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Abstract

In this paper we analyze the Basic Tensor Methods, which use approximate solutions
of the auxiliary problems. The quality of this solution is described by the residual in

the function value, which must be proportional to ϵ
p+1
p , where p ≥ 1 is the order of the

method and ϵ is the desired accuracy in the main optimization problem. We analyze
in details the auxiliary schemes for the third- and second-order tensor methods. The
auxiliary problems for the third-order scheme can be solved very efficiently by a linearly
convergent gradient-type method with a preconditioner. The most expensive operation
in this process is a preliminary factorization of the Hessian of the objective function. For
solving the auxiliary problem for the second order scheme, we suggest two variants of the
Fast Gradient Methods with restart, which converge as O( 1

k6
), where k is the iteration

counter. Finally, we present the results of the preliminary computational experiments.
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1 Introduction

Motivation. Development of the theory of Tensor Methods in the last years created
an additional motivation for the research on the efficient procedures for solving the cor-
responding auxiliary problems. Indeed, without this technique, all result on the faster
convergence of the high-order methods remain only theoretical achievements. Starting
from the paper [2], in several articles [3, 4, 5, 6, 9] the authors analyzed the possibility
of using points satisfying an approximate first-order optimality condition. However, it is
not easy to analyze the complexity of computing such points by the auxiliary optimiza-
tion schemes. This is the reason why we use in this paper a more traditional measure of
inaccuracy, defined by the residual in the function value.

Indeed, this measure is standard in the theory of Convex Optimization. There exist a
family of Fast Gradient Methods, which allow to solve the auxiliary problems much faster
and with worst-case complexity guarantees. In this paper in Section 2 we start from de-
riving the natural conditions on the accuracy of the solution of the auxiliary problems,
acceptable for the Basic Tensor Method. This accuracy is naturally related to the desired
accuracy of the main optimization problem. After that, in Section 3 we analyze the com-
plexity of the auxiliary problem for the third-order Tensor Method. We show that the
auxiliary problem is this case can be solved very efficiently by a simple gradient method
based on relative smoothness condition [1, 8]. The most expensive operation in its imple-
mentation is the matrix factorization, which has to be done only one, in the beginning
of the auxiliary minimization process. Moreover, we show that this scheme admits a reli-
able stopping criterion, which properly describes the quality of the approximate solution.
Thus, we show that the computational cost of implementing the third-order methods is
essentially the same as that of the second-order schemes based on matrix factorization.

In the next Section 4 we analyze the complexity of the auxiliary problem in the reg-
ularized second-order scheme. We show that the objective function in these problems,
which is the sum of a quadratic function and the cubic term, can be minimized very
efficiently by the Fast Gradient Methods with restarts. The complexity of this auxiliary

optimization problem is O
(

1
δ1/6

)
, where δ is the target accuracy. Thus, this approach

have good chance to compete with the existing technique for the second-order method.
Our approach may look similar to the developments in Section 6 of [16]. However, our
scheme has no hidden parameters and it can be implemented directly.

Further, in Section 5, we describe another variant of the Fast Gradient Method with
flexible restart, which can be applied to the auxiliary problem for the second-order meth-

ods. It has the same worst-case complexity bound O
(

1
δ1/6

)
. Finally, in Section 6 we

present the preliminary computational results, which confirm our theoretical conclusions.

Notation and generalities. In what follows, we denote by E a finite-dimensional real
vector space, and by E∗ its dual space, composed by all linear functions on E. The value
of the linear function s ∈ E∗ at point x ∈ E is denoted by ⟨s, x⟩. The most important
example of linear function is the gradient ∇f(x) of the differentiable function f(·) at point
x ∈ E. The Hessian ∇2f(x) can be seen as a self-adjoint linear operator from E to E∗.

Let us fix a positive definite linear operator B : E → E∗. Then we can introduce in
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the primal and dual spaces the conjugate Euclidean norms:

∥x∥ = ⟨Bx, x⟩1/2, x ∈ E, ∥g∥∗ = ⟨g,B−1g⟩1/2, g ∈ E∗.

In this paper, we work only with Euclidean norms defined by the above relations.
Recall that function F (·) is called uniformly convex of degree q ≥ 2 if for any x and

y ∈ domF we have

F (y) ≥ F (x) + ⟨gx, y − x⟩+ σq
q ∥x− y∥q, (1.1)

where σq is a positive parameter and gx is an arbitrary vector from subdifferential ∂F (x).
Minimizing both parts of inequality (1.1) in y ∈ domF , we get

min
y∈domF

F (y) ≥ F (x) + min
r≥0

{
−r∥gx∥∗ + σq

q r
q
}

= F (x)− q

(q+1)σ
1/(q−1)
q

∥gx∥
q

q−1
∗ .

(1.2)

For p-times continuously differentiable function f(·), p ≥ 1, with open convex domain
dom f ⊆ E we can introduce its pth directional derivative at point x ∈ dom f along
directions h1, . . . , hp and denote it by

Dpf(x)[h1, . . . , hp]

If hi = h for all i = 1, . . . , p, we use a shorter notation Dpf(x)[h]p. The norm of this
derivative is defined in the usual way:

∥Dpf(x)∥ = max
h1,...,hp

{ |Dpf(x)[h1, . . . , hp]| : ∥hi∥ ≤ 1, i = 1, . . . , p }

= max
h

{ |Dpf(x)[h]p| : ∥h∥ ≤ 1 } .

Similarly, the Lipschitz condition for the pth derivative has the following sense:

∥Dpf(x)−Dpf(y)∥ def
= max

h
{ |Dpf(x)[h]p −Dpf(y)[h]p| : ∥h∥ ≤ 1}

≤ Lp(f)∥x− y∥, x, y ∈ dom f.

2 Inexact Basic Tensor Methods

In this paper, we consider a convex optimization problem in the following composite form:

min
x∈domΨ

{F (x) = f(x) + Ψ(x)}, (2.1)

where f(·) is a smooth convex function and Ψ(·) is a closed convex function such that

domΨ ⊆ int (dom f).
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Let us assume that the problem (2.1) is solvable and denote by x∗ ∈ domΨ one of its

optimal solutions, F∗
def
= F (x∗).

We assume that f(·) is p-times continuously differentiable (p ≥ 1) and its p-th deriva-
tive satisfies Lipschitz condition:

∥Dpf(y)−Dpf(x)∥ ≤ Lp(f)∥x− y∥, x, y ∈ domΨ. (2.2)

It is well known (e.g. [15]) that this condition implies the following bound:

|f(y)− fx̄,p(y)| ≤ H
(p+1)!∥y − x∥p+1, x̄, y ∈ dom f,

fx̄,p(y)
def
=

p∑
k=0

1
k!D

kf(x)[y − x]k,

(2.3)

where H ≥ Lp(f). On the other hand, if

H ≥ pLp(f), (2.4)

then function

φx̄,p,H(y)
def
= fx̄,p(y) +

H
(p+1)!∥y − x∥p+1

is convex (see Theorem 1 in [12]). Therefore, for generating test points in the minimization
methods for problem (2.1) we can use solution of the following auxiliary problem:

min
x∈domΨ

{
Fx̄,p,H(x)

def
= φx̄,p,H(x) + Ψ(x)

}
. (2.5)

Our main assumption is as follows.

Assumption 1 Function Ψ(·) is simple enough for having problem (2.5) tractable.

However, even with this assumption, usually we cannot compute an exact solution of
problem (2.5) in a closed form (unless, may be, for p = 1). This is the reason why we
need to describe somehow the quality of the approximate solutions.

Definition 1 Let δ > 0 be a measure of inaccuracy in problem (2.5) and x̄ ∈ domΨ.
Denote by T = Tδ,p,H(x̄) any point in domΨ satisfying the following inequality:

Fx̄,p,H(T ) ≤ min
x∈domΨ

Fx̄,p,H(x) + δ. (2.6)

We refer to the point Tδ,p,H(x̄) as to result of Inexact Tensor Step of degree p from the
point x̄.

Let us choose a starting point x0 ∈ domΨ. We assume that the level sets of the
objective function in problem (2.1) are compact:

RF (x0)
def
= max

x∈domΨ

{
∥x− x∗∥ : F (x) ≤ F (x0)

}
< +∞. (2.7)

Denote
Cp,H(x0) = 1

p!(Lp(f) +H)Rp+1
F (x0). (2.8)

Our Basic Tensor Method consists of the Preliminary Step and the Iteration Process. The
goal of the Preliminary Step is to compute an appropriate starting point for the Iteration
Process.
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Lemma 1 Let δ ≤ p
p+1Cp,H(x0). Then

Fx0,p,H(Tδ,p,H(x0))− F ∗ ≤ Cp,H(x0). (2.9)

Proof:
Indeed, for T = Tδ,p,H(x0) we have

Fx0,p,H(T )
(2.6)

≤ δ + min
x∈domΨ

{
fx0,p(x) + Ψ(x) + H

(p+1)!∥x− x0∥p+1
}

(2.3)

≤ δ + min
x∈domΨ

{
F (x) +

Lp(f)+H
(p+1)! ∥x− x0∥p+1

}
≤ δ + F∗ +

Lp(f)+H
(p+1)! ∥x∗ − x0∥p+1

(2.7)

≤ F∗ + δ + 1
p+1Cp,H)(x0) ≤ F∗ + Cp,H(x0). 2

Thus, after one Inexact Tensor Step, the residuals in the function value do not depend
anymore on the size of derivatives of degree smaller than p+ 1.

For analyzing the Iteration Process, we need the following result.

Lemma 2 Let x̄ ∈ domΨ and

F (x̄) ≤ min{F (x0), F∗ + Cp,H(x0)}. (2.10)

Then for T = Tδ,p,H(x̄) we have

Fx̄,p,H(T ) ≤ F (x̄)− p
p+1

[
F (x̄)−F∗
Cp,H(x0)

] 1
p
(F (x̄)− F∗) + δ. (2.11)

Proof:
Indeed, for T = Tδ,p,H(x̄) we have

Fx̄,p,H(T )
(2.6)

≤ δ + min
x∈domΨ

{
fx̄,p(x) + Ψ(x) + H

(p+1)!∥x− x̄∥p+1
}

(2.3)

≤ δ + min
0≤α≤1

{
F (x) +

Lp(f)+H
(p+1)! ∥x− x̄∥p+1 : x = αx∗ + (1− α)x̄

}
(2.7)

≤ δ + min
0≤α≤1

{
αF∗ + (1− α)F (x̄) +

Lp(f)+H
(p+1)! α

p+1Rp+1(x0)
}

= δ + min
0≤α≤1

{
αF∗ + (1− α)F (x̄) + 1

p+1α
p+1Cp,H(x0)

}
.

The optimal solution in the latter optimization problem is α∗ =
[
F (x̄)−F∗
Cp,H(x0)

] 1
p ≤ 1. It

remains to substitute it in the objective function. 2
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Now we are ready to analyze the following Inexact Basic Tensor Method.

Initialization. Choose positive parameters δ and H.

Preliminary Step. Compute T0 = Tδ̄,p,H(x0) with δ̄ ≤
p
p+1Cp,H(x0).

Set x1 = argmin
x

{F (x) : x ∈ {x0, T0}}.

Iteration k ≥ 1. Compute xk+1 = Tδ,p,H(xk).

(2.12)

Denote by ϵ > 0 the desired accuracy of the approximate solution of problem (2.1).

Theorem 1 Let sequence {xk}T+1
k=1 be generated by Inexact Basic Tensor Method with

δ ≤ p

2(p+1)C
1/p
p,H(x0)

· ϵ
p+1
p (2.13)

and H ≥ pLp(f). Assume also that

F (xk)− F∗ ≥ ϵ, k = 1, . . . , T + 1. (2.14)

Then for all k = 1, . . . , T we have

F (xk) ≤ min{F (x0), F∗ + Cp,H(x0)}, (2.15)

F (xk+1) ≤ F (xk)− p
2(p+1)

[
F (xk)−F∗
Cp,H(x0)

] 1
p
(F (xk)− F∗) . (2.16)

Moreover,

F (xT+1)− F∗ ≤ Cp,H(x0)(
1+ T

2(p+1)

)p . (2.17)

Proof:
Let us prove the relations (2.15) and (2.16) by induction. Since H > Lp(f), we have

F (T0) ≤ Fx0,p,H(T0)
(2.9)

≤ F∗ + Cp,H(x0).

Hence, in view of the choice of the point x1, condition (2.15) is satisfied for k = 0.
Assume it is satisfied for some k ≥ 0. Then, by Lemma 2 we have

F (xk+1)
(2.3)

≤ Fxk,p,H(xk+1)
(2.11)

≤ F (xk)− p
p+1

[
F (xk)−F∗
Cp,H(x0)

] 1
p
(F (xk)− F∗) + δ

(2.13)

≤ F (xk)− p
p+1

[
F (xk)−F∗
Cp,H(x0)

] 1
p
(F (xk)− F∗) +

p

2(p+1)C
1/p
p,H(x0)

· ϵ
p+1
p

(2.14)

≤ F (xk)− p
2(p+1)

[
F (xk)−F∗
Cp,H(x0)

] 1
p
(F (xk)− F∗) .
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Hence, F (xk+1) ≤ F (xk) and we see that inequality (2.15) is valid for xk+1.
Thus, we have proved that inequalities (2.15) and (2.16) are valid for al k = 1, . . . , T .

Denoting now ξk =
F (xk)−F∗
Cp,H(x0)

(2.15)

≤ 1, we can rewrite (2.16) as follows:

ξk − ξk+1 ≥ p
2(p+1)ξ

p+1
p

k , k = 1, . . . , T. (2.18)

Since function 1
(1+τ)1/p

is convex for τ > −1, we have

1
(1+τ)1/p

≥ 1− τ
p . (2.19)

Hence
ξ
1/p
k

ξ
1/p
k+1

= 1(
1+

ξk+1−ξk
ξk

)1/p ≥ 1− ξk+1−ξk
pξk

.

Consequently,

1

ξ
1/p
k+1

− 1

ξ
1/p
k

= 1

ξ
1/p
k

(
ξ
1/p
k

ξ
1/p
k+1

− 1

)
≥ 1

ξ
1/p
k

· ξk−ξk+1

pξk

(2.18)

≥ 1
2(p+1) .

Summing up these inequalities for k = 1, . . . , T , we get

1

ξ
1/p
T+1

≥ 1

ξ
1/p
1

+ T
2(p+1)

(2.15)

≥ 1 + T
2(p+1) .

And this is inequality (2.17). 2

Corollary 1 Condition (2.14) cannot remain valid more than for

2(p+ 1)
[
Cp,H(x0)

ϵ

] 1
p (2.20)

iterations of method (2.12).

Surprisingly enough, condition (2.13) shows that the high-order methods require less
accurate solutions of the auxiliary problem (2.5). Thus, for the first-order methods (p = 1)
we need

δ = O(ϵ2).

The second-order methods require

δ = O(ϵ3/2),

and for the third-order schemes it is enough to have

δ = O(ϵ4/3).

In the next two sections, for the last two cases, we are going to discuss the iteration
complexity of the specific auxiliary methods computing the points Tδ,p,H(xk).
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3 Inexact Third-Order Method

In this section, we consider a third-order method for solving the following problem

min
x∈domΨ

{F (x) def
= f(x) + Ψ(x)}, (3.1)

where function f(·) is convex and its third derivative satisfies Lipschitz condition

∥D3f(x)−D3f(y)∥ ≤ L3(f)∥x− y∥, x, y ∈ E. (3.2)

Function Ψ(·) in this problem is a simple closed convex function with domΨ ⊆ dom f .
We assume that the problem (3.1) is solvable and denote by x∗ one of its optimal solutions

with F∗
def
= F (x∗).

As it was shown in Section 2, problem (3.1) can be solved by Inexact Tensor Method
(2.12) provided that we are able to compute approximate solutions of the problem (2.5)
satisfying the condition (2.6). In our case,

φx̄,3,H(y) = f(x̄) + ⟨∇f(x̄), y − x⟩+ 1
2⟨∇

2f(x)(y − x̄), y − x̄⟩

+1
6D

3f(x̄)[y − x]3 + H
24∥y − x̄∥4.

As it was suggested in [12], we are going to solve this problem using the framework of
relative smoothness (see [1, 8]). However, for our goals we need to provide its complexity
analysis with more details.

Let us consider a minimization problem, which is more general than the problem (2.5):

Φ∗ = min
x∈domΨ

{
Φ(x)

def
= φ(x) + Ψ(x)

}
= Φ(x∗), x∗ ∈ domΨ, (3.3)

where φ(·) is a continuously differentiable convex function, and Ψ(·) is a simple closed
convex function with domΨ ⊆ domφ. In our framework, we also need a simple scaling
function d(·) with dom d ⊇ domΨ, which is strictly convex and continuously differentiable.
Then, we can define the Bregman distance between two points x and y from dom d:

βd(x, y) = d(y)− d(x)− ⟨∇d(x), y − x⟩ ≥ 0.

We assume that the smooth part of the objective function in problem (3.3) satisfies the
following relative smoothness conditions:

µφβd(x, y) ≤ βφ(x, y) = φ(y)− φ(x)− ⟨∇φ(x), y − x⟩

≤ Lφβd(x, y), x, y ∈ domΨ,
(3.4)

where Lφ ≥ µφ ≥ 0. Denote γφ =
µφ
Lφ

≤ 1.

The right-hand side of inequality (3.4) suggests the following minimization scheme.

Choose x0 ∈ domΨ. For k ≥ 0 iterate:

xk+1 = arg min
x∈domΨ

{φ(xk) + ⟨∇φ(xk), x− xk⟩+ Lφβd(xk, x) + Ψ(x)} .
(3.5)
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Note that the next point in this method satisfies the following variational principle: for
all x ∈ domΨ we have

⟨∇φ(xk) + Lφ(∇d(xk+1)−∇d(xk)), x− xk+1⟩+Ψ(y) ≥ Ψ(xk+1). (3.6)

For analyzing performance of method (3.5), we need to introduce the following aggre-
gated objects.

• The average value of the objective function:

Φ̃T =
γf

1−(1−γf )T
T∑
k=1

(1− γf )
T−kΦ(xk).

• The aggregated model of the objective function:

ℓT (x) =
γf

1−(1−γf )T
T−1∑
k=0

(1− γf )
T−k−1[φ(xk) + ⟨∇φ(xk), x− xk⟩+ µfβd(xk, x)]

+Ψ(x).

Note that in view of the first inequality in (3.4), we have

ℓT (x) ≤ Φ(x), x ∈ domΨ. (3.7)

In the above definitions, we extend our notation onto the case γf = 0 in a continuous way:

lim
γφ↓0

γφ
1−(1−γφ)T = 1

T .

Let us prove the following result.

Lemma 3 For any T ≥ 1 we have:

1
Lφ

Φ̃T + βd(xT , x) ≤ (1− γφ)
Tβd(x0, x) +

1
Lφ
ℓT (x), x ∈ domΨ. (3.8)

Proof:
Note that for any k ≥ 0 we have:

βd(xk+1, x)− βd(xk, x) = d(x)− d(xk+1)− ⟨∇d(xk+1), x− xk+1⟩

−d(x) + d(xk) + ⟨∇d(xk), x− xk⟩

= ⟨∇d(xk)−∇d(xk+1), x− xk+1⟩

−d(xk+1) + d(xk) + ⟨∇d(xk), xk+1 − xk⟩

= ⟨∇d(xk)−∇d(xk+1), x− xk+1⟩ − βd(xk, xk+1).
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Therefore,

βd(xk+1, x)
(3.6)

≤ βd(xk, x) +
1
Lφ

[⟨∇φ(xk), x− xk+1⟩+Ψ(x)−Ψ(xk+1)]− βd(xk, xk+1)

= βd(xk, x) +
1
Lφ

[φ(xk) + ⟨∇φ(xk), x− xk⟩+Ψ(x)]

− 1
Lφ

[φ(xk) + ⟨∇φ(xk), xk+1 − xk⟩+ Lφβd(xk, xk+1) + Ψ(xk+1)]

(3.4)

≤ βd(xk, x) +
1
Lφ

[φ(xk) + ⟨∇φ(xk), x− xk⟩+Ψ(x)]− 1
Lφ

Φ(xk+1)

= (1− γφ)βd(xk, x)− 1
Lφ

Φ(xk+1)

+ 1
Lφ

[φ(xk) + ⟨∇φ(xk), x− xk⟩+ µφβd(xk, x) + Ψ(x)].

Summing up these inequalities for k = 0, . . . , T − 1, we get the relation (3.8). 2

Lemma 3 has two important consequences. First of all, we can estimate the rate of
convergence of method (3.5).

Corollary 2 For any T ≥ 1 we have

Φ̃T − Φ∗ ≤ (1− γφ)
TLφβd(x0, x

∗). (3.9)

Proof:
Indeed, it is enough to apply inequalities (3.8) and (3.7) to x = x∗. 2

Another important consequence of inequality (3.8) is the verifiable stopping criterion
for method (3.5). Assume that we know an upper bound D0 for the size of the solution:

βd(x0, x
∗) ≤ D0. (3.10)

Then,

1
Lφ

Φ̃T
(3.8)

≤ min
x

{
(1− γφ)

Tβd(x0, x) +
1
Lφ
ℓT (x) : βd(x0, x) ≤ D0

}
≤ (1− γφ)

TD0 +
1
Lφ

min
x

{ℓT (x) : βd(x0, x) ≤ D0}

(3.7)

≤ (1− γφ)
TD0 +

1
Lφ

Φ(x∗).

Thus,

Φ̃T − Φ∗ ≤ Φ̃T −min
x

{ℓT (x) : βd(x0, x) ≤ D0} ≤ (1− γφ)
TD0. (3.11)

Note that the lower bound for the optimal value Φ∗, the estimate

ℓ∗T = min
x

{ℓT (x) : βd(x0, x) ≤ D0}, (3.12)

9



can be easily computed. In order to satisfy the stopping criterion (3.11) with accuracy
δ > 0, it is sufficient to ensure the inequality

(1− γφ)
TD0 ≤ e−γφTD0 ≤ δ.

Thus, we need
Lφ

µφ
ln D0

δ (3.13)

iterations at most.
Let us show how this machinery works for Inexact Basic Tensor Method of degree

three. For simplicity, we consider the case Ψ(x) ≡ 0, x ∈ E. For computing the result
of Inexact Tensor Step from a point x̄ ∈ E, we need to solve the auxiliary problem (3.3)
with

Φ(x) = φ(x)
def
= φx̄,3,H(x).

In accordance to Section 5 of [12], a natural scaling function for this problem is as follows:

dτ,x̄(x) = 1
2

(
1− 1

τ

)
⟨∇2f(x̄)(x− x̄), x− x̄⟩+ 3τ(τ−1)L3(f)

24 ∥x− x̄∥4, (3.14)

where τ =
√

H
3L3(f)

> 1. Then

∇2dτ,x̄ ≼ ∇2φ(x) ≼ τ+1
τ−1∇

2dτ,x̄(x). x ∈ E.

Let us choose τ = 2 (this corresponds to H = 12L3(f)). Then µφ = 1, Lφ = 3, and
γφ = 1

3 . Thus, with this choice, the method (3.5) has global linear rate of convergence
dependent only on the absolute constant.

At the same time, since function ρ4(x) = 1
4∥x∥

4 is uniformly convex with constant
σ4 =

1
4 (see, for example, Lemma 4 in [11]), we have

∥∇f(x̄)∥∗ ∥x̄− x̄∗∥ ≥ ⟨∇f(x̄), x̄− x̄∗⟩ = ⟨∇φ(x̄), x̄− x̄∗⟩ ≥ σ4∥x̄− x̄∗∥4,

where x̄∗ = argmin
x∈E

φx̄,3,H(x). This means that we can choose

D0 = (4 ∥∇f(x̄)∥∗)
1
3 (3.15)

for computing by (3.12) the lower estimate ℓ∗T of the optimal function value. It can be
used in the stopping criterion of the Inexact Tensor Method:

Φ̃T − ℓ∗T ≤ δ. (3.16)

In accordance to (3.11), this inequality will be satisfied in 3 ln D0
δ iterations at most.

It remains to discuss the complexity of one iteration of the process (3.5) with scaling
function (3.14). Without loss of generality, we can assume that x̄ = 0. And let E ≡ Rn
with B = In, the identity matrix. In this case, ∇2f(0) is a symmetric n×n-matrix, which
can be factorized as follows:

∇2f(0) = UTUT ,
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where U ∈ Rn×n, UUT = In, and T ∈ Rn×n is a symmetric tri-diagonal matrix. Intro-
ducing new variables y = UTx, we can rewrite our objective function as follows:

φ(x) = ⟨∇f(0), x⟩+ 1
2⟨∇

2f(0), x, x⟩+ 1
6D

3f(0)[x]3 + H
24∥x∥

4
(2)

= ⟨gy, y⟩+ 1
2⟨Ty, y⟩+

1
6D

3f(0)[Uy]3 + H
24∥y∥

4
(2)

def
= ξ(y),

where gy = UT∇f(0). Similarly, our scaling function (3.14) can be written in the following
form:

d̃τ (y) = 1
2

(
1− 1

τ

)
⟨Ty, y⟩+ 3τ(τ−1)L3(f)

24 ∥y∥4.

This transformation can be done by the standard Linear Algebra technique in O(n3)
operations. Now, we can apply method (3.5) with Ψ(·) ≡ 0 for minimizing function ξ(y)
using the scaling function d̃τ (·). At each iteration of this scheme, the most expensive
operations are as follows.

• Computation of the gradient

∇ξ(y) = gy + Ty + 1
2U

TD3f(0)[Uy]2 + H
6 ∥y∥

2y.

This computation needs O(n2) operations plus the operations necessary for comput-
ing the vector D3f(0)[h]2 ∈ Rn with h ∈ Rn. The second computation usually is not
very expensive. Indeed, in many situations it can be arranged by the fast backward
differentiation which complexity is proportional to the complexity of computing the
function value f(x) (see, for example, [7]).

• Computation of the next point by solving the auxiliary optimization problem

min
y∈Rn

{⟨∇ξ(yk), y − yk⟩+ Lφβd̃τ (yk, y)},

where d̃τ (y) =
a
2 ⟨Ty, y⟩ +

b
4∥y∥

4
(2) with certain positive constants a and b. In view

of definition of the Bregmann distance, this problem is as follows:

min
y∈Rn

{
⟨gk, y⟩+ Lφ

(
a
2 ⟨Ty, y⟩+

b
4∥y∥

4
(2)

)}
= min

y∈Rn
max
r≥0

{
⟨gk, y⟩+ Lφ

(
a
2 ⟨Ty, y⟩+

b
2r∥y∥

2
(2)

)
− Lφ

b
4r

2
}
,

where gk = ∇ξ(yk)− Lφ(aTyk + b∥yk∥2(2)yk). Exchanging in this presentation mini-
mum and maximum, we come to the following univariate dual problem:

max
r≥0

{
−Lφ b4r

2 − 1
2Lφ

⟨[aT + brIn]
−1gk, gk⟩

}
,

which can be easily solved by any method for univariate convex minimization. Note
that the computational cost of the function values and the derivatives in this problem
is proportional to n.

Thus, we have seen that the computational cost of one iteration of the Inexact Tensor
Method is basically the same as that of the standard second-order schemes.

11



4 Inexact Second-Order Method

Let us study now the efficient implementations of the second-order methods for solving
the following minimization problem:

min
x∈E

f(x), (4.1)

where function f(·) is convex and its second derivative satisfies Lipschitz condition

∥∇2f(x)−∇2f(y)∥ ≤ L2(f)∥x− y∥, x, y ∈ E. (4.2)

As usual, we assume that the problem (4.1) is solvable and x∗ is one of its optimal solutions
with f∗ = f(x∗).

Inexact Basic Tensor Method (2.12) becomes now an Inexact Newton Method with
Cubic Regularization. The efficiency of an exact version of this scheme was studied first
in [14]. In its inexact variant, we need to compute an approximate solution of problem
(2.5) with

Fx̄,2,H(y) = f(x̄) + ⟨∇f(x̄), y − x⟩+ 1
2⟨∇

2f(x̄)(y − x̄), y − x̄⟩+ H
6 ∥y − x̄∥3. (4.3)

Let us show how this can be done by the first-order methods.
Let us consider the auxiliary minimization problem (2.5) in a more general form:

min
x∈domψ

{
Φ(x)

def
= φ(x) + ψ(x)

}
, (4.4)

where φ(·) is a continuously differentiable convex function, and ψ(·) is a simple closed
convex function with domψ ⊆ domφ. The role of function ψ(·) here is different from
the role of Ψ(·) in (2.5). Since in (4.1) Ψ(·) ≡ 0, we use function ψ(·) to model the
regularization term in the objective function (4.3).

Let us assume that the gradient of function φ(·) is Lipschitz continuous:

∥∇φ(x)−∇φ(y)∥∗ ≤ L1(φ)∥x− y∥, x, y ∈ domψ. (4.5)

For convex function, this condition is equivalent to the following inequality (see, for ex-
ample, Section 2.1.1 in [13]):

⟨∇φ(x)−∇φ(y), x− y⟩ ≥ 1
L1(φ)

∥∇φ(x)−∇φ(y)∥2∗, x, y ∈ domψ. (4.6)

On the other hand, we assume that function ψ(·) is subdifferentiable and uniformly
convex of degree p+ 1 with p ≥ 1:

ψ(y) ≥ ψ(x) + ⟨gx, y − x⟩+ σp+1

p+1 ∥y − x∥p+1, x, y ∈ domψ, (4.7)

where gx ∈ ∂ψ(x) and the parameter of uniform convexity σp is positive.
Note that usually the assumptions on smoothness and uniform convexity are intro-

duced for the whole objective function Φ(·). However, we will see that the separation of
these assumptions allows us to construct much faster algorithms. It seems that in the
first time such a separation was studied in [10] for a strongly convex composite part ψ(·).
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Let us estimate efficiency of Composite Gradient Method as applied to problem (4.4).

Choose x0 ∈ domψ. For k ≥ 0 iterate:

xk+1 = arg min
x∈domψ

{
φ(xk) + ⟨∇φ(xk), x− xk⟩+ 1

2H∥x− xk∥2 + ψ(x)
}
.

(4.8)

Lemma 4 Let H ≥ L1(f). Then

Φ(xk)− Φ(xk+1) ≥ 1
2H ∥Φ′(xk+1)∥2∗, (4.9)

where Φ′(xk+1) = ∇φ(xk+1)−∇φ(xk)−HB(xk+1 − xk) ∈ ∂Φ(xk+1).

Proof:
The first-order optimality condition for the auxiliary minimization problem in (4.8) is as
follows:

⟨∇φ(xk) +HB(xk+1 − xk), x− xk+1⟩+ ψ(x) ≥ ψ(xk+1), ∀x ∈ domψ. (4.10)

This means that the vector gk = −(∇φ(xk)+HB(xk+1−xk)) belongs to the subdifferential
∂ψ(xk+1). At the same time,

Φ(xk+1)
(2.3)

≤ φ(xk) + ⟨∇φ(xk), xk+1 − xk⟩+ H
2 ∥xk+1 − xk∥2 + ψ(xk+1)

(4.10)

≤ φ(xk) + ⟨∇φ(xk), xk+1 − xk⟩+ H
2 ∥xk+1 − xk∥2

+⟨∇φ(xk) +HB(xk+1 − xk), xk − xk+1⟩+ ψ(xk)

= Φ(xk)− 1
2H∥xk+1 − xk∥2.

Let us define now Φ′(xk+1) = ∇φ(xk+1) + gk ∈ ∂Φ(xk+1). Note that

∥Φ′(xk+1)∥2∗ = ∥∇φ(xk+1)−∇φ(xk)−HB(xk+1 − xk))∥2∗

= ∥∇φ(xk+1)−∇φ(xk)∥2∗ − 2H⟨∇ϕ(xk+1)−∇φ(xk), xk+1 − xk⟩+H2∥xk+1 − xk∥2

(4.6)

≤
(
1− 2H

L1(φ)

)
∥∇φ(xk+1)−∇φ(xk)∥2∗ +H2∥xk+1 − xk∥2 ≤ H2∥xk+1 − xk∥2.

Substituting this inequality in the previous one, we get inequality (4.9). 2

Now we can prove the rate of convergence of the method (4.8).

Theorem 2 Let H ≥ L1(φ). Then

Φ(xk)− Φ∗ ≤
[(
1 + 1

α

)
(B−α

p,H + (Φ(x0)− Φ∗)
α) · 1

t

] 1
α
, (4.11)

where Bp,H
def
=

(
1
2H σ

2
p+1

p+1

(
p+2
p+1

)1+α
) 1

α

and α = p−1
p+1 .
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Proof:
In view of inequality (4.9), we have:

Φ(xk)− Φ(xk+1)
(1.2)

≥ 1
2H

(
p+2
p+1σ

1
p

p+1(Φ(xk+1)− Φ∗)

) 2p
p+1

= 1
2H σ

2
p+1

p+1

(
p+2
p+1

)1+α
(Φ(xk+1)− Φ∗)

1+α,

where α = 2p
p+1 − 1 = p−1

p+1 . Denoting now ξk = Bp,H(Φ(xk)− Φ∗), we get

ξk − ξk+1 ≥ ξ1+αk+1 , k ≥ 0.

Hence, in view of Lemma 11,

Φ(xk)− Φ∗ ≤ B−1
p,H

[(
1 + 1

α

)
(1 +Bα

p,H(Φ(x0)− Φ∗)
α) · 1

t

] 1
α

=
[(
1 + 1

α

)
(B−α

p,H + (Φ(x0)− Φ∗)
α) · 1

t

] 1
α
.

And this is inequality (4.11). 2

Let us apply the result of Theorem 2 to the objective function (4.3). In this case,

ψ(y) = H
6 ∥y − x̄∥3.

Hence, p = 2 and α = p−1
p+1 = 1

3 . Note that for this choice of the composite term we have

σ3 = H
2

(
1
2

)p−1
= H

4

(see, for example, Lemma 4 in [11]). Therefore,

B2,H =

(
1
2H

(
H
4

) 2
3
(
4
3

)4/3)3

= 2
81H .

Thus, the rate of convergence of the Composite Gradient Method (4.8) is of the order

O
(

1
k3

)
.

This is much faster than we could expect from a non-accelerated gradient scheme. Recall
that the usual rate of convergence of such a method, which does not take into account
the properties of composite term, is of the order O( 1k ) (see [10]).

Having in mind this encouraging observation, let us look at the performance of the
Composite Fast Gradient Method as applied to problem (4.4). For the convenience of
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readers, let us present here a variant of this method with predefined number of iterations.

Input: Starting point x0 ∈ domψ and number of steps N ≥ 1.

Define Ω0(x) =
1
2∥x− x0∥2 and set A0 = 0, v0 = x0.

For k = 0, . . . , N − 1 do

a) Choose Hk > 0 and find ak+1 from the equation
a2k+1

ak+1+Ak
= 1

Hk
.

b) Set Ak+1 = Ak + ak+1, τk =
ak+1

Ak+1
, and yk = (1− τk)xk + τkvk.

c) Update Ωk+1(x) = Ωk(x) + ak+1[φ(yk) + ⟨∇φ(yk), x− yk⟩+ ψ(x)].

d) Compute vk+1 = arg min
x∈domψ

Ωk+1(x) and xk+1 = (1− τk)xk + τkvk+1.

e) Accept xk+1 if φ(xk+1) ≤ φ(yk) + ⟨∇φ(yk), x− yk⟩+ Hk
2 ∥xk+1 − xk∥2.

Output: Point T (x0, N)
def
= xN .

(4.12)

In view of Rule c) of method (4.12), it is easy to see that for all x ∈ domψ we have

Ωk(x) ≤ 1
2∥x− x0∥2 +AkΦ(x). (4.13)

On the other hand, we can prove the following statement.

Lemma 5 Let the acceptance condition be satisfied at all iterations of method (4.12).
Then for all k = 0, . . . , N we have

AkΦ(xk) ≤ Ω∗
k

def
= min

x∈domψ
Ωk(x). (4.14)

Proof:
Note that all functions Ωk(·) formed by this method are strongly convex with convexity
parameter one. Since A0 = 0, condition is trivial for k = 0. Let us assume that it is
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satisfied for some k ≥ 0. Then

Ω∗
k+1 = Ωk(vk+1) + ak+1[φ(yk) + ⟨∇φ(yk), vk+1 − yk⟩+ ψ(vk+1)]

≥ Ω∗
k +

1
2∥vk+1 − vk∥2 + ak+1[φ(yk) + ⟨∇φ(yk), vk+1 − yk⟩+ ψ(vk+1)]

≥ Akφ(xk) + ak+1[φ(yk) + ⟨∇φ(yk), vk+1 − yk⟩] + 1
2∥vk+1 − vk∥2

+Akψ(xk) + ak+1ψ(vk+1)

≥ Ak+1φ(yk) + ⟨∇φ(yk), ak+1(vk+1 − yk) +Ak(xk − yk)⟩+ 1
2∥vk+1 − vk∥2

+Ak+1ψ(xk+1)

= Ak+1

[
φ(yk) + ⟨∇φ(yk), xk+1 − yk⟩+ Hk

2 ∥xk+1 − yk∥2
]
+Ak+1ψ(xk+1)

(e)
≥ Ak+1Φ(xk+1). 2

Finally, we need to estimate the rate of growth of coefficients Ak.

Lemma 6 Let all Hk in the method (4.12) satisfy condition

Hk ≤ γL1(φ), k = 0, . . . , N − 1. (4.15)

Then for all k = 0, . . . , N we have

Ak ≥ k(k+2)
4γL1(φ)

. (4.16)

Proof:
Indeed, for k = 0 the inequality (4.16) is valid. Assume that it is valid for some k ≥ 0.
Then, in view of the Rule a) of the method, we have

ak+1 = 1
2Hk

[
1 +

√
1 + 4HkAk

] (4.15)

≥ 1
2γL1(φ)

[
1 +

√
1 + 4γL1(φ)Ak

]
≥ k+2

2γL1(φ)
.

Therefore,

Ak+1 = Ak + ak+1 ≥ k(k+2)+2(k+2)
4γL1(φ)

≥ (k+1)(k+3)
4γL1(φ)

. 2

In method (4.12), it is possible to introduce an internal search procedure for updating
the parameters Hk, which estimate the actual Lipschitz constant L1(φ) in (4.5). For prac-
tical efficiency of this method, it is important to keep Hk as small as possible. However,
for the sake of simplicity, in what follows we assume that the constant L1(φ) is known
and we take

Hk = L1(φ), k = 0, . . . , N − 1. (4.17)

In this case, in view of inequality (2.3) with p = 1, the acceptance condition is satisfied.
Moreover, we have

Ak ≥ k(k+2)
4L1(φ)

. (4.18)
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Consequently, the estimates (4.13) and (4.14) give us the following rate of convergence:

Φ(xk)− Φ∗ ≤ 2L1(φ)∥x0−x∗∥2
k(k+2) , k = 1, . . . , N. (4.19)

We can summarize our observations in the following statement.

Theorem 3 Let T = T (x0, N) be the output of the process (4.12) with parameters Hk

defined by (4.17). Then

Φ(T )− Φ∗ ≤ 2L1(φ)
N(N+2)

[
p+1
σp+1

(Φ(x0)− Φ∗)
] 2

p+1
. (4.20)

Proof:
Indeed, since the composite term of the objective function Φ(·) in problem (4.4) is uni-
formly convex, we have

σp+1

p+1 ∥x0 − x∗∥p+1 ≤ Φ(x0)− Φ∗.

It remains to use inequality (4.19). 2

Let us consider now the following upper-level process for solving the problem (2.5).
Recall that α = p−1

p+1 .

Input: Point x0 ∈ domψ and parameter κ > 1.

For t ≥ 0 iterate:

1. Define Nt =
⌈√

1 + καt − 1
⌉
and compute x̂t+1 = T (xt, Nt).

2. Choose xk+1 = argmin
x

{Φ(x) : x ∈ {x0, . . . , xt, x̂t+1}}.

(4.21)

Performance of this method is described by the following statement.

Lemma 7 Let t0 ≥ 0 be the first integer such that

κt0 ≥ 1
Φ(x0)−Φ∗

[
2L1(φ)κ

(
p+1
σp+1

) 2
p+1

] 1
α

. (4.22)

Then for all t ≥ t0 we have

Φ(xt)− Φ∗ ≤
(
1
κ
)t−t0 (Φ(x0)− Φ∗). (4.23)

Proof:
In view of Rule 2 in method (4.21), for t = t0, inequality (4.23) is trivial. Assume it is
valid for some t ≥ t0. Note that the choice of Nt in method (4.21) ensures the following
inequality:

Nt(Nt + 2) ≥ καt. (4.24)
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Therefore,

Φ(xt+1)− Φ∗
(4.20)

≤ 2L1(φ)
Nt(Nt+2)

[
p+1
σp+1

(Φ(xt)− Φ∗)
] 2

p+1

(4.24)

≤ 2L1(φ)
καt

[
p+1
σp+1

(Φ(xt)− Φ∗)
] 2

p+1

(4.23)

≤ 2L1(φ)
καt

[
p+1
σp+1

(
1
κ
)t−t0 (Φ(x0)− Φ∗)

] 2
p+1

= 2L1(φ)κ−αt0

κt−t0

[
p+1
σp+1

(Φ(x0)− Φ∗)
] 2

p+1

≤ 2L1(φ)
κt−t0

[
p+1
σp+1

(Φ(x0)− Φ∗)
] 2

p+1
(Φ(x0)− Φ∗)

α

[
1

2L1(φ)κ

(
σp+1

p+1

) 2
p+1

]
=

(
1
κ
)t+1−t0 (Φ(x0)− Φ∗). 2

After K iterations of the procedure (4.21), let us estimate the total number MK of
the low-level steps, which is equal to the number of calls of oracle of problem (4.4).

Consider first the situation t0 > 0. Note that at each iteration t ≥ 0 we have

Nt ≤
√
1 + καt = κ

α
2
t
√
1 + κ−αt ≤ κ

α
2
t(1 + 1

2κ
−αt) = κ

α
2
t + 1

2κ
−α

2
t.

Therefore,

MK =
K∑
t=0

Nt ≤ 1
2

K∑
t=0

κ−α
2
t +

K∑
t=0

κ
α
2
t ≤ 1

2(1−κ−α
2 )

+ κ
α
2 (K+1)−1

κ
α
2 −1

= κ
α
2 −2

2(κ
α
2 −1)

+ κ
α
2 (K+1)

κ
α
2 −1

If ϵ ≤ Φ(xK)− Φ∗
(4.23)

≤
(
1
κ
)K−t0 (Φ(x0)− Φ∗), then κK ≤ 1

ϵ (Φ(x0)− Φ∗)κt0 . Hence,

MK ≤ κ
α
2 −2

2(κ
α
2 −1)

+ κ
α
2 (t0+1)

κ
α
2 −1

[
1
ϵ (Φ(x0)− Φ∗)

]α
2 .

On the other hand, since t0 > 0, we have

κt0−1 ≤ 1
Φ(x0)−Φ∗

[
2L1(φ)κ

(
p+1
σp+1

) 2
p+1

] 1
α

.

Hence,

MK ≤ κ
α
2 −2

2(κ
α
2 −1)

+
[
1
ϵ

]α
2 κα

κ
α
2 −1

[
2L1(φ)κ

(
p+1
σp+1

) 2
p+1

] 1
2

.

For the second case, we have t0 = 0 if and only if

1 ≥ 1
Φ(x0)−Φ∗

[
2L1(φ)κ

(
p+1
σp+1

) 2
p+1

] 1
α

⇔ Φ(x0)− Φ∗ ≥
[
2L1(φ)κ

(
p+1
σp+1

) 2
p+1

] 1
α

.
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In this case, if ϵ ≤ Φ(xK)− Φ∗ ≤
(
1
κ
)K

(Φ(x0)− Φ∗), then κK ≤ 1
ϵ (Φ(x0)− Φ∗). Hence,

MK ≤ κ
α
2 −2

2(κ
α
2 −1)

+
[
1
ϵ

]α
2 κ

α
2

κ
α
2 −1

· (Φ(x0)− Φ∗)
α
2

≤ κ
α
2 −2

2(κ
α
2 −1)

+
[
1
ϵ

]α
2 κα

κ
α
2 −1

· (Φ(x0)− Φ∗)
α
2 .

Thus, we have proved the following theorem.

Theorem 4 If the point xK , K ≥ 1, in the process (4.21) satisfies inequality

Φ(xK)− Φ∗ ≥ ϵ,

then the total number MK of the lower-level steps in this method cannot exceed the fol-
lowing bound:

MK ≤ κ
α
2 −2

2(κ
α
2 −1)

+
[
1
ϵ

]α
2 κα

κ
α
2 −1

·max

{
Φ(x0)− Φ∗,

[
2L1(φ)κ

(
p+1
σp+1

) 2
p+1

] 1
α

}α
2

. (4.25)

The optimal value of parameter κ is defined by the equation

κα = 4. (4.26)

The optimal value (4.26) can be obtained by minimizing the factor for the maximum
in the estimate (4.25). Thus, in view of the rules of the process (4.21), the choice

Nt = 2t, t ≥ 0, (4.27)

is optimal. Indeed, since

√
1 + 4t − 1 < 2t <

√
1 + 4t, t ≥ 0,

then ⌈
√
1 + 4t − 1⌉ = 2t. The choice (4.27) corresponds to κ

α
2 = 2, and the estimate for

the total number of internal steps can be written now in the following form:

MK ≤ 4
[
1
ϵ

]α
2 max

{
Φ(x0)− Φ∗, 2

[
2L1(φ)

(
p+1
σp+1

) 2
p+1

] 1
α

}α
2

. (4.28)

Let us point out the consequences of the estimate (4.25) for our main problem of
interest, the problem (4.4) with Φ(y) = Fx̄,2,H(y) (see (4.3)). As we have already seen, in
this case

p = 2, α = 1
3 , σ3 = H

4 .

Besides that, we have one more parameter in the complexity bound (4.25):

L1(φ) = λmax(∇2f(x̄)).
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With respect to these parameters, the bound (4.25) on the analytical complexity of prob-
lem (4.4) is as follows:

MK ≤ 4
[
1
ϵ

] 1
6 max

{
Φ(x̄)− Φ∗, 2

[
2L1(φ)

(
12
H

) 2
3

]3} 1
6

= 4
[
1
ϵ

] 1
6 max

{
Φ(x̄)− Φ∗,

9·28L3
1(φ)

H2

} 1
6
.

(4.29)

Choosing now ϵ = Φ(xK)− Φ∗, we get the following relation:

Φ(xK)− Φ∗ ≤
(

4
MK

)6
max

{
Φ(x̄)− Φ∗,

9·28L3
1(φ)

H2

}
. (4.30)

To the best of our knowledge, this is the fastest sublinear rate of convergence known so
far in Convex Optimization. In certain situations, it looks even more attractive than the
linear rate. Recall that this complexity result corresponds to a first-order scheme (4.21)
as applied to the problem (4.4).

5 Flexible strategy for computing Newton Step

Despite to the attractive complexity bound (4.29), the computational strategy (4.21) is
very rigid and cannot adjust to the favorable properties of a particular optimization prob-
lem. In this section, we present a more flexible upper-level process, which is based on some
variant of the Fast Gradient Method (4.12). It is applied to the auxiliary minimization
problem in the following form:

min
x∈domψ

{
Φ(x)

def
= φ(x) + ψ(x)

}
, ψ(x)

def
= H

6 ∥x− x̄∥3, (5.1)
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where φ(·) is a convex function with Lipschitz continuous gradient. The constant H > 0
is supposed to be known.

Method B(x̂,H, L)

Define Ω0(x) =
1
2∥x− x̂∥2. Set A0 = 0, x0 = x̂, v0 = x̂, and L0 = L.

kth iteration (k ≥ 0).

1. Find the minimal ik ≥ 0, defining the following objects:
• bound Hk = 2ikLk,

• root ak+1 > 0 of the equation
(ak+1)

2

Ak+ak+1
= 1

Hk
,

• parameters Ak+1 = Ak + ak+1 and τk =
ak+1

Ak+1
,

• points yk = (1− τk)xk + τkvk and xk+1 = (1− τk)xk + τkvk+1

with vk+1 = argmin
x∈E

{Ωk(x) + ak+1[φ(yk) + ⟨∇φ(yk), x− yk⟩+ ψ(x)]},

which ensure φ(xk+1) ≤ φ(yk) + ⟨∇φ(yk), x− yk⟩+ Hk
2 ∥xk+1 − xk∥2.

2. Update Lk+1 =
1
2Hk and

Ωk+1(x) = Ωk(x) + ak+1[φ(yk) + ⟨∇φ(yk), x− yk⟩+ ψ(x)].

Stopping criterion: F (x̂)− F (xk′) ≥ 1
A3

k′

(
12
H

)2
for some k′ ≥ 1.

Output: Point Bx̂,H,L
def
= xk′ , constant Lx̂,H,L = Lk′ , and linear function

ℓx̂,H,L(x) =
1
Ak′

k′−1∑
i=0

ai+1[φ(yi) + ⟨∇φ(yi), x− yi⟩].

(5.2)
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We are going to use this scheme at the lower level of the following procedure.

Input: Point u0 ∈ E and parameters L̂ ≤ L1(φ), R ≥ ∥u0 − x∗∥.

Set L0 = L̂. and r0 = R.

For t ≥ 0 iterate:

1. Compute ut+1 = But,Lt,H .

2. Compute ℓ∗t+1 = min
x∈E

{ℓut,Lt,H(x) + ψ(x) : ∥x− ut∥ ≤ rt}.

3. Check stopping criterion δt+1
def
= F (ut+1)− ℓ∗t+1 ≤ δ.

4. If it is not satisfied, set rt+1 =
(
12
H δt+1

) 1
3 and Lt+1 = Lut,Lt,H .

(5.3)

The rate of convergence of this procedure is given by the following statement.

Lemma 8 For all t ≥ 0 we have

∥ut − x∗∥ ≤ rt. (5.4)

Therefore F (x∗) ≥ ℓ∗t , t ≥ 1. Moreover, for all t ≥ 0 we have

δt ≤
(
1
2

)t (H
12

) 2
3 (F (u0)− F∗)

1
3R2, (5.5)

and
F (ut+1)− F∗ ≤ 1

2(F (ut)− F∗), t ≥ 0. (5.6)

Proof:
For t = 0, inequality (5.4) is valid in view of the initial choice of the parameter R. Assume
it is valid for some t ≥ 0. Since

ℓut,Lt,H(x) ≤ φ(x), x ∈ E,

we have F (x∗) ≥ ℓ∗ut,Lt,H
. Therefore, since function ψ(·) is uniformly convex, we have

H
12∥ut+1 − x∗∥3

(4.7)

≤ F (ut+1)− F (x∗) ≤ δt+1 = F (ut+1)− ℓ∗ut,Lt,H
= H

12r
3
t+1.

Thus, inequality (5.4) is valid for all t ≥ 0.
Note that using the same arguments as in Lemma 5, it is possible to prove that at the

last step k′(t) of the procedure (5.2) used at t-th iteration of the method (5.3), we have

F (ut+1) ≤ min
x∈E

{ 1
2Ak′(t)

∥x− ut∥2 + ℓut,Lt,H(x) + ψ(x)}

≤ min
∥x−ut∥≤rt

{ 1
2Ak′(t)

∥x− ut∥2 + ℓut,Lt,H(x) + ψ(x)}

≤ r2t
2Ak′(t)

+ ℓ∗ut,Lt,H
.
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For t ≥ 1 this means that

δt+1 ≤ r2t
2Ak′(t)

=
(
12
H δt

) 2
3 1

2Ak′(t)
≤

(
12
H δt

) 2
3 · 1

2

(
H
12

) 2
3 (F (ut)− F (ut+1))

1
3 ,

where the last inequality is just the termination criterion of method(5.2). Thus, for t ≥ 1,
we come to the following inequality:

δt+1 ≤ 1
2δ

2
3
t (F (ut)− F∗)

1
3 ≤ 1

2δt.

For t = 0, by the stopping criterion in (5.2), we have

δ1 ≤ R2

2Ak′(0)
≤ R2

2

(
H
12

) 2
3 (F (u0)− F∗)

1
3 .

Hence, inequality (5.5) is proved for all t ≥ 0.
Similarly, for the function values with t ≥ 0, we have

F (ut+1)− F∗ ≤ ∥ut−x∗∥2
2Ak′(t)

(4.7)

≤ 1
2Ak′(t)

(
12
H (F (ut)− F∗)

) 2
3

≤ 1
2

(
12
H (F (ut)− F∗)

) 2
3
(
H
12

) 2
3 (F (ut)− F (ut+1))

1
3

≤ 1
2(F (ut)− F∗).

And this is inequality (5.6). 2

Let us estimate now the total amount of iterations of the lower-level procedure (5.2)
in the method (5.3). For this, we need the following lemma.

Lemma 9 Any iteration of the method (5.2) satisfying the inequality

F (x̂)− F∗ ≥ 2
A3

k

(
12
H

)2
(5.7)

satisfies also the stopping criterion of this scheme.

Proof:
Indeed, if inequality (5.7) is valid, then

F (xk)− F∗ ≤ ∥x̂−x∗∥2
2Ak

(4.7)

≤ 1
2Ak

(
12
H (F (x̂)− F∗)

) 2
3

(5.7)

≤ 1
2

(
12
H (F (x̂)− F∗)

) 2
3
(
H
12

) 2
3
(
1
2(F (x̂)− F∗)

) 1
3

=
(
1
2

) 4
3 (F (x̂)− F∗).

Therefore,

F (x̂)− F (xk) ≥
(
1−

(
1
2

) 4
3

)
(F (x̂)− F∗)

(5.7)

≥
(
2−

(
1
2

) 1
3

)
· 1
A3

k

(
12
H

)2
> 1

A3
k

(
12
H

)2
.
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And this is the stopping criterion in the method (5.2). 2

Now we can bound from above the number of iterations k′(t). Indeed, in the method
(5.2) we can guarantee that

Lk ≤ L1(φ), Hk ≤ 2L1(φ), k ≥ 0.

Therefore, in view of Lemma 6, we can guarantee the following growth of the coefficients
Ak:

Ak ≥ k(k+2)
8L1(φ)

, k ≥ 0.

In accordance to the result of Lemma 9, this gives us the following bound on the number
of steps of method (5.2):

k′(t) ≤ C1

(
2

F (ut)−F∗

) 1
6
, t ≥ 0, (5.8)

where C1 =
√

8L1(φ)
(
12
H

) 1
3 . Let us give an upper bound for the number of the lower-level

iterations, which are necessary for solving problem (5.1) up to accuracy δ > 0.

Lemma 10 Let for some T ≥ 1 we have F (uT )− F∗ ≥ δ. Then

MT
def
=

T∑
t=0

k′(t) ≤ 21/3C1

21/6−1

[
1
δ

] 1
6 .

Proof:
Indeed, in view of inequality (5.6), we have

F (ut)− F∗ ≥ 2T−tδ, 0 ≤ t ≤ T.

Therefore,

MT

(5.8)

≤
T∑
t=0

C1

(
2

F (ut)−F∗

) 1
6 ≤ C1

[
1
δ

] 1
6
T∑
t=0

(
1
2

)T−t−1
6 ≤ C1

[
1
δ

] 1
6 · 2

1
6

1−
(
1
2

) 1
6
. 2

Thus, our scheme has the same worst-case complexity bound as (4.21). However, it
is much more flexible. This will be confirmed by preliminary computational experiments
presented in the next section.

6 Preliminary computational experiments

In this section we discuss the results of the numerical experiments with Inexact Cubic
Newton Method, which uses at each iteration an approximate solution of the problem
(5.1) with φ(x) = fx̄,2(x) computed by the method (5.3). Our objective functions have
the following structure:

fµ(x) = µ ln

(
m∑
i=1

e(⟨ai,x⟩−bi)/µ
)
,
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where µ is a positive parameter. For minimization problem

min
x∈Rn

fµ(x) (6.1)

we choose a starting point x0close enough to the solution x∗ of our problem:

∥u0 − x∗∥ = 1.

Coefficients of the vectors ai ∈ Rn are randomly generated with uniform density in interval
[−1, 1].

In our experiments, the accuracy parameter δ for the auxiliary minimization problem
(5.1) was chosen in accordance to the theoretical recommendation (2.13) with p = 2, where
the exact values of Lipschitz constant and the distance were replaced by some estimates,
obtained during the minimization process. This was the only heuristic rule in our tests.
All other elements were implemented exactly as they are described in the methods (2.12),
(5.2), and (5.3).

Let us look at the results of our testing for different values of desired accuracy and
dimension. In the first column we put dimension of the problem. The second column shows
the number of iterations of the Inexact Cubic Newton Method. Next column displays the
number of calls of oracle in the main minimization problem (6.1). Fourth column shows
the total number of iterations of the method (5.2) and next column shows the average
number of iterations for computing one Newton step. The last column show the total
computational time.

Table 1: ϵ = 10−3, µ = 0.05

Dim Iteration NumFunc FGM-Total FGM-Average Time(sec)

100 11 19 1200 63.2 0.38
200 16 27 2780 102.9 2.92
500 20 35 2468 70.5 14.75

1000 19 34 2838 83.5 66.8

Table 2: ϵ = 10−4, µ = 0.05

Dim Iteration NumFunc FGM-Total FGM-Average Time(sec)

100 14 22 2743 124.7 0.83
200 22 34 8257 242.9 8.50
500 24 41 7337 178.9 43.39

1000 26 46 9429 204.9 220.91

Table 3: ϵ = 10−5, µ = 0.05

Dim Iteration NumFunc FGM-Total FGM-Average Time(sec)

100 17 25 6994 279.7 2.03
200 30 48 30450 634.4 31.05
500 30 49 19010 387.9 112.06

1000 31 50 22036 440.7 515.44

As we can see from these tables, the Inexact Cubic Newton Method confirms its
reputation of a fast method. The number of iterations and the number of calls of oracle is
always small. The growth of the average number of the gradient steps is a little bit faster
that the theoretical predictions. This gives us a good motivation to continue the research
on the efficient termination criterions for the auxiliary processes.
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7 Appendix

Lemma 11 Let the sequence of positive numbers {ξt}t≥0 satisfies the following condition:

ξt − ξt+1 ≥ ξ1+αt+1 , t ≥ 0, (7.1)

where α ∈ (0, 1]. Then for any t ≥ 0 we have

ξt ≤ ξ0

(1+ αt
1+α

ln(1+ξα0 ))
1/α ≤

[(
1 + 1

α

)
(1 + ξα0 ) · 1

t

] 1
α . (7.2)

Proof:
We are going to prove inequality

ξt ≤ ξ0
(1+at)1/α

, t ≥ 0, (7.3)

with certain a > 0. Clearly, this inequality is valid for t = 0. Assume that it is valid for
some t ≥ 0, but it is not valid for the next value. Then

ξ0
(1+at)1/α

(7.1)
> ξ0

(1+a(t+1))1/α

(
1 +

ξα0
1+a(t+1)

)
.

Let us prove that, for a certain choice of a, this is impossible. Thus, we need to justify
the following inequality:

ξ0
(1+a(t+1))1/α

(
1 +

ξα0
1+a(t+1)

)
≥ ξ0

(1+at)1/α
.

It can be rewritten as follows:

1 +
ξα0

1+a(t+1) ≥
(
1 + a

1+at

)1/α
.

Denoting τ = 1
1+at , we get inequality

1 +
ξα0
1
τ
+a

= 1 +
τξα0
1+aτ ≥ (1 + aτ)1/α , (7.4)

which we want to ensure for all τ ∈ [0, 1]. Since α ∈ (0, 1], the right-hand side of this
inequality is convex in τ , and its left-hand side is concave in τ . For τ = 0, inequality (7.4)
is trivial. So, we need to check only the case τ = 1:

1 +
ξα0
1+a ≥ (1 + a)1/α .

This is

1 + a+ ξα0 ≥ (1 + a)
1+α
α .

Hence, it is sufficient to ensure

1 + a+ ξα0 ≥ e
1+α
α
a.

For this, it is enough to choose a = α
1+α ln(1 + ξα0 ). Thus, we come to a contradiction,

which proves the first part of inequality (7.2). Its second part follows from the following
relation:

ln(1 + ξα0 ) = − ln
(
1− ξα0

1+ξα0

)
≥ ξα0

1+ξα0
. 2
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Remark 1 Note that the middle part of inequality (7.2) has a correct limit as α ↓ 0.
Indeed,

lim
α↓0

(
1 + αt

1+αξ
α
0 ln(1 + ξα0 )

)1/α
= exp

[
lim
α↓0

1
α ln

(
1 + αt

1+αξ
α
0 ln(1 + ξα0 )

)]
= 2t.

This is compatible with the variant of inequality (7.1) for α = 0, which is ξt ≥ 2ξt+1. 2
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