

Tomato Fruit Development and Metabolism

- 2 Muriel Quinet^{1*}, Trinidad Angosto², Fernando J Yuste-Lisbona², Rémi Blanchard-Gros¹,
- 3 Servane Bigot¹, Juan-Pablo Martinez³, Stanley Lutts¹
- 4 ¹ Groupe de Recherche en Physiologie végétale, Earth and Life Institute, Université catholique de
- 5 Louvain, Louvain-la-Neuve, Belgium
- 6 ² Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería,
- 7 Almería, Spain

1

- 8 ³ Instituto de Investigaciones Agropecuarias (INIA La Cruz), La Cruz, Chile
- 9 Correspondence:
- 10 Pr. Muriel Quinet
- 11 muriel.quinet@uclouvain.be
- 12 Keywords: abiotic stress, fruit set, fruit ripening, genetic control, hormonal control, primary
- 13 metabolism, secondary metabolism, Solanum lycopersicum
- 14 Abstract
- 15 Tomato (Solanum lycopersicum L.) belongs to the Solanaceae family and is the second most important
- fruit or vegetable crop next to potato (S. tuberosum L.). It is cultivated for fresh fruit and processed
- 17 products. Tomatoes contains many health-promoting compounds including vitamins, carotenoids, and
- 18 phenolic compounds. In addition to its economic and nutritional importance, tomatoes have become
- 19 the model for the study of fleshy fruit development. Tomato is a climacteric fruit and dramatic
- 20 metabolic changes occur during its fruit development. In this review, we provide an overview of our
- 21 current understanding of tomato fruit metabolism. We begin by detailing the genetic and hormonal
- 22 control of fruit development and ripening, after which we document the primary metabolism of tomato
- fruits, with a special focus on sugar, organic acid, and amino acid metabolism. Links between primary
- 24 and secondary metabolic pathways are further highlighted by the importance of pigments, flavonoids,
- and volatiles for tomato fruit quality. Finally, as tomato plants are sensitive to several abiotic stresses,
- 26 we briefly summarize the effects of adverse environmental conditions on tomato fruit metabolism and
- 27 quality.
- Main text: 12963 words
- 29 1 table
- 30 2 figures

31

32 1 Introduction

33

- Tomato (Solanum lycopersicum L.) is the second most important fruit or vegetable crop next to potato
- 35 (S. tuberosum L.), with approximately 182.3 million tons of tomato fruits produced on 4.85 million ha

each year (FAOSTAT, 2019). Asia accounts for 61.1% of global tomato production, while Europe, America, and Africa produced 13.5%, 13.4%, and 11.8% of the total tomato yield, respectively. Tomato yields are highly variable, ranging from more than 508 tons per ha in the Netherlands to fewer than 1.5 tons per ha in Somalia in 2017 (FAOSTAT, 2019), with an average global yield of 376 tons per ha. Tomato consumption is concentrated in China, India, North Africa, the Middle East, the US, and Brazil with tomato consumption per capita, ranging from 61.9 to 198.9 kg per capita (FAOSTAT, 2019). Tomato is a member of the Solanaceae family, which includes several other economically important crops such as potato, pepper (Capsicum annuum L.), and eggplant (S. melongena L.), representing one of the most valuable plant families for vegetable and fruit crops.

 Tomatoes contain many health-promoting compounds and are easily integrated as a nutritious part of a balanced diet (Martí et al., 2016). In addition to consuming the fresh fruits, consumers use tomatoes in processed products such as soups, juices, and sauces (Krauss et al., 2006; Li et al., 2018b). Over the last decade, consumers have become more aware of foods as a source of health benefits and their roles in prevention of several chronic diseases and dysfunctions (Pem and Jeewon, 2015). Although a wealth of functional foodstuffs have been created to fulfil these requirements, it is important to note that the consumption of "conventional foods" such as fruits and vegetables is more effective for this purpose (Viuda-Martos et al., 2014).

 The nutritional importance of tomatoes is largely explained by their various health-promoting compounds, including vitamins, carotenoids, and phenolic compounds (Li et al., 2018b; Liu et al., 2016; Martí et al., 2016; Raiola et al., 2014). These bioactive compounds have a wide range of physiological properties, including anti-inflammatory, anti-allergenic, antimicrobial, vasodilatory, antithrombotic, cardio-protective, and antioxidant effects (Raiola et al., 2014). Tomatoes are rich in carotenoids, representing the main source of lycopene in the human diet (Viuda-Martos et al., 2014). Carotenoids and polyphenolic compounds contribute to the nutritional value of tomatoes and improve their functional attributes and sensory qualities, including taste, aroma, and texture (Martí et al., 2016; Raiola et al., 2014; Tohge and Fernie, 2015). Tomatoes also have the naturally occurring antioxidants Vitamins C and E (Agarwal and Rao, 2000; Martí et al., 2016) as well as large amounts of metabolites, such as sucrose, hexoses, citrate, malate, and ascorbic acid (Li et al., 2018b).

Tomato fruit quality and metabolite biosynthesis are affected by plant growing conditions (Diouf et al., 2018). Tomato production is challenged by several problems around the world, including the scarcity of water resources, soil salinization, and other abiotic stresses (Fahad et al., 2017; Gharbi et al., 2017; Zhou et al., 2019). In particular, in countries with a Mediterranean climate, including some regions in southern Europe and North and South America, tomato cultivation is increasingly confronted with limiting conditions such as drought and salinity, which ultimately reduce the competitiveness of tomato farmers in these areas. This, in turn, impacts the integrity of the ecosystem, contributing to the relocation (abandonment) of rural sectors.

 In addition to its economic and nutritional importance, tomatoes have become the model for the study of fleshy fruit development (Karlova et al., 2014; Kim et al., 2018; Li et al., 2018b). The entire tomato genome has been sequenced, serving as a rich genomic resource, and both genetic and physical maps and molecular markers are available for this species (The Tomato Genome Consortium, 2012; Suresh et al., 2014; Zhao et al., 2019). Moreover, a range of well-characterized monogenic mutants, TILLING

- 81 populations, wild tomato species, recombinant inbred lines and genome editing tools are available
- 82 (Eshed and Zamir, 1994; Li et al., 2018b; Martín-Pizarro and Posé, 2018; Minoia et al., 2010; Pérez-
- Martín et al., 2017; Tomato Genetics Resource Center, 2019; Rothan et al., 2019). Several databases 83
- 84 contain gene expression analysis data (Fei et al., 2006; Shinozaki et al., 2018b; Suresh et al., 2014;
- Zouine et al., 2017), while recent progress in tomato metabolomics has provided substantial 85
- information about the primary and specialized metabolism of this species and the pathways involved 86
- in molecular biosynthesis and turnover (Luo, 2015; Tieman et al., 2017; Zhu et al., 2018). 87

88

- 89 Dramatic metabolic changes occur during tomato fruit development (Carrari and Fernie, 2006). Tomato 90 is a climacteric fruit, meaning it undergoes a surge in respiration and ethylene production at the onset of ripening (Li et al., 2019a). As ripening progresses, tomato fruits transit from partially photosynthetic 91
- to true heterotrophic tissues through the parallel differentiation of chloroplasts into chromoplasts and 92
- 93 the dominance of carotenoids and lycopene in the cells of the ripe fruits (Carrari and Fernie, 2006).
- 94 The ripening process has evolved to make fruit palatable to the organisms that consume them and
- 95 disperse their seeds. In doing so, ripening activates pathways that generally influence the levels of
- pigments, sugars, acids, and aroma-associated volatiles to make the fruit more appealing, while 96
- 97 simultaneously promoting tissue softening and degradation to permit easier seed release (Matas et al.,
- 98 2009).
- 99 In this review, we provide an overview of our current understanding of tomato fruit metabolism. We
- 100 begin by detailing the genetic and hormonal control of fruit development and ripening, after which we
- document the primary metabolism of tomato fruits, with a special focus on sugar, organic acid, and 101
- 102 amino acid metabolism. Links between primary and secondary metabolic pathways are further
- 103 highlighted by the importance of pigments, flavonoids, and volatiles for tomato fruit quality. Finally,
- as tomato plants are sensitive to several abiotic stresses, we briefly summarize the effects of adverse 104
- 105 environmental conditions on tomato fruit metabolism and quality.

106 107

108

Genetic regulation of the development and ripening of tomato fruit

2.1 Fruit set and early fruit development

- 109 The genetic regulation of fruit development begins in the floral meristem (FM), where the architecture
- 110 and organization of this tissue is determined, and continues until the later developmental stages before fruit ripening (Gillaspy et al., 1993) (Figure 1A, B). At the initial stage of tomato fruit development, 111
- 112 the CLAVATA-WUSCHEL (CLV-WUS) feedback loop controls meristem activity and regulates FM
- 113 size, which in turn determines the final number of carpels in flowers and, hence, seed locules in fruits
- 114 (Rodríguez-Leal et al., 2017). The signaling peptide CLV3 directly interacts with leucine-rich repeat
- receptor kinases, such as CLV1 or CLV2, to activate a signaling cascade that negatively regulates the 115
- 116 stem cell-promoting transcription factor WUS (Somssich et al., 2016). Loss-of-function mutations in
- 117 any of the CLV genes will therefore cause stem cell overproliferation, resulting in the development of
- 118 extra floral organs and larger fruits (Rodríguez-Leal et al., 2017; Xu et al., 2015); for example, the joint
- 119 action of the natural mutations fasciated (fas) and locule number (lc) gave rise to large-fruited cultivars, 120 in contrast to the bilocular fruits of tomato wild species and most small-fruited varieties (Barrero et al.,
- 2006; Tanksley, 2004). The fas mutation is a 294-kb inversion disrupting the tomato CLV3 (SlCLV3) 121
- 122 promoter (Xu et al., 2015), whereas lc is associated with two single-nucleotide polymorphisms in a
- 123 putative CArG box regulatory element downstream of WUS (SIWUS) (Muños et al., 2011; van der
- 124 Knaap et al., 2014). Furthermore, using forward genetics and CRISPR/Cas9 genome editing
- 125 technology, Xu et al. (2015) identified the arabinosyltransferase genes FASCIATED

126 INFLORESCENCE (FIN), FASCIATED AND BRANCHED2 (FAB2), and REDUCED RESIDUAL

127 ARABINOSE 3a (RRA3a) as new components of the CLV-WUS pathway. The SICLV3 peptide must

therefore be fully arabinosylated to maintain meristem size since the loss of an arabinosyltransferase

cascade causes floral and fruit fasciation.

(van der Knaap et al., 2014).

130131

132

133

134

135

136 137

138

139

140

141

142143

144

145146

147

148149

129

As the flower develops, the gynoecium is initiated in the fourth whorl to terminate FM activity. The MADS box transcription factor AGAMOUS (AG) is required to form the carpel primordium (Yanofsky et al., 1990). Consequently, the downregulation of TOMATO AGAMOUSI (TAGI), the tomato ortholog of Arabidopsis thaliana AG, gives rise to alterations in carpel development and determinacy by producing fruits that continue to develop in an indeterminate fashion (Gimenez et al., 2016; Pan et al., 2010; Pnueli et al., 1994). Furthermore, in Arabidopsis, AG turns off the stem cell maintenance program through the transcriptional repression of WUS via two different pathways: directly, by promoting the recruitment of Polycomb Group (PcG) proteins to methylate histone H3K27 at the WUS locus (Liu et al., 2011); and indirectly, by inducing the expression of a gene encoding the C2H2 zinc-finger protein KNUCKLES (KNU) (Sun et al., 2009). The induction of KNU expression by AG requires a time delay regulated by the epigenetic modification of histones at the KNU locus (Sun et al., 2014). Recently, Bollier et al. (2018) demonstrated that the AG-KNU-WUS pathway is conserved in Arabidopsis and tomato and regulates the timed termination of floral stem cell activity. In this context, the tomato mini zinc-finger protein INHIBITOR OF MERISTEM ACTIVITY (SIIMA) recruits SIKNU to form a transcriptional repressor complex together with TOPLESS and HISTONE DEACETYLASE19, which binds to the SIWUS locus to repress its transcription (Bollier et al., 2018). Additionally, it has been hypothesized that *lc* is a weak gain-of-function mutation that reduces or blocks the binding of TAG1 to the SIWUS 3' regulatory region, which impairs the ability of TAG1 to repress SIWUS, resulting in the formation of larger fruits as a consequence of the development of extra carpels

150151152

153154

155

156

157

158159

160

161

162

163164

The variation in tomato fruit morphology not only depends on CLV-WUS signaling pathway-related genes, but also on *OVATE* and *SUN*, which have a large effect on fruit shape (Figure 1B). The *ovate* null mutation gives rise to changes in cell division patterns during the earliest stages of gynoecium development, with more cells produced in the proximo-distal direction and fewer in the medio-lateral direction, causing the development of elongated fruits (Ku et al., 1999; Liu et al., 2002; Rodríguez et al., 2011). In contrast, the effect of *SUN* on fruit shape is most noticeable at flower anthesis, when it begins to increase cell division along the proximo-distal axis and cell elongation immediately after fertilization (van der Knaap et al., 2014; Wu et al., 2011; Xiao et al., 2009). Thus, a profound shift in the expression of genes involved in cell division, cell wall development, and patterning processes was observed in the elongating fruit tissues of the *sun* mutant (Clevenger et al., 2015). Moreover, the MADS box gene *ENHANCER OF J2 (EJ2)* also seems to be involved in determining fruit shape; *ej2* knockout mutants develop slightly elongated fruits together with several pleiotropic effects, such as branched inflorescences and jointless pedicels (Soyk et al., 2017).

165166

167

168 169

170 171 Among the fruit weight regulators, *CELL NUMBER REGULATOR* (*CNR*) was found to underlie the *fw2.2* quantitative trait locus (QTL), acting early during the development of the gynoecium to increase ovary size (Frary et al., 2000; Guo and Simmons, 2011) and enlarge the placenta and columella fruit tissues (Cong et al., 2002; Gonzalo et al., 2009). *SIKLUH* is the causal gene for the *fw3.2* QTL and encodes a CYP450 of the 78A class (Chakrabarti et al., 2013). One single-nucleotide polymorphism in the *SIKLUH* promoter leads to its enhanced expression in meristems and young flower bud tissues;

however, the increased fruit weight of these mutant plants becomes evident only after fertilization. An increased number of cell layers in the pericarp gives rise to heavier fruits with a ripening delay, which has been hypothesized to be the result of the extension of the cell proliferation stage (Chakrabarti et al., 2013). Studies in *Arabidopsis* have suggested that KLUH is involved in generating a mobile growth-promoting signal, although its exact molecular and biochemical nature is yet to be deciphered (Adamski et al., 2009; Anastasiou et al., 2007). Cell expansion in the pericarp is responsible for the dramatic increase in fruit size from a 1- to 2-mm gynoecium to a 5- to 10-cm tomato fruit (Gillaspy et al., 1993; Xiao et al., 2009). The *CELL SIZE REGULATOR* (*CSR*) gene controls pericarp cell size and underlies the *fw11.3* QTL (Huang and van der Knaap, 2011; Mu et al., 2017). *CSR* expression is restricted to fruits, starting about 5 days after pollination and decreasing at the onset of ripening. Along with the increased cell size, coexpression studies suggest that *CSR* is also involved in shoot development and phloem/xylem histogenesis; however, the molecular function of *CSR* in controlling these developmental processes remains unclear (Mu et al., 2017).

185 186

172

173174

175

176

177

178179

180

181

182

183

184

2.2 Fruit ripening

187 At the end of fruit development, when seeds are mature and ready for dispersal, tomato fruits undergo ripening, a complex developmental program involving the coordinated regulation of numerous 188 189 physiological and biochemical changes that determine flavor, color, texture, and aroma. These changes 190 involve the up- or downregulation of numerous genes in various metabolic pathways (Alba et al., 2005; 191 Fujisawa et al., 2011; Osorio et al., 2011). Multiple studies of the development and maturation of 192 tomato fruits have facilitated the identification of specific genes that participate in ripening (Chung et 193 al., 2010; Giovannoni, 2007; Karlova et al., 2011; Manning et al., 2006; Nashilevitz et al., 2010; 194 Pesaresi et al., 2014; Vrebalov et al., 2002; Wang et al., 2009) (Figure 1B).

195

196

197

198

199

200

201202

203

204

205

206

207

208

209

210

211

212213

214

215

216

Tomatoes are classified as climacteric fruits, exhibiting a peak of respiration and ethylene production at the start of ripening (Alexander and Grierson, 2002). The biosynthesis and perception of ethylene are highly regulated, involving genes conserved in various plant taxa (Seymour et al., 2013). Some transcription factors modulate ethylene biosynthesis and signal transduction during fruit ripening, among which it is worth highlighting RIPENING INHIBITOR (RIN) (Vrebalov et al., 2002), COLORLESS NON-RIPENING (CNR) (Manning et al., 2006), and NON-RIPENING (NOR) (Yuan et al., 2016). RIN acts as the main regulator of fruit ripening, directly controlling the expression of target genes involved in a wide range of ripening-related events (Fujisawa et al., 2011; Oin et al., 2012). RIN encodes a SEPALLATA (SEP)-class MADS-box transcription factor (Vrebalov et al., 2002), which was previously considered to be an essential regulator of the induction of ripening (Vrebalov et al., 2002); however, its role in fruit ripening was recently reassessed following the publication of studies showing that RIN, although necessary to complete ripening, is not required for the initiation of this process (Ito et al., 2017). The rin mutant was found to be caused by the deletion of a genomic DNA fragment between RIN and MACROCALYX (MC), forming the chimeric gene RIN-MC (Vrebalov et al., 2002). MC affects inflorescence determinacy and sepal development (Vrebalov et al., 2002), and the *rin* mutant was found to be a gain-of-function mutant that produced a protein that actively represses ripening (Ito et al., 2008; Li et al., 2018a). RIN binds to the demethylated promoter regions of several genes, such as the ethylene biosynthesis genes SIACS2 (1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE 2), SIACS4, SIACO1 (ACC OXIDASE 1), the ethylene receptor NEVER RIPE (NR), and others whose products are involved in fruit softening and the transcriptional regulation of cell wall hydrolases [POLYGALACTURONASE (PG), \(\beta\)-GALACTOSIDASE4 (TBG4), ENDO-(1,4)-\(\beta\)-\(\beta\)-

217 MANNANASE4 (MAN4), and α -EXPANSIN1 (EXP1)] (Fujisawa et al., 2011; Ito et al., 2008, 2017;

218 Klee and Tieman, 2002; Martel et al., 2011; Shima et al., 2013).

219220

221222

223

224

225

226

227

RIN also positively stimulates the expression of *CNR* (Cardon et al., 1999; Manning et al., 2006). The *cnr* mutation is the result of a spontaneous epigenetic change that increases cytosine methylation in the promoter of a *SQUAMOSA* promoter-binding protein-encoding gene, which strongly decreases gene expression and produces colorless fruits with an altered pericarp texture (Manning et al., 2006). During ripening, the *CNR* promoter is progressively demethylated, but in *cnr* mutants, the promoter remains hypermethylated, preventing RIN from binding to it (Zhong et al., 2013). In addition, CNR was involved in the positive regulation of many ripening-related genes, including *PG*, *PECTINESTERASE* (*PE*), *XYLOGLUCAN ENDOTRANSGLYCOSYLASE* (*XET*), *PHYTOENE SYNTHASE1* (*PSY1*), *LIPOXYGENASE* (*LOX*), and *ACO1* (Eriksson et al., 2004).

228229

230

231232

233234

235

236

237

238

The *nor* mutant exhibits abnormal ripening as a result of a 2-bp deletion in the *NOR* coding sequence, leading to the early termination of protein translation (Martel et al., 2011; Osorio et al., 2011; Tigchelaar, E.C et al., 1973). NOR encodes a NAC family transcription factor that regulates fruit ripening through a currently unclear mechanism, while mutations in this gene inhibit multiple metabolic processes and prolong fruit shelf life (Kumar et al., 2018). A study of the role of *NOR* and *RIN* in tomato fruit ripening confirmed that the *nor* mutation had a more global effect on ethylene/ripening-related gene expression than *rin*, suggesting that *NOR* might even act upstream of *RIN* in the transcriptional network controlling tomato fruit ripening (Osorio et al., 2011). In addition to *NOR*, three other NAC family genes, *SINAC1*, *SINAC4*, and *NOR-like1*, are known to be involved in the regulation of tomato fruit ripening (Ma et al., 2014; Meng et al., 2016; Zhu et al., 2014).

239240

241

242

243244

245

246

247248

249

250251

252

253254

255

256257

258

259260

261262

Other ripening factors, such as the MADS box TOMATO AGAMOUS-LIKE1 (TAGL1) (Giménez et al., 2010; Vrebalov et al., 2002), tomato APETALA2 (SIAP2a) (Karlova et al., 2011), and the tomato homeodomain leucine zipper homeobox protein SlHB1 (Lin et al., 2008), exercise their regulatory functions by interacting with RIN (Fujisawa et al., 2011; Qin et al., 2012; Seymour et al., 2013). TAGL1 (also referred to as ARLEOUIN in some publications), a PLENA lineage gene orthologous to Arabidopsis SHATTERPROOF1/2, controls many aspects of tomato fruit ripening (Garceau et al., 2017; Vrebalov et al., 2009), including the direct activation of the expression of the ethylene biosynthesis gene ACS2 (Itkin et al., 2009). Tomato fruits produced by TAGL1-silenced plants had defects in ripening without their floral organ specification being affected (Giménez et al., 2010; Pan et al., 2010; Vrebalov et al., 2009). Plants with reduced TAGL1 expression produced fruits with a narrow pericarp and reduced firmness at the breaker stage, which remained yellow and produced significantly less ethylene than the control fruits (Vrebalov et al., 2009). The MADS box proteins TAGL1 and two homologs of FRUITFULL (FUL1/TDR4 and FUL2/MBP7) function as coregulators of RIN (Bemer et al., 2012; Giménez et al., 2010; Itkin et al., 2009; Leseberg et al., 2008; Martel et al., 2011; Shima et al., 2013; Vrebalov et al., 2009; Wang et al., 2014). Fujisawa et al. (2014) demonstrated that RIN, TAGL1, and the FUL homologs form a DNA-binding complex, probably a tetramer, which is believed to regulate tomato fruit ripening. The RIN and CNR regulators have been shown to function upstream of SlAP2a and to positively regulate its expression (Karlova et al., 2014), whereas SlHB1 controls ethylene metabolism by binding to the regulatory regions of ACO1 (Lin et al., 2008). On the other hand, transcriptomic studies have shown that SlAP2a participates in the control of fruit ripening as a negative regulator of several processes involved in ethylene biosynthesis, and signaling pathways, as well as in the differentiation of chromoplasts (Chung et al., 2010; Karlova et al., 2011).

263264

265

266

267

268

269

270271

272273

274

275

276

277278

279

280

281

282 283

3 Hormonal regulation of the development and ripening of tomato fruit

3.1 Fruit set and early fruit development

Fruit set and fruit development are complex processes that require the coordination of different phytohormones (Li et al., 2019b; McAtee et al., 2013; Shinozaki et al., 2018b) (Figure 1C, D). From flower initiation to fertilization, the morphogenesis and growth of carpels and ovules require the spatial and temporal biosynthesis and action of auxins, cytokinins (CKs), and gibberellins (GAs) (Azzi et al., 2015). Shortly before anthesis, when the ovary has reached its mature size, abscisic acid (ABA) and ethylene work to stop growth within the ovary to maintain a temporally protected and dormant state (Azzi et al., 2015; Gillaspy et al., 1993). After the successful pollination and fertilization of the ovules, ovary growth resumes and the fruit and seeds develop concomitantly (Azzi et al., 2015). These changes are associated with a decrease in ABA and ethylene concentrations and an increase in auxin, GAs, and CKs (de Jong et al., 2009; McAtee et al., 2013; Shinozaki et al., 2015, 2018a). GAs produced by pollen may increase auxin production in the ovary, which in turn may act as a signal for fruit set and the subsequent activation of cell division (de Jong et al., 2009; Gillaspy et al., 1993). Active fruit growth involving pericarp cell division and elongation is promoted by the biosynthesis of auxin in the developing seeds and GAs in the pericarp (Obroucheva, 2014). Auxins and GAs appear to be the predominant hormones required for tomato fruit initiation in response to fertilization, since the exogenous application of both hormones leads to fruit initiation and parthenocarpic development (de Jong et al., 2009). CKs, ethylene, ABA, brassinosteroids, and polyamines (PAs) have also been shown to play a role in fruit formation, but this is currently less well documented (Azzi et al., 2015; Liu et al., 2018; McAtee et al., 2013; Shinozaki et al., 2015, 2018a; Srivastava and Handa, 2005).

284285

286

287

288

289

290

291

292

293

294

295

296297

298

299

300

301 302

303

304 305

306

307

308

In tomato, early fruit development is governed by the allocation of auxin to tissues and cells, which initiates signal transduction pathways (Azzi et al., 2015). The PIN-FORMED (PIN) auxin efflux transport proteins were shown to be involved in fruit set and early tomato fruit development (Mounet et al., 2012; Pattison and Catalá, 2012). Silencing SIPIN4 resulted in the production of small parthenocarpic fruits exhibiting precocious development (Mounet et al., 2012). The auxin signaling pathway involves an auxin receptor called TRANSPORT INHIBITOR RESPONSE1 (TIR1) (Azzi et al., 2015). In the presence of auxin, TIR1 recruits the transcriptional repressors AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) and triggers their degradation by the 26S proteasome (Azzi et al., 2015), releasing the Aux/IAA-bound auxin response factors (ARFs) and initiating the auxin response through auxin-responsive element-mediated gene transcription (Azzi et al., 2015). In tomato, the misexpression of TIR1 and specific members of the Aux/IAA and ARF gene family alters the normal flower-to-fruit transition and results in parthenocarpic fruit production (Azzi et al., 2015; de Jong et al., 2009; Mounet et al., 2012; Ren et al., 2011). However, Aux/IAA and ARF genes may have opposing functions to TIR regarding fruit set; the transcript abundance of SIIAA9 and SIARF7 decreased in SITIR1-overexpressing plants, which resulted in the formation of seedless fruit (Goldental-Cohen et al., 2017; Ren and Wang, 2016). The silencing of the Aux/IAA transcriptional repressor SIIAA17 resulted in larger fruits with thicker pericarp tissues, a phenotype caused by enhanced cell expansion (Su et al., 2014). Ren and Wang (2016) showed that SITIR was regulated by GAs, auxins, ABA, and ethylene, suggesting that TIR may be a key mediator of the crosstalk between auxin and other phytohormones. The SIARF7/SIIAA9 complex also mediates crosstalk between auxin and GA pathways to regulate fruit initiation through their interaction with the GA-signaling repressor SIDELLA (Hu et al 2018). SIARF7/SIIAA9 complex and SIDELLA antagonistically regulate genes involved in auxin and GA metabolism while they additively coregulate genes involved in fruit growth (Hu et al 2018).

309310

311

312

313

314315

316

317

318319

320321

322

323

324

325

326

327

328

329

330

331

332

Indeed, auxins do not act alone to trigger fruit development and fruit set; these processes are partly mediated by GAs, as part of a complex hormonal cross-talk with auxin (Azzi et al., 2015; de Jong et al., 2009; McAtee et al., 2013). Pollination triggers the upregulation of transcripts encoding GA 20oxidases (GA20ox), which biosynthesize active GA1 and GA4 (Azzi et al., 2015). It was suggested that the expression of more than one GA20ox gene is required to control fruit set in tomato because the silencing of individual GA20ox genes did not strongly affect fruit set or development (Azzi et al., 2015; Olimpieri et al., 2011; Xiao et al., 2006). Despite this, the heterologous overexpression of citrus CgGA20ox1 in tomato resulted in an elevated GA4 content and parthenocarpic fruit development, demonstrating the influence of GA and GA20ox activity on fruit set and development (García-Hurtado et al., 2012). The GA signal transduction pathway requires the recognition of GA by its receptor, GA INSENSITIVE DWARF1 (GID1) (Azzi et al., 2015). The GID1-GA complex interacts with the nuclear repressor DELLA to target it for ubiquitin-dependent proteolytic degradation by the 26S proteasome (Azzi et al., 2015). This removes the repression of the GA-responsive genes, which are then able to initiate GA signal transduction. Consistent with this, the silencing of the SIDELLA gene in tomato resulted in small, facultative parthenocarpic fruits with an elongated shape (Martí et al., 2007). The procera (pro) mutant, which carries a point mutation in the GRAS region of SIDELLA, has also very strong parthenocarpic capacity and shows enhanced growth of preanthesis ovaries (Jones et al., 1987; Carrera et al., 2012; Shinozaki et al., 2018c). The parthenocarpic capacity of pro is mainly associated with changes in the expression of genes involved in GA and auxin pathways (Carrera et al., 2012). A new SIDELLA mutant containing a single nucleotide substitution, procera2 (pro2), has been recently identified and shows a potential for high fruit yield in both optimal and unfavorable growing conditions due to its facultative parthenocarpic capacity (Shinozaki et al., 2018c). Parthenocarpy is indeed an attractive trait for fruit production (Shinozaki et al., 2018c).

333334

335

336

337

338339

340

341342

343344

345

346347

348

349

350

351

352

353

As mentioned previously, other phytohormones are involved in fruit set and growth. A number of ABA-deficient mutants have provided valuable insights into the role of ABA in fruit growth (Azzi et al., 2015). Phenotypic characterization of the ABA biosynthesis not/flc double mutant showed that its small fruits had considerably reduced ABA levels and smaller cell sizes, especially within the pericarp (Nitsch et al., 2012). It was suggested that ABA stimulates fruit growth by restricting the level of ethylene in normal fruits (Azzi et al., 2015), which may indeed induce fruit set as tomato plants treated with the ethylene action inhibitor 1-methylcyclopropene (1-MCP) produce parthenocarpic fruits (Shinozaki et al., 2015). In the same way, tomato plants carrying either of two allelic mutations in ETHYLENE RECEPTOR1 (Sletr1-1 or Sletr1-2) were insensitive to ethylene, resulting in parthenocarpy (Shinozaki et al., 2015, 2018a). Ethylene is involved in the senescence of unpollinated ovaries and prevents fruit set by downregulating GA accumulation, acting downstream of auxin and upstream of GA in the control of fruit set (Shinozaki et al., 2018a). Exogenous CK application induces parthenocarpic fruits (Ding et al., 2013; Matsuo et al., 2012), suggesting a role for CKs during tomato fruit initiation. Cytokinins induce parthenocarpy in tomato partially through modulation of GA and auxin metabolisms (Ding et al., 2013). Moreover, transcriptomic and metabolomic studies showed that although CKs mainly control cell division during tomato fruit development, they also play a critical role in fruit-set and early growth of tomato fruits (Mariotti et al., 2011; Matsuo et al., 2012). A key role for PAs during fruit set was also suggested, with tomato genes encoding enzymes involved in PA biosynthesis, such as arginine/ornithine decarboxylase (ADC/ODC) and spermine synthase (SPMS), suggested to be particularly important during the process of fruit setting (Liu et al., 2018).

354355

3.2 Fruit ripening

356 Fruit ripening has been widely studied in tomato, with ethylene known to play a key role in this process 357 (Borghesi et al., 2016; Li et al., 2019a; Liu et al., 2015; Osorio et al., 2013; Seymour et al., 2013; 358 Shinozaki et al., 2018b) (Figure 1C, D). Two systems of ethylene biosynthesis have been proposed in 359 climacteric fruits (McMurchie et al., 1972): System 1 is responsible for producing basal ethylene levels 360 during fruit growth and is ethylene autoinhibitory, while system 2 operates during climacteric ripening and is autocatalytic (Liu et al., 2015). At the onset of ripening, an increase in ethylene is observed in 361 362 mature green tomatoes, resulting in an eventual 100- to 300-fold increase in the ethylene concentration during fruit ripening (Karlova et al., 2014; Li et al., 2019a). Ethylene initiates a cascade of changes, 363 364 which culminate in the transformation of the hard, unpalatable green tomato into an attractive, brightly 365 colored succulent and nutritious fruit (Giovannoni, 2004; Li et al., 2019a).

366367

368369

370

371

372373

374

375

376

Ethylene signaling can be regulated at several levels, including ethylene biosynthesis and its perception (Karlova et al., 2014; Li et al., 2019a; Mata et al., 2018). Ethylene biosynthesis involves multiple aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase enzymes and genes (Karlova et al., 2014; Kou et al., 2016; Li et al., 2019a; Osorio et al., 2013). Fourteen putative ACS genes and six ACO genes have been identified in the tomato genome (Liu et al., 2015). Among them, it has been proposed that SIACS2, SIACS4, SIACO1, SIACO2, and SIACO4 play important roles in ethylene production during tomato fruit maturation (Cara and Giovannoni, 2008; Liu et al., 2015). Some transcription factors are known to act upstream of the ethylene biosynthesis genes to regulate fruit ripening, including RIN, SIHB-1, and the NAC transcription factors SNAC4 and SNAC9 (Kou et al., 2016; Liu et al., 2015).

377378

379

380

381 382

383

384 385

386 387

388

389

390

391

392

393

394

395

396

Ethylene perception is mediated through ethylene receptors encoded by ETHYLENE RESPONSE (ETR) genes, which activate a signal transduction cascade through the release of the block on ETHYLENE INSENSITIVE2 (EIN2) exerted by CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) (Karlova et al., 2014; Li et al., 2019a; Liu et al., 2015; Mata et al., 2018). Seven ETR genes and four CTR1 homologs have been identified in tomato thus far, all of which control ethylene sensitivity by balancing the turnover of the components of the ethylene signaling pathway, combining positive and negative feedback (Liu et al., 2015; Mata et al., 2018). This release then activates the EIN3/EIN3-like (EIL) primary transcription factor genes, resulting in the expression of secondary transcription factor genes encoding the ethylene response factors (ERFs) (Karlova et al., 2014; Liu et al., 2015; Mata et al., 2018). The final result of this signaling pathway is the transcriptional regulation of the target genes by the EILs or ERFs (Karlova et al., 2014). Some of the ERF genes have been characterized in tomato, including SIERF1, SIERF.B3, and SIERF6 (Karlova et al., 2014; Li et al., 2007; Liu et al., 2013), but many of their functions and ethylene-responsive target genes remain unknown (Li et al., 2019a). Six EIL genes have been identified in tomato, although SIEIL5 and SIEIL6 may not be involved in tomato ripening (Liu et al., 2015). Several genes that regulate tomato ripening through the transduction of ethylene signals have been identified (Karlova et al., 2014), including the ethylene receptor genes NR, ETR6, and GREEN-RIPE (Gr) (Barry and Giovannoni, 2006; Kevany et al., 2007; Yen et al., 1995). Two other proteins, RESPONSE TO ANTAGONIST1 (RAN1) and TETRATRICOPEPTIDE REPEAT1 (TRP1), also play important roles at the receptor levels (Liu et al., 2015).

397

Ripening is also influenced by the balance of other hormones, including ABA, auxin, and the brassinosteroids (Karlova et al., 2014; Li et al., 2019a; Liu et al., 2015; Seymour et al., 2013; Shin et al., 2019; Shinozaki et al., 2018b). ABA is known to promote ripening, whereas auxin seems to have

an antagonistic effect (Liu et al., 2015). ABA is a key intermediate regulator of tomato fruit ripening, and its levels change according to fruit development stages (Borghesi et al., 2016; Zhang et al., 2009). In tomato, the suppression of the gene that catalyzes the first step in ABA biosynthesis (9-cis-epoxy carotenoid dioxygenase [NCED1]) results in the downregulation of some ripening-related cell wall genes, such as those encoding polygalacturonase and pectin methylesterase, promoting an increase in firmness and a longer shelf life (Sun et al., 2012). ABA interacts with ethylene signaling; the expression of genes involved in ethylene biosynthesis are induced by exogenous ABA (Liu et al., 2015).

407 408 409

410

411 412

413

414 415

416

417

418 419

420

421

422

423

401

402

403

404

405

406

Low levels of auxins are also required at the onset of ripening, and auxin signaling declines at this stage (Gillaspy et al., 1993; Karlova et al., 2014; Shin et al., 2019); however, it seems that the ratio between indole acetic acid (IAA) and its conjugated forms is more important than the level of free IAA for the regulation of tomato ripening (Karlova et al., 2014). Indeed, the decrease of free IAA at the onset of ripening is associated with an increase in its conjugated form, IAA-Asp (Buta and Spaulding, 1994; Karlova et al., 2014). SISAUR69 is involved in the decrease of auxin levels and/or signaling in the pericarp tissue at the onset of fruit ripening via the repression of polar auxin transport (Shin et al., 2019). ARF genes are also involved in fruit ripening; the downregulation of SlARF4 or SlARF2 resulted in fruits with dramatic ripening defects (Hao et al., 2015; Jones et al., 2002; Karlova et al., 2014). Auxin-ethylene interactions are crucial for the fruit ripening process, although the molecular basis of the regulatory network is still relatively unclear (Li et al., 2017; Shin et al., 2019). An antagonistic effect between auxin and ethylene has been observed during the ripening of tomatoes (Li et al., 2017), with ethylene inhibiting auxin transport, metabolism, and signaling processes, while auxin represses the expression of genes involved in ethylene biosynthesis and signaling (Chaabouni et al., 2009; Li et al., 2016a, 2017; Liu et al., 2015). Moreover, both auxin and ethylene differentially regulate CK metabolism and signaling processes during tomato ripening (Li et al., 2017).

424 425

426

427 428

429

430

431

Brassinosteroids might also be involved in tomato ripening, as exogenous applications of this hormone can promote ripening and ethylene production in tomatoes (Karlova et al., 2014). PAs are also actively involved in climacteric fruit ripening (Liu et al., 2018); for example, putrescine levels progressively increase during fruit maturation and peak in ripe tomatoes, while spermine and spermidine levels decrease gradually until the fruits are fully ripe (Liu et al., 2018; Tsaniklidis et al., 2016). Moreover, although the expression levels of *SPMS*, *ADC*, and *ODC* were minimal during the fruit ripening process, the *SPDS* genes may play an important role during tomato fruit ripening (Liu et al., 2018).

432433

434 Phytohormones also play a key role in the regulation of tomato fruit metabolism and quality (Cruz et 435 al., 2018; Li et al., 2019b; Van Meulebroek et al., 2015). The hormones discussed above all contribute 436 to the metabolism of tomato fruits, although ABA and ethylene play the most important roles (Li et al., 437 2019b). ABA had a greater effect on the regulation of the primary metabolism, while ethylene plays an important role in the transition of primary to secondary metabolism in tomatoes (Li et al., 2019b). 438 439 Regarding secondary metabolism, ethylene and auxins were described as the most important regulators 440 of carotenoid biosynthesis during tomato fruit ripening (Cruz et al., 2018; Van Meulebroek et al., 441 2015).

442443

444

445

4 Primary metabolism in tomato fruit

Development of the tomato fleshy fruit occurs in three distinct phases: i) cell division phase occurs in the early days following fertilization until 10 DAA ii) cell expansion (from 10 DAA to 40 DAA) and

iii) fruit ripening and maturation (Fig. 1A). During this evolution, tomato fruits follows a transition from partially photosynthetic to complete heterotrophic metabolism. Typical morphophysiological steps are considered and include immature, mature green, breaker, pink and red ripe fruits. Although the fruit ripening is an important step determining the fruit quality and nutritional values, recent works provided evidences that the early fruit development also assumes key roles for acquisition of quality traits, including the accumulation of sugars and organic acids (Bauchet et al., 2017; Beauvoit et al., 2014; Biais et al., 2014; Carrari and Fernie, 2006). Postgenomic approaches including analyses of fruit transcriptomes, proteomes and metabolomes as well as multilevel studies integrating enzyme profiling generated a large set of useful data improving our knowledge on the regulation of metabolites turnover during tomato fruit development (Centeno et al., 2011; Mounet et al., 2009; Van de Poel et al., 2012; Van Meulebroek et al., 2015). Hierarchical clustering performed by Biais et al. (2014) revealed tight associations between enzyme activities and developmental phase and concluded that metabolites are more sensitive to growth conditions than enzyme activities. A global overview of the main recorded changes in metabolites recorded during fruit transition from green to red mature fruits is provided in Fig. 2.

4.1 Carbohydrate metabolism

4.1.1 Immature green fruit photosynthesis

Sugars are closely related to fruit yield and quality. In tomato fruits, sugars provide sweetness and are important for the generation of turgor pressure to promote cell expansion (Kanayama, 2017). Sugars also act as signal molecules controlling fruit development and metabolism. Green fruits remain able to perform photosynthesis which can produce up to 20% of the fruit photosynthetates, the remaining part being imported by source leaves (Pesaresi et al., 2014). The light harvesting electron transfer and CO₂ fixation proteins are conserved in their active state in green fruit tissues (Matas et al., 2011). Fruit chloroplasts contain sufficient amounts of plastocyanin, ferredoxins, Rieske proteins, cytochrome f and cytochrome b_{559} and ribulose-1,5-biphosphate carboxylase activity is detected in the fruits (Hetherington et al. 1998). The triose phosphate and glucose phosphate transporters are active in the tomato chloroplasts. Unexpectedly, genes associated with photosynthesis are highly expressed in the locule which is in fact the main site of respiration (Lemaire-Chamley et al., 2005).

Nevertheless, the importance of green fruit photosynthesis is still a matter of debate. According to Carrara et al. (2001), tomato fruits do not show signs of CO₂ fixation, even if photochemical activity is detectable and an effective electron transport observed. Xu et al. (1997) reported that a small fruit (fresh weight lower than 10 g) is able to perform a gross photosynthesis equivalent to a 3-cm² leaf blade but that this activity rapidly decreases thereafter: in heavier fruits, gross photosynthesis decreases to negligible values. These authors even assume that the aim of the photosynthetic process in maturing fruit is mainly to delete CO₂ produced by respiration rather than contributing to photosynthate production. Kahlau and Bock (2008) showed that RNA, translation and protein accumulation downregulation was observed for all plastid-encoded photosynthesis genes already in the green fruit. Hetherington et al. (1998) however demonstrated that all truss tissues, including fruits, are quite active photosynthetically. These authors interestingly demonstrated that the relative contribution of the fruit versus the leaf photosynthesis for fruit photosynthate accumulation tend to narrow under low light intensities.

A fruit specific antisense inhibition of the chloroplastic fructose 1,6-biphosphatase (FBPase) led to an obvious decrease in final weight of ripe fruits (Obiadalla-Ali et al., 2004) while, conversely, tomato lines with a fruit specific reduction in the expression of glutamate-1-semialdehyde aminotransferase (GSA) and thus a lower level of chlorophyll and photosynthetic rate, remained unaffected in terms of fruit weight (Lytovchenko et al., 2011). Ntagkas et al. (2019) recently demonstrated that phosynthetically active fruits able to respond to light may trigger ascorbate synthesis while non-photosynthetic red maturing fruits are unable to produce this antioxidant in response to light.

496 497

498

499

500

501 502

503

504

505 506

507

508

509

Auxin plays an important role for determining final fruit stage through the control of cell division and cell expansion. Auxin-responsive factors (ARF) can either activate or repress transcription of auxin-responsive genes. Combined metabolomics and transcriptomic studies of plants deficient in the expression of the tomato *Aux/IAA* transcription factor *IAA9* suggest a role for photosynthesis in the initiation of fruit development (Wang et al., 2009). Downregulation of *SlARF4* enhanced fruit firmness and increased chlorophyll content in green fruits in relation to an increased number of chloroplasts (Guillon et al., 2008). SlARF4 also has a direct impact on fruit sugar metabolism: the *SlARF4* underexpression tomato lines accumulated more starch at early stages of fruit development associated with an improved photochemical efficiency (Sagar et al., 2013). Moreover, *SlARF4* is highly expressed in the pericarp tissues of immature fruits and undergoes decline at the onset of ripening. Downregulated tomatoes also present a higher starch content than the wild type in developing fruits which is directly related to up-regulation of several genes and enzyme activities involved in starch biosynthesis (Sagar et al., 2013).

510 Plastid numbers and chlorophyll content in fruits are positively correlated with photosynthesis and 511 photosynthate accumulation and both are influenced by numerous environmental and genetic factors. In tomato fruits, the GOLDEN2-LIKE (GLK) transcription factor induces the expression of numerous 512 513 genes related to chloroplast differentiation and photosynthesis (Powell et al., 2012). The genome of 514 Solanum lycopersicum possesses two copies of this gene: SlGLK1 is predominantly expressed in the 515 leaves while SIGLK2 is expressed in the fruits, especially in the area of pedicel junction (Nguyen et 516 al., 2014). A latitudinal gradient of SIGLK2 expression induces a typical uneven coloration in ripe fruit 517 SIGLK2 is preferentially expressed in the shoulder of the fruit (Sagara et al., 2013). SI-GLK2 belongs 518 to the GARP subfamily of the myb transcription factor and is encoded by the UNIFORM (U) gene 519 (Powell et al., 2012). The u mutation has been widely selected in modern tomato varieties which 520 consequently exhibit a uniform ripening attractive to consumers and suitable for industrial processing. This mutant contains less sugar and chloroplasts present a lower number of thylakoid grana. According 521 to Nadakuduti et al. (2014), some class I KNOTTED1-LIKE HOMEOBOX gene (TKN2 and TKN4) also 522 523 influence chloroplast development in tomato fruits and act upstream of SIGLK2. A dominant gain-offunction mutation of TKN2 induces ectopic fruit chloroplast development that resembles SlGLK2 524 525 overexpression. More recently, Lupi et al. (2019) demonstrated that SIGLK2 expression is partly regulated by a phytochrome-mediated light perception. Auxin appears as a negative regulator of 526 527 SIGLK2 expression and SIGLK2 enhances cytokinin responsiveness. This study also demonstrated that 528 SIGLK2 enhances tocopherol and total soluble solid through amylase stimulation, so that selection of 529 the *u* mutation in commercial varieties probably inadvertently compromise ripe fruit quality.

530 531

4.1.2 Sugar unloading in fruits

Sugar unloading in tomato fruit is a controlled process and its pattern is not constant during the fruit development. In green developing fruits, sugar is mainly unloaded via the symplasm. Numerous plasmodesmata and cell connections are present at this stage (Ruan and Patrick, 1995) but then are

- progressively lost. During this early phase of development, only a small amount of sucrose is unloaded
- by the apoplastic invertase and transported into the fruit cells by hexose transporters (Beckles et al.,
- 537 2012; Nguyen-Quoc and Foyer, 2001). Although it has been demonstrated that sucrose unloads in
- tomato pericarp until 35 DAA, a precocious role for apoplastic invertase has however been postulated
- on the basis of kinetics properties explaining a moderate QTL for Brix index (Fridman et al., 2004).

4.1.3 Sugar metabolism at the cell division stage

In growing fruits, sucrose represents less than 1% DW while fructose and glucose are the main accumulated soluble sugars (25 and 22% DW; Gilbert, 2009). Glucose and fructose content strongly increased during early fruit developmental phase. Most studies until recent year have focused on the ripe stage but omics analysis need to be conducted throughout fruit development since several interactions may occur between the different stages (Kanayama, 2017). In green fruits, hexose phosphates are mainly used for starch synthesis until 13 DPA. Starch accumulation in pericarp and columella tissues at this early stage is a key factor determining the final soluble solid content of mature fruits (Carrari and Fernie, 2006).

The sink strength of a developing fruit depends on both sink activity and sink size, the latter being a function of both the number and the size of the fruit cells. According to Kataoka et al. (2009), gibberellic acid just after anthesis can promote an increased sink size of individual pericarp cell through the activation of vacuolar acid invertase and neutral invertase. During the cell division phase, a high rate of mitotic activity is observed and the final cell number is determined at the end of this period. It is, at least partly, influenced by endoreduplication processes, seed number and hormonal cues. During cell division, enzymes involved in glycolysis (especially gluokinase and fructokinase) are activated. According to Biais et al. (2014), Glc-6-P is accumulating during this phase, and maintenance of a low ATP to ADP ratio and high hexose-P results in high flux through glycolysis. Pyruvate kinase and tricarboxylic acid cycle enzymes also exhibit high activities, indicating that ATP production as a priority. Beauvoit et al., (2014) postulated that the close match of the catalytic capacity to flux needs may be partly due to protein neosynthesis occuring during the early cell division phase, although protein-protein interactions and post-translational modifications may modulate enzyme $V_{\rm max}$ even if enzyme content remains constant.

At the end of the cell division phase, most soluble sugars accumulated in the vacuoles, together with malic and citric acid (Carrari and Fernie, 2006; Centeno et al., 2011). The osmotic potential of the vacuole consequently dropped to about -0.6 MPa and triggers water inflow in the dividing cells. Cytosolic sucrose synthase (SuSy) is involved in sucrose cleavage at the cell division stage. According to Nguyen-Quoc and Foyer (2001) cell vacuoles at this stage accumulate high concentration of hexose (up to 100 µmoles g⁻¹ FW) and contain equal amounts of glucose and fructose. This implies that soluble sugars must be transported to the vacuoles by specific transporters. Vacuolar proton ATPae (V-ATPase) and vacuolar proton pyrophosphatase (V-PPase) generate the electrochemical gradient to transport sugar to the vacuolar compartment (Kanayama, 2017). Amemiya et al. (2006) showed that fruit specific V-ATPase suppression in antisense-transgenic tomato reduces fruit growth and seed formation. It is noteworthy that the highest expression of the *V-PPase* gene was observed during the cell division stage and not during latter stages of fruit development (Kanayama, 2017). Sucrose loading into the vacuole by the sucrose antiport-transporter is an efficient component of vacuolar storage and

there is no requirement for sucrose hydrolysis to allow vacuolar loading or unloading. The fact that regulation of sugar transporters may be influenced by endogenous sugar levels through kinases provide an additional level of complexity regarding carbohydrate subcellular distribution at the end of the cell dividing phase (Lecourieux et al., 2010).

 Beside Susy, acid invertase (AI; EC 3.2.1.26) may also be involved in sucrose cleavage and this implies that sucrolytic activity occurs within the vacuole and not only in the cytosol. According to Beauvoit et al. (2014), AI even assumes most of the sucrose cleavage in dividing cells while cytosolic neutral invertase (NI) and SuSy are mainly involved during the following cell expansion phase.

Although sucrose-phosphate-synthase (SPS: 2.4.1.14) activity remains low throughout the fruit development, it may significantly contribute to sucrose re-synthesis in the cytosol, inducing a « futile » cycle between sucrose and hexose characterized by a continuous sugar exchange between cytosol and vacuoles (sucrose influx and hexose efflux) (Nguyen-Quoc and Foyer, 2001). The extent of such resynthesis however remains limited from a quantitative point of view and never exceeds 10% of the cleavage (Beauvoit et al., 2014). Seeds may somewhat control the expression of genes coding for UGPase and SPS: Rounis et al. (2015) found drastic differences in transcript accumulation and enzyme activities of both UGPase and SPS between seeded and parthenocarpic fruits but only minor differences were recorded for sugar levels.

4.1.4 Sugar metabolism during the cell expansion phase

Mounet et al. (2009) explored transcriptional and metabolic changes in expanding fruit tissues (12-35 DAA) using multivariate analysis and gene-metabolites correlation networks. These authors demonstrated that cell expansion during fruit development proceeds differently in mesocarp and locular tissues which clearly differ in their metabolic composition. Mesocarp represent approximatively 50% (w/v) of the fruit fresh weight and its quantitative importance remains stable throughout fruit development while the locular tissues strongly develop reaching 23% (w/v) of the fruit fresh weight at the mature green stage. Some soluble sugars (mainly Suc and UDP-Glc) are most abundant in locular tissues at the end of the cell expansion phase while others such as hexoses mainly accumulate in the mesocarp. Beside differences in terms of distribution, discrepancies may also result from the mode of expression of enzyme activities or metabolites concentration. Biais et al. (2014) indeed estimated that expressing enzyme activities per protein content minimizes the influence of vacuolar expansion comparatively to an expression on a fresh weight basis.

 The cell expansion phase itself is commonly divided in two distinct steps corresponding to « early » and « late » expansion. During the early cell expansion, enzymes involved in the middle part of the glycolysis (NAD-GAPDH, P6K, enolase (EC 4.2.1.11)) are activated in a coordinated way. The main enzyme controlling starch synthesis (ADP-Glc pyrophoshorylase) is also activated in order to produce ADP-Glc for starch synthesis. Sucrose synthase activity presented its highest value during this phase and could be involved in providing UDP-Glc for cell wall cellulose synthesis. Cell expansion is mainly driven by the hexose content. Hexose accumulation in the vacuole is responsible for at least 50% of the fruit osmotic potential during the time course of cell expansion. The crucial role of hexose in cell expansion may thus explain the small fruit size produced by shaded plants.

Some enzymes exhibit a high activity during the late elongation phase and culminate at the green mature stage. This is the case for phosphoglucoisomerase (PGI; EC 5.3.1.9), ATP-phosphofructokinase (PFK; EC 2.7.1.11) and for UDP-Glc pyrophosphorylase (UGPase; EC 2.7.7.9). These enzymes are involved in recycling of hexose-P issued from starch degradation (Carrari et al., 2007). Starch accumulation in the fruit occurs during the early expansion phase while net starch degradation occurs during the late cell expansion phase. Nevertheless, all enzymes required for starch synthesis and degradation are present in the fruits at all developmental stages and there is a continuous starch synthesis and breakdown in tomato fruits. The most important enzyme for starch degradation in fruit is starch phosphorylase which produces G1P while amylase activity remains rather low (Yelle et al. 1991). Beside regulation of ADP-Glc pyrophosphorylase, the concentration of hexose phosphate in the amyloplasts and the rate of hexose phosphate exchange between cytosol and amyloplast constitute major control points to regulate the balance between starch synthesis and starch degradation (Centeno et al., 2011; Nguyen-Quoc and Foyer, 2001).

SlARF4 represses the expression of SlAGPase gene (Sagar et al., 2013). Other transcription factors play key roles in the regulation of gene expression during cell expansion phase. Mounet et al. (2009) reported important roles for zinc finger proteins, MYB, bZIP, an ERF and a NAC transcription factors. The homeobox-Leu zipper protein HAT22 appears to be implicated in the complex regulation of the metabolic shift occurring between fruit early development and subsequent ripening. Some transcription factors assume important roles in the mesocarp while others are more specifically acting in the locular tissues (Lemaire-Chamley et al., 2005; Mintz-Oron et al., 2008; Mounet et al., 2009). Sugar signaling during the cell expansion phase may involve direct sugar-binding: hexokinase is acting as sugar sensor with dual independent functions in hexose phosphorylation and glucose sensing. Sugar signaling may also involve upstream open reading frame as reported for the sucrose-induced repression of translation (SIRT) in which the translation of the normal ORF of a bZIP transcription factor is repressed by sucrose (Kanayama, 2017). Sagor et al., (2016) expressed a tomato homolog of the bZIP gene lacking the uORF in fruit using a ripe fruit specific E8 promoter and strongly increased the fruit sugar concentration in the transgenic lines.

 Both cell division and cell expansion phases imply the regulation of the cell wall metabolism, which also directly influences the fruit firmness and texture. Cell wall polysaccharides largely derive from sugar and sugar phosphates, and in tomato fleshy fruits mainly formed by unlignified parenchyma cells, pectic and hemicellulose polysaccharides account for nearly 95% of the cell wall. Regulation of the cell wall-related enzymes are however mainly studied in relation to the ripening phase of tomato fruit development.

4.1.5 Sugar metabolism during repining phase and putative interest of wild-related tomato species

Ripening phase involves both catabolim and accumulation of key metabolites. During ripening, fruit weight still slightly increases and hexoses exhibit their highest concentration. Total protein content also increases and enzymes involved in TCA cycle and glycolysis strongly increased while glucokinase and fructokinase activities decreased. Degradation of starch hence becomes the main source of hexose-P used as substrate for respiration (Beckles et al., 2012; Biais et al., 2014; Carrari and Fernie, 2006). Sucrose-phosphate-synthase activity, which remains low during the previous expanding phases,

significantly increased at the beginning of ripening phase (Biais et al., 2014). Accumulation of sucrose, however, remains limited since invertase activities also increased during ripening in the cultivated tomato species Solanum lycopersicum (Yelle et al., 1991). According to Bastías et al, (2011), ABA which increases before ethylene at the early beginning of maturation phase may be involved in stimulating the expression of genes coding acid vacuolar invertase. The ABA-responsive element binding factor SIAREB1 is indeed present in the fruit pericarp at the end of the mature green stage (Yáñez et al., 2009) and plays an important role for up-regulation of genes involved in sugar metabolism during ripening. During the breaker stage, chlorophyll content strongly declines and the dedifferentiation of chloroplasts in chromoplasts occur under the control of anterograd and retrograd mechanisms leading to the breakdown of starch granules and lysis of thylakoid membrane (Pesaresi et al., 2014). Cell walls are then degraded as a consequence of activation of rhamnogalacturonase and βgalactosidase which depolymerize branched pectins resistant to attack by endo-polygalacturonase (Carrari and Fernie, 2006). Pectin methylesterase catalyses de-esterification of pectin and are encoded by three genes, one being fruit specific and involved in shelf-life of tomato upon storage at room temperature. Fruit softening is also determined by cellulase (endo-β-1,4 glucanases) and by xyloglucan endotransglucosylase (Jiang et al., 2019).

683 684

685

686

687

688

689 690

691

692

693

694

695

696

697 698

699 700

701

702 703

704

705 706

707

708 709

710

711

712

682

667

668

669

670

671

672

673 674

675

676

677 678

679

680 681

> Fructose is sweeter than other sugars and metabolic engineering was therefore specifically performed using fructokinase targets to increase fructose content in commercial tomato fruits (Kanayama, 2017; Odanaka et al., 2002). According to Schaffer et al. (1998), the trait of high fructose to glucose is independently inherited from that of sucrose accumulation. Numerous wild species differ from domesticated tomato cultivars and contain high TSS (Total Soluble Solid, a convenient proxy for sugar content) (more than 10% against 4-6% for S. lycopersicum). These wild species often present an increased import of sugar from source leaves, especially during the latter stage of development. Some of them (S. chmielewskii, S. peruvianum, S. neorickii and S. habrochaites) store large amounts of sucrose and present constitutively low invertase activities (Miron and Schaffer, 1991). Others (S. cheesmanii, S. pennellii, S. pimpinelifolium) accumulate mainly glucose and fructose in relation to a high apoplastic invertase in the columella which increases the sugar gradient with the phloem (Beckles et al., 2012). Introgression lines thus constitute convenient tools to investigate the control of sugar content (Eshed and Zamir, 1994; Gur and Zamir, 2004). The line IL8-3 contains a single short segment from S. pennellii in the S. lycopersicum background. This promising line contains a high level of sugar resulting from an increased hexose content, probably as a consequence of a high activity of ADPglucose pyrophosphorylase leading to accumulation of starch during the middle part of development, followed by an active starch remobilization during ripening (Ikeda et al., 2016).

> Beside structural enzymes involved in sugar metabolism in fruits, sugar transporters also appear to play a key role in soluble sugar profile (Schroeder et al., 2013). This is especially the case for members of the SWEET gene family: the expression pattern of those genes frequently coincides with sugar accumulation pattern in tomato fruit (Feng et al., 2015). Two interacting chromosomal regions introgressed from the inedible Solanum habrochaites present an almost 3-fold epistatic increase in the fructose to glucose ratio in mature fruits (Levin et al., 2000). More recently, Shammai et al. (2018) reported that introgressions of the Fgr^H allele from S. habrochaites into cultivated tomato increased the fructose to glucose ratio of the ripe fruit. These authors clearly demonstrated that the SlFgr gene encodes a plasma membrane-localized glucose efflux transporter of the SWEET family. Its overexpression in transgenic tomato plants strongly reduced glucose concentration and increased fructose:glucose ratio. Interestingly, no clear impact of the Fgr gene overexpression on the expression of sugar metabolizing genes was recorded and the relationship between glucose efflux and fructose

713 increase still remains an open question.

4.2 Organic acid metabolism

Organic acid content in fruits is one of the most important properties from a commercial point of view and have a strong influence on the sensorial qualities of the product. Acid taste in tomato is attributed to citric and malic acid which constitute together more than 90% of the total pool of organic acid in harvestable fruits (Bastías et al., 2011). High sugar content and relatively high acid content are required for a favourable taste. High level of acids with low level of sugar will produce a tart tomato, while high levels of sugars and low acids will result in a bland taste (Davies and Hobson, 1981).

 The cell division phase is characterized by very high rates of organic acids accumulation (from 2 to 5 nmol min⁻¹ g⁻¹ FW between 4 and 15 DAA according to Beauvoit et al. (2014). It is consequently tempting to speculate that such a high level of accumulation contribute with soluble sugars to decrease the cell water potential allowing water uptake. However, beside this osmotic function, organic acids are also of paramount importance at the cellular level for various biochemical pathways. According to Carrari and Fernie (2006), manipulation of central organic acids is a promising approach to improve tomato fruit yield.

During the cell expansion phase, clear differences were recorded between locular and mesocarp tissues since most organic acids were more abundant in the former than in the latter, and this is especially the case for citrate and malate (Mounet et al., 2009). According to this study, among genes related to organic acid metabolism, 13 were differentially expressed in the two types of tissues. In both tissues, however, organic acid concentration increased between 20 and 35 DAA, mainly in locular tissues and this was correlated with an increased expression of gene coding for aconitase, a key enzyme involved in TCA cycle.

At the ripening stage, tomato climacteric fruits strongly increase ethylene synthesis and respiration, although both subsequently decreased during post-climacteric storage (Van de Poel et al., 2012). Increasing respiration implies hastening of the TCA cycle. Before the ethylene burst, a transient increase in ABA may induce an accumulation of citric and malic enzymes. At the beginning of the ripening phase, fruit preferentially accumulates citrate through stimulation of citrate synthase and the expression of a gene encoding mitochondrial citrate synthase is upregulated by SIAREB1 (Bastías et al., 2011).

Centeno et al. (2011) experimentally decreased the activities of mitochondrial malate dehydrogenase or fumarase via targeted fruit-specific antisense approach in tomato. These authors demonstrated that the line containing higher concentration of malate exhibited a lower starch accumulation during the cell expansion phase and lower soluble sugars at harvest. Although modification of organic acid content in the mitochondria could be relevant from modification in the TCA cycle, it has to be mentioned that mitochondrial pool represents only a small portion of the total cellular organic acid. According to (Centeno et al., 2011), correlation between malate and starch concentration could be related to an altered redox status of the AGPase protein allowing an allosteric enhancement of its maximal catalytic activity.

During the ripening stage, phoshoenolpyruvate carboxykinase (PEPCK; which was almost undetectable in green fruits) is suspected to act in the dissimilation of malate/citrate to provide sugar through neoglucogenesis. This hypothesis was confirmed by Huang et al. (2015) who analyzed the effect of an excessive PEPCK in transgenic lines overexpression SIPEPCK by either the constitutive CaMV35S or the fruit-specific E8 promoter. Soluble sugars increased while malate content decreased in both lines, confirming the participation of gluconeogenesis in sugar/acid metabolism during fruit ripening. Similarly, Schouten et al. (2016) recently confirmed that an important part of malate is converted to hexose

4.3 Amino acids metabolism

Total concentration of free amino acids in tomato fruits varies between 2.0 and 2.5% on a dry weight basis. The most quantitatively important are Glu, Asp and GABA (γ-aminobutiric acid) (Snowden et al., 2015; Sorrequieta et al., 2010). GABA is a four carbon non-protein amino acid which assumes important functional properties in reducing blood pressure in the human body (Zhao et al., 2018). It is also an important metabolite in plants and control cytosolic pH under acid load via the GABA shunt pathway. It is present at high concentration at the green mature stage but then progressively declines during ripening processes (Klee and Giovannoni, 2011). Threonine also declines during ripening and could be metabolized to pyruvate involved with glyceraldehyde 3-phosphate in the synthesis off isopentenyl pyrophosphate acting as a precursor of carotenoids. Most of the other free amino acids increased during ripening while the protein content decreased in relation to an increment in exopeptidase activity and non-specific protease activity pattern (Sorrequieta et al., 2010).

 The recorded increase is especially important for glutamate whose concentration may be as high as 10 mmol $\,\mathrm{Kg^{\text{-}1}}$ FW in mature fruits. Such an increase is partly due to stimulation of glutamate dehydrogenase (aminating reaction) and α -ketoglutarate-dependent γ -aminobutyrate transaminase. Cultivated S. Iycopersicum has quite higher glutamate content than wild species (Schauer et al., 2005). Since glutamate is a direct precursor of chlorophyll, its accumulation in ripening fruit may be, at least partly, regarded as the consequence of downregulation of chlorophyll synthesis. Mature green fruit contain Fd-GOGAT putatively involved in glutamate synthesis but this enzyme was not detected in red mature fruits where glutamate accumulates (Sorrequieta et al., 2010). Considering the importance of glutamate in phloem sap, transfer of this amino acid from the source leaves to the maturing fruits could not be excluded. (Snowden et al., 2015) considered that GABA may be interconverted in Glu and Asp and provided evidences that these amino acids must be stored in the vacuoles. These authors identified SICAT9 as a candidate protein for tonoplast transporter exporting GABA from the vacuole and importing Glu and Asp.

Aromatic amino acids also increase and are of special interest since they constitute precursor of flavor volatiles during the ripening process. Valine increased in relation to a stimulation of dihydroxy acid dehydratase (Mounet et al., 2009). MYB and bZIP transcription factors were shown to affect amino acid metabolism (Mounet et al., 2009). (Zhao et al., 2018) recently demonstrated that TAGL1 (TOMATO AGAMOUS-LIKE1), which play a major role in fruit development (see above), also directly influences fruit metabolism in relation to an increase in seven amino acids (tyrosine, glutamic acid, valine, phenylalanine, proline, leucine and isoleucine).

5 Secondary metabolism in tomato fruit

5.1 Pigments and flavonoids

The onset and progression of ripening in tomato is typically associated with changes in the external color of the pericarp, reflecting the accumulation of carotenoid and flavonoid pigments (Shinozaki et al., 2018b). Tomato fruits typically provide the principal dietary source of carotenoids in many Western diets (Carrari and Fernie, 2006). The characteristic red tomato color is a result of the accumulation of the carotenoid lycopene in both the fruit skin and pulp (Borghesi et al., 2016; D'Ambrosio et al., 2018; Seymour et al., 2013). During tomato ripening, the concentrations of carotenoids increase by between 10- and 14-fold, mainly due to the accumulation of lycopene (Fraser et al., 1994), which increases as the fruit matures (Tamasi et al., 2019). Alterations in the pigment accumulation patterns have also been observed in several spontaneously occurring tomato mutants (Carrari and Fernie, 2006); for example, the recessive mutant *high pigment* (*hp*) produces fruits with two times more carotenoids than wild-type fruits and increased levels of other antioxidants (Bino et al., 2005; Carrari and Fernie, 2006; Yen et al., 1997).

Carotenoid biosynthesis has been studied extensively in tomato, and major steps in the pathway have been identified (Seymour et al., 2013). Light signaling and plant hormones, particularly ethylene and auxins, have been identified as important regulators of carotenoid biosynthesis during tomato fruit ripening (Cruz et al., 2018). Almost all the enzymes acting in the carotenoid biosynthesis pathway have been cloned, and metabolic engineering approaches have been developed to enhance pigment quantity and quality (Alseekh et al., 2015; Carrari and Fernie, 2006; D'Ambrosio et al., 2018). The first committed step of carotenoid biosynthesis is the formation of phytoene, which is dependent on the catalytic activity of phytoene synthase. Phytoene then undergoes two desaturation reactions to form ζ -carotene, catalyzed by phytoene desaturase, which in turn is desaturated to neurosporene and finally lycopene. Lycopene is then either cyclized at both ends of the molecule by lycopene b-cyclase to form α -carotene, or cyclized at one end by lycopene b-cyclase and at the other by lycopene e-cyclase to form α -carotene. These cyclic carotenoids can then be converted to xanthophylls.

Tomatoes also accumulate semipolar metabolites, such as flavonoids, phenolic acids, and alkaloids, which are important health-promoting compounds (Ballester et al., 2016; Bovy et al., 2007; Tamasi et al., 2019; Tohge et al., 2017; Tohge and Fernie, 2015; Wang et al., 2019). To identify the genes responsible for their biosynthesis, QTL analyses were performed in different populations of introgression lines between S. lycopersicum and wild tomato species such as S. chmielewskii and S. pennellii (Alseekh et al., 2015, 2017; Ballester et al., 2016; Liu et al., 2016). The flavonoids represent a large family of low molecular weight polyphenolic secondary metabolites, which are grouped into several classes based on their aglycone structure (Ballester et al., 2016; Bovy et al., 2007). The main flavonoid classes are the flavones, flavonols, flavanones, flavanols, anthocyanidins, and isoflavones (Bovy et al., 2007; Tohge et al., 2017). More than 500 different forms of flavonoids are present in tomato, with the most major being the chalcone naringenin chalcone and various sugar conjugates of the flavonols quercetin and kaempferol, including rutin (Ballester et al., 2016; Bovy et al., 2007; Tamasi et al., 2019). In tomato fruits, the accumulation of flavonoids is restricted to the peel, with only traces found in the flesh, which comprises approximately 95% of the whole fruit (Ballester et al., 2016; Bovy et al., 2010; Schijlen et al., 2008). As a result, in a typical tomato cultivar such as Moneymaker, quercetin levels rarely go above 10 mg kg-1 fresh weight (Bovy et al., 2010). Usually, cultivated tomatoes lack high levels of anthocyanins, while some wild tomato species (S. chilense and S. cheesmaniae) have much higher levels, giving a purple tone to the skin of certain organs (Borghesi et al., 2016; Seymour et al., 2013; Wang et al., 2019). The main phenylpropanoids found in tomato are chlorogenic and caffeic acids (Tamasi et al., 2019).

Flavonoids, along with other phenylpropanoids, are biosynthesized from phenylalanine. Three enzymes (phenylalanine ammonia lyase [PAL], cinnamate 4-hydroxylase [C4H], and 4-coumaroyl CoA ligase [4CL]) convert phenylalanine into 4-coumaroyl CoA, the activated intermediate for the various branches of phenylpropanoid metabolism (Zhang et al., 2015). Chalcone synthase (CHS) is the first enzyme involved in the phenylpropanoid/flavonoid pathway and converts 4-coumaroyl CoA into naringenin chalcone (Ballester et al., 2016; Tohge et al., 2017). Most of the biosynthetic genes involved in the flavonoid pathway and the transcription factors regulating them have been identified (Adato et al., 2009; Ballester et al., 2016; Bovy et al., 2010; Li et al., 2018b; Tohge et al., 2017; Wang et al., 2019). These insights have been used to develop genetic engineering strategies to increase the flavonoid contents of tomatoes, since this species accumulates limited amounts of phenolic antioxidants relative to its content of lipophilic antioxidants such as carotenoids (Bovy et al., 2007, 2010; Carrari and Fernie, 2006; Tohge et al., 2017; Wang et al., 2019; Zhang et al., 2015).

Alkaloids are generally considered to be antinutritional factors in our diet (Friedman, 2002). Breeding efforts have focused on reducing their levels in foods, but some of these substances still remain in our daily diet (Friedman, 2002). More than 100 glycoalkaloids have been found to be present in the tomato clade in various tissues and accessions (Tohge and Fernie, 2015). The main alkaloids present in tomato are α-tomatine and dehydrotomatine, which are often concurrently analyzed as tomatine (Ballester et al., 2016; Friedman, 2015; Tamasi et al., 2019). Immature green tomatoes contain up to 500 mg of tomatine per kilogram of dry weight, while the levels in red tomatoes are much lower (up to about 5 mg kg⁻¹) (Friedman, 2015; Tamasi et al., 2019). The tomatine contents of cherry tomatoes (grape tomatoes, minitomatoes) are severalfold greater than those of the larger standard tomato varieties (Friedman, 2015; Tamasi et al., 2019). In tomato fruits, the bitter-tasting α -tomatine is present at high levels in early developmental stages, but its levels decrease upon ripening due to its conversion into its acetyl glucosylated forms lycoperoside G and F or esculeoside A, which are not bitter (Ballester et al., 2016: Tohge and Fernie, 2015). Dehydrotomatine is 10 times less abundant than α-tomatine in immature fruits (Tamasi et al., 2019). Despite their negative impact on nutrition and their toxicity, glycoalkaloids found in Solanaceous plants, such as α-tomatine, and their hydrolysis products were shown to have anticancer properties (Friedman, 2015)

5.2 Volatiles

Volatile metabolites biosynthesized during tomato ripening are responsible for fruit flavor and aroma (Ballester et al., 2016; Carrari and Fernie, 2006; Shinozaki et al., 2018b). More than 400 volatiles have been detected in tomatoes, but a smaller set of 15 to 20 are made in sufficient quantities to have an impact on human perception (Baldwin et al., 2000; Mathieu et al., 2009; Zanor et al., 2009). These volatile compounds are generally derived from various precursors, including fatty acids, carotenoids, and amino acids (Bauchet et al., 2017; Tieman et al., 2006; Zanor et al., 2009). The principal contributors to the ripe tomato flavor are cis-3-hexanal, cis-3-hexanol, hexanal, 3-methylbutanal, 6-methyl-5-hepten-2-one, 1-pentan-3-one, trans-2-hexanal, methyl salicylate, 2-isobutylthiazole, and β-ionone (Carrari and Fernie, 2006). There are differences of many orders of magnitude between the abundance of the various volatile compounds, with concentrations ranging from several micrograms per gram of fresh weight for the most abundant, such as (*Z*)-3-hexanal or hexanal, to nanograms per gram and even lower levels detected for β-damascenone or β-ionone (Rambla et al., 2014; Tieman et

al., 2017). The levels of almost any volatile compound also vary substantially between varieties and accessions (Rambla et al., 2014). Modern commercial varieties contain significantly lower amounts of many of the important flavor chemicals than older varieties since it was not the focus of breeding programs (Bauchet et al., 2017; Tieman et al., 2017; Tohge and Fernie, 2015). Volatiles display a variable pattern of heritability, suggesting a high sensitivity to environmental conditions (Bauchet et al., 2017). Moreover, not all volatile compounds confer positive taste attributes to tomato (Carrari and Fernie, 2006). An example is the identification of *malodorous*, a wild tomato species allele affecting tomato aroma that was selected against during domestication (Tadmor et al., 2002).

QTL analyses, genome-wide association studies, and targeted metabolome quantifications were conducted in several cultivars and accessions of cultivated tomato, wild relatives, and inbred lines to identify tomato volatiles and their associated genetic loci (Alseekh et al., 2015, 2017; Ballester et al., 2016; Bauchet et al., 2017; Liu et al., 2016; Mathieu et al., 2009; Saliba-Colombani et al., 2001; Tieman et al., 2006, 2017; Zanor et al., 2009). These studies revealed the complex and distinct regulation of metabolites in tomato subspecies (Bauchet et al., 2017; Rambla et al., 2014), demonstrating that there is ample genetic scope to improve the volatile composition of commercial varieties (Rambla et al., 2014).

As mentioned previously, several classes of volatiles exist in tomato. Volatiles derived from fatty acids constitute a class of compounds containing the most abundant volatiles produced in tomato fruits: the C6 volatiles 1-hexanol, (Z)-3-hexenal, (E)-2-hexenal, or hexanal, and the C5 volatile 1-penten-3-one (Rambla et al., 2014). These compounds are classified as green-leaf volatiles due to their characteristic fresh aroma of cut grass (Rambla et al., 2014). The production of these compounds increases as the fruit ripens (Klee, 2010). A second class are volatiles derived from amino acids. A significant number of volatile compounds considered important for the tomato aroma are derived from amino acids (Rambla et al., 2014). These volatiles can be grouped into two categories: phenolic and branched-chain compounds. Phenolic volatiles include a variety of compounds derived from the amino acid phenylalanine, while branched-chain volatiles have particularly low molecular weights and high volatility (Rambla et al., 2014). Additional classes are ester and terpenoid volatiles. Few esters are found in the volatile fraction of tomato (Rambla et al., 2014), while volatile terpenoids are among the most abundant volatiles in tomato vegetative tissues, but only a few of them, such as limonene, linalool, or α-terpineol, are present in the ripe fruit (Rambla et al., 2014), Volatile terpenoids can be classified into two groups, the monoterpenoids (C10) and sesquiterpenoids (C15), both of which are biosynthesized from the five-carbon precursors isopentenyl diphosphate and dimethylallyl diphosphate (Rambla et al., 2014). Carotenoid-derived volatiles are produced at low levels in ripe fruit but are important in our perception of tomato flavor due to their very low odor thresholds (Rambla et al., 2014; Vogel et al., 2010). This is particularly true for β-ionone or β-damascenone, which can be detected ortho-nasally at concentrations of 0.007 and 0.002 nL L⁻¹, respectively (Buttery et al., 1989). Volatile compounds first accumulate in a conjugated nonvolatile form, such as a glycoside, before being released during the ripening process (Rambla et al., 2014; Tohge and Fernie, 2015). The accumulation of the appropriate glycosidases in a separate subcellular location would allow the immediate liberation of high amounts of the aglycone when the enzyme and the conjugate glycosylated form come into contact with each other (Rambla et al., 2014).

6 Effects of abiotic stress on tomato fruit metabolism

Tomato is one of the most cultivated vegetable species but its productivity is impaired by a wide range of abiotic stresses (Gerszberg and Hnatuszko-Konka, 2017). The presence of adverse environmental factors like extreme temperatures, salinity or drought affects tomato yield as a consequence of reduced fruit number and fruit size but it also affects fruit quality (Gerszberg and Hnatuszko-Konka, 2017; Li et al., 2012; Moretti et al., 2010). It has been shown that moderate stress conditions may improve fruit quality through higher concentration of flavor compounds (Albert et al., 2016b, 2016a; Zheng et al., 2013). In several studies, the concentrations of sugars, organic acids, vitamin C, phenolic compounds and carotenoids increased in tomato fruits in response to water deficit, salinity, or heat (Albert et al., 2016b; Flores et al., 2016; Marsic et al., 2018; Patanè et al., 2011; Saito et al., 2009; Zushi and Matsuzoe, 2015). However, increased CO₂ levels increased fruit production but decreased fruit quality (Mamatha et al., 2014). Nevertheless, metabolic modifications in tomato fruits in response to abiotic stress may be cultivar-dependent (Albert et al., 2016b, 2016a; Flores et al., 2016; Marsic et al., 2018; Sánchez-Rodríguez et al., 2012; Sánchez-Rodríguez et al., 2012; Zushi and Matsuzoe, 2015). Table 1 summarizes some recent studies regarding the impact of abiotic stress occurring during plant growth on primary and secondary metabolism of tomato fruits. Modification of fruit metabolism was mainly investigated in response to salinity and drought (Table 1). The effect of salinity was investigated in various cultivars under hydroponic culture with NaCl concentrations varying between 0 to 100 mM and salinity overall increased the concentrations of sugars, organic acids, amino acids, pigments and antioxidants (Flores et al., 2016; Marsic et al., 2018; Saito et al., 2009; Schnitzler and Krauss, 2010; Zushi and Matsuzoe, 2015). The effect of drought was investigated under both greenhouse and field conditions. Most studies reported an increase in sugars and organic acids in response to drought in a wide range of tomato accessions (Albert et al., 2016b, 2016a; Murshed et al., 2013; Patanè et al., 2011; Shao et al., 2014; Zheng et al., 2013) while others reported less strong effects (Atkinson et al., 2011; Sánchez-Rodríguez et al., 2012; Wei et al., 2018). The effect of drought on the concentration of secondary metabolites was more cultivar-dependent (Atkinson et al., 2011; Sánchez-Rodríguez et al., 2012). In contrast to salinity and drought, heat mainly decreased the concentration of pigments and ascorbic acid in tomatoes (Hernández et al., 2015; Li et al., 2012) and increased CO₂ levels decreased carotenoid, polyphenol and flavonoid concentrations but increased ascorbic acid concentration in tomatoes (Mamatha et al., 2014). All these compounds play an important role in the final nutritional and commercial quality of tomato and depend on genetic, environmental, agronomic and post-harvest factors (Flores et al., 2016). Several studies based on the influence of these factors on fruit composition have been carried out with the aim of increasing tomato quality (Flores et al., 2016).

970971

972

973 974

975

976

977 978

979

980

981

982 983

984

938

939 940

941 942

943

944 945

946

947

948

949

950 951

952

953

954

955 956

957

958

959

960

961

962

963 964

965 966

967

968

969

In addition to the environmental conditions to which plants are subjected during their growth, postharvest conditions may also affect fruit quality and metabolism. The impact of low temperature storage on tomato quality has been extensively investigated (Cruz-Mendívil et al., 2015; Luengwilai et al., 2012; Raffo et al., 2018; Sevillano et al., 2009; Wang et al., 2015; Zhang et al., 2019). Among others, early harvesting and cold storage negatively affect tomato flavor and decrease the levels of aroma compounds (Raffo et al., 2018; Wang et al., 2015). Indeed, metabolomics data showed that 7 amino acids, 27 organic acids, 16 of sugars and 22 other compounds had a significantly different content in cold-stored tomatoes and transcriptomics data showed 1735 differentially expressed genes due to cold storage (Zhang et al., 2019). Some pre-treatments have been proposed to improve tomato fruit resistance to cold stress such as ozone exposition, high CO₂ treatment, UV-C hormesis, oxalic acid application and heat treatment (Charles et al., 2015; Cruz-Mendívil et al., 2015; Li et al., 2016b; Luengwilai et al., 2012; Mattos et al.; Moretti et al., 2010; Raffo et al., 2018; Sangwanangkul et al., 2017). These treatments provide protection from chilling in part by altering levels of fruit metabolites (Luengwilai et al., 2012; Sangwanangkul et al., 2017; Wang et al., 2015)

985	
986	7 Conclusions
987 988 989 990 991 992 993 994 995 996 997	In this review, we focused on the tomato fruit development and metabolism. Tomato has long been the model for the study of fleshy fruits and the emergence of "omics" approaches (phenomics, genomics, transcriptomics, proteomics, and metabolomics) has largely contributed to improve our understanding of the genetic, hormonal and metabolic networks that govern tomato fruit development and metabolism. Tomatoes are climacteric fruits with high level of health-promoting compounds. As important as yield improvement and stress resistance, enhancement of tomato fruit quality has gained extensive attention. Improvement of tomato flavor and quality is a challenge for the coming years. The sequencing of tomato genome and genome-wide association studies provide genetic insights into the genetic control of tomato flavor and gives a roadmap for flavor improvement. Moreover, several techniques can now be exploited for breeding superior tomato varieties in the context of current changing climatic conditions.
999	8 Conflict of Interest Statement
1000	There is no conflict of interest.
1001	
1002	9 Author Contributions
1003 1004 1005	MQ and SL designed the outline of the manuscript. MQ, SL, FJY, TA and JPM contributed to writing and revisions of the manuscript. SB and RB contributed to figure design and revisions of the manuscript. All authors read and approved the final manuscript.
1006	
1007	10 Funding
1008 1009	This work was supported by funding from the Belgium "Fonds National de la Recherche Scientifique (FRS-FNRS)" (grant n°CDR J.0136.19).
1010	
1011	11 Acknowledgments
1012 1013 1014	The authors are grateful to Jennifer Mach for language improvement. R.B. is grateful to the FSR (Fonds special de recherché) for the award of a research fellowship. This work was published with the support of the University Foundation of Belgium.

1016 12 Reference

1015

- Adamski, N. M., Anastasiou, E., Eriksson, S., O'Neill, C. M., and Lenhard, M. (2009). Local maternal
- 1018 control of seed size by KLUH/CYP78A5-dependent growth signaling. PNAS 106, 20115-
- 1019 20120. doi:10.1073/pnas.0907024106.
- 1020 Adato, A., Mandel, T., Mintz-Oron, S., Venger, I., Levy, D., Yativ, M., et al. (2009). Fruit-surface
- flavonoid accumulation in tomato is controlled by a SIMYB12-regulated transcriptional
- network. *PLoS Genet.* 5, e1000777. doi:10.1371/journal.pgen.1000777.
- 1023 Agarwal, S., and Rao, A. V. (2000). Tomato lycopene and its role in human health and chronic diseases.
- 1024 *CMAJ* 163, 739–744.
- Alba, R., Payton, P., Fei, Z., McQuinn, R., Debbie, P., Martin, G. B., et al. (2005). Transcriptome and
- selected metabolite analyses reveal multiple points of ethylene control during tomato fruit
- development. *Plant Cell* 17, 2954–2965. doi:10.1105/tpc.105.036053.
- Albert, E., Gricourt, J., Bertin, N., Bonnefoi, J., Pateyron, S., Tamby, J.-P., et al. (2016a). Genotype
- by watering regime interaction in cultivated tomato: lessons from linkage mapping and gene
- expression. *Theor. Appl. Genet.* 129, 395–418. doi:10.1007/s00122-015-2635-5.
- Albert, E., Segura, V., Gricourt, J., Bonnefoi, J., Derivot, L., and Causse, M. (2016b). Association
- mapping reveals the genetic architecture of tomato response to water deficit: focus on major
- fruit quality traits. *J Exp Bot* 67, 6413–6430. doi:10.1093/jxb/erw411.
- Alexander, L., and Grierson, D. (2002). Ethylene biosynthesis and action in tomato: a model for
- 1035 climacteric fruit ripening. *J Exp Bot* 53, 2039–2055. doi:10.1093/jxb/erf072.
- 1036 Alseekh, S., Tohge, T., Wendenberg, R., Scossa, F., Omranian, N., Li, J., et al. (2015). Identification
- and mode of inheritance of quantitative trait loci for secondary metabolite abundance in tomato.
- 1038 The Plant Cell 27, 485–512. doi:10.1105/tpc.114.132266.
- Alseekh, S., Tong, H., Scossa, F., Brotman, Y., Vigroux, F., Tohge, T., et al. (2017). Canalization of
- tomato fruit metabolism. *The Plant Cell* 29, 2753–2765. doi:10.1105/tpc.17.00367.
- 1041 Amemiya, T., Kanayama, Y., Yamaki, S., Yamada, K., and Shiratake, K. (2006). Fruit-specific V-
- ATPase suppression in antisense-transgenic tomato reduces fruit growth and seed formation.
- 1043 *Planta* 223, 1272–1280. doi:10.1007/s00425-005-0176-x.
- Anastasiou, E., Kenz, S., Gerstung, M., MacLean, D., Timmer, J., Fleck, C., et al. (2007). Control of
- plant organ size by KLUH/CYP78A5-dependent intercellular signaling. *Dev. Cell* 13, 843–856.
- doi:10.1016/j.devcel.2007.10.001.
- Atkinson, N. J., Dew, T. P., Orfila, C., and Urwin, P. E. (2011). Influence of combined biotic and
- abiotic stress on nutritional quality parameters in tomato (Solanum lycopersicum). J. Agric.
- 1049 Food Chem. 59, 9673–9682. doi:10.1021/jf202081t.
- 1050 Azzi, L., Deluche, C., Gévaudant, F., Frangne, N., Delmas, F., Hernould, M., et al. (2015). Fruit
- growth-related genes in tomato. Journal of Experimental Botany 66, 1075–1086.
- 1052 doi:10.1093/jxb/eru527.

- Baldwin, E. A., Scott, J. W., Shewmaker, C. K., and Schuch, W. (2000). Flavor trivia and tomato
- aroma: biochemistry and possible mechanisms for control of important aroma components.
- 1055 *HortScience* 35, 1013–1022.
- Ballester, A.-R., Tikunov, Y., Molthoff, J., Grandillo, S., Viquez-Zamora, M., de Vos, R., et al. (2016).
- Identification of loci affecting accumulation of secondary metabolites in tomato fruit of a
- Solanum lycopersicum × Solanum chmielewskii introgression line population. Front. Plant Sci.
- 7. doi:10.3389/fpls.2016.01428.
- Barrero, L. S., Cong, B., Wu, F., and Tanksley, S. D. (2006). Developmental characterization of the
- fasciated locus and mapping of Arabidopsis candidate genes involved in the control of floral
- meristem size and carpel number in tomato. *Genome* 49, 991–1006. doi:10.1139/g06-059.
- Barry, C. S., and Giovannoni, J. J. (2006). Ripening in the tomato Green-ripe mutant is inhibited by
- ectopic expression of a protein that disrupts ethylene signaling. *Proc. Natl. Acad. Sci. U.S.A.*
- 1065 103, 7923–7928. doi:10.1073/pnas.0602319103.
- 1066 Bastías, A., López-Climent, M., Valcárcel, M., Rosello, S., Gómez-Cadenas, A., and Casaretto, J. A.
- 1067 (2011). Modulation of organic acids and sugar content in tomato fruits by an abscisic acid-
- regulated transcription factor. Physiologia Plantarum 141, 215-226. doi:10.1111/j.1399-
- 1069 3054.2010.01435.x.
- Bauchet, G., Grenier, S., Samson, N., Segura, V., Kende, A., Beekwilder, J., et al. (2017). Identification
- of major loci and genomic regions controlling acid and volatile content in tomato fruit:
- implications for flavor improvement. *New Phytologist* 215, 624–641. doi:10.1111/nph.14615.
- Beauvoit, B. P., Colombié, S., Monier, A., Andrieu, M.-H., Biais, B., Bénard, C., et al. (2014). Model-
- assisted analysis of sugar metabolism throughout tomato fruit development reveals enzyme and
- 1075 carrier properties in relation to vacuole expansion. The Plant Cell 26, 3224–3242.
- doi:10.1105/tpc.114.127761.
- Beckles, D. M., Hong, N., Stamova, L., and Luengwilai, K. (2012). Biochemical factors contributing
- to tomato fruit sugar content: a review. Fruits 67, 49–64. doi:10.1051/fruits/2011066.
- Bemer, M., Karlova, R., Ballester, A. R., Tikunov, Y. M., Bovy, A. G., Wolters-Arts, M., et al. (2012).
- The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-
- independent aspects of fruit ripening. *Plant Cell* 24, 4437–4451. doi:10.1105/tpc.112.103283.
- Biais, B., Bénard, C., Beauvoit, B., Colombié, S., Prodhomme, D., Ménard, G., et al. (2014).
- 1083 Remarkable reproducibility of enzyme activity profiles in tomato fruits grown under contrasting
- environments provides a roadmap for studies of fruit metabolism. *Plant Physiology* 164, 1204–
- 1085 1221. doi:10.1104/pp.113.231241.
- 1086 Bino, R. J., Ric de Vos, C. H., Lieberman, M., Hall, R. D., Bovy, A., Jonker, H. H., et al. (2005). The
- light-hyperresponsive high pigment-2dg mutation of tomato: alterations in the fruit
- metabolome. *New Phytol.* 166, 427–438. doi:10.1111/j.1469-8137.2005.01362.x.
- Bollier, N., Sicard, A., Leblond, J., Latrasse, D., Gonzalez, N., Gévaudant, F., et al. (2018). At-MINI
- 2 ZINC FINGER2 and SI-INHIBITOR OF MERISTEM ACTIVITY, a conserved missing link

- in the regulation of floral meristem termination in Arabidopsis and tomato. *The Plant Cell* 30, 83–100. doi:10.1105/tpc.17.00653.
- Borghesi, E., Ferrante, A., Gordillo, B., Rodríguez-Pulido, F. J., Cocetta, G., Trivellini, A., et al. (2016). Comparative physiology during ripening in tomato rich-anthocyanins fruits. *Plant Growth Regul* 80, 207–214. doi:10.1007/s10725-016-0158-y.
- Bovy, A. G., Gómez-Roldán, V., and Hall, R. D. (2010). "Strategies to Optimize the Flavonoid Content of Tomato Fruit," in *Recent Advances in Polyphenol Research* (John Wiley & Sons, Ltd), 138–162. doi:10.1002/9781444323375.ch5.
- Bovy, A., Schijlen, E., and Hall, R. D. (2007). Metabolic engineering of flavonoids in tomato (*Solanum lycopersicum*): the potential for metabolomics. *Metabolomics* 3, 399. doi:10.1007/s11306-007-0074-2.
- Buta, J. G., and Spaulding, D. W. (1994). Changes in indole-3-acetic acid and abscisic acid levels during tomato (*Lycopersicon esculentum* Mill.) fruit development and ripening. *Journal of plant growth regulation* 13, 163. doi:10.1007/BF00196382.
- Buttery, R. G., Teranishi, R., Flath, R. A., and Ling, L. C. (1989). "Fresh Tomato Volatiles," in *Flavor Chemistry* ACS Symposium Series. (American Chemical Society), 213–222. doi:10.1021/bk-1107 1989-0388.ch017.
- 1108 Cara, B., and Giovannoni, J. J. (2008). Molecular biology of ethylene during tomato fruit development and maturation. *Plant Science* 175, 106–113. doi:10.1016/j.plantsci.2008.03.021.
- 1110 Cardon, G., Höhmann, S., Klein, J., Nettesheim, K., Saedler, H., and Huijser, P. (1999). Molecular characterisation of the Arabidopsis SBP-box genes. *Gene* 237, 91–104.
- 1112 Carrara, S., Pardosi, A., Soldatini, G. F., Tognoni, F., and Guidi, L. (2001). Photosynthetic activity of ripening tomato fruit. *Photosynthetica* 39, 75-78.
- 1114 Carrari, F., Asis, R., and Fernie, A. R. (2007). The metabolic shifts underlying tomato fruit development. *Plant Biotechnology* 24, 45–55. doi:10.5511/plantbiotechnology.24.45.
- 1116 Carrari, F., and Fernie, A. R. (2006). Metabolic regulation underlying tomato fruit development. *J Exp* 1117 *Bot* 57, 1883–1897. doi:10.1093/jxb/erj020.
- 1118 Carrera, E., Ruiz-Rivero, O., Peres, L.E., Atares, A., Garcia-Martinez, J.L. (2012). Characterization 1119 of the *procera* tomato mutant shows novel functions of the SIDELLA protein in the control of 1120 flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-1121 set and development. *Plant Physiol* 160:1581-1596. doi: 10.1104/pp.112.204552.
- 1122 Centeno, D. C., Osorio, S., Nunes-Nesi, A., Bertolo, A. L. F., Carneiro, R. T., Araújo, W. L., et al. 1123 (2011). Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of 1124 fruit and affects postharvest softening. Plant Cell162–184. 23, 1125 doi:10.1105/tpc.109.072231.

- Chaabouni, S., Jones, B., Delalande, C., Wang, H., Li, Z., Mila, I., et al. (2009). Sl-IAA3, a tomato
- Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth. J
- Exp Bot 60, 1349–1362. doi:10.1093/jxb/erp009.
- Chakrabarti, M., Zhang, N., Sauvage, C., Muños, S., Blanca, J., Cañizares, J., et al. (2013). A
- cytochrome P450 regulates a domestication trait in cultivated tomato. *Proc. Natl. Acad. Sci.*
- 1131 *U.S.A.* 110, 17125–17130. doi:10.1073/pnas.1307313110.
- 1132 Charles, M. T., Rolland, D., Roussel, D., Merisier, M. J., Charlebois, D., and Arul, J. (2015).
- 1133 Assessment of changes in organic acid and sugar profiles of tomato fruits induced by uv-c
- hormesis. *Acta Hortic.*, 159–164. doi:10.17660/ActaHortic.2015.1079.16.
- 1135 Chung, M.-Y., Vrebalov, J., Alba, R., Lee, J., McQuinn, R., Chung, J.-D., et al. (2010). A tomato
- 1136 (Solanum lycopersicum) APETALA2/ERF gene, SIAP2a, is a negative regulator of fruit
- ripening. *The Plant Journal* 64, 936–947. doi:10.1111/j.1365-313X.2010.04384.x.
- Clevenger, J. P., Van Houten, J., Blackwood, M., Rodríguez, G. R., Jikumaru, Y., Kamiya, Y., et al.
- 1139 (2015). Network analyses reveal shifts in transcript profiles and metabolites that accompany
- the expression of sun and an elongated tomato fruit. *Plant Physiol* 168, 1164–1178.
- doi:10.1104/pp.15.00379.
- 1142 Cong, B., Liu, J., and Tanksley, S. D. (2002). Natural alleles at a tomato fruit size quantitative trait
- locus differ by heterochronic regulatory mutations. PNAS 99, 13606–13611.
- doi:10.1073/pnas.172520999.
- 1145 Cruz, A. B., Bianchetti, R. E., Alves, F. R. R., Purgatto, E., Peres, L. E. P., Rossi, M., et al. (2018).
- Light, Ethylene and Auxin Signaling Interaction Regulates Carotenoid Biosynthesis During
- Tomato Fruit Ripening. *Front Plant Sci* 9. doi:10.3389/fpls.2018.01370.
- 1148 Cruz-Mendívil, A., López-Valenzuela, J. A., Calderón-Vázquez, C. L., Vega-García, M. O., Reyes-
- Moreno, C., and Valdez-Ortiz, A. (2015). Transcriptional changes associated with chilling
- tolerance and susceptibility in 'Micro-Tom' tomato fruit using RNA-Seq. Postharvest Biology
- and Technology 99, 141–151. doi:10.1016/j.postharvbio.2014.08.009.
- D'Ambrosio, C., Stigliani, A. L., and Giorio, G. (2018). CRISPR/Cas9 editing of carotenoid genes in
- tomato. *Transgenic Res* 27, 367–378. doi:10.1007/s11248-018-0079-9.
- Davies, J. N., and Hobson, G. E. (1981). The constituents of tomato fruit--the influence of environment,
- nutrition, and genotype. Crit Rev Food Sci Nutr 15, 205–280.
- doi:10.1080/10408398109527317.
- de Jong, M., Mariani, C., and Vriezen, W. H. (2009). The role of auxin and gibberellin in tomato fruit
- set. *Journal of Experimental Botany* 60, 1523–1532. doi:10.1093/jxb/erp094.
- Ding, J., Chen, B., Xia, X., Mao, W., Shi, K., Zhou ,Y., Yu, J. (2013). Cytokinin-induced
- parthenocarpic fruit development in tomato is partly dependent on enhanced gibberellin and
- auxin biosynthesis. *PLoS ONE* 8(7), e70080. doi:10.1371/journal.pone.0070080.

- Diouf, I. A., Derivot, L., Bitton, F., Pascual, L., and Causse, M. (2018). Water deficit and salinity stress
- reveal many specific qtl for plant growth and fruit quality traits in tomato. Front Plant Sci 9,
- 279. doi:10.3389/fpls.2018.00279.
- Eriksson, E. M., Bovy, A., Manning, K., Harrison, L., Andrews, J., Silva, J. D., et al. (2004). Effect of
- the colorless non-ripening mutation on cell wall biochemistry and gene expression during
- tomato fruit development and ripening. Plant Physiology 136, 4184-4197.
- doi:10.1104/pp.104.045765.
- Eshed, Y., and Zamir, D. (1994). Introgressions from *Lycopersicon pennellii* can improve the soluble-
- solids yield of tomato hybrids. *Theoret. Appl. Genetics* 88, 891–897. doi:10.1007/BF01254002.
- Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., et al. (2017). Crop production
- under drought and heat stress: plant responses and management options. Frontiers in Plant
- 1173 Science 8. doi:10.3389/fpls.2017.01147.
- FAOSTAT (2019). Available at: http://www.fao.org/faostat/en/#home [Accessed April 15, 2019].
- Fei, Z., Tang, X., Alba, R., and Giovannoni, J. (2006). Tomato Expression Database (TED): a suite of
- data presentation and analysis tools. *Nucleic Acids Res.* 34, D766-770. doi:10.1093/nar/gkj110.
- Feng, C. Y., Han, J. X., Han, X. X., and Jiang, J. (2015). Genome wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato. *Gene* 573, 261-272.
- Flores, P., Hernández, V., Hellín, P., Fenoll, J., Cava, J., Mestre, T., et al. (2016). Metabolite profile
- of the tomato dwarf cultivar Micro-Tom and comparative response to saline and nutritional
- stresses with regard to a commercial cultivar. Journal of the Science of Food and Agriculture
- 96, 1562–1570. doi:10.1002/jsfa.7256.
- Frary, A., Nesbitt, T. C., Grandillo, S., Knaap, E., Cong, B., Liu, J., et al. (2000). fw2.2: a quantitative
- trait locus key to the evolution of tomato fruit size. *Science* 289, 85–88.
- Fraser, P. D., Truesdale, M. R., Bird, C. R., Schuch, W., and Bramley, P. M. (1994). Carotenoid
- biosynthesis during tomato fruit development (evidence for tissue-specific gene expression).
- 1187 Plant Physiol. 105, 405–413.
- 1188 Fridman, E., Carrari, F., Liu, Y.-S., Fernie, A. R., and Zamir, D. (2004). Zooming in on a quantitative
- trait for tomato yield using interspecific introgressions. Science 305, 1786–1789.
- doi:10.1126/science.1101666.
- Friedman, M. (2002). Tomato glycoalkaloids: role in the plant and in the diet. J. Agric. Food Chem.
- 1192 50, 5751–5780.
- 1193 Friedman, M. (2015). Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by
- egplants, potatoes, and tomatoes. J. Agric. Food Chem. 63, 3323–3337.
- doi:10.1021/acs.jafc.5b00818.
- Fujisawa, M., Shima, Y., Higuchi, N., Nakano, T., Koyama, Y., Kasumi, T., et al. (2011). Direct targets
- of the tomato-ripening regulator RIN identified by transcriptome and chromatin
- immunoprecipitation analyses. *Planta* 235, 1107–1122. doi:10.1007/s00425-011-1561-2.

- Garceau, D. C., Batson, M. K., and Pan, I. L. (2017). Variations on a theme in fruit development: the
- 1200 PLE lineage of MADS-box genes in tomato (TAGL1) and other species. *Planta* 246, 313–321.
- 1201 doi:10.1007/s00425-017-2725-5.
- 1202 García-Hurtado, N., Carrera, E., Ruiz-Rivero, O., López-Gresa, M. P., Hedden, P., Gong, F., et al.
- 1203 (2012). The characterization of transgenic tomato overexpressing gibberellin 20-oxidase
- reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin
- biosynthetic pathway. *J. Exp. Bot.* 63, 5803–5813. doi:10.1093/jxb/ers229.
- 1206 Gerszberg, A., and Hnatuszko-Konka, K. (2017). Tomato tolerance to abiotic stress: a review of most
- often engineered target sequences. *Plant Growth Regul* 83, 175–198. doi:10.1007/s10725-017-
- 1208 0251-x.
- Gharbi, E., Martínez, J.-P., Benahmed, H., Lepoint, G., Vanpee, B., Quinet, M., et al. (2017). Inhibition
- of ethylene synthesis reduces salt-tolerance in tomato wild relative species *Solanum chilense*.
- *Journal of plant physiology* 210, 24–37.
- Gilbert, L. (2009). Étude de la biosynthèse de l'ascorbate et des métabolismes associés chez la Tomate :
- rôle de la L-galactono-1,4-lactone déshydrogénase et de la GDP-D-mannose-3',5'-épimérase.
- Available at: http://www.theses.fr/2009BOR21668 [Accessed May 29, 2019].
- 1215 Gillaspy, G., Ben-David, H., and Gruissem', W. (1993). Fruits: a developmental perspective. *The Plant*
- 1216 Journal 5, 1439–1451.
- 1217 Gimenez, E., Castañeda, L., Pineda, B., Pan, I. L., Moreno, V., Angosto, T., et al. (2016). TOMATO
- 1218 AGAMOUSI and ARLEQUIN/TOMATO AGAMOUS-LIKEI MADS-box genes have redundant
- and divergent functions required for tomato reproductive development. *Plant Mol Biol* 91, 513–
- 1220 531. doi:10.1007/s11103-016-0485-4.
- Giménez, E., Pineda, B., Capel, J., Antón, M. T., Atarés, A., Pérez-Martín, F., et al. (2010). Functional
- analysis of the *arlequin* mutant corroborates the essential role of the *ARLEQUIN/TAGL*1 gene
- during reproductive development of tomato. PLOS ONE 5, e14427.
- doi:10.1371/journal.pone.0014427.
- 1225 Giovannoni, J. J. (2004). Genetic regulation of fruit development and ripening. The Plant Cell 16,
- 1226 S170–S180. doi:10.1105/tpc.019158.
- Giovannoni, J. J. (2007). Fruit ripening mutants yield insights into ripening control. Current Opinion
- in Plant Biology 10, 283–289. doi:10.1016/j.pbi.2007.04.008.
- Goldental-Cohen, S., Israeli, A., Ori, N., and Yasuor, H. (2017). Auxin response dynamics during wild-
- type and entire flower development in tomato. Plant Cell Physiol 58, 1661–1672.
- doi:10.1093/pcp/pcx102.
- Gonzalo, M. J., Brewer, M. T., Anderson, C., Sullivan, D., Gray, S., and Knaap, E. van der (2009).
- Tomato fruit shape analysis using morphometric and morphology attributes implemented in
- tomato analyzer software program. Journal of the American Society for Horticultural Science
- 1235 134, 77–87. doi:10.21273/JASHS.134.1.77.

- Guillon, F., Philippe, S., Bouchet, B., Devaux, M.-F., Frasse, P., Jones, B., et al. (2008). Down-
- regulation of an Auxin Response Factor in the tomato induces modification of fine pectin
- structure and tissue architecture. J. Exp. Bot. 59, 273–288. doi:10.1093/jxb/erm323.
- Guo, M., and Simmons, C. R. (2011). Cell number counts The fw2.2 and CNR genes and implications
- for controlling plant fruit and organ size. Plant Science 181, 1–7.
- doi:10.1016/j.plantsci.2011.03.010.
- 1242 Gur, A., and Zamir, D. (2004). Unused natural variation can lift yield barriers in plant breeding. *PLOS*
- 1243 *Biology* 2, e245. doi:10.1371/journal.pbio.0020245.
- Hao, Y., Hu, G., Breitel, D., Liu, M., Mila, I., Frasse, P., et al. (2015). Auxin response factor SIARF2
- is an essential component of the regulatory mechanism controlling fruit ripening in tomato.
- 1246 *PLoS Genet.* 11, e1005649. doi:10.1371/journal.pgen.1005649.
- Hernández, V., Hellín, P., Fenoll, J., and Flores, P. (2015). Increased temperature produces changes in
- the bioactive composition of tomato, depending on its developmental stage. J. Agric. Food
- 1249 *Chem.* 63, 2378–2382. doi:10.1021/jf505507h.
- Hetherington, S. E., Smillie, R.M., and Davies, W. J. (1998). Photosynthetic activities of vegetative
- and fruiting tissues of tomato. *J. Exp. Bot.* 49, 1173-1181.
- Hu, J., Israeli, A., Ori, N., Sun, T.P. (2018). The interaction between DELLA and ARF/IAA mediates
- 1253 crosstalk between gibberellin and auxin signaling to control fruit initiation in tomato. *Plant Cell*
- 1254 30,1710-1728. doi: 10.1105/tpc.18.00363.
- Huang, Y.-X., Goto, Y., Nonaka, S., Fukuda, N., Ezura, H., and Matsukura, C. (2015). Overexpression
- of the phosphoenolpyruvate carboxykinase gene (SIPEPCK) promotes soluble sugar
- accumulation in fruit and post-germination growth of tomato (Solanum lycopersicum L.). Plant
- 1258 *Biotechnology* 32, 281–289. doi:10.5511/plantbiotechnology.15.1019a.
- Huang, Z., and van der Knaap, E. (2011). Tomato fruit weight 11.3 maps close to fasciated on the
- bottom of chromosome 11. *Theor. Appl. Genet.* 123, 465–474. doi:10.1007/s00122-011-1599-
- 1261 3.
- 1262 Ikeda, H., Shibuya, T., Imanishi, S., Aso, H., Nishiyama, M., and Kanayama, Y. (2016). Dynamic
- metabolic regulation by a chromosome segment from a wild relative during fruit development
- in a tomato introgression line, IL8-3. Plant Cell Physiol. 57, 1257–1270.
- doi:10.1093/pcp/pcw075.
- 1266 Itkin, M., Seybold, H., Breitel, D., Rogachev, I., Meir, S., and Aharoni, A. (2009). TOMATO
- 1267 AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. The Plant
- 1268 Journal 60, 1081–1095. doi:10.1111/j.1365-313X.2009.04064.x.
- 1269 Ito, Y., Kitagawa, M., Ihashi, N., Yabe, K., Kimbara, J., Yasuda, J., et al. (2008). DNA-binding
- specificity, transcriptional activation potential, and the *rin* mutation effect for the tomato fruit-
- ripening regulator RIN. The Plant Journal 55, 212–223. doi:10.1111/j.1365-
- 1272 313X.2008.03491.x.

- 1273 Ito, Y., Nishizawa-Yokoi, A., Endo, M., Mikami, M., Shima, Y., Nakamura, N., et al. (2017). Re-
- evaluation of the *rin* mutation and the role of RIN in the induction of tomato ripening. *Nature*
- 1275 Plants 3, 866. doi:10.1038/s41477-017-0041-5.
- Jiang, F., Lopez, A., Jeon, S., de Freitas, S. T., Yu, Q., Wu, Z., et al. (2019). Disassembly of the fruit
- cell wall by the ripening-associated polygalacturonase and expansin influences tomato
- 1278 cracking. *Hortic Res* 6, 17. doi:10.1038/s41438-018-0105-3.
- Jones, M.G. (1987). Gibberellins and the procera mutant of tomato. Planta 172: 280-284.
- Jones, B., Frasse, P., Olmos, E., Zegzouti, H., Li, Z. G., Latché, A., et al. (2002). Down-regulation of
- DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype
- including dark green and blotchy ripening fruit. The Plant Journal 32, 603-613.
- doi:10.1046/j.1365-313X.2002.01450.x.
- Kahlau, S., and Bock, E. (2008). Plastid transcriptomics of tomato fruit development and chloroplast-
- 1285 chromoplast differentiation: chromoplast gene expression largely serves the production of a
- single protein. *The Plant Cell* 20, 856-874.
- 1287 Kanayama, Y. (2017). Sugar Metabolism and Fruit Development in the Tomato. *Hort. J.* 86, 417–425.
- 1288 doi:10.2503/hortj.OKD-IR01.
- 1289 Karlova, R., Chapman, N., David, K., Angenent, G. C., Seymour, G. B., and de Maagd, R. A. (2014).
- 1290 Transcriptional control of fleshy fruit development and ripening. *J Exp Bot* 65, 4527–4541.
- 1291 doi:10.1093/jxb/eru316.
- Karlova, R., Rosin, F. M., Busscher-Lange, J., Parapunova, V., Do, P. T., Fernie, A. R., et al. (2011).
- 1293 Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato
- fruit ripening. *Plant Cell* 23, 923–941. doi:10.1105/tpc.110.081273.
- 1295 Kataoka, K., Yashiro, Y., Habu, T., Sunamoto, K., and Kitajima, A. (2009). The addition of gibberellic
- acid to auxin solutions increases sugar accumulation and sink strength in developing auxin-
- induced parthenocarpic tomato fruits. Scientia Horticulturae 123, 228–233
- doi:10.1016/j.scienta.2009.09.001.
- Kevany, B. M., Tieman, D. M., Taylor, M. G., Cin, V. D., and Klee, H. J. (2007). Ethylene receptor
- degradation controls the timing of ripening in tomato fruit. *Plant J.* 51, 458–467.
- doi:10.1111/j.1365-313X.2007.03170.x.
- Kim, J. Y., Kim, S.-K., Jung, J., Jeong, M.-J., and Ryu, C.-M. (2018). Exploring the sound-modulated
- delay in tomato ripening through expression analysis of coding and non-coding RNAs. *Ann Bot*
- 1304 122, 1231–1244. doi:10.1093/aob/mcy134.
- Kläring, H.-P., Klopotek, Y., Krumbein, A., and Schwarz, D. (2015). The effect of reducing the heating
- set point on the photosynthesis, growth, yield and fruit quality in greenhouse tomato production.
- 1307 Agricultural and Forest Meteorology 214–215, 178–188.
- doi:10.1016/j.agrformet.2015.08.250.

- 1309 Klee, H. J. (2010). Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology.
- 1310 New Phytol. 187, 44–56. doi:10.1111/j.1469-8137.2010.03281.x.
- 1311 Klee, H. J., and Giovannoni, J. J. (2011). Genetics and control of tomato fruit ripening and quality
- 1312 attributes. *Annu. Rev. Genet.* 45, 41–59. doi:10.1146/annurev-genet-110410-132507.
- 1313 Klee, H., and Tieman, D. (2002). The tomato ethylene receptor gene family: Form and function.
- 1314 *Physiologia Plantarum* 115, 336–341. doi:10.1034/j.1399-3054.2002.1150302.x.
- Kou, X., Liu, C., Han, L., Wang, S., and Xue, Z. (2016). NAC transcription factors play an important
- role in ethylene biosynthesis, reception and signaling of tomato fruit ripening. *Mol Genet*
- 1317 *Genomics* 291, 1205–1217. doi:10.1007/s00438-016-1177-0.
- Krauss, S., Schnitzler, W. H., Grassmann, J., and Woitke, M. (2006). The influence of different
- electrical conductivity values in a simplified recirculating soilless system on inner and outer
- fruit quality characteristics of tomato. J. Agric. Food Chem. 54, 441–448.
- doi:10.1021/jf051930a.
- Ku, H.-M., Doganlar, S., Chen, K.-Y., and Tanksley, S. D. (1999). The genetic basis of pear-shaped
- tomato fruit. *Theor Appl Genet* 99, 844–850. doi:10.1007/s001220051304.
- Kumar, R., Tamboli, V., Sharma, R., and Sreelakshmi, Y. (2018). NAC-NOR mutations in tomato
- Penjar accessions attenuate multiple metabolic processes and prolong the fruit shelf life. *Food*
- 1326 *Chemistry* 259, 234–244. doi:10.1016/j.foodchem.2018.03.135.
- Lecourieux, F., Lecourieux, D., Vignault, C., and Delrot, S. (2010). A sugar-inducible protein kinase,
- 1328 vvsk1, regulates hexose transport and sugar accumulation in grapevine cells. *Plant Physiology*
- 1329 152, 1096–1106. doi:10.1104/pp.109.149138.
- Lemaire-Chamley, M., Petit, J., Garcia, V., Just, D., Baldet, P., Germain, V., et al. (2005). Changes in
- transcriptional profiles are associated with early fruit tissue specialization in tomato. *Plant*
- 1332 *Physiol* 139, 750–769. doi:10.1104/pp.105.063719.
- Leseberg, C. H., Eissler, C. L., Wang, X., Johns, M. A., Duvall, M. R., and Mao, L. (2008). Interaction
- study of MADS-domain proteins in tomato. J. Exp. Bot. 59, 2253–2265.
- 1335 doi:10.1093/jxb/ern094.
- Levin, I., Gilboa, N., Yeselson, E., Shen, S., and Schaffer, A. A. (2000). Fgr, a major locus that
- modulates the fructose to glucose ratio in mature tomato fruits. Theor Appl Genet 100, 256–
- 1338 262. doi:10.1007/s001220050034.
- Li, J., Tao, X., Bu, J., Ying, T., Mao, L., and Luo, Z. (2017). Global transcriptome profiling analysis
- of ethylene-auxin interaction during tomato fruit ripening. *Postharvest Biology and Technology*
- 1341 130, 28–38. doi:10.1016/j.postharvbio.2017.03.021.
- Li, J., Tao, X., Li, L., Mao, L., Luo, Z., Khan, Z. U., et al. (2016a). Comprehensive RNA-Seq Analysis
- on the Regulation of Tomato Ripening by Exogenous Auxin. *PLOS ONE* 11, e0156453.
- doi:10.1371/journal.pone.0156453.

- Li, P., Yin, F., Song, L., and Zheng, X. (2016b). Alleviation of chilling injury in tomato fruit by
- exogenous application of oxalic acid. Food Chem 202, 125-132.
- doi:10.1016/j.foodchem.2016.01.142.
- Li, S., Chen, K., and Grierson, D. (2019a). A critical evaluation of the role of ethylene and MADS
- transcription factors in the network controlling fleshy fruit ripening. New Phytologist 221,
- 1350 1724–1741. doi:10.1111/nph.15545.
- 1351 Li, S., Xu, H., Ju, Z., Cao, D., Zhu, H., Fu, D., et al. (2018a). The RIN-MC fusion of mads-box
- transcription factors has transcriptional activity and modulates expression of many ripening
- genes. *Plant Physiology* 176, 891–909. doi:10.1104/pp.17.01449.
- Li, Y., Lu, Y., Li, L., Chu, Z., Zhang, H., Li, H., et al. (2019b). Impairment of hormone pathways
- results in a general disturbance of fruit primary metabolism in tomato. Food Chem 274, 170–
- 1356 179. doi:10.1016/j.foodchem.2018.08.026.
- Li, Y., Wang, H., Zhang, Y., and Martin, C. (2018b). Can the world's favorite fruit, tomato, provide
- an effective biosynthetic chassis for high-value metabolites? *Plant Cell Rep.* 37, 1443–1450.
- doi:10.1007/s00299-018-2283-8.
- Li, Y., Zhu, B., Xu, W., Zhu, H., Chen, A., Xie, Y., et al. (2007). LeERF1 positively modulated
- ethylene triple response on etiolated seedling, plant development and fruit ripening and
- softening in tomato. *Plant Cell Rep.* 26, 1999–2008. doi:10.1007/s00299-007-0394-8.
- Li, Z., Palmer, W. M., Martin, A. P., Wang, R., Rainsford, F., Jin, Y., et al. (2012). High invertase
- activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat
- tolerance of, young fruit. *J Exp Bot* 63, 1155–1166. doi:10.1093/jxb/err329.
- Lin, Z., Hong, Y., Yin, M., Li, C., Zhang, K., and Grierson, D. (2008). A tomato HD-Zip homeobox
- protein, LeHB-1, plays an important role in floral organogenesis and ripening. *Plant J* 55, 301–
- 1368 310. doi:10.1111/j.1365-313X.2008.03505.x.
- Liu, J., Eck, J. V., Cong, B., and Tanksley, S. D. (2002). A new class of regulatory genes underlying
- the cause of pear-shaped tomato fruit. *PNAS* 99, 13302–13306. doi:10.1073/pnas.162485999.
- Liu, M., Pirrello, J., Chervin, C., Roustan, J.-P., and Bouzayen, M. (2015). Ethylene control of fruit
- ripening: revisiting the complex network of transcriptional regulation. *Plant Physiology* 169,
- 1373 2380–2390. doi:10.1104/pp.15.01361.
- Liu, M., Pirrello, J., Kesari, R., Mila, I., Roustan, J.-P., Li, Z., et al. (2013). A dominant repressor
- version of the tomato *Sl-ERF.B3* gene confers ethylene hypersensitivity via feedback regulation
- of ethylene signaling and response components. The Plant Journal 76, 406–419.
- 1377 doi:10.1111/tpj.12305.
- Liu, T., Huang, B., Chen, L., Xian, Z., Song, S., Chen, R., et al. (2018). Genome-wide identification,
- phylogenetic analysis, and expression profiling of polyamine synthesis gene family members
- in tomato. *Gene* 661, 1–10. doi:10.1016/j.gene.2018.03.084.

- Liu, X., Kim, Y. J., Müller, R., Yumul, R. E., Liu, C., Pan, Y., et al. (2011). AGAMOUS terminates
- floral stem cell maintenance in arabidopsis by directly repressing WUSCHEL through
- recruitment of polycomb group proteins. The Plant Cell 23, 3654-3670.
- doi:10.1105/tpc.111.091538.
- Liu, Z., Alseekh, S., Brotman, Y., Zheng, Y., Fei, Z., Tieman, D. M., et al. (2016). Identification of a
- Solanum pennellii Chromosome 4 Fruit Flavor and Nutritional Quality-Associated Metabolite
- 1387 QTL. Front. Plant Sci. 7. doi:10.3389/fpls.2016.01671.
- Luengwilai, K., Saltveit, M., and Beckles, D. M. (2012). Metabolite content of harvested Micro-Tom
- tomato (Solanum lycopersicum L.) fruit is altered by chilling and protective heat-shock
- treatments as shown by GC–MS metabolic profiling. *Postharvest Biology and Technology* 63,
- 1391 116–122.
- Luo, J. (2015). Metabolite-based genome-wide association studies in plants. Curr Opin Plant Biol 24,
- 1393 31–38. doi:10.1016/j.pbi.2015.01.006.
- Lupi, A. C. D., Lia, B. S., Gramegna, G., Trench, B., Alves G. R. R., Demarco, D., Eustaquio, L.,
- Peres, P., Purgatto, E., Freschi, L., and Rossi, M. (2019). Solanum lycopersicum GOLDEN2-
- LIKE 2 transcription factor affects fruit quality in a light- and auxin-dependent manner. PLoS
- 1397 ONE 14, e212224.
- 1398 Lytovchenko, A., Eickmeier, I., Pons, C., Osorio, S., Szecowka, M., Lehmberg, K., et al. (2011).
- Tomato fruit photosynthesis is seemingly unimportant in primary metabolism and ripening but
- plays a considerable role in seed development. Plant Physiol. 157, 1650–1663.
- 1401 doi:10.1104/pp.111.186874.
- 1402 Ma, N., Feng, H., Meng, X., Li, D., Yang, D., Wu, C., et al. (2014). Overexpression of tomato
- SINAC1transcription factor alters fruit pigmentation and softening. BMC Plant Biology 14,
- 1404 351. doi:10.1186/s12870-014-0351-y.
- 1405 Mamatha, H., Srinivasa Rao, N. K., Laxman, R. H., Shivashankara, K. S., Bhatt, R. M., and Pavithra,
- 1406 K. C. (2014). Impact of elevated CO2 on growth, physiology, yield, and quality of tomato
- 1407 (Lycopersicon esculentum Mill) cv. Arka Ashish. Photosynthetica 52, 519–528.
- doi:10.1007/s11099-014-0059-0.
- Manning, K., Tör, M., Poole, M., Hong, Y., Thompson, A. J., King, G. J., et al. (2006). A naturally
- occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits
- tomato fruit ripening. *Nature Genetics* 38, 948–952. doi:10.1038/ng1841.
- Mariotti, L., Picciarelli, P., Lombardi, L., Ceccarelli, N. (2011). Fruit-set and early fruit growth in
- tomato are associated with increases in indoleacetic acid, cytokinin, and bioactive gibberellin
- 1414 contents. J. Plant Growth Regul. 30, 405. doi: 10.1007/s00344-011-9204-1.
- 1415 Marsic, N. K., Vodnik, D., Mikulic-Petkovsek, M., Veberic, R., and Sircelj, H. (2018). Photosynthetic
- traits of plants and the biochemical profile of tomato fruits are influenced by grafting, salinity
- stress, and growing season. J. Agric. Food Chem. 66, 5439–5450.
- doi:10.1021/acs.jafc.8b00169.

- 1419 Martel, C., Vrebalov, J., Tafelmeyer, P., and Giovannoni, J. J. (2011). The tomato MADS-box
- transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous
- ripening processes in a COLORLESS NONRIPENING-dependent manner. *Plant Physiol.* 157,
- 1422 1568–1579. doi:10.1104/pp.111.181107.
- 1423 Martí, C., Orzáez, D., Ellul, P., Moreno, V., Carbonell, J., and Granell, A. (2007). Silencing of DELLA
- induces facultative parthenocarpy in tomato fruits. *Plant J.* 52, 865–876. doi:10.1111/j.1365-
- 1425 313X.2007.03282.x.
- Martí, R., Roselló, S., and Cebolla-Cornejo, J. (2016). Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. *Cancers (Basel)* 8. doi:10.3390/cancers8060058.
- Martín-Pizarro, C., and Posé, D. (2018). Genome editing as a tool for fruit ripening manipulation. *Front. Plant Sci.* 9. doi:10.3389/fpls.2018.01415.
- 1430 Mata, C. I., Fabre, B., Parsons, H. T., Hertog, M. L. A. T. M., Van Raemdonck, G., Baggerman, G., et
- al. (2018). Ethylene receptors, ctrs and ein2 target protein identification and quantification
- through parallel reaction monitoring during tomato fruit ripening. Front Plant Sci 9.
- 1433 doi:10.3389/fpls.2018.01626.
- Matas, A. J., Gapper, N. E., Chung, M.-Y., Giovannoni, J. J., and Rose, J. K. (2009). Biology and
- genetic engineering of fruit maturation for enhanced quality and shelf-life. Current Opinion in
- 1436 *Biotechnology* 20, 197–203. doi:10.1016/j.copbio.2009.02.015.
- 1437 Matas, A. J., Yeats, T. H., Buda, G. J., Zheng, Y., Chatterjee, S., Tohge, T., et al. (2011). Tissue- and
- cell-type specific transcriptome profiling of expanding tomato fruit provides insights into
- metabolic and regulatory specialization and cuticle formation. *The Plant Cell* 23, 3893–3910.
- doi:10.1105/tpc.111.091173.
- Mathieu, S., Cin, V. D., Fei, Z., Li, H., Bliss, P., Taylor, M. G., et al. (2009). Flavour compounds in
- tomato fruits: identification of loci and potential pathways affecting volatile composition.
- Journal of Experimental Botany 60, 325–337. doi:10.1093/jxb/ern294.
- Matsuo, S., Kikuchi, K., Fukuda, M., Honda, I., Imanishi, S. (2012). Roles and regulation of cytokinins
- in tomato fruit development. *J. Exp Bot* 63, 5569–5579. doi: 10.1093/jxb/ers207
- 1446 Mattos, L. M., Moretti, C. L., Jan, S., Sargent, S. A., Lima, C. E. P., and Fontenelle, M. R. (2014).
- "Chapter 19 Climate changes and potential impacts on quality of fruit and vegetable crops,"
- in Emerging Technologies and Management of Crop Stress Tolerance, eds. P. Ahmad and S.
- Rasool (San Diego: Academic Press), 467–486. doi:10.1016/B978-0-12-800876-8.00019-9.
- 1450 McAtee, P., Karim, S., Schaffer, R. J., and David, K. (2013). A dynamic interplay between
- phytohormones is required for fruit development, maturation, and ripening. Front. Plant Sci. 4.
- doi:10.3389/fpls.2013.00079.
- McMurchie, E. J., McGlasson, W. B., and Eaks, I. L. (1972). Treatment of fruit with propylene gives
- information about the biogenesis of ethylene. *Nature* 237, 235–236.

- Meng, C., Yang, D., Ma, X., Zhao, W., Liang, X., Ma, N., et al. (2016). Suppression of tomato SINAC1
- transcription factor delays fruit ripening. J. Plant Physiol. 193, 88–96.
- 1457 doi:10.1016/j.jplph.2016.01.014.
- 1458 Minoia, S., Petrozza, A., D'Onofrio, O., Piron, F., Mosca, G., Sozio, G., et al. (2010). A new mutant
- genetic resource for tomato crop improvement by TILLING technology. BMC Research Notes
- 3, 69. doi:10.1186/1756-0500-3-69.
- 1461 Mintz-Oron, S., Mandel, T., Rogachev, I., Feldberg, L., Lotan, O., Yativ, M., et al. (2008). Gene
- expression and metabolism in tomato fruit surface tissues. *Plant Physiol.* 147, 823–851.
- doi:10.1104/pp.108.116004.
- 1464 Miron, D., and Schaffer, A. A. (1991). Sucrose phosphate synthase, sucrose synthase, and invertase
- activities in developing fruit of *Lycopersicon esculentum* Mill. and the sucrose accumulating
- 1466 Lycopersicon hirsutum Humb. and Bonpl. Plant Physiol. 95, 623–627.
- doi:10.1104/pp.95.2.623.
- Moretti, C. L., Mattos, L. M., Calbo, A. G., and Sargent, S. A. (2010). Climate changes and potential
- impacts on postharvest quality of fruit and vegetable crops: A review. Food Research
- 1470 *International* 43, 1824–1832. doi:10.1016/j.foodres.2009.10.013.
- Mounet, F., Moing, A., Garcia, V., Petit, J., Maucourt, M., Deborde, C., et al. (2009). Gene and
- metabolite regulatory network analysis of early developing fruit tissues highlights new
- candidate genes for the control of tomato fruit composition and development. *Plant Physiology*
- 1474 149, 1505–1528. doi:10.1104/pp.108.133967.
- Mounet, F., Moing, A., Kowalczyk, M., Rohrmann, J., Petit, J., Garcia, V., et al. (2012). Down-
- regulation of a single auxin efflux transport protein in tomato induces precocious fruit
- development. *J. Exp. Bot.* 63, 4901–4917. doi:10.1093/jxb/ers167.
- 1478 Mu, Q., Huang, Z., Chakrabarti, M., Illa-Berenguer, E., Liu, X., Wang, Y., et al. (2017). Fruit weight
- is controlled by Cell Size Regulator encoding a novel protein that is expressed in maturing
- tomato fruits. *PLOS Genetics* 13, e1006930. doi:10.1371/journal.pgen.1006930.
- Muños, S., Ranc, N., Botton, E., Bérard, A., Rolland, S., Duffé, P., et al. (2011). Increase in tomato
- locule number is Controlled by Two Single-Nucleotide Polymorphisms Located Near
- 1483 WUSCHEL. *Plant Physiology* 156, 2244–2254. doi:10.1104/pp.111.173997.
- Murshed, R., Lopez-Lauri, F., and Sallanon, H. (2013). Effect of water stress on antioxidant systems
- and oxidative parameters in fruits of tomato (Solanum lycopersicon L, cv. Micro-tom). Physiol
- 1486 *Mol Biol Plants* 19, 363–378. doi:10.1007/s12298-013-0173-7.
- Nadakuduti, S. S., Holdsworth, W. L., Klein, C. L., and Barry, C. S. (2014). KNOX genes influence a
- gradient of fruit chloroplast development through regulation of GOLDEN2-LIKE expression
- 1489 in tomato. Plant J. 78, 1022-1033.
- Nashilevitz, S., Melamed-Bessudo, C., Izkovich, Y., Rogachev, I., Osorio, S., Itkin, M., et al. (2010).
- An orange ripening mutant links plastid NAD(P)H dehydrogenase complex activity to central
- and specialized metabolism during tomato fruit maturation. *Plant Cell* 22, 1977–1997.
- doi:10.1105/tpc.110.074716.

- Nguyen, C. V., Vrebalov, J; T., Gapper, N. E., Zheng, Y., Zhong, S., Fei, Z., and Giovannoni, J. J.
- 1495 (2014) Tomato *GOLDEN2-LIKE* transcription factors reveal molecular gradients that function during fruit development and ripening. *Plant Cell* 26, 585-601.
- 1497 Nguyen-Quoc, B., and Foyer, C. H. (2001). A role for "futile cycles" involving invertase and sucrose
- synthase in sucrose metabolism of tomato fruit. J. Exp. Bot. 52, 881-889.
- doi:10.1093/jexbot/52.358.881.
- Nitsch, L., Kohlen, W., Oplaat, C., Charnikhova, T., Cristescu, S., Michieli, P., et al. (2012). ABA-
- deficiency results in reduced plant and fruit size in tomato. Journal of Plant Physiology 169,
- 1502 878–883. doi:10.1016/j.jplph.2012.02.004.
- 1503 Ntagkas, N., Woltering, E., Nicole, C., Labrie, C., and Marcelis, L. F. M. (2019). Light regulation of
- vitamin C in tomato fruit is mediated through photosynthesis. Environmental and experimental
- botany. Available at: http://agris.fao.org/agris-search/search.do?recordID=US201900059476
- 1506 [Accessed May 29, 2019].
- Obiadalla-Ali, H., Fernie, A. R., Lytovchenko, A., Kossmann, J., and Lloyd, J. R. (2004). Inhibition of
- 1508 chloroplastic fructose 1,6-bisphosphatase in tomato fruits leads to decreased fruit size, but only
- small changes in carbohydrate metabolism. *Planta* 219, 533–540.
- Obroucheva, N. V. (2014). Hormonal regulation during plant fruit development. Russian Journal of
- 1511 Developmental Biology 45, 11–21. doi:10.1134/S1062360414010068.
- Odanaka, S., Bennett, A. B., and Kanayama, Y. (2002). Distinct physiological roles of fructokinase
- isozymes revealed by gene-specific suppression of Frk1 and Frk2 expression in Tomato. Plant
- 1514 *Physiology* 129, 1119–1126. doi:10.1104/pp.000703.
- Olimpieri, I., Caccia, R., Picarella, M. E., Pucci, A., Santangelo, E., Soressi, G. P., et al. (2011).
- 1516 Constitutive co-suppression of the GA 20-oxidase1 gene in tomato leads to severe defects in
- 1517 vegetative and reproductive development. Plant Sci. 180, 496–503.
- doi:10.1016/j.plantsci.2010.11.004.
- Osorio, S., Alba, R., Damasceno, C. M. B., Lopez-Casado, G., Lohse, M., Zanor, M. I., et al. (2011).
- Systems biology of tomato fruit development: combined transcript, protein, and metabolite
- analysis of tomato transcription factor (nor, rin) and Ethylene Receptor (Nr) mutants reveals
- novel regulatory interactions. *Plant Physiology* 157, 405–425. doi:10.1104/pp.111.175463.
- Osorio, S., Scossa, F., and Fernie, A. (2013). Molecular regulation of fruit ripening. Front. Plant Sci.
- 4. doi:10.3389/fpls.2013.00198.
- Pan, I. L., McQuinn, R., Giovannoni, J. J., and Irish, V. F. (2010). Functional diversification of
- 1526 AGAMOUS lineage genes in regulating tomato flower and fruit development. J Exp Bot 61,
- 1527 1795–1806. doi:10.1093/jxb/erq046.
- Patanè, C., Tringali, S., and Sortino, O. (2011). Effects of deficit irrigation on biomass, yield, water
- productivity and fruit quality of processing tomato under semi-arid Mediterranean climate
- 1530 conditions. *Scientia Horticulturae* 129, 590–596. doi:10.1016/j.scienta.2011.04.030.

- Pattison, R. J., and Catalá, C. (2012). Evaluating auxin distribution in tomato (*Solanum lycopersicum*)
- through an analysis of the *PIN* and *AUX/LAX* gene families. *The Plant Journal* 70, 585–598.
- 1533 doi:10.1111/j.1365-313X.2011.04895.x.
- Pem, D., and Jeewon, R. (2015). Fruit and vegetable intake: benefits and progress of nutritioneducation
- interventions- narrative review article. *Iran J Public Health* 44, 1309–1321.
- 1536 Pérez-Martín, F., Yuste-Lisbona, F. J., Pineda, B., Angarita-Díaz, M. P., García-Sogo, B., Antón, T.,
- et al. (2017). A collection of enhancer trap insertional mutants for functional genomics in
- tomato. *Plant Biotechnol. J.* 15, 1439–1452. doi:10.1111/pbi.12728.
- Pesaresi, P., Mizzotti, C., Colombo, M., and Masiero, S. (2014). Genetic regulation and structural
- 1540 changes during tomato fruit development and ripening. Front Plant Sci 5, 124.
- doi:10.3389/fpls.2014.00124.
- Pnueli, L., Hareven, D., Rounsley, S. D., Yanofsky, M. F., and Lifschitz, E. (1994). Isolation of the
- tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. Plant Cell
- 1544 6, 163–173. doi:10.1105/tpc.6.2.163.
- Powell, A. L. T., Nguyen, C. V., Hill, T., Chen, K. L., Figueroa-Balderas, R., Aktas, H., et al. (2012).
- 1546 Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit
- 1547 chloroplast development. *Science* 336, 1711-1715.
- 1548 Qin, G., Wang, Y., Cao, B., Wang, W., and Tian, S. (2012). Unraveling the regulatory network of the
- MADS box transcription factor RIN in fruit ripening. *Plant J.* 70, 243–255. doi:10.1111/j.1365-
- 1550 313X.2011.04861.x.
- Raffo, A., Baiamonte, I., Nardo, N., Nicoli, S., et al. (2018). Impact of early harvesting and two cold
- storage technologies on eating quality of red ripe tomatoes. European Food Research and
- 1553 *Technology* 244, 805–818. doi:http://dx.doi.org/10.1007/s00217-017-2996-x.
- Raiola, A., Rigano, M. M., Calafiore, R., Frusciante, L., and Barone, A. (2014). Enhancing the health-
- promoting effects of tomato fruit for biofortified food. *Mediators Inflamm* 2014.
- doi:10.1155/2014/139873.
- Rambla, J. L., Tikunov, Y. M., Monforte, A. J., Bovy, A. G., and Granell, A. (2014). The expanded
- tomato fruit volatile landscape. J Exp Bot 65, 4613–4623. doi:10.1093/jxb/eru128.
- Ren, Z., Li, Z., Miao, Q., Yang, Y., Deng, W., and Hao, Y. (2011). The auxin receptor homologue in
- Solanum lycopersicum stimulates tomato fruit set and leaf morphogenesis. J. Exp. Bot. 62,
- 1561 2815–2826. doi:10.1093/jxb/erq455.
- Ren, Z., and Wang, X. (2016). SITIR1 is involved in crosstalk of phytohormones, regulates auxin-
- induced root growth and stimulates stenospermocarpic fruit formation in tomato. *Plant Science*
- 1564 253, 13–20. doi:10.1016/j.plantsci.2016.09.005.
- Rodríguez, G. R., Muños, S., Anderson, C., Sim, S.-C., Michel, A., Causse, M., et al. (2011).
- Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to
- fruit shape diversity. *Plant Physiology* 156, 275–285. doi:10.1104/pp.110.167577.

- Rodríguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E., and Lippman, Z. B. (2017). Engineering
- quantitative trait variation for crop improvement by genome editing. Cell 171, 470-480.e8.
- doi:10.1016/j.cell.2017.08.030.
- Rothan, C., Diouf, I., and Causse, M. (2019). Trait discovery and editing in tomato. *The Plant Journal* 97, 73–90. doi:10.1111/tpj.14152.
- Rounis, V., Skarmoutsos, K., Tsaniklidis, G., Nikoloudakis, N., Delis, C., Karapanos, I., et al. (2015).
- Seeded and parthenocarpic cherry tomato fruits exhibit similar sucrose, glucose, and fructose
- levels, despite dissimilarities in UGPase and SPS gene expression and enzyme activity. *J Plant*
- 1576 Growth Regul 34, 47–56. doi:10.1007/s00344-014-9441-1.
- Ruan, Y.-L., and Patrick, J. W. (1995). The cellular pathway of postphloem sugar transport in developing tomato fruit. *Planta* 196, 434–444. doi:10.1007/BF00203641.
- Sagar, M., Chervin, C., Mila, I., Hao, Y., Roustan, J.-P., Benichou, M., et al. (2013). SIARF4, an auxin response factor involved in the control of sugar metabolism during tomato fruit development.
- 1581 *Plant Physiol.* 161, 1362–1374. doi:10.1104/pp.113.213843.
- 1582 Sagor, G. H. M., Berberich, T., Tanaka, S., Nishiyama, M., Kanayama, Y., Kojima, S., et al. (2016). A
- novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific
- expression of a single bZIP transcription factor gene. *Plant Biotechnology Journal* 14, 1116–
- 1585 1126. doi:10.1111/pbi.12480.
- Saito, T., Fukuda, N., Matsukura, C., and Nishimura, S. (2009). Effects of salinity on distribution of photosynthates and carbohydrate metabolism in tomato grown using nutrient film technique. *J.*
- 1588 Japan. Soc. Hort. Sci. 78, 90–96. doi:10.2503/jjshs1.78.90.
- 1589 Saliba-Colombani, V., Causse, M., Langlois, D., Philouze, J., and Buret, M. (2001). Genetic analysis
- of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical
- traits. *Theor Appl Genet* 102, 259–272. doi:10.1007/s001220051643.
- 1592 Sánchez-Rodríguez, E., Leyva, R., Constán-Aguilar, C., Romero, L., and Ruiz, J. M. (2012). Grafting
- under water stress in tomato cherry: improving the fruit yield and quality. *Annals of Applied*
- 1594 *Biology* 161, 302–312. doi:10.1111/j.1744-7348.2012.00574.x.
- 1595 Sánchez-Rodríguez, E., Ruiz, J. M., Ferreres, F., and Moreno, D. A. (2012). Phenolic profiles of cherry
- tomatoes as influenced by hydric stress and rootstock technique. Food Chemistry 134, 775–
- 782. doi:10.1016/j.foodchem.2012.02.180.
- 1598 Sangwanangkul, P., Bae, Y.-S., Lee, J.-S., Choi, H.-J., Choi, J.-W., and Park, M.-H. (2017). Short-
- term pretreatment with high CO2 alters organic acids and improves cherry tomato quality
- during storage. *Hortic. Environ. Biotechnol.* 58, 127–135. doi:10.1007/s13580-017-0198-x.
- 1601 Schaffer, A. A., Petreikov, M., Miron, D., et al. (1998). Modification of carbohydrate content in
- developing tomato fruit. *HortScience* 34, 1024-1027.

- Schauer, N., Zamir, D., and Fernie, A. R. (2005). Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex. *J Exp Bot* 56, 297–307.
- doi:10.1093/jxb/eri057.
- Schijlen, E. G. W. M., Beekwilder, J., Hall, R. D., and Meer, I. M. van der (2008). Boosting beneficial phytochemicals in vegetable crop plants. *CAB Reviews: Perspectives in Agriculture, Veterinary*
- 1608 Science, Nutrition and Natural Resources 3. Available at:
- https://www.cabdirect.org/cabdirect/abstract/20083133932 [Accessed April 17, 2019].
- Schnitzler, W. H., and Krauss, S. (2010). Quality and health promoting compounds of tomato fruit (*Lycopersicum* esculentum Mill) under salinity. *Acta Hortic.*, 21–30.
- doi:10.17660/ActaHortic.2010.856.2.
- 1613 Schouten, R. E., Woltering, E. J., and Tijskens, L. M. M. (2016). Sugar and acid interconversion in
- tomato fruits based on biopsy sampling of locule gel and pericarp tissue. Postharvest Biology
- and Technology 111, 83–92. doi:10.1016/j.postharvbio.2015.07.032.
- 1616 Schroeder, j. I., Delhaize, E., Frommer, W. B., et al. (2013). Using memvbrane transporters to
- improve crops for sustainable food production. *Nature* 497, 60-66.
- Sevillano, L., Sanchez-Ballesta, M. T., Romojaro, F., and Flores, F. B. (2009). Physiological, hormonal
- and molecular mechanisms regulating chilling injury in horticultural species. Postharvest
- technologies applied to reduce its impact. Journal of the Science of Food and Agriculture 89,
- 1621 555–573.
- Seymour, G. B., Chapman, N. H., Chew, B. L., and Rose, J. K. C. (2013). Regulation of ripening and
- opportunities for control in tomato and other fruits. *Plant Biotechnology Journal* 11, 269–278.
- doi:10.1111/j.1467-7652.2012.00738.x.
- Shammai, A., Petreikov, M., Yeselson, Y., Faigenboim, A., Moy-Komemi, M., et al. (2018). Natural
- genetic variation for expression of a SWEET transporter among wild species of Solanum
- 1627 lycopersicum (tomato) determines the hexose composition of ripening tomato fruit. Plant J. 96,
- 1628 343-357.
- Shao, G., Wang, M., Liu, N., Yuan, M., Kumar, P., and She, D.-L. (2014). Growth and comprehensive
- quality index of tomato under rain shelters in eesponse to different irrigation and drainage
- treatments. *The Scientific World Journal*. doi:10.1155/2014/457937.
- Shima, Y., Kitagawa, M., Fujisawa, M., Nakano, T., Kato, H., Kimbara, J., et al. (2013). Tomato
- 1633 FRUITFULL homologues act in fruit ripening via forming MADS-box transcription factor
- 1634 complexes with RIN. *Plant Mol. Biol.* 82, 427–438. doi:10.1007/s11103-013-0071-y.
- Shin, J.-H., Mila, I., Liu, M., Rodrigues, M. A., Vernoux, T., Pirrello, J., et al. (2019). The RIN-
- regulated Small Auxin-Up RNA SAUR69 is involved in the unripe-to-ripe phase transition of
- tomato fruit via enhancement of the sensitivity to ethylene. *New Phytologist* 222, 820–836.
- 1638 doi:10.1111/nph.15618.
- Shinozaki, Y., Ezura, H., and Ariizumi, T. (2018a). The role of ethylene in the regulation of ovary
- senescence and fruit set in tomato (Solanum lycopersicum). Plant Signaling & Behavior 13,
- 1641 e1146844. doi:10.1080/15592324.2016.1146844.

- Shinozaki, Y., Hao, S., Kojima, M., Sakakibara, H., Ozeki-Iida, Y., Zheng, Y., et al. (2015). Ethylene suppresses tomato (*Solanum lycopersicum*) fruit set through modification of gibberellin
- metabolism. *The Plant Journal* 83, 237–251. doi:10.1111/tpj.12882.
- Shinozaki, Y., Nicolas, P., Fernandez-Pozo, N., Ma, Q., Evanich, D. J., Shi, Y., et al. (2018b). Highresolution spatiotemporal transcriptome mapping of tomato fruit development and ripening.
- *Nature Communications* 9, 364. doi:10.1038/s41467-017-02782-9.
- Shinozaki, Y., Ezura, K., Hu, J., Okabe, Y., Bénard, C., Prodhomme, D., et al. (2018c) Identification and functional study of a mild allele of *SlDELLA* gene conferring the potential for improved
- yield in tomato. *Scientific Reports* 8, 12043. doi: 10.1038/s41598-018-30502-w.
- Snowden, C. J., Thomas, B., Baxter, C. J., Smith, J. A. C., and Sweetlove, L. J. (2015). A tonoplast
- 1652 Glu/Asp/GABA exchanger that affects tomato fruit amino acid composition. Plant J 81, 651–
- 1653 660. doi:10.1111/tpj.12766.
- Somssich, M., Je, B. I., Simon, R., and Jackson, D. (2016). CLAVATA-WUSCHEL signaling in the shoot meristem. *Development* 143, 3238–3248. doi:10.1242/dev.133645.
- Sorrequieta, A., Ferraro, G., Boggio, S. B., and Valle, E. M. (2010). Free amino acid production during
- tomato fruit ripening: a focus on L-glutamate. Amino Acids 38, 1523–1532
- doi:10.1007/s00726-009-0373-1.
- Soyk, S., Lemmon, Z. H., Oved, M., Fisher, J., Liberatore, K. L., Park, S. J., et al. (2017). Bypassing negative epistasis on yield in tomato imposed by a domestication gene. *Cell* 169, 1142-
- 1661 1155.e12. doi:10.1016/j.cell.2017.04.032.
- Srivastava, A., and Handa, A. K. (2005). Hormonal regulation of tomato fruit development: A Molecular perspective. *J Plant Growth Regul* 24, 67–82. doi:10.1007/s00344-005-0015-0.
- Su, L., Bassa, C., Audran, C., Mila, I., Cheniclet, C., Chevalier, C., et al. (2014). The auxin Sl-IAA17
- transcriptional repressor controls fruit size via the regulation of endoreduplication-related cell
- expansion. *Plant Cell Physiol.* 55, 1969–1976. doi:10.1093/pcp/pcu124.
- Sun, B., Looi, L.-S., Guo, S., He, Z., Gan, E.-S., Huang, J., et al. (2014). Timing mechanism dependent
- on cell division is invoked by polycomb eviction in plant stem cells. *Science* 343, 1248559.
- doi:10.1126/science.1248559.
- Sun, B., Xu, Y., Ng, K.-H., and Ito, T. (2009). A timing mechanism for stem cell maintenance and
- differentiation in the Arabidopsis floral meristem. Genes Dev. 23, 1791–1804.
- doi:10.1101/gad.1800409.
- Sun, L., Sun, Y., Zhang, M., Wang, L., Ren, J., Cui, M., et al. (2012). Suppression of 9-cis-
- epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, zlters
- fruit texture in transgenic tomato. *Plant Physiology* 158, 283–298. doi:10.1104/pp.111.186866.
- Suresh, B. V., Roy, R., Sahu, K., Misra, G., and Chattopadhyay, D. (2014). Tomato genomic resources
- database: an integrated repository of useful tomato genomic information for basic and applied
- research. *PLoS ONE* 9, e86387. doi:10.1371/journal.pone.0086387.

- Tadmor, Y., Fridman, E., Gur, A., Larkov, O., Lastochkin, E., Ravid, U., et al. (2002). Identification of malodorous, a wild species allele affecting tomato aroma that was aelected against during domestication. *J. Agric. Food Chem.* 50, 2005–2009.
- Tamasi, G., Pardini, A., Bonechi, C., Donati, A., Pessina, F., Marcolongo, P., et al. (2019).
 Characterization of nutraceutical components in tomato pulp, skin and locular gel. *Eur Food*Res Technol 245, 907–918. doi:10.1007/s00217-019-03235-x.
- Tanksley, S. D. (2004). The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. *The Plant Cell* 16, S181–S189. doi:10.1105/tpc.018119.
- The Tomato Genome Consortium (2012). The tomato genome sequence provides insights into fleshy fruit evolution. *Nature* 485, 635–641. doi:10.1038/nature11119.
- Tieman, D. M., Zeigler, M., Schmelz, E. A., Taylor, M. G., Bliss, P., Kirst, M., et al. (2006). Identification of loci affecting flavour volatile emissions in tomato fruits. *J. Exp. Bot.* 57, 887–896. doi:10.1093/jxb/erj074.
- Tieman, D., Zhu, G., Resende, M. F. R., Lin, T., Nguyen, C., Bies, D., et al. (2017). A chemical genetic roadmap to improved tomato flavor. *Science* 355, 391–394. doi:10.1126/science.aal1556.
- Tigchelaar, E.C, Tomes, M, Kerr, M, and Barman, R (1973). A new fruit ripening mutant, non-ripening (nor). *Rep Tomato Genet Coop* 23, 33.
- Tohge, T., de Souza, L. P., and Fernie, A. R. (2017). Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. *J Exp Bot* 68, 4013–4028. doi:10.1093/jxb/erx177.
- Tohge, T., and Fernie, A. R. (2015). Metabolomics-inspired insight into developmental, environmental and genetic aspects of tomato fruit chemical composition and quality. *Plant Cell Physiol* 56, 1681–1696. doi:10.1093/pcp/pcv093.
- Tomato Genetics Resource Center (2019). Available at: https://tgrc.ucdavis.edu/ [Accessed April 16, 2019].
- Tsaniklidis, G., Kotsiras, A., Tsafouros, A., Roussos, P. A., Aivalakis, G., Katinakis, P., et al. (2016).

 Spatial and temporal distribution of genes involved in polyamine metabolism during tomato
 fruit development. *Plant Physiology and Biochemistry* 100, 27–36.
 doi:10.1016/j.plaphy.2016.01.001.
- Van de Poel, B., Bulens, I., Markoula, A., Hertog, M. L. A. T. M., Dreesen, R., Wirtz, M., et al. (2012).
 Targeted systems biology profiling of tomato fruit reveals coordination of the yang cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening. *Plant Physiology* 160, 1498–1514. doi:10.1104/pp.112.206086.
- van der Knaap, E., Chakrabarti, M., Chu, Y. H., Clevenger, J. P., Illa-Berenguer, E., Huang, Z., et al. (2014). What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. *Front Plant Sci* 5, 227. doi:10.3389/fpls.2014.00227.

- Van Meulebroek, L., Bussche, J. V., De Clercq, N., Steppe, K., and Vanhaecke, L. (2015). A
- metabolomics approach to unravel the regulating role of phytohormones towards carotenoid
- 1717 metabolism in tomato fruit. *Metabolomics* 11, 667–683. doi:10.1007/s11306-014-0728-9.
- 1718 Viuda-Martos, M., Sanchez-Zapata, E., Sayas-Barberá, E., Sendra, E., Pérez-Álvarez, J. A., and
- 1719 Fernández-López, J. (2014). Tomato and tomato byproducts. Human health benefits of
- 1720 lycopene and its application to meat products: A review. Critical Reviews in Food Science and
- *Nutrition* 54, 1032–1049. doi:10.1080/10408398.2011.623799.
- 1722 Vogel, J. T., Tieman, D. M., Sims, C. A., Odabasi, A. Z., Clark, D. G., and Klee, H. J. (2010).
- 1723 Carotenoid content impacts flavor acceptability in tomato (Solanum lycopersicum). J. Sci. Food
- 1724 *Agric.* 90, 2233–2240. doi:10.1002/jsfa.4076.
- 1725 Vrebalov, J., Pan, I. L., Arroyo, A. J. M., McQuinn, R., Chung, M., Poole, M., et al. (2009). Fleshy
- fruit expansion and ripening are regulated by the tomato SHATTERPROOF Gene TAGL1. The
- 1727 Plant Cell 21, 3041–3062. doi:10.1105/tpc.109.066936.
- 1728 Vrebalov, J., Ruezinsky, D., Padmanabhan, V., White, R., Medrano, D., Drake, R., et al. (2002). A
- MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus.
- 1730 *Science* 296, 343–346. doi:10.1126/science.1068181.
- Wang, H., Schauer, N., Usadel, B., Frasse, P., Zouine, M., Hernould, M., et al. (2009). Regulatory
- features underlying pollination-dependent and -independent tomato fruit set revealed by
- transcript and primary metabolite profiling. The Plant Cell 21, 1428–1452
- doi:10.1105/tpc.108.060830.
- Wang, L., Baldwin, E. A., Zhao, W., Plotto, A., Sun, X., Wang, Z., et al. (2015). Suppression of volatile
- production in tomato fruit exposed to chilling temperature and alleviation of chilling injury by
- a pre-chilling heat treatment. LWT Food Science and Technology 62, 115–121.
- 1738 doi:10.1016/j.lwt.2014.12.062.
- Wang, S., Lu, G., Hou, Z., Luo, Z., Wang, T., Li, H., et al. (2014). Members of the tomato FRUITFULL
- MADS-box family regulate style abscission and fruit ripening. J. Exp. Bot. 65, 3005–3014.
- 1741 doi:10.1093/jxb/eru137.
- Wang, Y., Luo, Z., Lu, C., Zhou, R., Zhang, H., Zhao, L., et al. (2019). Transcriptome profiles reveal
- new regulatory factors of anthocyanin accumulation in a novel purple-colored cherry tomato
- 1744 cultivar Jinling Moyu. *Plant Growth Regul* 87, 9–18. doi:10.1007/s10725-018-0444-y.
- Wei, Z., Du, T., Li, X., Fang, L., and Liu, F. (2018). Interactive effects of elevated CO2 and N
- fertilization on yield and quality of tomato grown under reduced irrigation regimes. Front. Plant
- 1747 *Sci.* 9. doi:10.3389/fpls.2018.00328.
- Wu, S., Xiao, H., Cabrera, A., Meulia, T., and Knaap, E. van der (2011). SUN regulates vegetative and
- 1749 reproductive organ shape by changing cell division patterns. *Plant Physiology* 157, 1175–1186.
- 1750 doi:10.1104/pp.111.181065.

- 1751 Xiao, H., Radovich, C., Welty, N., Hsu, J., Li, D., Meulia, T., et al. (2009). Integration of tomato
- reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit
- shape. *BMC Plant Biol.* 9, 49. doi:10.1186/1471-2229-9-49.
- 1754 Xiao, J., Li, H., Zhang, J., Chen, R., Zhang, Y., Ouyang, B., et al. (2006). Dissection of GA 20-oxidase
- members affecting tomato morphology by RNAi-mediated silencing. *Plant Growth Regul* 50,
- 1756 179–189. doi:10.1007/s10725-006-9117-3.
- 1757 Xu, C., Liberatore, K. L., MacAlister, C. A., Huang, Z., Chu, Y.-H., Jiang, K., et al. (2015). A cascade
- of arabinosyltransferases controls shoot meristem size in tomato. *Nat. Genet.* 47, 784–792.
- 1759 doi:10.1038/ng.3309.
- 1760 Xu, H. L., Gauthier, L., Desjardin, Y., and Gosselin, A. (1997). Photosynthesis in leaves, fruits, stem
- and petioles of greenhouse-grown tomato plants. *Photosynthetica* 33, 113-123.
- 1762 Yáñez, M., Cáceres, S., Orellana, S., Bastías, A., Verdugo, I., Ruiz-Lara, S., et al. (2009). An abiotic
- stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-
- related genes. *Plant Cell Rep* 28, 1497–1507. doi:10.1007/s00299-009-0749-4.
- Yanofsky, M. F., Ma, H., Bowman, J. L., Drews, G. N., Feldmann, K. A., and Meyerowitz, E. M.
- 1766 (1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles
- transcription factors. *Nature* 346, 35–39. doi:10.1038/346035a0.
- Yelle, S., Chetelat, R. T., Dorais, M., DeVerna, J. W., and Bennett, A. B. (1991). Sink metabolism in
- tomato fruit: IV. Genetic and biochemical analysis of sucrose accumulation. *Plant Physiology*
- 1770 95, 1026–1035. doi:10.1104/pp.95.4.1026.
- Yen, H. C., Lee, S., Tanksley, S. D., Lanahan, M. B., Klee, H. J., and Giovannoni, J. J. (1995). The
- tomato *Never-ripe* locus regulates ethylene-inducible gene expression and is linked to a
- homolog of the Arabidopsis *ETR1* gene. *Plant Physiol.* 107, 1343–1353.
- Yen, H. C., Shelton, B. A., Howard, L. R., Lee, S., Vrebalov, J., and Giovannoni, J. J. (1997). The
- tomato high-pigment (hp) locus maps to chromosome 2 and influences plastome copy number
- and fruit quality. *Theor Appl Genet* 95, 1069–1079. doi:10.1007/s001220050664.
- 1777 Yuan, X.-Y., Wang, R.-H., Zhao, X.-D., Luo, Y.-B., and Fu, D.-Q. (2016). Role of the tomato *Non-*
- 1778 Ripening mutation in regulating fruit quality elucidated using iTRAQ protein profile analysis.
- 1779 *PLOS ONE* 11, e0164335. doi:10.1371/journal.pone.0164335.
- Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., et al. (2009). Metabolic
- characterization of loci affecting sensory attributes in tomato allows an assessment of the
- influence of the levels of primary metabolites and volatile organic contents. J. Exp. Bot. 60,
- 1783 2139–2154. doi:10.1093/jxb/erp086.
- 1784 Zhang, M., Yuan, B., and Leng, P. (2009). The role of ABA in triggering ethylene biosynthesis and
- 1785 ripening of tomato fruit. *J Exp Bot* 60, 1579–1588. doi:10.1093/jxb/erp026.
- 1786 Zhang, W.-F., Gong, Z.-H., Wu, M.-B., Chan, H., Yuan, Y.-J., Tang, N., et al. (2019). Integrative
- 1787 comparative analyses of metabolite and transcript profiles uncovers complex regulatory

- network in tomato (*Solanum lycopersicum* L .) fruit undergoing chilling injury. *Scientific Reports* 9, 4470. doi:10.1038/s41598-019-41065-9.
- Zhang, Y., Butelli, E., Alseekh, S., Tohge, T., Rallapalli, G., Luo, J., et al. (2015). Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. *Nature Communications* 6, 8635. doi:10.1038/ncomms9635.
- Zhao, X., Yuan, X., Chen, S., Meng, L., and Fu, D. (2018). Role of the tomato *TAGL1* gene in regulating fruit metabolites elucidated using RNA sequence and metabolomics analyses. *PLOS ONE* 13, e0199083. doi:10.1371/journal.pone.0199083.
- Zhao, J., Sauvage, C., Zhao, J., Bitton, F., Bauchet, G., Liu, D., et al. (2019). Meta-analysis of genome wide association studies provides insights into genetic control of tomato flavor. *Nature Communications* 10, 1534. doi:10.1038/s41467-019-09462-w.
- Zheng, J., Huang, G., Jia, D., Wang, J., Mota, M., Pereira, L. S., et al. (2013). Responses of drip irrigated tomato (*Solanum lycopersicum* L.) yield, quality and water productivity to various soil matric potential thresholds in an arid region of Northwest China. *Agricultural Water Management* 129, 181–193. doi:10.1016/j.agwat.2013.08.001.
- Zhong, S., Fei, Z., Chen, Y.-R., Zheng, Y., Huang, M., Vrebalov, J., et al. (2013). Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. *Nature Biotechnology* 31, 154–159. doi:10.1038/nbt.2462.
- Zhou, R., Kong, L., Wu, Z., Rosenqvist, E., Wang, Y., Zhao, L., et al. (2019). Physiological response of tomatoes at drought, heat and their combination followed by recovery. *Physiol Plant* 165, 144–154. doi:10.1111/ppl.12764.
- Zhu, G., Wang, S., Huang, Z., Zhang, S., Liao, Q., Zhang, C., et al. (2018). Rewiring of the Fruit
 Metabolome in Tomato Breeding. *Cell* 172, 249-261.e12. doi:10.1016/j.cell.2017.12.019.
- 1811 Zhu, M., Chen, G., Zhou, S., Tu, Y., Wang, Y., Dong, T., et al. (2014). A new tomato NAC 1812 (NAM/ATAF1/2/CUC2) transcription factor, SINAC4, functions as a positive regulator of fruit 1813 ripening and carotenoid accumulation. Plant Cell Physiol. 119-135. 55, 1814 doi:10.1093/pcp/pct162.
- Zouine, M., Maza, E., Djari, A., Lauvernier, M., Frasse, P., Smouni, A., et al. (2017). TomExpress, a unified tomato RNA-Seq platform for visualization of expression data, clustering and correlation networks. *Plant J.* 92, 727–735. doi:10.1111/tpj.13711.
- Zushi, K., and Matsuzoe, N. (2015). Metabolic profile of organoleptic and health-promoting qualities in two tomato cultivars subjected to salt stress and their interactions using correlation network analysis. *Scientia Horticulturae* 184, 8–17. doi:10.1016/j.scienta.2014.12.030.

1821

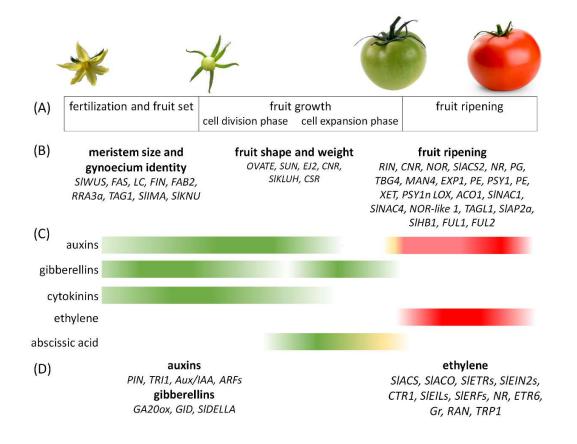
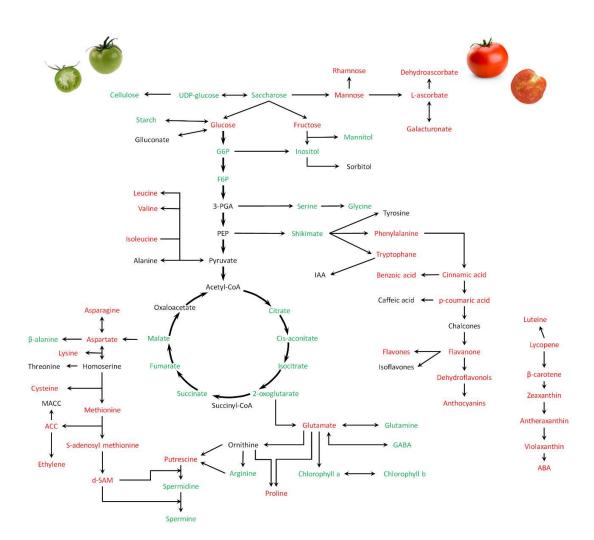

1822		
1823	13	Figure captions
1824		e 1 : Genetic and hormonal control of tomato fruit development. (A) Main stages of tomato fruit
1825		opment. (B) Genes involved in the control of tomato fruit development that are mentioned in
1826		rticle. (C) Main hormones involved in tomato fruit development during fruit set and fruit growth
1827	\C	n) and fruit ripening (red). (D) Genes involved in the hormonal regulation of fruit development
1828		re mentioned in this article. The Figure summarizes data collected by Gillaspy et al. (1993),
1829	Karlo	va et al. (2014), Srivastava and Handa (2005) and Obroucheva (2014).
1830		
1831	Figure	e 2: Global overview of metabolic changes occurring during the transition from green
1832	_	ding fruit to ripening processes (from 30 DAA to 60 DAA) in tomato fruit. Names of metabolic
1833	-	, green and black indicate increase, decrease or no changes, respectively. Matabolites are
1834		zed mainly in pericarps. The Figure summarizes data collected by Beauvoit et al. (2014), Biais
1835	-	(2014), Carrari and Fernie (2006), Centeno et al. (2011), Gilbert (2009), Mounet et al. (2009),
1836		Meulebroek et al. (2016), Van de Poel et al. (2012), and Zhao et al. (2018).
1837		

Table 1: Effect of abiotic stress occurring during plant growth on primary and secondary metabolite production in tomato fruits.


1838 1839

metabolites	salinity	drought	heat	cold	CO ₂ increase			
primary metabolites								
sugars								
soluble solid	1 ↑	\uparrow		=	$\downarrow(\uparrow)$			
content								
total soluble	e ↑	↑(= *)	↑	=	↑			
sugars								
fructose	↑	↑(↓,=*)						
glucose	↑	↑(↓,=*)						
saccharose	<u> </u>	(=*)						
organic acids								
citric acid	↑(= *)	↑(= *)		=	\downarrow			
malic acid	↑(= *)	↑(= *)		=	\downarrow			
glutamic acid	↑(= *)							
quinic acid ↑(=*)								
amino acids								
arginine	^*							
histidine	^*							
isoleucine	^*							
threonine	1							
serine	1							
proline	1							
phenylalanine	<u> </u>							
secondary metabolites								
pigments		A (15)						
carotenoids	↑ (=)	↑(=*)	\		↓			
lycopene	↑* (=)	↑(↓*)	\		\downarrow			
β-carotenoid	<u> </u>	↑ (↓*)						
antioxydants								
total		1						
polyphenols	^*	↑(=*)			↓			
flavonoids	^*	↑(=,↓*)			↓			
ascorbic acid	↑(=*)	↑(=*)	<u></u>		↑ =			
references	(Flores et al.,	(Albert et al.,	Hernández et al.,	Kläring et al.,	(Mamatha et al.,			
	2016; Marsic et	2016b, 2016a;	2015; Li et al.,	2015	2014; Moretti et			
	al., 2018; Saito et al., 2009;	Atkinson et al., 2011; Murshed et	2012		al., 2010; Wei et al., 2018)			
	Schnitzler and	al., 2013; Patanè et			al., 2016)			
	Krauss, 2010;	al., 2013; 1 atanc ct						
	Zushi and	Sánchez-						
		Rodríguez et al.,						
	. ,	2012; Shao et al.,						
		2014; Wei et al.,						
		2018; Zheng et al.,						
		2013)						

1840 ↑: increase; ↓: decrease; =: no modification; * cultivar-dependent; () effect observed only in one study or few cultivars.

1842

