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In this paper we report on direct numerical and large-
eddy simulations of turbulent thermal convection
without invoking the Oberbeck Boussinesq approxim-
ation. The working medium is liquid water and we
employ a free-slip upper boundary condition. This
flow is a simplified model of thermal convection
of water in a cavity heated from below with heat
loss at its free surface. Analysis of the flow statistics
suggests similarities in spatial structures to classical
turbulent Rayleigh-Bénard Convection but with
turbulent fluctuations near the free-slip boundary.
One important observation is the asymmetry in
the thermal boundary layer heights at the lower
and upper boundaries. Similarly, the budget of the
turbulent kinetic energy shows different behaviour at
the free-slip and at the lower wall. Interestingly, the
work of the mean pressure is dominant due to the
hydrostatic component of the mean-pressure gradient
but also depends on the density fluctuations which
are small but critically, non-zero. As expected the
boundary-layer heights decrease with the Rayleigh
number, due to increased turbulence intensity. However,
independent of the Rayleigh number, the height of
the thermal boundary layer at the upper boundary is
always smaller than that on the lower wall.

1. Introduction
In this paper we report on direct numerical and
large-eddy simulations of turbulent thermal convection
without invoking the Oberbeck-Boussinesq
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approximation. The working medium is liquid water and we employ a pseudo-Rayleigh-Bénard
Convection set-up with a free-slip upper boundary condition. This serves as a simplified model
of the thermal convection occurring in a cavity heated from below with evaporation at its free
surface. Buoyancy-driven flows due to temperature and/or concentration gradients are studied
extensively in earth sciences (oceanography, atmospheric sciences and geology) but they are
also encountered in diverse technological applications. One example is the turbulent thermal
convection in spent-fuel pools at nuclear facilities. The principle role of a spent-fuel pool is to
safely store hot fuel assemblies for the short to medium term. Under normal operation, decay
heat is evacuated via a system of pumps and external heat exchangers. In the event of a loss-of-
cooling accident and prolonged station black-out in a spent-fuel pool, such as that which occurred
at Fukushima 2011, these systems cease to be available. Heat is then predominantly evacuated
via evaporation at the free surface (more than 80% of the surface heat flux is due to latent heat
transfer [1–3]). The important aspects of the occurring thermal convection can be numerically
simulated by considering the upper volume of the pool only. The domain is then a cavity heated
from below with a free surface as an evaporating horizontal upper boundary.

If an initially quiescent velocity field is assumed, evaporation at the free surface would induce
motion in the cavity below through evaporative cooling [1–6]. Further, when heat is added from
below, a natural convection flow is induced, similar to turbulent Rayleigh-Bénard Convection
(RBC).

Turbulent RBC is most commonly studied numerically by invoking the Oberbeck-Boussinesq
approximation for a fluid uniformly heated from below and cooled from above with solid
upper and lower boundaries [7–11]. This type of flow will be henceforth referred to as classical
turbulent RBC. The flow and thermal dynamics are then determined by the geometry of the
cavity, the temperature difference across it and the resulting variation in fluid properties. The
two dimensionless parameters that then govern the flow are the Prandtl number, Pr= ν̂/κ̂,
and the Rayleigh number, Ra= |ĝ|β̂∆T̂ Ĥ3/(ν̂κ̂). In these expressions, |ĝ| is the magnitude of
gravitational acceleration, β̂ the thermal expansion coefficient, Ĥ the height of the domain, ν̂
the kinematic viscosity, ∆T̂ the temperature difference between the lower and upper (T̂L − T̂U)

boundaries and κ̂ is the thermal diffusivity. The system response to a given Ra and Pr is
measured in terms of the dimensionless numbers for heat flux and turbulence; respectively the
Nusselt Nu and Reynolds Re numbers, where the velocity for the latter is representative of the
large-scale circulation.

Although it is noted that Bénard’s initial experiments were carried out with an upper boundary
open to atmosphere [12], the vast majority of numerical and experimental work has concentrated
on the container bounded by upper and lower walls; see [13–15] and references therein.

As a first attempt to understand the effects of the free surface on turbulent RBC, we carry out
a Direct Numerical Simulation (DNS) at Ra= 107 and a series of Large-Eddy Simulations (LES)
up to Ra= 109 where the free surface is approximated as a free-slip upper boundary. We further
allow for variations of the density and other fluid properties by using a low-Mach number solver.
To the authors’ knowledge, this type of flow has not been investigated before.

A literature review suggests the most similar study to the flow examined herein is [16], in
which the authors studied numerically the turbulent convection occurring in warm shallow
ocean during adverse weather events. A heat flux was implemented at the free-slip upper surface
to represent evaporation and the lower boundary was a rigid wall. The main two differences
between [16] and our study are the increased ∆T̂ , the unstably stratified initial condition and the
energy conservation introduced here by the fixed temperatures at the upper and lower boundaries
(which also implies fixed ∆T̂ ).

The Oberbeck-Boussinesq approximation assumes that density variations have no effect on
the fluid properties or on the flow field other than the buoyancy force. Accordingly, the density
is assumed to be constant in all terms of the governing equations except in the gravitation
term. This simplifies greatly the system of equations to be solved but remains valid for only
small variations in temperature [17,18]. The experimental pursuit of higher Rayleigh numbers
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has inevitably resulted in increasing ∆T̂ , larger density variations and, with it, deviations away
from the validity of the Oberbeck-Boussinesq approximation. This deviation is known as the
non-Oberbeck-Boussinesq effect of the working fluid. Ahlers et al. [19] showed that, although
variable viscosity and thermal diffusivity effect boundary layer heights and temperature profiles
in turbulent RBC, both Nu and Re, based on large-scale circulation velocity, are insensitive to
such non-Oberbeck-Boussinesq effects, even with a ∆T̂ = 40 K.

In this paper we take into account variable fluid properties to ensure that other qualitative flow
features are not lost. Moreover, the effect of variable fluid properties on the different components
of Nu, which includes the vertical turbulent heat flux, merits further attention. Finally, allowing
for density variation allows for a more comprehensive analysis of the budget of the turbulent
kinetic energy.

Our paper is structured as follows. The governing equations and numerical set-up are
described further in §2, where we provide justifications for the DNS and LES grid resolutions.
The numerical results are presented in §3, where the global structure of the moderate Rayleigh
number flow is first analyzed, comparisons with the LES are made and a turbulent kinetic energy
budget is provided. We then present the results of the LES at higher Rayleigh numbers and assess
the impact of the non-Oberbeck-Boussinesq and free-slip conditions on the first and second-order
flow statistics. Finally, conclusions are drawn in §4.

2. Governing equations and numerical set-up
The working fluid is liquid water, treated as Newtonian, at a mean temperature of 333.15 K
corresponding to Pr= 3. Further, a ∆T̂ of 20 K is applied between the lower wall and upper
free-slip boundary. This corresponds to a free surface temperature relevant to a loss-of-cooling
accident in a spent-fuel pool during the heat-up stage of the accident [20]. The significant changes
in fluid properties over the thermodynamic range of interest must be taken into account as,
with water as the working fluid, the ∆T̂ used could render the use of the Oberbeck-Boussinesq
approximation questionable [17,18]. For this reason, the system of governing equations is the low-
Mach number approximation of the compressible Navier-Stokes-Fourier equations [21,22], which
reads in dimensional form,

∂ρ̂

∂t̂
+ ∇̂·(ρ̂û) = 0 , (2.1)

∂ (ρ̂û)

∂t̂
+ ∇̂· (ρ̂ûu) = ∇̂·τ̂ − ∇̂p̂ + ρ̂ĝ , (2.2)

∂
(
ρ̂ĉpT̂

)
∂t̂

+ ∇̂·
(
ρ̂ûĉpT̂

)
= ∇̂·

(
λ̂∇̂T̂

)
+

dp̂0 (t)

dt̂
, (2.3)

where û= (u, v, w). In (2.2), p̂ stands for the sum of the 2nd-order term of the low-Mach-number
expansion of the pressure and the bulk viscous pressure [23,24]. The deviatoric part of the viscous
stress tensor, τ̂ , is given below where I is the identity matrix and µ̂ the dynamic viscosity,

τ̂ = µ̂

(
∇̂û+

(
∇̂û
)T
− 2

3

(
∇̂·û

)
I
)
. (2.4)

In (2.3), ĉp is the specific heat, λ̂ the thermal conductivity and p̂0(t) the 1st-order component of
the asymptotic expansion of pressure at the zero-Mach limit, interpreted as the thermodynamic
pressure. According to the low-Mach number expansion, it is spatially uniform and a function of
time only. For open domains, p̂0 is equal to the ambient pressure. For closed domains it varies
with time and can be computed from the equation of state of the working medium [22]. In our
study the domain is closed; however preliminary computations showed that the variations of p̂0

are negligibly small. For this reason, in our simulations p̂0 is set equal to the ambient pressure of
one atmosphere.
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In order to close the system of governing equations, we introduce a ρ̂− T̂ relation, i.e. an
isobaric “equation of state”, for water density. This relation is a fourth-order polynomial fit, (2.5),
of the tabulated data in [25] for water density at one atmosphere and over the temperature range
of interest, 323.15K to 343.15K. The coefficients of the polynomial fit are provided in table 1.
According to (2.5), the liquid density varies by 1% over the range of interest. All other fluid
properties are also calculated from a quartic polynomial of the form (2.5) with corresponding
coefficients given in table 1.

φ = c4T̂
4 + c3T̂

3 + c2T̂
2 + c1T̂ + c0 . (2.5)

The dynamic viscosity, µ̂, and the thermal conductivity, λ̂, vary respectively by 35% and 3 %
over the temperature range of interest. In other words, even though the density variations are
small, the induced variations in the transport properties of water are significant. On the other
hand, the specific heat, ĉp, varies by only 0.2% over the domain and is thus taken as constant in
the simulations. It is noted however that, as a result of the aforementioned variations of the fluid
properties, Pr varies by 40% across the domain.

Table 1. Polynomial coefficients for variable fluid properties.

c4 c3 c2 c1 c0

ρ̂
p̂0

−2.87× 10−12 3.92× 10−09 −2.038× 10−06 4.7× 10−04 −0.031

µ̂ 1.10× 10−11 −1.57× 10−08 8.43× 10−06 −2.03× 10−03 0.185
λ̂ 3.6× 10−11 −3.4× 10−08 2.2× 10−06 5.4× 10−03 −0.59

The reference values of the fluid properties at T̂m = 333.15 K are ρ̂ref = 983.2 kg/m3, ĉpref =

4183 J/kg K, λ̂ref = 0.65 W/m K, and α̂ref = 1.6× 10−7m2/s. These are later used for non-
dimensionalization purposes along with the other Ra dependent variables provided in table 2.
Wherein, Ûf = (|ĝ|Ĥβ̂∆T̂ )

1
2 is the free-fall velocity, later used to calculate the free-fall time from

t̂f = Ĥ/Ûf .

Table 2. Non-dimensionalisation parameters.

Ra Ĥ(m) Ûref(
m
s )

107 0.019 Ûf = 0.045

108 0.041 Ûf = 0.066

109 0.090 Ûf = 0.096

All dimensional variables have been denoted with a hat symbol .̂.. and dimensionless variables
are denoted without it. Henceforth, we will use uniquely non-dimensional variables and the
normalized temperature, θ = (T̂ − T̂m)/∆T̂ . The domain is a (1:1:6) cuboid with the unity aspect
ratio corresponding to the first horizontal (x) and vertical (y) directions. The second longitudinal
(z) direction is periodic with a length of L= 6. The lower wall is located at y= 0, the upper
boundary at y= 1 and, likewise, the side walls at x= 0 and x= 1 respectively.

The side walls are assumed to be adiabatic; as such, the condition ∂θ
∂x = 0 is prescribed at

them. The lower (hot) and upper (cold) walls are isothermal and kept at θ= 0.5 and θ=−0.5

respectively. No-slip velocity boundary conditions are enforced at the side and lower walls,
whereas the free-slip condition is prescribed at the upper-boundary, i.e. ∂u∂y = ∂w

∂y = 0 and v= 0

at y= 1. As a result of the aforementioned boundary conditions there are three hydrodynamic
boundary layers, one at each the vertical side walls and one at the lower wall. On the other hand,
there are only two thermal boundary layers, one each at the lower wall and upper boundary.
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With regard to initial conditions for the DNS, we employ a linear temperature profile across
the vertical and a quiescent velocity field to which we apply small random perturbations. This
initially unstable stratification results in the formation of convective patterns which then break
down into turbulent motion until a statistically steady state is reached.

We run simulations for 100 free-fall times before assuming a statistically steady state has been
reached. This is sufficient time to wash out all transient effects [11]. Subsequently, averages are
taken over a further 200 free-fall times, which is a longer averaging period than that used in [26]
for the DNS of classical turbulent RBC at the same Ra and in a similar set-up. The criterion
for determining whether sufficient statistical data has been taken is elaborated on in section
3. Regarding the initial conditions for the LES at Ra= 107 and Ra= 108, the temperature and
velocity fields are initialized from the DNS solution. Likewise, the flow fields for the LES at
Ra= 109 are initialized from the LES solution of Ra= 108.

For the numerical solution of (2.1) - (2.3) we employ a second-order accurate time-integration
scheme for convective and diffusive terms taking into account the current and the two previous
time steps. Regarding the spatial discretization, the governing equations are discretized using
second-order central difference schemes on a collocated grid system. A flux interpolation
technique is used in the spirit of Rhie and Chow [27], to avoid pressure odd-even decoupling [28].

For the pressure-velocity coupling a PISO-type projection method is used, similar to [29]
and [30] for incompressible flows. The divergence of the momentum equation is taken and the
continuity equation is used as a constraint to formulate the variable-coefficient Poisson equation
to be solved for p̂. In this low-Mach-number PISO algorithm, a ∂ρ̂

∂t̂
emerges on the left-hand side of

the Poisson equation which would be zero for the incompressible case. A similar OpenFOAM R©

algorithm is developed in [31].

(a) DNS resolution requirements
An accurate DNS necessitates the resolution of the smallest length scales of the flow in both
the bulk and the boundary layers. An a priori method for checking the grid resolution in
the bulk of the domain is provided in [11], based originally on [32]. To this end, we recall
that the dimensionless Kolmogorov scale η is defined as η= (ν3/εu)

1
4 with εu being the

dimensionless kinetic-energy dissipation. Also, the Batchelor scale is ηθ = (κ3/εθ)
1
4 with εθ

being the dimensionless thermal dissipation. Now, let h be the maximum length of a given
computational cell in the inhomogeneous direction, that is h= max(∆x,∆y). When Pr > 1, which
is the case for the flows under study, the maximum wavenumber seen by the grid, kmax = π/h,
must be greater than the reciprocal of the Batchelor scale [11,32]. The combination of the above
relations leads to the following restriction,

h6 πηθ = π

(
κ3

εθ

) 1
4

. (2.6)

Using the argument of Deardroff and Willis [33] that the turbulent kinetic energy (TKE)
dissipation profile in classical turbulent RBC is flat in the bulk of the flow, Grötzbach [32] then
assumes this TKE dissipation to be constant and equal to the buoyant production. If an equivalent
argument holds for the thermal dissipation, then the above restriction for the Batchelor scale is
transformed into (2.7), referred to herein as the “thermal resolution requirement”. This method is
only valid for homogeneous isotropic turbulence but is considered a reasonable a priori prediction
for adequate resolution in the bulk of the domain.

The resolution requirement based on the smallest hydrodynamic (Kolmogorov) scale is also
given in (2.8), and is referred to herein as the “hydrodynamic resolution requirement”. Although
(2.8) is less restrictive for the case studied, we use it later to elaborate on the choice of grid
resolution for our LES,
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h6 πηθ = π

(
1

RaPrNu

) 1
4

, (2.7)

and

h6 πη = π

(
Pr2

RaNu

) 1
4

. (2.8)

Clearly, (2.7) and (2.8) require an estimation ofNu in advance. To the authors knowledge, there
are no correlations in the literature for the system studied here, hence the refinement procedure
can be seen as an iterative process. We first use a correlation for classical turbulent RBC such
as [34] to provide an estimation for Nu, which is then updated a postieri in (2.7) and the bulk
resolution recalculated. The final DNS grid spacing in the vertical (and horizontal) direction is
shown in figure 1 along with estimates of the Batchelor (2.7) and Kolmogorov (2.8) requirements
at Ra= 107. The cells are clustered near the walls to capture the sharp gradients in temperature
and velocity. At Ra= 107 the soft turbulence regime exists [35], where it is known that hot
plumes leaving the lower heated boundary traverse the entire cavity and impact the upper cooled
boundary and vice versa. Resolving the associated scales is important to resolving the overall
structure of the flow. Hence, the grid is non-uniform throughout the cavity, as recommended
in [36].

Figure 1. Vertical and horizontal grid resolution for the DNS at Ra= 107: actual resolution ( ),
global estimation of thermal resolution requirement ( ) and global estimation of hydrodynamic
resolution requirement ( ). Only half the domain is shown due to symmetry.

In classical turbulent RBC, the turbulent kinetic energy dissipation peaks close to the
hydrodynamic boundary layers. It is therefore important to ensure that the grid is most refined
at the boundaries. We choose to refine the vertical and horizontal directions using a hyperbolic-
tangent expansion from the minimum cell size at the boundaries to the maximum in the centre of
the cavity.

The second resolution criterion is to ensure that the hydrodynamic and thermal boundary
layers are well-resolved. Shiskina et al. [37] developed a universal criterion based on the laminar
Prandtl-Blasius boundary layer theory. The a priori estimates for the dimensionless heights of δu
and δθ are given by

δu = 0.5Nu−1Pr
1
3E−1 , (2.9)

δθ = δuEPr
1
3 . (2.10)
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Then, according to [37], the minimum resolution requirements for δu and δθ , denoted by Nu and
Nθ respectively, are

Nu =
√

2aNu
1
2Pr

1
3E

1
2 ≈ 5 , (2.11)

Nθ =
√

2aNu
1
2E

3
2 ≈ 4 , (2.12)

where a and E are empirical constants with a= 0.482 and E = 0.982. For the flow under study,
we then have that Nu = 5 and Nθ = 4.

As shown in table 3, the above estimations are taken as minimum requirements for the number
of points inside the boundary layers, i.e. the boundary layers are intentionally over-resolved.
The values inside parentheses in the Nθ and Nu columns correspond to the minimum resolution
requirements. A qualitative definition of the Ny in table 3 is the minimum number of points
required in the vertical direction to satisfy both the grid-resolution requirements in bulk [11] and
in the boundary layers [37].

This results in ∆ymax = ∆xmax in the centre of the cavity. For the DNS, the uniform
longitudinal grid resolution is determined from the maximum cell height (and width) found in
the centre, that is ∆z = ∆ymax = ∆xmax, used to calculate Nz from L

∆z .

Table 3. DNS grid resolution criteria. The numbers in parentheses correspond to the minimum
resolution requirements.

Ra Nθ Nu Nx Ny Nz

107 13 (4) 10 (5) 110 110 360

For the computation of the time increment in our simulations, we set the Courant number
equal to 0.25. As pointed out in [26] the constraint on the time-step for numerical stability
purposes is stricter than that of the Kolmogorov (and Batchelor) timescales; we can therefore
assume that the smallest of the flow timescales are well captured.

(b) LES resolution requirements
The use of LES for the highest Rayleigh numbers is motivated by computational limitations. In
this study we decide first to carry out the DNS at Ra= 107 and then compare statistics with a
LES of the same Ra but using a coarse mesh, where cell numbers are reduced by approximately a
factor of 3 in each direction. Once comparisons of flow statistics suggest satisfactory predictions
by the LES at moderate Ra, we apply similar refinement criteria to the meshes at higher Ra. This
task is complicated by the further requirement for the minimum number of points in the thermal,
Nθ , and hydrodynamic, Nu, boundary layers outlined above. The procedure is summarized in
four steps: (i) determine the boundary-layer and bulk resolution requirements for the DNS at
the chosen Ra, (ii) reduce by a factor of 3 the number of points in the vertical and horizontal,
(iii) increase the hyperbolic-tangent expansion in a manner that guarantees the boundary-layer
requirements are met and, finally, (iv) set ∆z = ∆ymax = ∆xmax.

In all LES presented herein the number of points in the boundary layers exceeds the
requirement in [37], whereas the bulk resolution requirement is relaxed by approximately a factor
of 4. Consequently, the difference between the smallest and largest cells, ∆ymax/∆ymin, for the
LES is approximately 40. An alternative LES resolution requirement is to match the filtering cut-
off width to the Taylor microscale, which for isotropic turbulence is defined as ηl = (15 νu2/εu)

1
2

[38], where u is a representative velocity of the large structures. With appropriate scaling for εu,
Peng et al. [39] uses the relation (2.13) for half the Taylor microscale where u∗ is found from (2.14)
using the turbulent RBC scaling relations of [7],
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ηl
2

=

√
15u∗

[Ra (Nu− 1))]
1
2

, (2.13)

u∗ =
√

0.0027Ra1.04 + 0.0312Ra0.92 . (2.14)

This procedure gives a good approximation of an a priori LES bulk resolution requirement.
In-line with [39] we choose to use half the Taylor microscale, ηl2 , as a maximum cell size found
in the bulk. The above values are summarized in table 4 and an example resolution is shown
graphically for Ra= 108 in figure 2, where the maximum bulk cell size lies between that of the
hydrodynamic resolution requirement ((2.8)) and half the Taylor microscale ((2.13)).

Table 4. LES grid resolution criteria. The numbers in parentheses correspond to the minimum
resolution requirements.

Ra Nθ Nu Nx Ny Nz
∆ymax

∆ymin

πηθ
∆ymax

NDNS
NLES

ηl
2

107 6 (4) 7 (5) 40 40 100 40 3.5 37 0.051
108 7 (5) 9 (7) 80 80 200 35 3.5 36 0.034
109 9 (7) 11 (9) 130 130 300 45 4.5 40 0.023

Figure 2. Vertical and horizontal grid resolution for the LES at Ra= 108: actual resolution ( ),
global estimation of thermal resolution requirement ( ), global estimation of hydrodynamic
resolution requirement ( ) and half the Taylor microscale or ηl

2 ( ). Only half the domain is
shown due to symmetry.

Following this procedure means that the LES is well-resolved at the walls, and hence no
wall model is required. However, in the bulk, the LES mesh described above resolves only the
large-scale structures. The effects of the unfiltered small scales must therefore be captured by an
appropriate subgrid-scale model. These effects can be modelled as subgrid-scale viscous stresses
and a subgrid-scale heat flux, respectively, in the momentum and energy equations.

For the subgrid-scale stresses the eddy viscosity µt is introduced so that the effective viscosity,
µeff = µ+ µt, replaces µ in (2.4). In this study, the Langrangian dynamic subgrid-scale model [40]
is used to dynamically calculate µt, which allows for the inhomogeneity of the flow within a
(partial) container to be captured.

Similarly, for the subgrid-scale heat flux, the eddy diffusivity λt is introduced and the effective
thermal conductivity, λeff = λ+ λt, then replaces λ in (2.3). In our study, λt is computed from
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the local µt and ρ and by assuming a constant value of the turbulent Prandtl number, Prt = 0.9

[23,41].

3. Numerical results
The numerical results are presented in two parts. First, the moderate Rayleigh number case, at
Ra= 107, is analyzed by looking at the mean flow properties, instantaneous flow structures,
comparisons of second and third-order flow statistics between the LES and DNS and a turbulent
kinetic energy budget of the DNS. We then look at the time-averaged flow properties and flow
statistics of the LES over increasing Ra and quantify the effects of the free-slip boundary and
variable fluid properties. Unless stated otherwise the notation adopted is as follows; the mean
of a generic variable φ is denoted by 〈φ〉 and refers to averaging both in time and over the
homogeneous (periodic) z direction. The fluctuating component is denoted by φ′ and the root
mean square (rms) value by φrms = 〈φ′φ′〉1/2.

(a) Analysis of moderate-Rayleigh-number flow
We start with the presentation and analysis of the flow at the moderate Rayleigh number of 107.

(i) Mean flow properties

We first look at the the spatial resolution of the DNS. We confirmed that the grid resolution
criterion (2.6), h

πηθ
≤ 1, is appropriately met so that the hydrodynamic and thermal resolution

requirements of the flow are satisfied. Other methods for assessing the grid quality are also
available. For example, Davidson [42] has proposed to verify the grid resolutions on the basis
of the computed dissipation spectra. Herein, however, we opted for criterion (2.6), which is also
the typical choice for simulations of thermal convection [11].

A first understanding of the statistical steadiness of the solution can be obtained from analysis
of the heat transfer in the domain. The non-dimensional heat transfer across the x− z plane
is measured by the local Nusselt number, Nuy , calculated from (3.1). This relation is found
from time and area-averaging of the nondimensionalised form of the energy equation (2.3). The
volume-averaged (global) Nusselt, NuG, is found from (3.2).

Nuy =
√
RaPr 〈ρvθ〉xzt︸ ︷︷ ︸

Nuconv

−〈λ∂θ
∂y
〉xzt︸ ︷︷ ︸

Nudiff

, (3.1)

NuG =
√
RaPr 〈ρvθ〉xyzt − 〈λ

∂θ

∂y
〉xyzt. (3.2)

In the above equations, the symbol 〈 〉xzt denotes averaging over time and over a given horizontal
x− z plane, whereas the symbol 〈 〉xyzt denotes averaging over time and volume. For the flow in
question, a statistically steady solution will give Nuy as constant for 0≤ y≤ 1 and further equal
toNuG. For the DNS hereNuy =NuG = 21.4. Further, its value changes by less than 0.1% if only
the first half of the averaging time is used suggesting that a statistically steady state has indeed
been reached.

For the LES, an effective thermal conductivity, λeff , replaces λ in (3.1) and (3.2) due to the
additional turbulent contribution. Also, regarding the LES, Nuy = 19.9 and NuG = 20.0, which
corresponds to an underprediction of approximately 7% when compared to the DNS. We note
that in previous studies of RBC using LES such as [43], Nu is over-predicted when compared
to experimental and DNS data. It is known that underresolved boundary layers result in an
overprediction of Nu [7,11], we therefore postulate that the errors in the prediction of the LES
are not due to low resolution but most likely related to the constant turbulent Prandtl number
Prt used in this study. This is an aspect to be improved in future studies.
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The vertical distribution of Nuy for both the DNS and the LES are now assessed. The differing
contributions of the convective and diffusive components of Nuy are shown in figures 3a and 3b
respectively. Only half of the domain is shown for the convective component which tends to a
non-zero but negligible value inside the boundary layers. For the diffusive component only the
boundary layer is shown, as it is negligible in the bulk.

(a) (b)

Figure 3. Plots of the time and area-averaged components of Nuy at Ra= 107. (a) Nuconv across
the lower half of the domain and (b) Nudiff zoom on lower boundary. The legend is as follows:
DNS ( ) and LES ( ).

We note that a constant Nu is a necessary but not sufficient condition to ensure a statistically
steady solution. A better indication of steadiness is found by looking at the time derivative term
of the turbulent kinetic energy equation, completed later on in this section.

The DNS at Ra= 107 is now qualitatively assessed in order to obtain a global understanding
of the flow. Time-averaged streamlines are shown in figure 4 coloured by the non-dimensional
vertical velocity v. The cuboid geometry means that a typical diagonal large-scale circulation is
observed, such as in [44]. However, due to the extension of the domain in the homogeneous
z direction, multiple large-scale circulation patterns are formed. Three individual large-scale
circulations can be identified as contained and the fourth appears across the periodic boundary.

A diagonal plane of the first contained large-scale circulation is shown in figure 4 and a zoom
is provided in figure 5. The typical large-scale-circulation for RBC in a cubic container is observed
in the superimposed velocity vectors, i.e. the large-scale circulation fills the entirety on the vertical
domain with recirculation zones in the corners corresponding to peaks in the θrms [44]. The same
pattern is observed over all three contained mean winds except that the direction of the large-scale
circulation is reversed.
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y=0

z=0
z=6

Figure 4. Time-averaged streamlines of DNS at Ra= 107 coloured by non-dimensional vertical
velocity, v.

x

z

y

y=1

y=0

Figure 5. Colour plot of θrms with superimposed velocity vectors of the DNS at Ra= 107 . The
location of the diagonal plane is provided in figure 4

(ii) Instantaneous structures

The instantaneous normalized temperature at the central y − z plane is provided in figure 6 where
thermal plumes are visible. A zoom on two such plumes is given in figure 7, one warm rising (red)
and one cold falling (blue) which are seen to be extending across the entire vertical domain, i.e.
from one thermal boundary layer to the other. This flow behaviour is symptomatic of the soft
turbulence regime that still exists for the case of Ra= 107 [7,35].
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y=0

Figure 6. Colour plot of the instantaneous normalized temperature θ of the DNS at Ra= 107. The
y-z plane is located at x= 0.5.

z

y

y=1

y=0

Figure 7. Colour plot of the instantaneous normalized temperature θ with superimposed velocity
vectors of the DNS at Ra= 107. The figure shows a zoom on the dashed section from figure 6.

(iii) Flow statistics

In this section we compare second and third-order statistics of the velocity and temperature fields
at mid-width for the DNS and LES at Ra= 107. We will often compare our numerical results
against those of Kerr [7] for classical turbulent RBC with periodic x and z directions. We will
also make comparisons against the numerical predictions of Zikanov et al. [16] for Oberbeck-
Boussinesq thermal convection with periodic x and z directions but with free slip at the upper
boundary.

The rms plots of the vertical velocity at mid-width, x= 0.5, are presented in figure 8a. The
observed parabolic profile shows zero vrms values at the boundaries which rise steeply towards
a maximum in the bulk. Overall, the profiles are similar as those for the flows examined in [7,16].
However, contrary to the profile in [7], the profile is slightly flatter in the bulk and not fully
symmetric with respect to the mid-plane x= 0.5. This may be attributed to the variation of the
fluid transport properties with the temperature, i.e. the non-Oberbeck-Boussinesq conditions. On
the other hand, we note that the free-slip condition has no significant effect on the profile of vrms

close to the upper boundary. This is due to the zero-Neumann condition for the vertical velocity
component that is prescribed at both rigid walls and free-slip boundaries.

With regard to comparisons between LES and DNS, from figure 8a we readily deduce that the
LES results match closely the DNS data. However the LES slightly overpredicts the vrms in the
bulk of the domain.

The rms plots of the in-plane velocity,

ūrms = 〈u′2 + w′2〉
1
2 , (3.3)
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at mid-width, x= 0.5, are presented in figure 8b. According to our simulations, the vertical profile
shown first peaks near the lower solid boundary, followed by a significant dip in the core region
before a maximum is reached at the free-slip upper boundary. This profile is similar to that in [16]
but markedly different to the symmetric profile in [7]. We therefore conclude that the asymmetry
in the rms of the in-plane velocity is due to the free-slip condition imposed at the upper boundary.

We see that the LES prediction agrees quite very well with the DNS results. Nonetheless, it
marginally overpredicts the local peak ūrms near the lower boundarty. According to [7], the height
of a hydrodynamic boundary layer, δu, is defined as the location of the local peak of the in-plane
velocity variance. The DNS and LES predictions of the height of the hydrodynamic boundary
layer are given in table 5 where the LES predictions are shown to be in very good agreement with
our DNS data.

(a) (b)

(c)

Figure 8. Velocity rms and turbulent kinetic energy plots of Ra= 107 at mid-width, x= 0.5. (a)
vertical velocity rms, vrms, (b) in-plane velocity rms, ūrms and (c) square root of the turbulent
kinetic energy,

√
K. The velocity has been non-dimensionalised by κ̂/Ĥ . The legend is as follows:

DNS ( ) and LES ( ).
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The plots of the square root of the turbulent kinetic energy,

√
K =

√
1

2
ū2

rms +
1

2
v2
rms , (3.4)

at mid-width, x= 0.5, are presented in figure 8c. According to our DNS, this profile is very similar
to the that of ūrms. In other words,

√
K peaks at a small distance from the lower wall and dips

in bulk before it reaches its maximum at the top boundary. This is a direct consequence of the
fact that, at any given y, the velocity fluctuations of the in-plane velocity are considerably higher
than the ones of the vertical velocity component. On the other hand, in [7] it is reported that

√
K

remains nearly constant in the bulk.
The plots of the mean normalized temperature, 〈θ〉, along the vertical axis are presented

in figure 9 where it is clear that the value at the core, θc, is smaller than the average,
θm = 1

2 (θU + θL) = 0. In other words, the mean temperature profile is “shifted towards” the
temperature of the cold upper boundary. Furthermore, the height of the upper thermal boundary
layer is smaller than the height of the lower one.

These characteristics are due to the competing influences of the free-slip at the upper boundary
and of the variation of the fluid properties with the temperature. In fact, the authors of [19] studied
RBC under non-Oberbeck-Boussinesq conditions and attributed an asymmetry to the variable
viscosity and thermal diffusivity of water over the temperature range which had the overall effect
of increasing the height of the upper thermal boundary layer and of decreasing the height of the
lower one. However, figure 9a suggests that the overall effect is to shift θc in the opposite direction;
in other words, in the flow under study, the effect of the free-slip on top is more important. The
LES prediction agrees very well with the DNS results in the bulk with small deviations in the
thermal boundary layers.

The rms plots of the normalized temperature, θrms, at x= 0.5 are shown in figure 10. The
observed profile is that of two peaks in the thermal boundary layers with a minimum value
found in the bulk. The most striking feature is the inhomogeneity in the peak values of the two
thermal boundary layers and their respective distances from the boundaries. According to [7]
and [45] the height of a thermal boundary layer is defined as the location of the local peak of the
temperature variance. We denote by δθL and δθU the heights of the lower (hot) and upper (cold)
boundaries respectively. Then, we can readily infer from figure 10, that δθL is larger than δθU , in
accordance with the observations made regarding the vertical mean temperature profile at mid-
width. The values of δθL and δθU are given in table 5. We confirm that, at the lower boundary, the
hydrodynamic layer is substantially thicker then the thermal one, as expected for Pr > 1.

Table 5. Boundary layer heights at Ra= 107.

Ra δuL δθL δθU
1

2Nu

DNS 107 0.073 0.027 0.018 0.023
LES 107 0.073 0.031 0.017 0.025

With regard to the LES predictions of θrms we see that they agree well with the DNS results.
Most notably, the LES underpredicts θrms in the bulk and at the peak locations. Nevertheless, the
trend is very well reproduced. Furthermore, the values of δθL and δθU are accurately computed,
as expected from a wall-resolved LES.

Further, the last column of table 5 represents an estimation of the thermal boundary layer
heights in classical turbulent RBC, δθL = δθU = 1

2Nu , so that 1
2 (δθL + δθU) = 1

2Nu ; see e.g. [8]. In
other words, this estimate assumes symmetric thermal boundary layers at the upper and lower
boundaries for classical turbulent RBC. According to our simulations, the introduction of the free
slip at the upper boundary suppresses the symmetry in the heights of the thermal boundary
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(a)

(b) (c)

Figure 9. Mean normalized temperature, 〈θ〉, plots of Ra= 107 at mid-width, x= 0.5. (a) across
the vertical, (b) zoom on the lower wall and (c) zoom on the upper boundary. The legend is as
follows: DNS ( ) and LES ( ).

layers. However, despite this asymmetry, the relation 1
2 (δθL + δθU) = 1

2Nu remains valid for the
flow under study too.

The plots of the turbulent heat flux 〈θ′v′〉 along the y direction and at x= 0.5 are provided in
figure 11. We observe that the profiles vary in the bulk of the domain. It is further noted that a
dip in the turbulent heat flux in the bulk has also been predicted by the LES of classical turbulent
RBC presented in [46]. The authors of [46] attributed this artificial dip to the low resolution of
LES. However, in our case, the variation of 〈θ′v′〉 along the vertical direction is observed in our
DNS and, consequently, it cannot be a resolution artifact.

In order to explain the observed dip, we first remark that the profiles of 〈θ′v′〉xzt for
classical turbulent RBC [7] are constant in the bulk, where the subscript “xzt" denotes time
and area-averaged quantities. Indeed, since convective transfer is dominant in the bulk thermal
energy balance at steady state implies that the profile of 〈θv〉xzt is constant in the bulk under
Oberbeck-Boussinesq conditions. Moreover, we have that 〈θ′v′〉xzt = 〈θv〉xzt by virtue of the zero
divergence of the velocity field. In turn, this implies that 〈θ′v′〉xzt is constant in the bulk. This
has been observed by various authors who studied classical turbulent RBC numerically; see, for
example, [39,43] and references therein.
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(a)

(b) (c)

Figure 10. Normalized temperature rms, θrms, plots of Ra= 107 at mid-width, x= 0.5. (a) across
the vertical, (b) zoom on the lower wall and (c) zoom on the upper boundary. The legend is as
follows: DNS ( ) and LES ( ).

Under non-Oberbeck-Boussinesq conditions, convective transfer is still dominant in the bulk,
i.e. 〈ρvθ〉xzt is practically constant in the bulk. This is confirmed by our DNS data; see figure 3a.
However, due to the density fluctuations we have that

〈ρvθ〉xzt = 〈ρ〉xzt 〈θ′v′〉xzt + 〈v〉 〈ρ′θ′〉xzt + 〈ρ′v′θ′〉xzt = const . (3.5)

Accordingly, if density fluctuations are significant, this equation implies that 〈θ′v′〉xzt is no longer
constant in the bulk as the second and third terms on the right-hand side are nonzero.

In the flow under study, however, the density fluctuation are sufficiently small so as the second
and third terms are expected to be negligible. In fact, from post-processing of our DNS data we
concluded that this is the case and, furthermore, 〈θ′v′〉xzt is practically constant in the bulk and
equal to 〈ρvθ〉xzt.

Therefore, in our case, the observed dip in 〈θ′v′〉, shown in figure 11, cannot be attributed
to the non-Oberbeck-Boussinesq conditions. We remark however that 〈θ′v′〉 is computed at a
given x and is time and z averaged only, as opposed to the time and x− z averaged equivalent
〈θ′v′〉xzt. In other words, the observed dip of 〈θ′v′〉 is not in contradiction with the fact that
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〈θ′v′〉xzt is constant. Moreover, 〈θ′v′〉 varies along x; this is not surprising, as this direction is not
homogeneous.

Figure 11. Turbulent heat flux, 〈θ′v′〉, plots ofRa= 107 at mid-width, x= 0.5. The velocity has been
non-dimensionalised by κ̂/Ĥ . The legend is as follows: DNS ( ) and LES ( ).

Also, from figure 11 we see the profile of 〈θ′v′〉 predicted by our LES si similar to the one
obtained from our DNS data, but the LES results underpredict the values of the turbulent heat
flux in the bulk by approximately 10%. Similarly, the peaks near the top and bottom wall are
underpredicted by approximately 15%. Overall, we may conclude that the LES predictions of
the first and second-order statistics of the flow quantities compare quite satisfactorily with the
corresponding DNS data.

(iv) Turbulent kinetic energy budget

In this section we present the TKE budget based on the DNS data. The TKE balance equation is
obtained in three steps. First, the momentum equation is multiplied by u and the average is taken
to get an equation for K= (1/2)〈u·u〉. Second, the momentum equation is averaged and then
multiplied by 〈u〉 to give an equation for K̄= (1/2) (〈u〉·〈u〉). Finally, subtracting the equation for
K̄ from the one forK yields the sought-after equation for TKE. It is noted that this process removes
the term describing the gravitational force from the TKE balancs equation. For variable density
flows, the process of carrying out the TKE budget is simplified by introducing density-weighted
(Favre averaged) quantities. For any given flow quantity φ the Favre-averaged equivalent {φ} is
defined as

{φ} =
〈ρφ〉
〈ρ〉 . (3.6)

The mean and fluctuating values are then related by the Favre decomposition,

φ = {φ}+ φ
′′
. (3.7)

The variable k then denotes the turbulent kinetic energy of the density-weighted velocity
fluctuations,

k =
1

2

(
u′′ · u′′

)
. (3.8)

By following the procedure outlined above, we arrive at the following equation [23,47].
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〈ρ〉∂{k}
∂t

= −∇· (〈ρ〉{k}{u})︸ ︷︷ ︸
Ck

−∇·
(
〈ρ〉{ku

′′
}
)

︸ ︷︷ ︸
Tk

−〈ρ〉{u
′′
u

′′
}:∇{u}︸ ︷︷ ︸

Pk

−∇·
(
〈p〉〈u

′′
〉
)

︸ ︷︷ ︸
Φk

−∇·
(
〈p′u

′′
〉
)

︸ ︷︷ ︸
φk

+ 〈p∇·u
′′
〉︸ ︷︷ ︸

Πk

+∇·〈τ · u
′′
〉︸ ︷︷ ︸

Dk

−〈τ :∇u
′′
〉︸ ︷︷ ︸

εk

. (3.9)

The right-hand-side terms Ck, Tk and Pk represent convection, transport and production of
turbulent kinetic energy, respectively. Further, the terms Φk and φk describe, respectively, the
work of the mean and fluctuating pressures through fluctuating motions, whereas the term
Πk represents the pressure correlation with the dilatation fluctuation. Finally, Dk describes the
viscous diffusion, i.e. the work of viscous stresses through fluctuating motions, and εk describes
the viscous dissipation.

When the flow becomes statistically steady, both sides of equation (3.9) are zero. At the end of
our simulation, the computed value of the left-hand side of (3.9) was smaller than 10−6, whereas
the sum of the right-hand side was below 20% of the magnitude of the largest term. We therefore
consider the flow to be statistically steady. For the purposes of our study we choose to carry out
the above budget at mid-height, y= 0.5, and mid-width, x= 0.5. This analysis provides a global
picture of the different contributions of each term in (3.9).

The TKE budget along the horizontal axis at y= 0.5 is shown in figure 12 where all terms
on the right-hand side of (3.9) are shown, as well as the sum of the RHS terms called, RHSk. A
symmetric profile is observed and we can see that, in the bulk, the mean pressure transport Φk is
balanced by the viscous dissipation εk and the fluctuating transport φk. The term Φk is dominant
in the core region due to the hydrostatic component −{ρ}|g| of ∇{p}, as can be evidenced upon
expansion of this term,

Φk = ∇·
(
〈p〉〈u

′′
〉
)

= 〈p〉∇〈·u
′′
〉+ 〈u

′′
〉·〈∇p〉 . (3.10)

We note that due to the large value of the hydrostatic component of ∇{p}, the amplitude of
Φk is significant. Further, 〈u

′′
〉 is quite small (by continuity and due to the fact that the density

fluctuations are small), albeit non-zero. Then, this term is multiplied by ∇〈p〉, whose amplitude
is large, thereby resulting in a significant value of Φk. The contribution of Φk is much more
pronounced in turbulent natural convection than in channel flows with thermal mixing [23,48].
This is due to the dominance of buoyancy effects in natural convection and exemplifies the
different characteristics of turbulence between the two types of flow.

Figure 12. Horizontal TKE budget of DNS at Ra= 107 at mid-height, y= 0.5.
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In figure 13 we present a zoom on the side wall. The observed peaks in Φk, are predominantly
due to the increase in vertical velocity fluctations 〈v

′′
〉 in the near-wall regions. The sum of Φk

and the production term Pk is then balanced by all remaining terms of opposite sign. In fact, the
production term Pk is given as the double interior product between 〈ρ〉{u

′′
u

′′
} and∇{u}. Upon

expansion, we observed that the important components of Pk in the near-wall regions are those
involving ∂{u}

∂y and ∂{v}
∂y . Therefore, at these regions it is the velocity gradient in the y direction

that contributes the most to the production term. Closer to the walls, all terms go to zero except for
Dk and εk which balanced out one another; this behaviour is also observed in turbulent channel
flows with thermal mixing [23] where most of the turbulent kinetic energy is also dissipated at
the walls.

Figure 13. Horizontal TKE budget of DNS at Ra= 107 at mid-height, y= 0.5. Zoom on the right-
hand-side wall of figure 12.

The TKE budget along the vertical axis at x= 0.5 is given in figure 14, in which the inset
shows a zoom on the bulk at 0.4< y < 0.6. Unlike the TKE budget across the horizontal axis,
an asymmetric profile is observed. However, Φk is still the dominant term in the bulk and is
balanced predominantly by φk and the viscous dissipation εk. In the bulk, the contribution of the
other terms to the TKE budget is negligible.

We note that the profile of εk is flat along the vertical with the exception of the near-boundary
regions, this is in-line with the classical experimental observation from Deardroff and Willis [33].

To analyse the behaviour at the boundaries, we present figure 15a for the lower wall and
figure 15b for the upper free-slip boundary. At the lower wall boundary layer, Φk again increases
in magnitude but, unlike in the budget in the horizontal direction, is balanced by the term πk
representing the pressure correlation with the dilatation fluctuation. Closer to the wall, we see
again that all terms go to zero except that of diffusion and dissipation. At the upper boundary,
unlike at the rigid lower wall, the diffusion and dissipation terms take the same sign and their
total is predominately balanced by φk, the fluctuating pressure transport term.
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Figure 14. Vertical TKE budget of DNS at Ra= 107 at x= 0.5. The inset is a zoom on the bulk
between 0.4< y < 0.6.

(a) (b)

Figure 15. Vertical TKE budget of DNS at Ra= 107 at x= 0.5. (a) zoom on the lower wall and (b)
zoom on the upper boundary. The legend is the same as in figure 14.

(b) Analysis of higher-Rayleigh-number flows
We next present and analyze our LES results of the flows at increasing Ra.

(i) Time-averaged flow properties

We first look at the effect of increasingRa on the heat transfer in the domain. In figure 16 we have
plotted the profiles of Nuy , as well as the profiles of the convective and the diffusive components
of Nu. The profiles of Nuy are flat for all cases except Ra= 109. The deviation from the flat
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profile at Ra= 109 suggests that averaging over 200 free-fall times may not be fully sufficient for
this case. A

Figure 16 also shows the expected trend that increasing Ra will increase Nu. Further, the role
of the free-slip upper boundary is to increaseNu in the cavity (see table 6 and [36] for comparison
at Ra= 107) as a result of the fewer hydrodynamic boundary layers. It must be noted, however,
that since we have considered only three different Ra, we cannot assess whether soft (∝Ra

1
3 ),

hard (∝Ra
2
7 ) or other turbulence scaling would be appropriate. For such an assessment, more

simulations with at different Ra are required

(a)

(b) (c)

Figure 16. LES plots of the time and area-averaged Nuy at increasing Ra. (a) Nuy across the
vertical, (b) Nuconv across the lower half of the domain and (b) Nudiff zoom on the lower
boundary. The legend is as follows: LES at Ra= 107 ( ), Ra= 108 ( ) and Ra= 109 ( ).

(ii) Flow statistics

In this section we again look at the vertical profiles of the flow but this time assess the effect of
increasingRa. The rms plots of the vertical velocity over increasingRa are presented in figure 17a
where the observed trend is for vrms to increase with Ra, i.e. increasing the turbulence results in
stronger vertical velocity fluctuations. We also observe that the parabolic profile persists even at
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higher Ra and that the maximum in the bulk is more pronounced at increasing Ra. With respect
to the rms plots of the in-plane velocity over increasing Ra we present figure 17b. We can see
that the magnitude of the local peak near the lower boundary increases with Ra. The same is true
for the turbulent kinetic energy

√
K, the profile of which is depicted in figure 17c. We conclude

that, globally, the rms velocity profiles follow the same trends independently of the Ra; the only
significant difference is the increase in their magnitude with Ra. In other words, we observe a
significant increase in the resolved kinetic energy with Ra, as expected.

It is also worth mentioning that the location of the local peak in ūrms near the lower wall,
which signifies the height of the local boundary layer, moves closer to the wall as Ra increases.
This is in accordance with the fact that the height of the boundary layer decreases with increasing
turbulence intensity.

(a)

0 2000 4000 6000 8000 10 000

0.0

0.2

0.4

0.6

0.8

1.0

(b)

(c)

Figure 17. LES plots of velocity rms and turbulent kinetic energy at increasing Ra at mid-width,
x= 0.5. (a) vertical velocity rms, vrms, (b) in-plane velocity rms ūrms and (c) square root of the
turbulent kinetic energy

√
K. The velocity has been non-dimensionalised by κ̂/Ĥ . The legend is

as follows: LES at Ra= 107 ( ), Ra= 108 ( ) and Ra= 109 ( ).
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The normalized temperature plots at different Ra are given in figure 18. For the bulk, the
same trend is observed in figure 18a as in figure 9a, i.e. θc < θm. Increasing Ra has little effect
on the magnitude of this shift. However, at the boundaries the observed trend is for the thermal
boundary layers to become thinner with increasing Ra. This is quantified by looking at the rms
of the normalized temperature.

(a)

(b) (c)

Figure 18. LES plots of mean normalized temperature, 〈θ〉, at increasing Ra at mid-width, x= 0.5.
(a) across the vertical, (b) zoom on the lower wall and (c) zoom on the upper boundary. The legend
is as follows: LES at Ra= 107 ( ), Ra= 108 ( ) and Ra= 109 ( ).

The rms plots of the normalized temperature over increasing Ra are provided in figures 19b
and 19c. As Ra is increased, the magnitude of θrms in the bulk is reduced, i.e. the dip in θrms

becomes more pronounced. A similar trend was observed in [39] over the same range of Ra for
classical turbulent RBC. The location of peak temperature variance approaches the boundaries
as a result of increasing Ra. This is in accordance with the fact that the thermal boundary layers
become thinner with increasing turbulence intensity. The heights of the thermal boundary layers
are also provided in table 6. It is noted that at both lower and top boundaries, an increase in Ra
appears to increase the magnitude of peak in θrms appears to decrease with Ra. This behaviour is
similar to that observed at solid boundaries in classical turbulent RBC.
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Table 6. LES refinement, Nu and thermal boundary layer heights.

Ra Cells Nuy NuG δuL δθL δθU
1

2Nu

DNS 107 110× 110× 360 21.4 21.4 0.073 0.027 0.018 0.023
LES 107 40× 40× 100 19.9 20.0 0.073 0.031 0.017 0.025
LES 108 80× 80× 200 38.9 38.9 0.050 0.015 0.010 0.013
LES 109 130× 130× 300 77.5 78.1 0.039 0.007 0.004 0.006

Interestingly in [49], it is postulated whether water-side turbulence conditions, governed by
the depth of the water tank in their experiments, could influence evaporation rates. Indeed,
experimental results confirmed that increasing water-sideRa for the the same gas-side conditions
tend to increase mass transfer at the free surface. It was hypothesized that an increase in θrms at
the interface could be the cause. We note, however, that our LES predictions are not in line with
this claim.

(a)

(b) (c)

Figure 19. LES plots of normalized temperature rms, θrms, at increasing Ra at mid-width, x= 0.5.
(a) across the vertical, (b) zoom on the lower wall and (c) zoom on the upper boundary. The legend
is as follows: LES at Ra= 107 ( ), Ra= 108 ( ) and Ra= 109 ( ).
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The plots of the turbulent heat flux over increasing Ra are shown in figure 20. As discussed
earlier, the profiles are not flat in the core and, moreover, 〈θ′v′〉 varies along the inhomogenous x-
direction. The dip in the core is accentuated withRa, i.e. as the turbulence intensity are increased.

Figure 20. LES plots of turbulent heat flux, 〈θ′v′〉, at increasing Ra at mid-width, x= 0.5. The
velocity has been non-dimensionalised by κ̂/Ĥ . The legend is as follows: LES at Ra= 107 ( ),
Ra= 108 ( ) and Ra= 109 ( ).

4. Conclusions
In this article direct numerical and wall-resolved large-eddy simulations of a thermal convective
flow have been presented over a range of Ra covering both the soft and hard turbulence regimes.
This flow is a simplified version of the thermal convection of water in a cavity heated from below
with evaporative heat loss at its free surface. As a first attempt to understand the impact of a
free surface on turbulent Rayleigh Bénard Convection, a free-slip upper boundary condition has
been implemented. Two important consequences of introducing the free-slip upper boundary are
an increase in convective heat transfer (or Nu) as a result of the fewer hydrodynamic boundary
layers and the removal of the homogeneity in the thermal boundary layer heights at the lower
and upper boundaries.

Another consequence of the free slip at the upper boundary is the asymmetry of the vertical
profiles of the first and second-order statistics. As expected, this asymmetry becomes more
pronounced with Ra. Further, according to our DNS and LES data, the vertical profiles of 〈v′θ′〉
are not flat in the bulk, contrary to that predicted in previous simulations for classical turbulent
RBC. Further, according to our simulations, the first and second-order statistics are well produced
by the LES when compared to the DNS for the moderate Rayleigh case. However, the LES slightly
underpredicts Nu; this may be, at least partially, attributed to the constant Prt presumed in our
study.

A turbulent kinetic energy budget was carried out at two locations for the DNS at Ra= 107;
at mid-height and at mid-width. Both profiles showed that, in the bulk, the dominant term was
the work of the mean pressure which is balanced by the work of the fluctuating pressure and
the turbulent kinetic energy dissipation. Interestingly, the work of the mean pressure is dominant
due to the hydrostatic component of the mean-pressure gradient but also depends on the density
fluctuations which are small but critically, non-zero. In other words, even though the deviation
from the Oberbeck-Boussinesq conditions are small with regard to the fluid density, the effect of
this deviation can be significant.
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At mid-height, a horizontal TKE profile shows that the equal in magnitude (opposite in sign)
terms of TKE diffusion and dissipation terms dominate in the hydrodynamic boundary layers at
the vertical side walls; a trend also observed in channel flows. At mid-width, a vertical profile
shows the same trend in the hydrodynamic boundary layer at the lower wall. At the free-slip
boundary however, all terms approach zero except that of diffusion and dissipation (now of the
same sign and different magnitude), their sum being balanced by the fluctuating pressure work
term.

Finally, we presented a series of LES at increasing Ra and assessed their first and second-
order statistics. The observed trends were as expected, such as the increase in bulk and maximum
velocity variance and reduction in thermal boundary layer heights with increasing Rayleigh
number. As a next step in our research we intend to implement a variable Prt turbulence model
and perform further simulations at increased Ra. The idea being to develop a Nu(Ra) scaling for
the case in hand and to further quantify the effect on the thermal boundary layer heights beneath
the free-slip at the very high Ra flows expected in spent fuel pools.
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