PARE

i

exrf o

pef PARD | PARE
i

b “

| o s sz Violence and Social Orders

OPERATIONS RESEARCH
AND ECONOMETRICS

CENTER FOR

Markov Chains

al Qegantaation s poeose!

NORR

Nomw
\
..

THE DEL INDUSTRIAL ECOROITIS =

NormanandThisse  MARKET STRUCTURE AND COMPETITION POLICK.

NORM |

N

NORMY norm

Morkov Processes

NORMAN ¢ 4 Learning Models

NORN

Maorkov Processes
NORMAN ¢ .4 Learning Models

NORM

worees  Computer-intensive Methodsfos Testl

NORE

i - Boyer
5 INVENTION, GROWTH,
Nordkos A NDWELFARE

NONY nowp [ NORD.

Introduction to Statistics
The Nonparametric Way

BETEE sousipls (eowg v suuaj 40

comaserE ooy ekt
)

tensor

SONEDULING

=

SNPAETIC OMOTTITON .m& ¥
S D TTECTIE SR F

Prices, Cycles, and Growth

Nesterov

HIKLIDD & Comwex Strsstpess cad Economic Theory

2019/23

»)

i
Inexact basic
methods

D
Yur

nfroduction 1o sefs and mappindSH
Smng—- eCOoNo S

“n

b

SO o Mk
wd



CORE

Voie du Roman Pays 34, L1.03.01

B-1348 Louvain-la-Neuve

Tel (3210) 47 43 04

Email: immag-library@uclouvain.be
https://uclouvain.be/en/research-institutes/

lidam/core/discussion-papers.html


mailto:immaq-library%40uclouvain.be?subject=
https://uclouvain.be/en/research-institutes/lidam/core/reprints.html
https://uclouvain.be/en/research-institutes/lidam/core/reprints.html

CORE DISCUSSION PAPER
2019/23

Inexact Basic Tensor Methods

Yurii Nesterov *

November 26, 2019

Abstract

In this paper we analyze the Basic Tensor Methods, which use approximate solutions

of the auxiliary problems. The quality of this solution is described by the residual in
pt+1
the function value, which must be proportional to € , where p > 1 is the order of the

method and € is the desired accuracy in the main optimization problem. We analyze
in details the auxiliary schemes for the third- and second-order tensor methods. The
auxiliary problems for the third-order scheme can be solved very efficiently by a linearly
convergent gradient-type method with a preconditioner. The most expensive operation
in this process is a preliminary factorization of the Hessian of the objective function. For
solving the auxiliary problem for the second order scheme, we suggest two variants of the
Fast Gradient Methods with restart, which converge as O(k—lﬁ), where k is the iteration
counter. Finally, we present the results of the preliminary computational experiments.

Keywords: high-order methods, tensor methods, complexity bounds, convex optimiza-
tion.
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1 Introduction

Motivation. Development of the theory of Tensor Methods in the last years created
an additional motivation for the research on the efficient procedures for solving the cor-
responding auxiliary problems. Indeed, without this technique, all result on the faster
convergence of the high-order methods remain only theoretical achievements. Starting
from the paper [2], in several articles [3, 4, 5, 6, 9] the authors analyzed the possibility
of using points satisfying an approximate first-order optimality condition. However, it is
not easy to analyze the complexity of computing such points by the auxiliary optimiza-
tion schemes. This is the reason why we use in this paper a more traditional measure of
inaccuracy, defined by the residual in the function value.

Indeed, this measure is standard in the theory of Convex Optimization. There exist a
family of Fast Gradient Methods, which allow to solve the auxiliary problems much faster
and with worst-case complexity guarantees. In this paper in Section 2 we start from de-
riving the natural conditions on the accuracy of the solution of the auxiliary problems,
acceptable for the Basic Tensor Method. This accuracy is naturally related to the desired
accuracy of the main optimization problem. After that, in Section 3 we analyze the com-
plexity of the auxiliary problem for the third-order Tensor Method. We show that the
auxiliary problem is this case can be solved very efficiently by a simple gradient method
based on relative smoothness condition [1, 8]. The most expensive operation in its imple-
mentation is the matrix factorization, which has to be done only one, in the beginning
of the auxiliary minimization process. Moreover, we show that this scheme admits a reli-
able stopping criterion, which properly describes the quality of the approximate solution.
Thus, we show that the computational cost of implementing the third-order methods is
essentially the same as that of the second-order schemes based on matrix factorization.

In the next Section 4 we analyze the complexity of the auxiliary problem in the reg-
ularized second-order scheme. We show that the objective function in these problems,
which is the sum of a quadratic function and the cubic term, can be minimized very

efficiently by the Fast Gradient Methods with restarts. The complexity of this auxiliary

1
§1/6

have good chance to compete with the existing technique for the second-order method.
Our approach may look similar to the developments in Section 6 of [16]. However, our
scheme has no hidden parameters and it can be implemented directly.

Further, in Section 5, we describe another variant of the Fast Gradient Method with

flexible restart, which can be applied to the auxiliary problem for the second-order meth-

1
§1/6

present the preliminary computational results, which confirm our theoretical conclusions.

optimization problem is O ( ), where 0 is the target accuracy. Thus, this approach

ods. It has the same worst-case complexity bound O Finally, in Section 6 we

Notation and generalities. In what follows, we denote by E a finite-dimensional real
vector space, and by E* its dual space, composed by all linear functions on E. The value
of the linear function s € E* at point « € E is denoted by (s,z). The most important
example of linear function is the gradient V f(x) of the differentiable function f(-) at point
x € E. The Hessian V2 f(z) can be seen as a self-adjoint linear operator from E to E*.
Let us fix a positive definite linear operator B : E — E*. Then we can introduce in



the primal and dual spaces the conjugate Euclidean norms:
|zl = (Bz,x)'/? z€E, |gl. = (¢9,B'g)"/? g €E".

In this paper, we work only with Euclidean norms defined by the above relations.

Recall that function F'(-) is called uniformly conver of degree q > 2 if for any z and
y € dom F' we have

Fy) > F(@)+ {9,y —2) + 2z -yl (1.1)
where o, is a positive parameter and g, is an arbitrary vector from subdifferential 0F (z).

Minimizing both parts of inequality (1.1) in y € dom F', we get

in F(y) > F in { ~rllge . + 211}
omin Fly) = F(e)+minq—rlgell. + 3

(1.2)

q

= F(z) - W gzll47"

For p-times continuously differentiable function f(-), p > 1, with open convex domain
dom f C E we can introduce its pth directional derivative at point z € dom f along
directions hi, ..., h, and denote it by

DP f(z)[h1, ..., hy)

If h; = h for all ¢ = 1,...,p, we use a shorter notation DP f(x)[h]P. The norm of this
derivative is defined in the usual way:

[1DPf(z)| = max {|DPf(z)[h1,... 0]l : [[hil| <1,i=1,....p}

Loeoip
= max{|D?f(z)[h]"| : [lh]| <1}.

Similarly, the Lipschitz condition for the pth derivative has the following sense:

1D7f(x) = DPf ()| max {[DPf () B — DPf ()[R = (2] < 1)

< Ly(Pllz—yll, =,y €domf.

2 Inexact Basic Tensor Methods
In this paper, we consider a convex optimization problem in the following composite form:

_min {F(x) = f(x) + (z)}, (2.1)

where f(-) is a smooth convex function and ¥(-) is a closed convex function such that

dom ¥ C int (dom f).



Let us assume that the problem (2.1) is solvable and denote by z* € dom ¥ one of its
optimal solutions, Fj &f F(z*).

We assume that f(-) is p-times continuously differentiable (p > 1) and its p-th deriva-
tive satisfies Lipschitz condition:

IDPf(y) — DPf(2)|| < Lp(f)llz —yll, z,y € dom . (2.2)

It is well known (e.g. [15]) that this condition implies the following bound:

F@) ~ fas@) < Glplly — 27", Z.y€dom},

def p (23)
Froly) S hDH @y =l
where H > L,(f). On the other hand, if
H > pLy(f), (2.4)

then function
def
Vo (y) = fap) + gimlly — zlP*

is convex (see Theorem 1 in [12]). Therefore, for generating test points in the minimization
methods for problem (2.1) we can use solution of the following auxiliary problem:

. def
min {Fr (@) (@) + (@)} (2.5)
rxedom ¥

Our main assumption is as follows.
Assumption 1 Function ¥(-) is simple enough for having problem (2.5) tractable.

However, even with this assumption, usually we cannot compute an exact solution of
problem (2.5) in a closed form (unless, may be, for p = 1). This is the reason why we
need to describe somehow the quality of the approximate solutions.

Definition 1 Let 6 > 0 be a measure of inaccuracy in problem (2.5) and T € dom W.
Denote by T = Tsp, g (T) any point in dom V¥ satisfying the following inequality:

Fepu(T) < min\P Fzpu(xz)+6. (2.6)

z€dom
We refer to the point Ty, p(T) as to result of Inexact Tensor Step of degree p from the
point .

Let us choose a starting point o € dom V. We assume that the level sets of the
objective function in problem (2.1) are compact:

Ri(wy) xergggqu{”x—ﬂ:*”: F(z) gF(xo)} < +o0. (2.7)
Denote
Cpr(w0) = Z%(Lp(f)H‘I)Rﬁy'?“(fm)- (2.8)

Our Basic Tensor Method consists of the Preliminary Step and the Iteration Process. The
goal of the Preliminary Step is to compute an appropriate starting point for the Iteration
Process.



Lemma 1 Let § < £5Cp (o). Then

Frop i (Tspu(wo)) — F* < Cpu(zo). (2.9)

Proof:
Indeed, for T' = T, g (o) we have

(2.6) "

Froput(T) < 8+ min {fop(@) + U(a) + Gl llz — 2o}
(2.3)
p(H)+H . p+1}
< o+ amin (@) + S5 o — ol

< 04 Pt U ge - gt

(2.7)

< Fi4 0+ ==Cpu)(x0) < Fi+ Cp (o). O

p+1

Thus, after one Inexact Tensor Step, the residuals in the function value do not depend
anymore on the size of derivatives of degree smaller than p + 1.
For analyzing the Iteration Process, we need the following result.

Lemma 2 Let T € domV and
F(z) < min{F(zo), Fsx + Cpu(zo)}. (2.10)

Then for T' = Ts , g (Z) we have

Frpu(T) < F(z)-F5 [M} ’ (F(z) — F,) + 6. (2.11)

Proof:
Indeed, for T' = T}, g (Z) we have

(2.6)
Fopa(T) < 0+ min {fap(@) + W) + iy le — 27 |
(2.3)
< 5+ 0I<no%21 {F(SE) + L(;(;il)' |z —z||Pt: z=az* + (1 - a)f}
@n : =\ o Lo()+H p+1 pp+1
< 0+ o2un, {aF* +(1—a)F(z)+ “Lrr @R (330)}

= 0+ min {aF* + (1 - )F (@) + art'c, H(xg)}

1
The optimal solution in the latter optimization problem is o* = [g(w)fF*} P<1 It

remains to substitute it in the objective function. O



Now we are ready to analyze the following Inexact Basic Tensor Method.

Initialization. Choose positive parameters § and H.

Preliminary Step. Compute Ty = Ty, ;(z0) with 6 < 25 Cp i (20).

Set 1 = argmin{F(x) : x € {xo,To}}. (2.12)

Iteration k > 1. Compute zy41 = Tsp m(2k).

Denote by € > 0 the desired accuracy of the approximate solution of problem (2.1).

Theorem 1 Let sequence {xk}fill be generated by Inexact Basic Tensor Method with

6 Lt € (2.13)
2(p+1)C,/f (x0)
and H > pLy(f). Assume also that
Flag)—F,>¢, k=1,...,T+1 (2.14)
Then for all k =1,...,T we have
F(xr) < min{F(zg), Fx + Cp u(x0)}, (2.15)
1
F(xp)—F« | P
Flrp) < Flaw) - 55 [c(p,’f{)(xo) } " (F(xy) — Fy). (2.16)
Moreover,
Flary) - F. < leslao) (2.17)
EGE '
Proof:

Let us prove the relations (2.15) and (2.16) by induction. Since H > L,(f), we have

(2.9)
F(Ty) < Frypu(To) < Fi+ Cpu(wo).

Hence, in view of the choice of the point x1, condition (2.15) is satisfied for k£ = 0.
Assume it is satisfied for some k£ > 0. Then, by Lemma 2 we have

(2.3) (2.11) e 1E
Flary) < Fopa(o) S Flay) - 27 [B2E ] (Fay) - B+
(2.13) 1 ptl
_ p_ |E@y)-F P _ P
< Flo) -5 [CP,H(a:o)] (Flaw) = F) + 2(p+1)C,/h (o) ¢’
(2.14) 1

< F(ag) — F@k)—F*} " (F(ay) — F).

p
2(p+1) [ Chp,u(z0)

5



Hence, F(z4+1) < F(x) and we see that inequality (2.15) is valid for xpq.
Thus, we have proved that inequalities (2.15) and (2.16) are valid for al k =1,...,T.

. Fleg)-F. 219 _
Denoting now &, = #(:Bo)* < 1, we can rewrite (2.16) as follows:
P,

ptl
§e—&+1 = gohpé’ » k=1L....T. (2.18)
Since function W is convex for 7 > —1, we have
1
(147)1/p 2 1-3 (2.19)
Hence )
&’ 1 1 Gt
1 _ 1 —
alh (155 r =
Consequently,
T B O i/p_l > 1 Gbra (2;8) 1
ar-qr ~arl\dr ) Fgr e 2w
Summing up these inequalities for k =1,...,T, we get
1 1 T (2.15) T
ar = grtmm = 1Tmm
And this is inequality (2.17). O

Corollary 1 Condition (2.14) cannot remain valid more than for

2p +1) [Cpmo)]; (2.20)

€

iterations of method (2.12).

Surprisingly enough, condition (2.13) shows that the high-order methods require less
accurate solutions of the auxiliary problem (2.5). Thus, for the first-order methods (p = 1)
we need

§ = Of(e).

The second-order methods require
i = 0(?),
and for the third-order schemes it is enough to have
§ = O(e*3).

In the next two sections, for the last two cases, we are going to discuss the iteration
complexity of the specific auxiliary methods computing the points T, ().

6



3 Inexact Third-Order Method

In this section, we consider a third-order method for solving the following problem

. def
i {F() % () + 0()}, (3.1)

where function f(-) is convex and its third derivative satisfies Lipschitz condition

ID? f(x) = D*f(y)|l < La(f)|z —yll, .y € E. (3-2)

Function ¥(-) in this problem is a simple closed convex function with dom ¥ C dom f.

We assume that the problem (3.1) is solvable and denote by x* one of its optimal solutions

with F, % F(z).

As it was shown in Section 2, problem (3.1) can be solved by Inexact Tensor Method
(2.12) provided that we are able to compute approximate solutions of the problem (2.5)
satisfying the condition (2.6). In our case,

ezau(y) = [(@)+(Vf(@),y—2)+3(Vif(x)y—2),y—z)
+ED3f(@)y — 2P + Ely — z||*.

As it was suggested in [12], we are going to solve this problem using the framework of
relative smoothness (see [1, 8]). However, for our goals we need to provide its complexity
analysis with more details.

Let us consider a minimization problem, which is more general than the problem (2.5):

0. = min {0() ¥ p@)+ (@)} = O@), 27 edom¥,  (33)
redom ¥

where ¢(-) is a continuously differentiable convex function, and ¥(-) is a simple closed

convex function with dom ¥ C dom . In our framework, we also need a simple scaling

function d(-) with dom d O dom W, which is strictly convex and continuously differentiable.

Then, we can define the Bregman distance between two points x and y from dom d:

Ba(z,y) = d(y)—d(x) — (Vd(z),y —z) > 0.

We assume that the smooth part of the objective function in problem (3.3) satisfies the
following relative smoothness conditions:

peBa(r,y) < Bo(z,y) = oy) — p(x) — (Vo(z),y — ) -
3.
< Lgoﬁd(xvy)’ T,y € dOHl‘ll,

where L, > p, > 0. Denote v, = Z—‘: <1.
The right-hand side of inequality (3.4) suggests the following minimization scheme.

Choose zg € dom V. For k > 0 iterate:

(3.5)

Tpi1 = arg xefélggqj {p(xr) + (Vo(ar),x — xk) + Lofa(or, ) + ¥(x)} .




Note that the next point in this method satisfies the following variational principle: for
all x € dom ¥ we have

(Vo(er) + Lp(Vd(zrt1) = Vd(zg)), 2 — 2p1) + ¥(y) > W(zpg). (3.6)

For analyzing performance of method (3.5), we need to introduce the following aggre-
gated objects.

e The average value of the objective function:

T
Ir = sy X0 ).

e The aggregated model of the objective function:

@) = i T (L= () + (Vplan),o — o) + g Bular, o)

+U(x).
Note that in view of the first inequality in (3.4), we have
lr(x) < ®(z), z€domV. (3.7)
In the above definitions, we extend our notation onto the case v = 0 in a continuous way:
e <o

Let us prove the following result.

Lemma 3 For any T > 1 we have:
i&)T +fa(zr,z) < (=) Balwo, ) + - br(x), o€ domW. (3.8)

Proof:
Note that for any & > 0 we have:

Ba(trir,2) = Ba(zr, 2) = d(@) = d(zpe1) = (Vd(@r11), 7 = Thi1)
—d(z) + d(zg) + (Vd(zr),  — 1)
= (Vd(zx) = Vd(@pt1), © = Tpp1)
—d(zpy1) + d(xr) + (Vd(zp), Tpy1 — k)

= (Vd(z) — Vd(xg11), 2 — Tk41) — Ba(Tk, Tht1)-



Therefore,
(3.6) 1
Ba(wrr, ) < Balwe, ) + - [(Ve(er), © — wppr) + V() — W(zpr1)] — Ba(2r, Tri1)

= By(zg, ) + ng, [o(zr) + (Vo(ag),z — zx) + ¥ (2)]

Llw [p(xr) + (Vo(zr), Ter1 — 2k) + LpBa(Tr, Thr1) + Y(Try1)]

(3.4)

IN

Ba(zr, @) + 75 [o(an) + (Ve(ar), @ — xp) + V()] — 5@ (w411
= (1 —=1y)Ba(wg, ) — L%i)(wkﬂ)

+ﬁ[g0(xk) + (Vo(zr), r — k) + peBa(zr, ) + ¥(z)].

Summing up these inequalities for k = 0,...,7 — 1, we get the relation (3.8). O

Lemma 3 has two important consequences. First of all, we can estimate the rate of
convergence of method (3.5).

Corollary 2 For any T > 1 we have
Dy — @, < (1 —7,)"LyBa(xo, z*). (3.9)

Proof:
Indeed, it is enough to apply inequalities (3.8) and (3.7) to x = z*. O

Another important consequence of inequality (3.8) is the verifiable stopping criterion
for method (3.5). Assume that we know an upper bound Dy for the size of the solution:

Ba(wo,z*) < Do. (3.10)
Then,
1 & 38 ; T 1
£dr < min{(1= ) Bulwo, ) + £ tr(@) : falzo,a) < Do}
< (1—7)" Do+ L%o min {¢r(x) : Ba(zo,x) < Do}
S T 1 *
< (IT=7)" Do+ 7 ®(z%).
Thus,

dp— 0, < Op— min{lr(x) : Ba(wo,x) < Do} < (1—,)" Do. (3.11)
Note that the lower bound for the optimal value ®,, the estimate

tp = min{lr(z) : Ba(o,x) < Do}, (3.12)

9



can be easily computed. In order to satisfy the stopping criterion (3.11) with accuracy
d > 0, it is sufficient to ensure the inequality

(1—7¢)TD0 < G_V‘PTDO < 6.

Thus, we need
L

ﬁm% (3.13)
iterations at most.

Let us show how this machinery works for Inexact Basic Tensor Method of degree
three. For simplicity, we consider the case U(z) = 0, z € E. For computing the result
of Inexact Tensor Step from a point Z € E, we need to solve the auxiliary problem (3.3)
with

O(x) = ¢@) C pagnle).

In accordance to Section 5 of [12], a natural scaling function for this problem is as follows:

doz(z) = 3(1=1)(V2f(2)(x—7),0—z) + TP LWz 74, (3.14)

Vid,: = Vip(z) = %Vzdﬂi(m). z el

Let us choose 7 = 2 (this corresponds to H = 12L3(f)). Then pu, = 1, L, = 3, and
Yo = % Thus, with this choice, the method (3.5) has global linear rate of convergence
dependent only on the absolute constant.
At the same time, since function ps(z) = |z||* is uniformly convex with constant
o4 = % (see, for example, Lemma 4 in [11]), we have
IVf@)l 12 = 2% = (Vf(2),2-3%) = (Ve(@),7 -7 > oz - 2",

where z* = arg miIIE1 ¢z,3,H(x). This means that we can choose
TEe

Dy = (4[|IVf(@)[)3 (3.15)

for computing by (3.12) the lower estimate £}, of the optimal function value. It can be
used in the stopping criterion of the Inexact Tensor Method:

Oy — L5 < 0. (3.16)

In accordance to (3.11), this inequality will be satisfied in 31n % iterations at most.

It remains to discuss the complexity of one iteration of the process (3.5) with scaling
function (3.14). Without loss of generality, we can assume that z = 0. And let E = R"
with B = I,,, the identity matrix. In this case, V2f(0) is a symmetric n x n-matrix, which
can be factorized as follows:

V2f(0) = UTUT,

10



where U € R™*" UUT = I,, and T € R™" is a symmetric tri-diagonal matrix. Intro-
ducing new variables y = UT z, we can rewrite our objective function as follows:

plx) = (Vf(0),2) + 3(V>f(0),2,2) + §D*F(0)[z]® + 33 |l2lly,

def

= {95:9) + 3(Ty,9) + £D3FO) U + Kllylily, = <€),

where g, = ULV £(0). Similarly, our scaling function (3.14) can be written in the following
form:

d-(y) = 3(1=1)(Ty,y) + =Dty )4,

This transformation can be done by the standard Linear Algebra technique in O(n?)
operations. Now, we can apply method (3.5) with ¥(-) = 0 for minimizing function &(y)
using the scaling function d,(-). At each iteration of this scheme, the most expensive
operations are as follows.

e Computation of the gradient
VEly) = gy +Ty+ 30D FO)U? + £yl %y

This computation needs O(n?) operations plus the operations necessary for comput-
ing the vector D3 f(0)[h]? € R™ with h € R™. The second computation usually is not
very expensive. Indeed, in many situations it can be arranged by the fast backward
differentiation which complexity is proportional to the complexity of computing the
function value f(z) (see, for example, [7]).

e Computation of the next point by solving the auxiliary optimization problem

min {(VE(yi) v = yi) + Loy, (-9}

where d,(y) = $(Ty,y) + %HyH‘é) with certain positive constants a and b. In view
of definition of the Bregmann distance, this problem is as follows:

min {{a1,0) + L (500,00 + Sl ) )

_ : a b 2 ) _ b2
= ;re%ll rgugc{(gk,y) + L, <2<Ty7y> + QTH?JH(2)> Lygr }v

where g = VE&(yr) — Ly (aTyy, + bHkaé)yk). Exchanging in this presentation mini-
mum and maximum, we come to the following univariate dual problem:

b2 1 -1
171}288( {—LLPZr — man + b'f‘In] gkagk>} )

which can be easily solved by any method for univariate convex minimization. Note
that the computational cost of the function values and the derivatives in this problem
is proportional to n.

Thus, we have seen that the computational cost of one iteration of the Inexact Tensor
Method is basically the same as that of the standard second-order schemes.

11



4 Inexact Second-Order Method

Let us study now the efficient implementations of the second-order methods for solving
the following minimization problem:

min (), (4.1)

where function f(-) is convex and its second derivative satisfies Lipschitz condition

IV2f (@) = V2l < La(f)lle —yll, @,y €E. (4.2)

As usual, we assume that the problem (4.1) is solvable and x* is one of its optimal solutions
with f, = f(z*).

Inexact Basic Tensor Method (2.12) becomes now an Inexact Newton Method with
Cubic Regularization. The efficiency of an exact version of this scheme was studied first
n [14]. In its inexact variant, we need to compute an approximate solution of problem
(2.5) with

Fopn(y) = f(@)+(Vf(@),y—2)+5(Vf@)y—2).y—2)+Fly—z> (43)

Let us show how this can be done by the first-order methods.
Let us consider the auxiliary minimization problem (2.5) in a more general form:

min {o(@) ® o(2) + (@) }, (44)

zedom

where ¢(-) is a continuously differentiable convex function, and (-) is a simple closed
convex function with domt C dom. The role of function (-) here is different from
the role of ¥(-) in (2.5). Since in (4.1) ¥(-) = 0, we use function ¥ (-) to model the
regularization term in the objective function (4.3).

Let us assume that the gradient of function ¢(-) is Lipschitz continuous:

IVeo(x) = Vel < Li(@)llz—yl, w,yedomi. (4.5)

For convex function, this condition is equivalent to the following inequality (see, for ex-
ample, Section 2.1.1 in [13]):

(Vo) = Vo), o —y) > 15Vel@) = Vew)llZ, 2,y € domy. (4.6)

On the other hand, we assume that function ¢ (-) is subdifferentiable and uniformly
convez of degree p + 1 with p > 1:

(y) = @)+ {geyy — ) + L lly — 2P, 2,y € domy, (4.7)

where g, € 0y(z) and the parameter of uniform convezity o, is positive.

Note that usually the assumptions on smoothness and uniform convexity are intro-
duced for the whole objective function ®(-). However, we will see that the separation of
these assumptions allows us to construct much faster algorithms. It seems that in the
first time such a separation was studied in [10] for a strongly convex composite part ().
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Let us estimate efficiency of Composite Gradient Method as applied to problem (4.4).

Choose g € dom . For k > 0 iterate:

(4.8)
shr = ang_mwin {plon) + (Vp(on),z = x) + $Hle — zal + p()}.
Lemma 4 Let H > Li(f). Then
O(w) — P(rs1) > opll® (k) 12, (4.9)
where ' (xp11) = Vo(xg1) — Vo(zr) — HB(xp11 — x1) € 0P()41).
Proof:

The first-order optimality condition for the auxiliary minimization problem in (4.8) is as
follows:

(Vo(zk) + HB(xgy1 — ), @ — 2pp1) + () > Y(xk41), Vo € domap. (4.10)

This means that the vector g, = —(V(x)+H B(zg+1—xk)) belongs to the subdifferential
OY(xgs1). At the same time,

(2.3)
(zp1) < plar) + (Vo(ar) enpr — o) + Fllare — 2l + o(2r4a)

(4.10)
< (@) + (Vo(@r), Thar — o) + T llwpsr — zil)?

+(Vo(rr) + HB(Tr41 — k), T — Try1) + (k)
= ®(xg) — gH|zppr — 2l
Let us define now ®'(zx11) = Vo(xgi1) + gr € 0P(xp11). Note that
19" (@ )I1F = [Velzrir) — Veo(ar) — HB(zp41 — ) |?
= [IVo(zrs1) = Veolzp) |2 = 2H(V(wpi1) — Veo(ar), e — ap) + H? ||2pen — ]

(4.6)
< (1= L) 1V(re) = Vo)l + H |wgs — anl? < B2 lap — ol

Substituting this inequality in the previous one, we get inequality (4.9). O

Now we can prove the rate of convergence of the method (4.8).

Theorem 2 Let H > Lyi(p). Then

(4.11)

|
—_
QI

Do)~ @ < [(1+2) (B + (@(wo) — ©.)%)

_2 I+a\ «
def (1 547 (p42 —p-1
where By g = (2H o1\ pra and o = S

13



Proof:
In view of inequality (4.9), we have:

(12) s

1 p+2 » Pl
Ban) - Do) S M(Ma,sﬂ@mkﬂ)—@*))

1 P% p+2 Ita 1+a
= 37 Tpt1 (m) (®(2ht1) — D),

where o = 1% —-1= fﬁ. Denoting now &, = By g (®(xy) — ®.), we get

& —&1 = G117, k>0

Hence, in view of Lemma 11,

@)~ 0. < Byji |1+ 1) (L4 By (@(x) — €.)%) 1];

And this is inequality (4.11). O

Let us apply the result of Theorem 2 to the objective function (4.3). In this case,

H _
vy) = Fly -zl
Hence, p =2 and o = ;%} = % Note that for this choice of the composite term we have
_ H (-1l _ @#
93 = 7 (5) — 4

(see, for example, Lemma 4 in [11]). Therefore,

3
2
1 (H\3 (4)4/3 2

Bow = <2H (7)° (3) > = §in

Thus, the rate of convergence of the Composite Gradient Method (4.8) is of the order
O (3)

This is much faster than we could expect from a non-accelerated gradient scheme. Recall
that the usual rate of convergence of such a method, which does not take into account
the properties of composite term, is of the order O(3) (see [10]).

Having in mind this encouraging observation, let us look at the performance of the
Composite Fast Gradient Method as applied to problem (4.4). For the convenience of

14



readers, let us present here a variant of this method with predefined number of iterations.

Input: Starting point x¢g € dom and number of steps N > 1.

Define Qq(z) = 3|z — zo[|* and set Ag = 0, vy = zo.

For k=0,...,N—1do

2
Ay 1

agt1+Ax — Hg'

a) Choose Hy, > 0 and find a4 from the equation

b) Set Ak+1 = Ak + agy1, T = Z}]:_ll, and Yy = (1 — Tk)l‘k + TRV (4‘12)

c) Update Qpy1(x) = Q(z) + apr1lo(ye) + (Vo(yr), © — yr) + ¥ (x)].

d) Compute vgy; = arg min Qgyq(x) and zpr1 = (1 — 7))k + TRVE+1-
r€dom v

e) Accept Ty if (pr1) < @) + (Veo(yr), @ — yr) + B ||loprr — a2

Output: Point T'(zg, N) © N

In view of Rule ¢) of method (4.12), it is easy to see that for all z € dom v we have
Q(z) < Lz —20]® + Ap®(2). (4.13)
On the other hand, we can prove the following statement.

Lemma 5 Let the acceptance condition be satisfied at all iterations of method (4.12).
Then for all k =0,..., N we have

Ap®(z) < Qp = xelélégwﬁk(x) (4.14)

Proof:
Note that all functions Q(-) formed by this method are strongly convex with convexity
parameter one. Since Ag = 0, condition is trivial for £ = 0. Let us assume that it is

15



satisfied for some k > 0. Then
Devr = Ue(verr) +aprale(ye) + (Vo(ur), vir1 — yk) + (V1))

> O+ o — vell® + argae(ye) + (Vo) v — Yi) + ¥ (0p41)]

> Apo(zi) + apa[e(r) + (VoWr), vt — Ur)] + ok — vel?
+ AR (wr) + arg 19 (vig1)
> Appre(yr) + (Ve(yr), ans1(ves1 — ye) + Ae(ze — ye)) + 5 llvkr — vil|?
+Ap 1Y (Tp11)
= Apn [sﬁ(yk) + (Vo(yr)s Trer1 — y) + 2| wpsr — yel?| + App1¥(@r41)
(e)
2 Ak+1q)(l'k+1). OdJ

Finally, we need to estimate the rate of growth of coefficients Ay.

Lemma 6 Let all Hy in the method (4.12) satisfy condition
Hk < ’}/Ll(go), I{JZO,...,N—L (415)

Then for all k =0,..., N we have

k(k+2
Ay > P (4.16)

Proof:
Indeed, for k = 0 the inequality (4.16) is valid. Assume that it is valid for some k& > 0.
Then, in view of the Rule a) of the method, we have

(4.15)
Therefore,
. E(k+2)+2(k+2) (k+1)(k+3)
Aprr = Avtan 2 TELG 2 Thhe) 0 O

In method (4.12), it is possible to introduce an internal search procedure for updating
the parameters Hy, which estimate the actual Lipschitz constant L;(y) in (4.5). For prac-
tical efficiency of this method, it is important to keep Hj as small as possible. However,
for the sake of simplicity, in what follows we assume that the constant L;(y) is known
and we take

H, = Li(¢), k=0,...,N—1. (4.17)

In this case, in view of inequality (2.3) with p = 1, the acceptance condition is satisfied.
Moreover, we have

k(k+2
Ay > (4.18)
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Consequently, the estimates (4.13) and (4.14) give us the following rate of convergence:

Bag) — &, < Hal@lso—e2 gy

o N. (4.19)

e
We can summarize our observations in the following statement.

Theorem 3 Let T' = T(xo, N) be the output of the process (4.12) with parameters Hy,
defined by (4.17). Then

2

B(T) — @ < midd | B (B(wg) — )| (4.20)

Proof:
Indeed, since the composite term of the objective function ®(-) in problem (4.4) is uni-
formly convex, we have

‘;Tf |lzo — z*||PT1 < ®(xp) — Ps.

It remains to use inequality (4.19). O

Let us consider now the following upper-level process for solving the problem (2.5).

_ p—1
Recall that o« = ol

Input: Point zg € dom and parameter » > 1.

For t > 0 iterate:

(4.21)
1. Define N; = [\/1 + 20t — 11 and compute 411 = T(x¢, Ny).
2. Choose g1 = argmin{®(z) : = € {xo,..., 2, Tt+1}}-
€T
Performance of this method is described by the following statement.
Lemma 7 Let tg > 0 be the first integer such that
, o1
1 +1 71|
sto > (z0)=F, [2L1(g0)% <£p+1)p :| . (4.22)
Then for all t > tg we have
Bla) =@ < (L) (@(0) - .). (4.23)

Proof:
In view of Rule 2 in method (4.21), for ¢ = ¢o, inequality (4.23) is trivial. Assume it is
valid for some ¢ > ty. Note that the choice of N; in method (4.21) ensures the following
inequality:

Nt(Nt + 2) Z %at. (424)
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Therefore,

(4.20) 2
D(xe1) — O, < %ﬁg)[fﬁ(@(a%)—@*)} 1

(429 51 [M(cb(xt) - q)*)} ﬁ

> T
x Op+1

42 ani(p) [0 (1) (@(ag) - @)}pil

= ot Opt1 >

2

= Bl [ 2 (@) - 0]

to Op+1

IN

_2_ _2_
21e) [ 2L (0(z) — @,)] 7 ((w0) — @) [ZLI%W (1)

= ()" (B (o) — D). O

After K iterations of the procedure (4.21), let us estimate the total number Mg of
the low-level steps, which is equal to the number of calls of oracle of problem (4.4).
Consider first the situation ¢tg > 0. Note that at each iteration ¢ > 0 we have

Ny, < V140t = 323 t\/1 + ot < %%( + %*at) = %%t—l—%%_%t.

Therefore,
K K K o
@ ay S(K+1) _
Mg = SN < 332t 4+ 3 st < L 22 =1
=0 =0 =0 2(1-%"2) x2-1
_ %%72 %%(K+1)
- o o
2(»x2 1) %2 -1

(4.23) _
Ife<P(axg)— P < (%)K o (®(wo) — u), then »K < L(®(zg) — @,)5M0. Hence,

=3
2

My < 22724 22 00 [1(g(xg) - )]

— 2(x2-1) »2 -1

On the other hand, since tg > 0, we have

1

y 4L

_ 41 \p+1 | “
-1 < @7@0) |:2L1() (5P+I>P :| .

Hence,

a a 2 12
72 —2 179 _=® p+1 \ p+1
Mg < 2(%%71)+[6]2%% [2L1() (ap+1) } .

For the second case, we have tg = 0 if and only if

2 7% g1
1 > @(x())[%() (5;11)%1} & P(xg) — 0 > [2L1(¢)%(5p++11)p+1] '
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Mk < 4[4

Thus, we have proved the following theorem.
Theorem 4 If the point zx, K > 1, in the process (4.21) satisfies inequality
@(IEK) -®, > )

then the total number My of the lower-level steps in this method cannot exceed the fol-
lowing bound:

} (w2

=4, (4.26)

2% —1) el T Opi1

) ) 2
Mg < 2222 4 [1]7 ‘max{@(m)—q)*’[QLI(@)”(My“}

The optimal value of parameter » is defined by the equation

The optimal value (4.26) can be obtained by minimizing the factor for the maximum
in the estimate (4.25). Thus, in view of the rules of the process (4.21), the choice

Ny = 21, t>0, (4.27)
is optimal. Indeed, since
V1+4t—1 < 28 <144 t>0,

then [v/1+ 4% — 1] = 2¢. The choice (4.27) corresponds to »2 = 2, and the estimate for
the total number of internal steps can be written now in the following form:

[e3

Mg < 4[% max {q)(xo) _ 0, [2[,1(@) (p-i—l)p?rl]i}z . (428)

Op+1

Let us point out the consequences of the estimate (4.25) for our main problem of
interest, the problem (4.4) with ®(y) = Fz 2 u(y) (see (4.3)). As we have already seen, in
this case

1
b = 27 azg’ o3 =

=z

Besides that, we have one more parameter in the complexity bound (4.25):

Ll((p) = )\maX(VZf(j))'
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With respect to these parameters, the bound (4.25) on the analytical complezxity of prob-
lem (4.4) is as follows:

o=

2
3

Mg < 4[1]° max {cp(;c) ~0.,2 2Li(p) (3) r}
(4.29)
4 max {o(e) - 0., 22HE )
Choosing now € = ®(zx) — P., we get the following relation:
Blag)— b, < (MAK)6max {cb(:z) ~ 3, 9‘2815;1’“”)} . (4.30)

To the best of our knowledge, this is the fastest sublinear rate of convergence known so
far in Convex Optimization. In certain situations, it looks even more attractive than the
linear rate. Recall that this complexity result corresponds to a first-order scheme (4.21)
as applied to the problem (4.4).

5 Flexible strategy for computing Newton Step

Despite to the attractive complexity bound (4.29), the computational strategy (4.21) is
very rigid and cannot adjust to the favorable properties of a particular optimization prob-
lem. In this section, we present a more flexible upper-level process, which is based on some
variant of the Fast Gradient Method (4.12). It is applied to the auxiliary minimization
problem in the following form:

i {00 o) v} v)  He s, 51
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where ¢(+) is a convex function with Lipschitz continuous gradient. The constant H > 0
is supposed to be known.

Method B(z, H, L)

Define Qo(z) = 3|z — £||%. Set A9 =0, x¢ = &, vo = &, and Ly = L.

kth iteration (k > 0).

1. Find the minimal i3 > 0, defining the following objects:
e bound Hj, = 2% L,
2
e root ax11 > 0 of the equation é:%alk)ﬂ = Hik,

e parameters A1 = Ag + agy1 and 73, = f‘z—i,

e points yr = (1 — 7 )xp + 7kvr and zy1 = (1 — 7))@k + THVEL1
with vp1 = argmin {Qx(2) + aps1le(ye) + (Velyr), 2 —ye) + 0@} | (5.9

which ensure p(zx11) < @(yk) + (Veo(yr),  — yi) + G loner — 2l

2. Update Ly = %Hk and

Qpr1(7) = Q@) + agy1(e(yr) + (Vo(ur),  — yx) + ()]

Stopping criterion: F (%) — F(xp) > - (2)2 for some k' > 1.

— a3 \H
k/
Output: Point B; p 1, def xys, constant Ly 7,7, = Ly, and linear function
k'—1
Ui (z) = Alk, Z%) air1[p(yi) + (Vo(vi), z — yi)].
1=
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We are going to use this scheme at the lower level of the following procedure.

Input: Point uy € E and parameters L < Ly (@), R > ||lug — z*].

Set Lo = I: and ro = R.
For t > 0 iterate:
1. Compute u¢+1 = By,,1,.H- (5.3)

2. Compute (1, = min{fu, 1, (2) + () = Iz — ] < 7}
3. Check stopping criterion ;41 def Flugpr) = lf <6

1
4. If it is not satisfied, set ry41 = (%5t+1) 3 and Liy1 = Ly, 1,,H-

The rate of convergence of this procedure is given by the following statement.

Lemma 8 For allt > 0 we have

Jue — 2" < 1o (5.4)
Therefore F(x*) > £f, t > 1. Moreover, for allt > 0 we have
6 < (1) ()T (Pluo) - R, (55)
and
Flug1) — Fe < 3(F(w)—F.), t>0. (5.6)
Proof:

For t = 0, inequality (5.4) is valid in view of the initial choice of the parameter R. Assume
it is valid for some t > 0. Since

‘gut,Lt,H("E) S QD(:L‘), ZCGE,

we have F'(z*) > £; | . Therefore, since function ¢(-) is uniformly convex, we have

7
Bl —a|® < Flupn) = F(a*) < 0p1= Flupn) =6, 1og = 157801

Thus, inequality (5.4) is valid for all ¢ > 0.
Note that using the same arguments as in Lemma 5, it is possible to prove that at the
last step k() of the procedure (5.2) used at t-th iteration of the method (5.3), we have

: 1 2
Plusr) < min{ozh—llo = wl + fup,(2) + (2)

< min {%Hx—uﬂp + by ne m(x) + ()}

llz—uel|<re

r? *

t
S 2Ak’(t) + gutthvH.
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For ¢t > 1 this means that

=

2 [125\3 1 12:\2 1(H\3
Oy1 < 2A;:/(t) - (F(st)?’ 2410 1) = (F(St)g 'E(ﬁ)s (F'(ue) — F(uer1))3,

where the last inequality is just the termination criterion of method(5.2). Thus, for ¢t > 1,
we come to the following inequality:

2
3

6t+1 < %(515 (F(Ut) — F*)% < %(575

For t = 0, by the stopping criterion in (5.2), we have

ol

2 2 2
0 S muy < % (5)° (Flu) - B

Hence, inequality (5.5) is proved for all ¢ > 0.
Similarly, for the function values with ¢ > 0, we have

e — 1 (12 B
Flug) — F < % < m(ﬁ(F(ut)_F*))s

2 2 1
< 5 (F(F(w) = F2))° (15)° (F(ur) = F(ugga))s
< S(F(u) — Fy).
And this is inequality (5.6). O
Let us estimate now the total amount of iterations of the lower-level procedure (5.2)

in the method (5.3). For this, we need the following lemma.

Lemma 9 Any iteration of the method (5.2) satisfying the inequality

F@#) - F > (%) (5.7)

satisfies also the stopping criterion of this scheme.

Proof:
Indeed, if inequality (5.7) is valid, then

N 2
Fla) = F < < ok () - )

(5.7)
<

Therefore,



And this is the stopping criterion in the method (5.2). O

Now we can bound from above the number of iterations &/(¢). Indeed, in the method
(5.2) we can guarantee that

Ly < Li(p), Hp < 2Li(p), k=>0.

Therefore, in view of Lemma 6, we can guarantee the following growth of the coefficients
Ay

k(k+2)
Ak > SLi(p)’ k > 0.

In accordance to the result of Lemma 9, this gives us the following bound on the number
of steps of method (5.2):

1
Et) < C (W) Ct>0, (5.8)

1
where C1 = /8L1(yp) (1—13) 3. Let us give an upper bound for the number of the lower-level
iterations, which are necessary for solving problem (5.1) up to accuracy 6 > 0.

Lemma 10 Let for some T > 1 we have F(ur) — Fy, > 6. Then

1/3 1
My = Zk/(t) < gl/ef’i [%]6'

Proof:
Indeed, in view of inequality (5.6), we have

F(u) —F, > 2T7%5, 0<t<T.

Therefore,

oY=

8 I 2 G 173 & 1y I 116 2
Mp S () <GB <aflt -

S

)

Thus, our scheme has the same worst-case complexity bound as (4.21). However, it
is much more flexible. This will be confirmed by preliminary computational experiments
presented in the next section.

N[

6 Preliminary computational experiments

In this section we discuss the results of the numerical experiments with Inexact Cubic
Newton Method, which uses at each iteration an approximate solution of the problem
(5.1) with ¢(x) = fz2(x) computed by the method (5.3). Our objective functions have
the following structure:

f“(;[j) = uh’l (% e(<ai»x>—bi)/l‘) ,

=1
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where p is a positive parameter. For minimization problem
min f,(x
xeR? fu( )
we choose a starting point xgclose enough to the solution z* of our problem:
|lup — z*|| = 1.

Coefficients of the vectors a; € R™ are randomly generated with uniform density in interval
[—1,1].

In our experiments, the accuracy parameter ¢ for the auxiliary minimization problem
(5.1) was chosen in accordance to the theoretical recommendation (2.13) with p = 2, where
the exact values of Lipschitz constant and the distance were replaced by some estimates,
obtained during the minimization process. This was the only heuristic rule in our tests.
All other elements were implemented exactly as they are described in the methods (2.12),
(5.2), and (5.3).

Let us look at the results of our testing for different values of desired accuracy and
dimension. In the first column we put dimension of the problem. The second column shows
the number of iterations of the Inexact Cubic Newton Method. Next column displays the
number of calls of oracle in the main minimization problem (6.1). Fourth column shows
the total number of iterations of the method (5.2) and next column shows the average
number of iterations for computing one Newton step. The last column show the total
computational time.

Table 1: ¢ = 1073, ;1 = 0.05

Dim | Iteration | NumFunc | FGM-Total | FGM-Average | Time(sec)
100 11 19 1200 63.2 0.38
200 16 27 2780 102.9 2.92
500 20 35 2468 70.5 14.75

1000 19 34 2838 83.5 66.8

Table 2: e = 1074, 4 =0.05

Dim | Iteration | NumFunc | FGM-Total | FGM-Average | Time(sec)
100 14 22 2743 124.7 0.83
200 22 34 8257 242.9 8.50
500 24 41 7337 178.9 43.39

1000 26 46 9429 204.9 22091

Table 3: ¢ = 107°, = 0.05

Dim | Iteration | NumFunc | FGM-Total | FGM-Average | Time(sec)
100 17 25 6994 279.7 2.03
200 30 48 30450 634.4 31.05
500 30 49 19010 387.9 112.06

1000 31 50 22036 440.7 515.44

As we can see from these tables, the Inexact Cubic Newton Method confirms its
reputation of a fast method. The number of iterations and the number of calls of oracle is
always small. The growth of the average number of the gradient steps is a little bit faster
that the theoretical predictions. This gives us a good motivation to continue the research
on the efficient termination criterions for the auxiliary processes.
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7 Appendix
Lemma 11 Let the sequence of positive numbers {& }+>0 satisfies the following condition:

&—&m > &I, t>0, (7.1)

where a € (0,1]. Then for any t > 0 we have

1
1 1o
“ s (1+a—t1n£(01+£8‘))1/a < [t+a) (v -] 2
1+«
Proof:
We are going to prove inequality
& < rayre 620, (7.3)

with certain a > 0. Clearly, this inequality is valid for ¢ = 0. Assume that it is valid for
some t > 0, but it is not valid for the next value. Then

(7.1) a
& £ &
(Fa)/a  ~  ([{Fa@in)/e (1 + 1+a8f+1)) :

Let us prove that, for a certain choice of a, this is impossible. Thus, we need to justify
the following inequality:

3 & £
(1+a(t£1))1/“ (1 + 1+a(0t+1)) 2 W

It can be rewritten as follows:

& o Ve
1+ (1) = (1 T m) :

Denoting 7 = we get inequality

1
14at?

i =1+ £ > (tan)e (7.4
which we want to ensure for all 7 € [0,1]. Since o € (0, 1], the right-hand side of this
inequality is convex in 7, and its left-hand side is concave in 7. For 7 = 0, inequality (7.4)
is trivial. So, we need to check only the case 7 = 1:

&'D[
L+

> (14a)Ye.
This is

1+a

l+a+e > (1+a)e
Hence, it is sufficient to ensure
1+aa

l+a+& > e

For this, it is enough to choose a = %7 In(1 + £F). Thus, we come to a contradiction,
which proves the first part of inequality (7.2). Its second part follows from the following
relation:

In(1+£8) = 441-%) > g o
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Remark 1 Note that the middle part of inequality (7.2) has a correct limit as a | 0.
Indeed,

. 1/« '
lim (1+ 2hegm+5) " = exp [2%;111 (1+ 25eg m(1 + gg))} _ ot

This is compatible with the variant of inequality (7.1) for a = 0, which is & > 2&41. O
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