volatility persistence, which translates
into a very slow decay of the autocorrelation function at finite
lags. A further novelty of our approach versus the MSM model
is that we allow for nonpersistent jumps and integrate a leverage
effect. As a final advantage, the FHMV model is specified such
that only one estimation of the model is sufficient while sev-
eral model estimations are required to select the optimal MSM
process.
We perform an empirical analysis of fit and forecasting per-

formance on return and realized volatility data from the Stan-
dard and Poor’s 500 Index (S&P 500), the Nasdaq Compos-
ite Index (NASDAQ), and the USD/EUR exchange rate over
the period 2000–2016. When modeling returns, the fit of the
FHMV model is superior to the MSM model in terms of infor-
mation criteria and can even surpass that of a regime-switching
GARCH model with Student-t innovations. When modeling
realized variances, the FHMV model dominates multiplicative
error models (MEM; Engle 2002) and logarithmic heteroge-
nous autoregressive (log-HAR) processes (Corsi 2009; Corsi
and Renò 2012) in terms of information criteria. Finally, the
forecasting comparison reveals that at any horizon (up to 100
days), the rootmean squared forecast errors (RMSFE) generated
by the FHMVmodel with leverage effect are either significantly
smaller or comparable in size to the smallest errors produced by
the competing models.

The article is structured as follows. Section 2 introduces the
FHMV model, exposes its statistical properties, and relates it
to the literature. Section 3 covers model estimation. Section 4
presents the results of our empirical study. Section 5 concludes.
An online supplementary appendix (SA) provides detailed
proofs of the theoretical results presented in the article as well as
additional information on our modeling framework and empiri-
cal results.

2. MODEL DEFINITION AND PROPERTIES

The FHMV model is designed to fit a time series of financial
returns or realized variances. Its central component is a discrete-
time latent variance process denoted by {Vt}. Before defining
this component in detail, we introduce the modeling framework
that enables us to link it to either financial returns or realized
variances.

2.1 Basic Modeling Framework

2.1.1 Returns. Let rt , t = 1, . . . ,T , denoted by {rt}, rep-
resent a time series of demeaned financial log-returns. As is typ-
ical in the financial econometrics literature, we model rt as

rt =
√
Vtεt, (1)

where {εt} is an independent and identically distributed (iid)
innovation process with mean 0 and variance 1, which is
assumed to be independent of {Vt}.
2.1.2 Realized Variances. Let {RVt} represent a time

series of realized variances, computed for instance as the sum
of intraday squared returns. Because the realized variance is a
positive process, we choose to model it with a multiplicative
error structure (Engle 2002) as

RVt = Vtηt, (2)

where {ηt} is a positive iid innovation process with mean 1,
which is assumed to be independent of {Vt}. As argued by Engle
(2002), the main advantage of the multiplicative error structure
is that the variable of interest is modeled without any trans-
formation by a process that ensures its positivity. MEM have
been shown to perform well on realized volatility data by Engle
and Gallo (2006), Gallo and Otranto (2015), and Lanne (2006),
among others.

Remark 1. The return model considered in Equation (1)
implies an MEM for squared returns as r2t = Vtηt,where, in this
specific context, ηt = ε2t .

2.2 Latent Variance Process

We first define the latent variance process {Vt} without a lever-
age component as this allows us to study the main statistical
properties of our model analytically. We model Vt as

Vt = σ 2CtMt, (3)

where {Ct} is a Markov chain with a finite state space satisfying
E(Ct ) = 1, and {Mt} is a sequence of iid discrete random vari-
ables assumed independent of {Ct} and that satisfies E(Mt ) = 1.
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As a consequence, the parameter σ 2 denotes the unconditional
expectation of the latent variance process, that is, E(Vt ) = σ 2.
The economic interpretation that we attach to the model is

one where volatility is impacted by the arrival of news in the
financial market, with varying degrees of importance from day
to day. The processes {Ct} and {Mt} are both used to represent the
impacts of these news. The Ct component models news whose
effect persists over time, whereasMt captures the impact of non-
persistent news and can be interpreted as a jump component.
These interpretations become more apparent in Sections 2.2.1
and 2.2.2, where we define Ct and Mt , respectively.
2.2.1 Structure and Interpretation of Ct . The process

{Ct} is constructed as a product of N independent two-state
Markov chains, denoted by {C(i)

t }, i = 1, . . . ,N:

Ct = c0

N∏
i=1

C(i)
t , (4)

where c0 = 1/E[
∏N

i=1C
(i)
t ] is a normalizing constant ensuring

that E(Ct ) = 1. These Markov chains are assumed to share the
same 2 × 2 transition probability matrix (t.p.m.)

P =
(

p 1 − p
1 − p p

)
, (5)

where p ∈ (0, 1). However, they do not share the same state
space as we assume that C(i)

t ∈ {ci, 1}, where c1 > 1 and

ci = (1 − θc) + θcci−1

= 1 + θ i−1
c (c1 − 1), for i = 2, . . . ,N and θc ∈ [0, 1].

The normalizing constant in Equation (4) is thus obtained as
c0 = [

∏N
i=1(1 + θ i−1

c (c1 − 1)/2)]−1. Note that c1 ≥ c2 ≥ · · · ≥
cN ≥ 1, which implies a hierarchical structure in the compo-
nents of Ct . For instance, if we say that the component C(i)

t

is turned ON at time t when C(i)
t = ci and turned OFF when

C(i)
t = 1, then C(1)

t and C(N )
t have, respectively, the greatest and

weakest impact on volatility when turned ON.
The two-state Markov chains {C(i)

t }, i = 1, . . . ,N, are used
to model the impact of news arriving in the financial market,
so that when any one of these chains is turned ON, volatility
increases proportionally to the news importance, measured by
the value of ci. The impact of news on volatility then persists for
a number of time periods that follows a geometric distribution
with parameter p; in the applications reported in Section 4, the
estimated value of p is very close to 1.

Remark 2. TheCt component consists of N two-state Markov
chain components and can be expressed as logCt = log c0 +∑N

i=1 logC
(i)
t . Because a two-state Markov chain can be repre-

sented as an AR(1) process (see for instance Hamilton 1994,
chap. 22), the logarithm of the persistent volatility component
can be viewed as the sum ofN autoregressive components. Inter-
estingly, the article by Andersen and Bollerslev (1997) proposes
tomodel log-volatility as an aggregation of AR(1) processes and
argues that (asymptotically) this structure can induce long-run
dependence. Moreover, each AR(1) process is interpreted as an
information arrival flow process. Consequently, the persistent
volatility component in the FHMV model can be seen as a dis-
crete version of their model. In Theorem 1 and Proposition 1,

we show that it can also be effective at slowing down the decay
of the autocorrelation function of {Vt}.
Remark 3. The persistent component is structured as a facto-

rial hidden Markov model as defined in Ghahramani and Jordan
(1997). In fact, factorial hidden Markov processes include mul-
tiple hidden Markov chains that evolve independently of each
other and that are combined to produce the final state. More-
over, the factorial structure can be seen as a particular case
of the hierarchical hidden Markov structure proposed in Fine,
Singer, and Tishby (1998), which consists in layers of hidden
Markov chains. It must be emphasized that both the hierarchi-
cal and factorial models can be formulated as a standard hidden
Markov model. This follows from the fact that a combination of
low-dimensional Markov chains can be reproduced by a single
high-dimensional Markov chain. However, hierarchical and fac-
torial hidden Markov models remain practical representations
of a hidden Markov process because they allow us to consider
a large number of states more parsimoniously. A more detailed
discussion on the relationship between these types of structures
and the FHMV model is provided in the SA.

Following Remark 3, it can be seen that {Ct} corresponds
to a Markov chain on a state space XC with 2N elements,
generated by the Kronecker product of the state spaces of {C(i)

t },
i = 1, . . . ,N, that is, XC = c0 · {c1, 1} ⊗ {c2, 1} ⊗ · · · ⊗
{cN, 1}. Its 2N × 2N t.p.m., denoted by PC, is simply

PC = P⊗N,

where P⊗N is the Nth Kronecker power of P (the kth Kronecker
power of P is defined inductively for k ∈ N by P⊗1 = P and
P⊗k = P⊗ P⊗(k−1), k = 2, 3, . . .). Because we assume that p ∈
(0, 1), PC is a positive matrix (i.e., all elements of PC are strictly
positive), which implies that {Ct} is an ergodic Markov chain
with a unique stationary distribution, which we denote by πC.
Lemma 5 in the SA implies that πC = 2−N12N , where 1n is used
to denote the n-dimensional column vector of ones, for n ∈ N.
2.2.2 Structure and Interpretation of Mt . The process

{Mt} is defined to be a sequence of iid discrete random variables
with probability mass function

Pr (Mt = m0 · mi) =
{
q(N − 1)−1, if i = 1, . . . ,N − 1,
1 − q, if i = N,

where q ∈ (0, 1), m1 > 1,

mi = (1 − θm) + θmmi−1

= 1 + θ i−1
m (m1 − 1), for i = 2, . . . ,N − 1,

and mN = 1. We assume that θm ∈ [0, 1], which implies
that m1 ≥ m2 ≥ · · · ≥ mN = 1, and use m0 as a normaliz-
ing constant to ensure E(Mt ) = 1, which leads to m0 = [1 +
q (m1−1)(1−θN−1

m )
(N−1)(1−θm )

]−1.

We interpret {Mt} as a process capturing the nonpersistent
impact on volatility of the arrival of news in the financial mar-
ket. The parameter q corresponds to the probability of this
type of news arriving in a given time period. This news has a
multiplicative impact on volatility, given by one of the values
m1, m2, . . . ,mN−1, chosen with equal probabilities (ON states),
with m1 representing the greatest impact and mN−1 the weak-
est impact. The probability of no news arriving is 1 − q, which
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is associated with mN = 1 (OFF state). In contrast to {Ct}, the
impact of news generated by the {Mt} process does not persist
over time since it is an independent process. Consequently, this
component of the model serves to generate nonpersistent jumps
of different magnitudes on volatility.
For further developments, it is convenient to express {Mt} in

the form of a Markov chain. To this end, let πM be the column
vector of the N component probabilities

πM =

⎛⎜⎜⎝ q

N − 1
, . . . ,

q

N − 1︸ ︷︷ ︸
(N−1) terms

, 1 − q

⎞⎟⎟⎠
′

. (6)

Then, {Mt} can be expressed as a Markov chain with N × N
t.p.m., PM = 1Nπ′

M , on the state space XM with N elements,
where XM = m0 · {m1,m2, . . . ,mN}. Because q ∈ (0, 1), PM is
a positive matrix and {Mt} is an ergodic Markov chain with sta-
tionary distribution πM (see Lemma 6 in the SA).
2.2.3 Markov Chain Structure of Vt . The latent vari-

ance at time t, Vt , is the product of Ct and Mt , as speci-
fied in Equation (3), hence it combines the effects on volatil-
ity of the arrival of persistent and nonpersistent news in the
financial market. Since {Vt} is a product of two independent
ergodic Markov chains, it is itself an ergodic Markov chain with
(N · 2N ) × (N · 2N ) t.p.m., PV = PC ⊗ PM , on the state space
XV with N · 2N elements, where XV = σ 2 · XC ⊗ XM . Its sta-
tionary distribution is given by πV = πC ⊗ πM (see Lemma 7
in the SA). Note that although {Vt} is potentially a high-
dimensional Markov chain (e.g., for N = 10, the number of
states is 10,240), it is parsimoniously indexed by only seven
parameters, that is, {σ 2, p, q, c1,m1, θc, θm}.
2.2.4 Volatility Persistence. It is a well-known empiri-

cal fact that the volatility of returns on financial assets exhibits
a high degree of persistence (e.g., Mandelbrot 1963; Bollerslev
1986). In the FHMV model, volatility persistence can be char-
acterized by the speed at which cov(Vt,Vt+k ) approaches zero
as k increases. Let υ denote the N · 2N column vector of the ele-
ments of XV , and let ϒ denote the (N · 2N ) × (N · 2N ) diagonal
matrix with the elements of υ on its diagonal (i.e., υ = ϒ1N·2N ).
Then, based on standard Markov chain theory (see Hamilton
1994, chap. 22), we have

cov(Vt,Vt+k ) = π′
VϒPkVυ − (π′

Vυ
)2

(7)

= π′
Vϒ(PkV − 1N·2Nπ′

V )υ, k = 1, 2, . . . ,

and cov(Vt,Vt+k ) → 0 as k → ∞.
Clearly, the rate at which the volatility tends to persist in time

is directly related to the rate of convergence of the matrix PkV
as k tends to infinity. It is well known that if γ denotes the
second largest eigenvalue (in absolute value) of PV , then |γ |k
is the dominating term in its asymptotic rate of convergence
(see Poskitt and Chung 1996). This observation led Rydén,
Teräsvirta, and Åsbrink (1998) to affirm that hidden Markov
models “can only produce series with exponentially decaying
autocorrelation functions,” and that these models are therefore
“doomed from the start” for replicating the high degree of per-
sistence in volatility which is empirically observed. Although
this affirmation holds asymptotically, Theorem 1 shows that the
particular structure that we introduce to construct the Markov

chain {Vt}, specifically the multiplication ofN two-stateMarkov
chains with identical t.p.m., offers a way to slow down the con-
vergence of PkV as k = 1, 2, . . ..

Theorem 1 (Rate of convergence of PV ). Let γ = 2p− 1 and
�V = limk→∞ PkV .

(i) Asymptotic limit of PkV as k → ∞:

�V = 1N·2NπV ′.

(ii) Nonasymptotic rate of convergence of PkV as k = 1, 2, . . .:

‖PkV − �V‖∞ ≤ (1 + |γ |k )N − 1, (8)

where ‖ · ‖∞ is the maximum absolute row sum norm and,
for γ ∈ [0, 1),

‖PkV − �V‖max = ((1 + γ k )N − 1
) ‖πV‖∞, (9)

with ‖πV‖∞ = 2−N max{q/(N − 1), 1 − q}, where ‖ · ‖max
is the max norm, that is, the maximum absolute element of
the given matrix.

(iii) Asymptotic rate of convergence of PkV as k → ∞:

PkV − �V = O(kN−1|γ |k ). (10)

Remark 4. From a linear algebra standpoint,N corresponds to
the algebraic multiplicity of the eigenvalue γ of the matrix PV ,
which is its largest eigenvalue (in absolute value) that is smaller
than 1. Note that the 2 × 2 matrix P also has an eigenvalue of
γ = 2p− 1, but its algebraic multiplicity is 1. Since N corre-
sponds to the number of components used in the construction of
{Ct}, the algebraic multiplicity of the eigenvalue γ of the matrix
PV increases by one unit each time a component is added.

Theorem 1 shows that the number of latent components
N impacts the rate of convergence of PkV as k = 1, 2, . . ..
For instance, if N = 1, we have ‖PkV − �V‖∞ ≤ |γ |k and
PkV − �V = O(|γ |k ). Equations (8)–(10) indicate that higher
values of N generally lead to a slower decay of PkV as k =
1, 2, . . . , and that the impact of a higher N is magnified the
closer γ (or equivalently p) is to 1 .

2.3 Autocovariance Structure and Moments

Although the Markov chain process {Vt} exhibits a particular
structure and has a high-dimensional state space, it neverthe-
less remains a time-homogenous Markov chain on a finite state
space. Consequently, the FHMV model presented in Sections
2.1 and 2.2 is included in the class of hidden Markov models.
Accordingly, its autocovariance structure, its conditional and
unconditional moments, as well as its log-likelihood function
can all be computed in closed-form based on standard tech-
niques.
2.3.1 Autocovariance Structure. First, let us consider

the autocovariance function of {r2t } and {RVt}. Since r2t and RVt

share the same multiplicative error structure (see Remark 1), the
derivation of this function for these two processes is treated at
once in Proposition 1 by introducing a new variable xt that rep-
resents either r2t or RVt .

Proposition 1 (Autocovariance structure). Let xt = Vtηt ,
whereVt is defined by Equation (3) and {ηt} is a positive iid ran-
dom process with mean 1 and finite variance, which is assumed
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independent of {Vt}, and let

φi =
(
ci − 1

ci + 1

)2
=
(

θ i−1
c (c1 − 1)

θ i−1
c (c1 − 1) + 2

)2
∈ [0, 1], i = 1, . . . ,N.

For k ∈ N, we have

(i)

cov(xt, xt+k ) = cov(Vt,Vt+k ), (11)

(ii)
cov(xt, xt+k ) = σ 4

(
N∏
i=1

(
1 + φiγ

k
)− 1

)
, (12)

(iii)
var(xt ) = σ 4

(
E[η2

t ]m
2
0

(
N∏
i=1

(1 + φi)

)

×
(

q

N − 1

N−1∑
i=1

m2
i + (1 − q)

)
− 1

)
, (13)

(iv)

Corr(xt, xt+k )

=
∏N

i=1

(
1 + φiγ

k
)− 1

E[η2
t ]m

2
0

(∏N
i=1 (1 + φi)

) (
q

N−1

∑N−1
i=1 m2

i + (1 − q)
)

− 1
,

where γ = 2p− 1, p being the parameter of the t.p.m. defined
in Equation (5).

Remark 5. Equation (11) indicates that the autocovariance
function of {r2t } or {RVt} decays at the same rate as that of {Vt}.
Equation (7) implies that this decay is governed by the rate of
convergence of the matrix PkV as k tends to infinity, which itself
slows down when the number of components N increases (see
Theorem 1). The particular structure of the latent variance pro-
cess therefore offers a way to capture varying degrees of per-
sistence in the data, and this is an important motivation for this
structure. In fact, as can be seen in the empirical study of Section
4, the FHMVmodel very well mimics the autocorrelation struc-
ture of squared returns and realized variances.

To determine more explicitly how the number of components
N impacts on the autocovariances, let us consider two FHMV
models differing by only one latent component. If both mod-
els share the same parameters, σ 2, p, ci, i = 1, . . . ,N − 1 and
γ ≥ 0, then the autocovariances of the model with N − 1 com-
ponents, denoted by covN−1(xt, xt+k ), are always smaller than or
equal to the autocovariances of the model with one extra com-
ponent, denoted by covN (xt, xt+k ), since we have

covN (xt, xt+k )

= (1 + φNγ k
)
σ 4

(
N−1∏
i=1

(
1 + φiγ

k
)− 1

)
+ φNγ kσ 4

= (1 + φNγ k ) covN−1(xt, xt+k ) + φNγ kσ 4

≥ covN−1(xt, xt+k ).

We remark that if the impact of the extra component
on volatility is marginal, that is, cN ≈ 1, then φN ≈ 0 and

covN (xt, xt+k ) ≈ covN−1(xt, xt+k ). Therefore, if more compo-
nents than necessary are considered in the model, these super-
fluous components will not artificially inflate the dependence
structure.
Another interesting feature of Proposition 1 follows from

Equation (13) because it shows that the excess kurtosis typi-
cally observed in financial returns can be captured either by the
latent components Ct and Mt , or by E(η2

t ) (note that in the case
of returns, E(η2

t ) is the fourth moment of εt).
2.3.2 Moments. Of particular interest is the

conditional moment forecast of xt+h, for h =
1, 2, . . . , based on the available information up to
time t (as in Section 2.3.1, xt represents either r2t or RVt).
To compute this forecast, one must first obtain the vector of
filtered probabilities, denoted by ξt|t , using standard filtering
techniques developed for hidden Markov models (e.g., Hamil-
ton 1994, chap. 22). Let υ1, υ2, . . . , υN·2N denote the elements
of υ, and let ξt+h|t , where h = 0, 1, . . . , be the N · 2N column
vector with elements

ξi,t+h|t = Pr (Vt+h = υi | Ft ) , i = 1, . . . ,N · 2N, (14)

where Ft denotes the observed market information up to time
t. These conditional forecast probabilities are directly obtained
from the filtered probabilities since ξ′

t+h|t = ξ′
t|tP

h
V for h =

1, 2, . . .. It is then simple to compute the conditional moment
forecast, E[g(xt+h) | Ft], for any real-valued function g(·) from
the following expression:

E [g(xt+h) | Ft] =
N·2N∑
i=1

ξi,t+h|t E [g(υiηt+h)] . (15)

When g(x) = xr, Equation (15) simplifies to E[xrt+h | Ft] =
E[ηrt+h]

∑N·2N
i=1 ξi,t+h|t υr

i . Finally, to compute unconditional
moments one must simply replace the probability vector
ξt+h|t by the stationary distribution πV (in fact, ξt+h|t → πV
as h → ∞).

2.4 Relationship to the MSM Model

Since the construction of the FHMV model is motivated by the
success of the MSM approach of Calvet and Fisher (2004), it is
instructive to relate it to theMSMmodel. TheMSMprocess was
initially proposed as a model for financial returns, and it thus
admits the general form given in Equation (1). Its latent variance
is specified as Ṽt = σ̃ 2∏N

i=1 C̃
(i)
t , where for i = 1, . . . ,N:

C̃(i)
t =

⎧⎨⎩C̃
(i)
t−1, with probability p̃i,
c̃, with probability (1 − p̃i)/2,
2 − c̃, with probability (1 − p̃i)/2,

with c̃ ∈ (0, 1), and p̃i = ãb̃
i−1

for i = 1, . . . ,N, where ã ∈
(0, 1) and b̃ ∈ (1,∞). Note that E(Ṽt ) = σ̃ 2. The MSM model
therefore includes four parameters, {σ̃ 2, ã, b̃, c̃}.

It is easily seen that {C̃(i)
t }, i = 1, . . . ,N, are independent

two-state Markov chains defined on a common state space
comprised of the values {c̃, 2 − c̃}. Consequently, Ṽt can only
take N + 1 distinct values in the set {σ̃ 2 c̃i(2 − c̃)N−i}Ni=0.
This represents a first important difference with respect to
the FHMV model. Moreover, in contrast to our approach, the

Journal of Business & Economic Statistics, October 2019700



Markov chains, {C̃(i)
t }, i = 1, . . . ,N, do not all share the same

t.p.m., which implies that the structure of the MSM model does
not benefit from the results of Theorem 1 and Proposition 1.
In fact, Proposition 2 shows that the asymptotic rate of con-
vergence of the MSM t.p.m., denoted by PMSM, is geometric
and is driven by the parameter ã, which also corresponds to the
second largest eigenvalue of PMSM. Moreover, the multiplicity
of this eigenvalue is equal to one.

Proposition 2 (Rate of convergence of PMSM).

(i) MSM stationary distribution : πMSM = 2−N12N .
(ii) Asymptotic limit of PkMSM as k → ∞: �MSM =

limk→∞ PkMSM = 12NπMSM
′.

(iii) Asymptotic rate of convergence of PkMSM as k → ∞:
PkMSM − �MSM = O(ãk ).

Another model that is related to the MSM model is the
component-driven regime-switching model of Fleming and
Kirby (2013). Like the MSM model, it represents the latent
variance by a product of two-state Markov chains with iden-
tical state spaces, but it allows some of these Markov chains to
share the same t.p.m. However, the models considered by Calvet
and Fisher (2004) and Fleming and Kirby (2013) are in practice
restricted to switch between at most 11 different volatility val-
ues (for N = 10), while the FHMV model has the flexibility to
generate a much richer support for the volatility distribution.

2.5 Relationship to An Autoregressive Stochastic
Volatility Framework

Because the FHMV process can be converted into a hidden
Markov model with a large number of states (see Section 2.2.3),
the underlying latent variance process can be formulated as a
first-order vector autoregression (see, for instance, Hamilton
1994, chap. 22). More precisely, if the random vector et ∈ R

N·2N

denotes a column vector with entry i equal to one if the Markov
chain lies in state i at time t and zero in all other entries, then
we can express the FHMV model as

rt =
√
Vtεt, (16)

Vt = υ′et, (17)

et = P′
V et−1 + ut, (18)

where υ stands for the N · 2N column vector of elements of the
state space of {Vt}, PV is the transition matrix of {Vt}, and {ut} is
a discrete martingale difference sequence. The model formula-
tion (16)–(18) shows that the FHMV process can be represented
as an autoregressive stochastic volatility model with discrete
dynamics (see Cordis and Kirby 2014, for a discrete stochas-
tic autoregressive volatility model). While standard stochas-
tic volatility models assume that log-volatility dynamics are
driven by a Gaussian innovation, the FHMV process uses a dis-
crete transition kernel that can potentially allow for more abrupt
changes in volatility.

2.6 Leverage Effect

An additional novelty of the FHMV model, that is not shared
by the MSM process, is the inclusion of a time-varying leverage
effect. The empirical analyses presented in Section 4 show that

this component significantly enhances the in-sample fit and out-
of-sample forecasting performance of the model on S&P 500
and NASDAQ data.
With a leverage effect, the latent variance specification intro-

duced in Equation (3) is extended to include an additional com-
ponent:

Vt = σ 2CtMtLt, where Lt =
NL∏
i=1

L(i)t ,

and

L(i)t =
{
1, if rt−i ≥ 0,
1 + li

|rt−i|√
Lt−i

, if rt−i < 0,

for i = 1, . . . ,NL, with l1 > 0 and li = θ i−1
l l1 for i = 2, . . . ,NL,

and θl ∈ [0, 1]. The leverage component Lt adds two parame-
ters, {l1, θl}, and is specified as a predictable process, that is, its
value at time t is fully determined by the observed returns up to
time t − 1. This entails that the specific value of NL has a neg-
ligible impact on the computational burden and it can thus be
chosen to be very large in applications.
Moreover, the process {Lt} may be interpreted similarly to

{Ct} and {Mt}. For instance, if we let the returns {rt} represent a
type of news, then we may say that the component L(i)t is turned
ON if rt−i < 0 and turned OFF if rt−i ≥ 0. The impact of this
component on volatility is then influenced by the importance of
the news, which is a function of the magnitude of the negative
return |rt−i| and of a multiplicative factor li structured to give
less importance to more distant news.

3. MODEL ESTIMATION

Section 2.2.3 explained that the FHMV process can be recast
into a hidden Markov model on the state space XV with N · 2N
elements. Although the number of states grows quickly with the
number of components N, the model can be estimated using the
standard Hamilton filter, even when N = 10. This filter com-
putes the filtering and predictive distributions of the state pro-
cess as well as the conditional density of the observed process
recursively for t = 1, . . . ,T as follows:

Observed density: p(yt | Ft−1,
)

=
∑
Vt∈XV

p(yt | Vt,Ft−1,
)p(Vt | Ft−1,
),

Filtering distribution: p(Vt | Ft,
)

= p(yt | Vt,Ft−1,
)p(Vt | Ft−1,
)

p(yt | Ft−1,
)
,

Predictive distribution: p(Vt | Ft−1,
)

=
∑

Vt−1∈XV

p(Vt | Vt−1,Ft−1,
)p(Vt−1 | Ft−1,
),

where {yt} denotes the observed time series (either rt or RVt)
and
 stands for themodel parameters. The log-likelihood func-
tion is then obtained as log p(y1, . . . , yT | 
) =∑T

t=1 log p(yt |
Ft−1,
). To initiate the Hamilton filter, an assumption on the
state distribution at time t = 1, p(V1 | F0,
), must be made; in
our code, it is set to the stationary distribution of the Markov
chain. A MATLAB program to estimate the FHMV model
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Table 1. Comparison of fit: Percentage log-returns

Models without leverage Models with leverage

Models MSM GARCH-t MS-GARCH-t FHMV GJR-t MS-GJR-t FHMV-lev
Np 4 4 9 7 5 11 9

S&P 500 (T = 4150)
log-lik − 5874.1 − 5870.4 − 5861.3 − 5862.9 − 5782.0 − 5770.5 − 5770.1
AIC − 5878.1 − 5874.4 − 5870.3 − 5869.9 − 5787.0 − 5781.5 − 5779.1
BIC − 5890.8 − 5887.1 − 5898.8 − 5892.1 − 5802.8 − 5816.3 − 5807.5

NASDAQ (T = 4149)
log-lik − 7261.3 − 7259.5 − 7248.4 − 7252.8 − 7197.5 − 7175.5 − 7180.2
AIC − 7265.3 − 7263.5 − 7257.4 − 7259.8 − 7202.5 − 7186.5 − 7189.2
BIC − 7278.0 − 7276.2 − 7285.9 − 7281.9 − 7218.3 − 7221.3 − 7217.7

USD/EUR (T = 4147)
log-lik − 3762.2 − 3747.5 − 3740.7 − 3738.6 − 3745.6 − 3740.5 − 3737.7
AIC − 3766.2 − 3751.5 − 3749.7 − 3745.6 − 3750.6 − 3751.5 − 3746.7
BIC − 3778.9 − 3764.2 − 3778.2 − 3767.8 − 3766.4 − 3786.3 − 3775.1

NOTES: Np: Number of parameters; log-lik: Maximum of the log-likelihood; AIC: Akaike Information criterion; BIC: Bayesian information criterion; The highest values appear in bold.

is available in the supplementary material and on the corre-
sponding author’s website. In our applications, we estimated the
FHMV model with N = 10 and the time required to carry out
maximum likelihood estimation was below 30 min for a sam-
ple size of 4150 observations (Table 1 in the SA gives com-
puting times required to evaluate the likelihood function as a
function of N). We remark that since the predictive distribution
of the jump component is constant over time, it is not neces-
sary to track the jump states in the Hamilton filter. This implies
that in practice the filter only needs to iterate over 1024 states
instead of 10,240 states when N = 10. Therefore, the computa-
tional burden of the FHMV model is comparable to that of the
MSM process (when N = 10, the MSM process corresponds to
a hidden Markov model over 1024 states).
When constructing the FHMV model, we assumed that the

number of components used as building blocks of {Mt} and
{Ct} is the same and equal to N. Although nothing prevents us
from considering different numbers of components in {Mt} and
{Ct}, in our view it makes sense to specify N as large as possi-
ble in both of them (up to computational constraints), because
the effect of additional components on volatility, measured by
the variables ci and mi, is structured to converge geometrically
to one. Therefore, when N is large, the model has the ability
to adjust itself, through the parameters c1, m1, θc, and θm, and
assign very little importance to superfluous components. Since
the number of parameters does not increase with the number of
components, we could also have pursued a strategy to find the
optimalN.We decided not to consider such an approach because
in our view, it is more practical to have only one model speci-
fication to estimate. In this respect, processes such as the MSM
and GARCH(p, q) models may be considered at a disadvantage
because they require a model selection procedure.

4. APPLICATIONS TO DAILY RETURNS AND
REALIZED VARIANCES

We compare the FHMV process to popular models on daily
percentage log-returns and realized kernel variances (scaled
by a factor of 1002) from the S&P 500, the NASDAQ, and the

USD/EUR exchange rate. Daily percentage log-returns span
the period extending from January 3, 2000 to June 30, 2016
(source: Federal Reserve Economic Data (FRED) database).
Realized kernel variances cover the same period, except for the
USD/EUR exchange rate, for which the data are available until
March 3, 2009 (source: Oxford-Man Institute of Quantitative
Finance).
On each dataset, we estimate the FHMVmodel with andwith-

out leverage based on N = 10 (10,240 states) and NL = 70. The
innovation of the return process (εt) is assumed to follow a stan-
dard normal distribution, whereas the innovation of the realized
variance process is assumed to follow a gamma distribution with
mean 1 and shape parameter v > 0.

4.1 Comparison of Fit

Table 1 presents estimation results for the percentage log-return
datasets. The FHMVmodels with and without leverage (respec-
tively, FHMV-lev and FHMV) are compared to five competi-
tors: the MSM (Calvet and Fisher 2004), the GARCH(1,1)
(Bollerslev 1986), the GJR-GARCH(1,1) (GJR; Glosten, Jagan-
nathan, and Runkle 1993), the two-state Markov-switching
GARCH(1,1) (MS-GARCH; Haas, Mittnik, and Paolella 2004),
and the two-state Markov-switching GJR-GARCH(1,1) (MS-
GJR). GARCH-type models include a Student-t innovation; this
is indicated by adding “-t” to the model acronym. Model defi-
nitions are provided in the SA.
From Table 1, we observe that, in accordance with the finan-

cial econometrics literature, the inclusion of a leverage effect
strongly improves the fit to stock indices, but has little impact
on the exchange rate dataset. Overall, the fit of the FHMV
(respectively, FHMV-lev) model is comparable to that of the
MS-GARCH-t (respectively, MS-GJR-t). Based on the AIC, the
FHMV-lev model is preferred for the S&P 500 dataset, the MS-
GJR-t for the NASDAQ, and the FHMV for the USD/EUR.
Based on the BIC, the FHMV-lev model is preferred for the
NASDAQ.Moreover, although theMSMprocess was originally
proposed for exchange rate series, the FHMV model substan-
tially outperforms it in terms of information criteria.
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Table 2. Comparison of fit: Realized variances

Models without leverage Models with leverage

Models log-HAR MEM MS-MEM FHMV log-HAR-lev MEM-lev MS-MEM-lev FHMV-lev
Np 5 4 9 8 8 5 11 10

S&P 500 (T = 4120)
log-lik − 1196.4 − 1465.0 − 1234.0 − 1148.4 − 1033.9 − 1366.4 − 1120.7 − 956.9
AIC − 1201.4 − 1469.0 − 1243.0 − 1156.4 − 1041.9 − 1371.4 − 1131.7 − 966.9
BIC − 1217.2 − 1481.7 − 1271.5 − 1181.7 − 1067.2 − 1387.2 − 1166.5 − 998.5

NASDAQ (T = 4124)
log-lik − 1444.9 − 1669.0 − 1464.6 − 1427.2 − 1256.7 − 1596.7 − 1389.8 − 1225.5
AIC − 1449.9 − 1673.0 − 1473.6 − 1435.2 − 1264.7 − 1601.7 − 1400.8 − 1235.5
BIC − 1465.7 − 1685.6 − 1502.1 − 1460.5 − 1290.0 − 1617.5 − 1435.6 − 1267.2

USD/EUR (T = 2328)
log-lik 1293.5 1150.0 1266.7 1325.3 1307.7 1151.8 1269.5 1335.5
AIC 1288.5 1146.0 1257.7 1317.3 1299.7 1146.8 1258.5 1325.5
BIC 1274.1 1134.5 1231.8 1294.3 1276.7 1132.4 1226.8 1296.7

NOTES: Np: Number of parameters; log-lik: Maximum of the log-likelihood; AIC: Akaike Information criterion; BIC: Bayesian information criterion; The highest values appear in bold.

Table 2 presents estimation results for the realized variance
datasets. The competing models are: the MEM (Engle 2002),
the two-state Markov-switching MEM (MS-MEM; Gallo and
Otranto 2015), and the log-HAR (Corsi 2009; Corsi and Renò
2012). These models are implemented with and without lever-
age; models with a leverage effect are indicated by adding “-lev”
to the model acronym. Leverage in the MEM and MS-MEM
is introduced as in Gallo and Otranto (2015), whereas leverage
in the log-HAR is modeled as in Corsi and Renò (2012). The
competing MEM models include a gamma distributed inno-
vation with mean 1 and shape parameter v > 0 whereas the
log-HAR processes use a normal innovation. Model definitions
are provided in the SA. Overall, we observe that estimation
results strongly favor the FHMV-lev model for all datasets.

4.2 Value-Added of the Jump and Leverage
Components

Table 3 shows how the log-likelihood (evaluated at the MLE)
and the BIC of the FHMV model increase when the jump com-
ponent and the leverage effect are added. Overall, these two
components improve the log-likelihood by a greater margin
when the model is fitted to realized variances than to returns.
This observation therefore partly explains why the model shows
a greater outperformance for the realized variance datasets in the
previous section.
As expected, the contribution of the leverage component

is very strong for S&P 500 and NASDAQ data, and insignif-
icant for the USD/EUR exchange rate according to the BIC.

Table 3. Contribution of the jump and leverage components in the FHMV model

Percentage log-returns

S&P 500 NASDAQ USD/EUR
FHMV w/o jump − 5890.6 − 7279.2 − 3762.5
Increase in log-likelihood with respect to FHMV w/o jump
FHMV 27.7 26.5 23.85
FHMV-lev w/o jump 92.8 76.9 0.2
FHMV-lev 120.6 99.0 24.8
Increase in BIC with respect to FHMV w/o jump
FHMV 19.4 18.0 15.5
FHMV-lev w/o jump 84.5 68.6 − 8.1
FHMV-lev 103.9 82.3 8.1

Realized variances

S&P 500 NASDAQ USD/EUR
FHMV w/o jump − 1209.8 − 1459.8 1274.1
Increase in log-likelihood with respect to FHMV w/o jump
FHMV 61.4 32.6 51.2
FHMV-lev w/o jump 146.0 182.9 5.3
FHMV-lev 252.9 234.3 61.4
Increase in BIC with respect to FHMV w/o jump
FHMV 53.1 24.4 42.9
FHMV-lev w/o jump 137.7 174.6 − 3.0
FHMV-lev 236.3 217.6 44.8
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Table 4. S&P 500: Maximum likelihood estimates of the FHMV-lev model

Percentage log-returns
Constant component : σ 2 = 0.22

Markov chain component : θc = 0.51, c1 = 1.99, p = 0.9986
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
1.99 1.50 1.26 1.13 1.07 1.03 1.02 1.01 1.00 1.00

Jump component : θm = 0.87,m1 = 23.55, q = 0.93
m1m0 m2m0 m3m0 m4m0 m5m0 m6m0 m7m0 m8m0 m9m0 m10m0

1.69 1.48 1.31 1.15 1.02 0.90 0.79 0.70 0.62 0.07
Leverage component : θl = 0.92, l1 = 1.00

Realized variances
Constant component : σ 2 = 0.51

Markov chain component : θc = 0.81, c1 = 2.19, p = 0.9897
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
2.19 1.97 1.78 1.64 1.52 1.42 1.34 1.28 1.22 1.18

Jump component : θm = 0.75,m1 = 3.45, q = 0.12
m1m0 m2m0 m3m0 m4m0 m5m0 m6m0 m7m0 m8m0 m9m0 m10m0

3.08 2.53 2.12 1.81 1.58 1.40 1.27 1.18 1.11 0.89
Leverage component : θl = 0.81, l1 = 0.40

Moreover, we note that the contribution of the jump component
is always significant when evaluated with respect to the BIC.
We believe that this component turns out to be more important
for the realized variance series because the conditional variance
dynamics are more directly observed in that case, and abrupt
changes are therefore easier to detect. In contrast, squared
log-returns are a relatively noisy proxy of conditional variance
and this fact renders the identification of sharp changes in
volatility more difficult.

4.3 Analysis of the Fit to S&P 500 Data

4.3.1 Estimated Parameters. Table 4 reports parameter
estimates for the FHMV-lev model fitted to S&P 500 returns
and realized variances. For interpreting the values, remember
that when a component C(i)

t in the model is turned ON, it has a
multiplicative impact of ci on the variance Vt . The jump com-
ponent on the other hand has an overall multiplicative effect of
mim0.

With respect to the model for returns, we observe that each
componentC(i)

t persists for an average of 2 years (i.e., 1/(1 − p)
days) when turned ON, and that the strongest component can
double the variance value. Moreover, jumps that increase the
variance are approximately as frequent as those that decrease it
(i.e., Pr(Mt > 1) = 0.52). When looking at the model for real-
ized variances, the impact of persistent news lasts on average
for 100 days and jumps that increase the variance are relatively
less frequent (i.e., Pr(Mt > 1) = 0.12).
Figure 1 illustrates the leverage coefficients li for

i = 1, . . . , 70. We observe that until around 60 (respectively,
20), past negative returns are relevant to build the leverage
component in the model for returns (respectively, realized
variances). We can interpret this long-lasting impact as the time
needed for the financial market to completely react to a negative
return.
4.3.2 Autocorrelation Structure. Figure 2 plots the

empirical autocorrelations of the squared percentage log-returns
and of the realized variances against the theoretical ones implied
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Figure 1. S&P 500: Leverage coefficients li for i = 1, . . . , 70 in the FHMV-lev model. (a) Percentage log-returns. (b) Realized variances.
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Figure 2. S&P 500: Theoretical autocorrelations implied by the FHMV-lev model (solid line) against empirical autocorrelations (dashed line).
(a) Squared percentage log-returns. (b) Realized variances.

by the estimated FHMV-lev model (the autocorrelations of the
FHMV-lev model were computed by simulation). We observe a
long-lasting volatility persistence that is reasonably well tracked
by the model, especially for realized variances.
4.3.3 Inference on Vt . The fact that the Markov chain

and jump components in the FHMV model imply a discrete
process for the latent variance may raise some concerns about
the flexibility of volatility dynamics in the model. Figure 3
illustrates the median of the distribution of the inferred
smoothed conditional volatility at each time point (i.e., the
median of p(

√
Vt | FT )) in the estimated FHMV-lev models.

We observe that volatility evolves as if it was generated by a
stochastic volatility model with a continuous state space.
Figure 4 shows the time periods when the first three C(i)

t

components in the FHMV-lev model are likely to be turned ON
(i.e., when Pr(C(i)

t = ci | FT ) ≥ 0.5). With respect to the model

for returns, we observe that the component having the strongest
impact on volatility is likely to be active only during the major
stock market crashes of 2000–2016 (dot-com crisis in 2000,
subprime mortgage crisis in 2008, and European sovereign
debt crisis in 2011). For the realized volatility model, the first
three components are often turned ON simultaneously during
periods of market stress, which suggests that a dependence
structure between the components could be incorporated into
the model.
4.3.4 Analysis of the Leverage Effect. Figure 5 shows the

values taken by the leverage effect component Lt over time. We
observe that its effect is very strong during the subprime mort-
gage crisis.
Since this component is specified in a nontraditional way, it

can be questioned whether it really corresponds to the so-called
leverage effect captured by standard volatility models, such as
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Figure 3. S&P 500: Inferred smoothed conditional volatilities in the FHMV-lev model. (a) Percentage log-returns. (b) Realized variances.
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Figure 4. S&P 500: Time periods when the first three C(i)
t components in the FHMV-lev model are likely to be turned ON (i.e., when

Pr(C(i)
t = ci | FT ) ≥ 0.5). The component with the largest impact is displayed on the top. The second and third components are shown in the

middle and at the bottom, respectively. (a) Percentage log-returns. (b) Realized variances.

the GJR model. To investigate this issue, note first that, assum-
ing standardized innovations, the GJR conditional variance
process can be decomposed as follows:

σ 2
t = ω + (α + δ1{rt−1<0}

)
r2t−1 + βσ 2

t−1,

= ω

t∑
i=1

β i−1 + α

t∑
i=1

β i−1r2t−i + δ

t∑
i=1

β i−11{rt−i<0}r2t−i︸ ︷︷ ︸
LGJRt

+βtσ 2
0 .

(19)

The decomposition (19) isolates the contribution of the leverage
effect to the variance dynamics in the GJR model; its impact
at time t corresponds to LGJRt = δ

∑t
i=1 β i−11{rt−i<0}r2t−i. There-

fore, the LGJRt component depends on several previous squared
returns and the influence of the ith lagged squared return is

scaled by the coefficient lGJRi = δβ i−1, which geometrically
decays over time. Although there is a clear connection between
Lt and LGJRt , as well as between li and lGJRi , the impacts of these
components on volatility cannot be directly compared. This is
because the leverage component in the FHMV model is spec-
ified as a multiplicative component, whereas the impact of the
GJR leverage component on variance is additive. Nevertheless,
the correlation coefficient between Lt and LGJRt is equal to 0.92,
which confirms that both components capture a similar effect.

4.4 Forecasting Performance

We carry out a forecasting exercise over the last 3 years (756
trading days) of the data sample periods to compare the pre-
dictions of the FHMV models and of some competitors on
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Figure 5. S&P 500: Leverage effect component (Lt ) over time in the FHMV-lev model. (a) Percentage log-returns. (b) Realized variances.
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short- and long-run forecasting periods. Each time we move
forward by 1 day in the in-sample period, the models are
reestimated, and cumulative variance forecasts,

∑h
i=1 V̂t+i,

where V̂t+i = E[xt+i | Ft], are computed for time horizons
of h = 1, 5, 10, 25, 50, 75, and 100. These forecasts are then
compared to their associated observed values

∑h
i=1 xt+i, where

xt denotes either the realized variance or the squared percentage
log-return. The comparison of forecasts is based on the (normal-
ized) root mean squared forecast error (RMSFE) defined as

RMSFE for horizon h

=

√√√√ 1

756 − h+ 1

756−h∑
t=0

(
1

h

h∑
i=1

V̂t+i − 1

h

h∑
i=1

xt+i

)2

,

(20)

where t = 0 represents the end of the in-sample period.
Note that return predictions are needed to produce multi-step

realized variance forecasts for models that include a leverage
effect. To this end, we assume that future percentage log-returns
are iid N(μ̂t, σ̂

2
t ), where μ̂t and σ̂ 2

t denote, respectively, the
empirical mean and variance over the last 3 years of the in-
sample period. The forecasting of the leverage effect could be
improved by considering a bivariate model for returns and real-
ized variances, an extension we leave to further research.
Tables 5 and 6 show the forecasting performance of all mod-

els on percentage log-return and realized variance datasets,
respectively. The statistical significance of differences in fore-
casting errors is assessed based on the Diebold–Mariano

(DM) test (Diebold and Mariano 2002). For this purpose,
the GARCH-t and GJR-t models act as benchmarks for
returns and the log-HAR and log-HAR-lev models for realized
variances.
For the S&P 500 and NASDAQ return series, the FHMV-

lev model produces the smallest RMSFE (with two exceptions;
the GJR-t and MS-GJR-t models perform slightly better for the
NASDAQ dataset at forecast horizons 1 and 5). The differences
between the RMSFE of the FHMV-lev model and those of its
competitors increase noticeably with the forecast horizon. For
instance, its forecasting performance is found to be superior
with respect to the GJR-t model at a 5% or 10% level at hori-
zons larger than 10 days (for the NASDAQ and S&P 500). For
the USD/EUR return dataset, we note that the FHMVmodel sig-
nificantly outperforms the GARCH-t model at horizons smaller
or equal to 50 days at a 5% or 10% level.
With respect to realized variances (Table 6), the FHMV-lev

model produces the smallest RMSFE at all horizons for S&P
500 data. The magnitude of the outperformance increases with
the forecast horizon with respect to the MEM-lev and MS-
MEM-lev models, but the log-HAR-lev model also performs
well and the differences between this process and the FHMV-lev
model are not found to be significantly different at 5% or 10%
levels. For NASDAQ realized variances, the FHMV-lev process
generates the smallest RMSFE for horizons up to 25 days and
its predictions at 1 and 5 days are found to be significantly better
than those of the log-HAR-lev model. For USD/EUR realized
variances, all models without leverage perform similarly and no
significant differences were detected.

Table 5. Percentage log-returns: RMSFE computed over the last 3 years of the data sample period

Horizon (h) 1 5 10 25 50 75 100

S&P 500⎧⎪⎨⎪⎩
GARCH-t 1.38 0.89 0.77 0.68 0.65 0.62 0.57
MSM 1.38 0.89 0.77 0.68 0.64 0.61 0.56

Without leverage MS-GARCH-t 1.38 0.88 0.77 0.68 0.64 0.60 0.55
FHMV 1.39 0.90 0.79 0.72 0.70 0.69 0.64{ GJR-t 1.33 0.85 0.77 0.71 0.67 0.63 0.56

With leverage MS-GJR-t 1.35 0.84 0.73 0.59* 0.50** 0.45 0.40**
FHMV-lev 1.33 0.81 0.69 0.56* 0.48** 0.42** 0.37**

NASDAQ⎧⎪⎨⎪⎩
GARCH-t 2.05 1.23 1.08 0.95 0.91 0.87 0.76
MSM 2.04 1.23 1.08 0.94 0.91 0.90 0.85

Without leverage MS-GARCH-t 2.06 1.28 1.16 1.12 1.20 1.26 1.25
FHMV 2.06 1.26 1.11 1.01 1.00 1.00 0.91{ GJR-t 1.99 1.19 1.06 1.01 1.02 1.01 0.92

With leverage MS-GJR-t 1.96 1.13 0.99* 0.87 0.77* 0.70** 0.64*
FHMV-lev 2.00 1.14 0.96 0.77** 0.65** 0.56** 0.47**

USD/EUR⎧⎪⎨⎪⎩
GARCH-t 0.66 0.30 0.22 0.16 0.14 0.14 0.16
MSM 0.66 0.30 0.22 0.16 0.14 0.14 0.15

Without leverage MS-GARCH-t 0.66** 0.30** 0.21** 0.15** 0.12** 0.12** 0.13**
FHMV 0.66** 0.30** 0.21** 0.15* 0.13** 0.13 0.14{ GJR-t 0.66 0.30 0.21 0.15 0.13 0.14 0.15

With leverage MS-GJR-t 0.66** 0.29* 0.21* 0.14** 0.11** 0.11** 0.12**
FHMV-lev 0.66 0.30 0.21 0.15 0.13 0.14 0.15

NOTES: A star means that the squared forecasting error is significantly smaller than that of the benchmark process (GARCH-t for models without leverage, GJR-t for models with
leverage) at the 10% level when using the DM test. A double star stands for a 5% significance level. The smallest RMSFE appear in bold.
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Table 6. Realized variances: RMSFE computed over the last 3 years of the data sample period

Horizon (h) 1 5 10 25 50 75 100

S&P 500⎧⎪⎨⎪⎩
log-HAR 0.78 0.54 0.48 0.43 0.42 0.40 0.36
MEM 0.82 0.64 0.62 0.61 0.63 0.66 0.67

Without leverage MS-MEM 0.82 0.64 0.62 0.62 0.66 0.70 0.72
FHMV 0.78 0.56 0.52 0.50 0.53 0.57 0.59⎧⎪⎨⎪⎩
log-HAR-lev 0.80 0.54 0.47 0.39 0.34 0.29 0.24

With leverage MEM-lev 0.83 0.66 0.63 0.59 0.57 0.54 0.52
MS-MEM-lev 0.83 0.66 0.64 0.60 0.58 0.57 0.55
FHMV-lev 0.75 0.52 0.46 0.39 0.33 0.28 0.24

NASDAQ⎧⎪⎨⎪⎩
log-HAR 0.58 0.44 0.41 0.40 0.42 0.42 0.38
MEM 0.61 0.53 0.53 0.56 0.64 0.72 0.78

Without leverage MS-MEM 0.62 0.53 0.54 0.56 0.65 0.73 0.79
FHMV 0.58 0.46 0.45 0.51 0.64 0.75 0.83⎧⎪⎨⎪⎩
log-HAR-lev 0.59 0.44 0.40 0.35 0.31 0.26 0.21

With leverage MEM-lev 0.58 0.48 0.48 0.48 0.53 0.57 0.60
MS-MEM-lev 0.59 0.49 0.49 0.51 0.57 0.63 0.67
FHMV-lev 0.56** 0.42* 0.39 0.34 0.31 0.27 0.23

USD/EUR⎧⎪⎨⎪⎩
log-HAR 0.30 0.27 0.25 0.26 0.31 0.35 0.38
MEM 0.30 0.27 0.25 0.27 0.30 0.34 0.37

Without leverage MS-MEM 0.30 0.27 0.25 0.27 0.32 0.36 0.38
FHMV 0.31 0.27 0.25 0.28 0.33 0.37 0.39⎧⎪⎨⎪⎩
log-HAR-lev 0.31 0.27 0.25 0.27 0.33 0.37 0.39

With leverage MEM-lev 0.31 0.28 0.25 0.27 0.30 0.34 0.37
MS-MEM-lev 0.31 0.28 0.25 0.27 0.32 0.36 0.38
FHMV-lev 0.33 0.29 0.29 0.33 0.38 0.40 0.40

NOTES: A star means that the squared forecasting error is significantly smaller than that of the benchmark process (log-HAR for models without leverage and log-HAR-lev for models
with leverage) at the 10% level when using the DM test. A double star stands for a 5% significance level. The smallest RMSFE appear in bold.

5. CONCLUSION

We propose the FHMV model, a new volatility process that
is suited for financial returns or realized variances. We specify
the latent variance process as a high-dimensional Markov chain
constructed from the product of three components that can be
economically interpreted. In particular, the jump process cap-
tures the reaction of the financial market to nonpersistent news
whereas the Markov chain component models the arrival of
newswith a long-lasting impact. The last component generates a
leverage effect and its specification differs fromwhat is typically
found in the literature. These three processes are parsimoniously
specified and, altogether, create a continuum of volatility states.
We derive the moments of the process and show that the
autocovariance function can exhibit a slower decay than in tra-
ditional hidden Markov models thanks to the multiplicity of the
second largest eigenvalue of the t.p.m. being greater than one.
This property seems beneficial empirically as we show that the
FHMVmodel dominates the MSM process in terms of informa-
tion criteria (AIC and BIC) on return data from the USD/EUR
exchange rate. It also compares favorably with the MS-GJR-t
model on S&P 500 and NASDAQ return datasets. Moreover, on
the corresponding realized variance series, the fit of the FHMV
process particularly stands out versus popular realized variance
models (i.e., log-HAR, log-HAR-lev, MEM, MEM-lev, MS-
MEM, and MS-MEM-lev). Regarding volatility forecasting

performance, the FHMV process competes well with its com-
petitors on short-run horizons (less than 25 days). At middle
to long-run horizons, it significantly improves over the GJR-t
model on S&P 500 and NASDAQ return datasets. With respect
to realized variances, the FHMV process generally outperforms
MEM and compares similarly with the log-HAR model.
We view this volatility modeling attempt with a high-

dimensional hiddenMarkov chain as very promising sincemany
extensions can be entertained. We could, for instance, add a
fourth component to take into account the trading volume or we
could introduce correlated components since the diverse news
seem to be related. Additionally, a multivariate extension in the
spirit of Calvet, Fisher, and Thompson (2006) could be under-
taken.

SUPPLEMENTARY MATERIALS

The supplementary materials include a MATLAB program for estimating
the FHMV model and an online appendix. Section 1 of this appendix provides
a discussion of hierarchical and factorial hidden Markov models in the context
of volatility modeling, with some economic interpretations. Section 2 contains
the proofs of Theorem 1 and Propositions 1 and 2 of the article. Section 3 dis-
cusses some computational aspects associated with the estimation of the FHMV
model. Sections 4 and 5 describe, respectively, the competing return and realized
variance models used in the empirical study.
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