B UCLouvain

UNIVERSITE D’ ABOMEY-CALAVI

UNIVERSITE CATHOLIQUE DE LOUVAIN EcoLE DOCTORALE DES SCIENCES DE L'INGENIEUR
ECOLE POLYTECHINIQUE DE LOUVAIN (ED_SDI)

INsTiITUT DE FORMATION ET DE RECHERCHE EN
ICTEAM COMPUTER SCIENCE ENGINEERING
INForMATIQUE (IFRI)

Application hardening by
adapting an open source
operating system

Ensure the maintenance of services in the presence of
failures or transient errors caused by cosmic radiation

BY
Emery Kouassi ASSOGBA

Thesis submitted in partial fulfillment of the requirements for the
Degree of Doctor in Applied Sciences

Thests committee

1 (Supervisor) Prof. Marc LOBELLE UCL, Belgium

2 (Supervisor) Prof. Eugéne C. EzIN UAC, Benin

3 (Chairman) Prof. Charles PECHEUR UCL, Belgium

4 (Secretary) Prof. Olivier BONAVENTURE UCL, Belgium

5 (Member) Prof. Jean-Didier LEGAT UCL, Belgium

6 (Member) Prof. Herbert Bos VUA, Nederland
7 (Member) Former CTO, Dr. Marc DURvVAUX Industry, Belgium

The conclusion of the matter, everything having been heard, is: Fear
the true God and keep his commandments, for this is the whole
obligation of man. (Ecclesiastes 12:13)

To Esther, Ivana, Kate and Jeholia.

Preamble

Since physicist Charles Wilson’s work on ionizing currents, there has
been a lot of work to better understand the effect of cosmic radiation on
electronic equipment. Particles from the activity of the sun are denser
in the space environment. However their effects exist also at sea level.
Charged particles provided by these radiations are able to ionize directly
or indirectly the molecules that constitute the transistors. These charge
deposits can have permanent effects that go as far as the destruction of
the equipment or transient effects that disappear following a refresh of
the state of the circuit.

As long as the voltage levels to represent the information were high
enough, electronic circuits were not disturbed by the action of these ra-
diations. In recent years with the reduction of the size of the transistors,
the charges to represent the information are lower, which makes the cir-
cuits more and more sensitive. In 1999 Sun Microsystems was forced to
remove a set of servers from the market. In-depth analysis showed that
the SRAM were sensitive to cosmic radiations. In 2008, in Belgium a
candidate for election was awarded 4096 votes more than the number of
registered voters. There are also soft errors at sea level caused by the
material used to manufacture the circuit. An example is Intel 2107 series
16KB DRAM where the package was contamined by radioactive water.
Removing the radioactive component removes also the source of the soft
errors. That is different from soft errors caused by cosmic radiations
(proton, electron or heavy ion) which are probabilistic (random) events.

These radiation effects can be classified as long-term effects or tran-
sient effects. The long term radiation effects are caused by the fact
that the system was exposed for long time to the radiations. Whereas
the transient effect can be caused by individual ionizing particles. The
charges induced by these particles can cause several effects. Some of
them are destructive for the circuit (Single Event Latchup SEL, Single
Event Burnout SEB) others are non destructive (Single Event Upset
SEU, Single Event Functional Interrupt SEFT).

It is therefore essential to protect computer systems against this
random and unpredictable phenomenon. Protection can be introduced
during circuit design. The circuit is then designed in such a way that the
effects are either suppressed or tolerated. Redundancy is introduced into
the circuit. We are talking about hardware hardening. This approach
makes the cost price of the equipment too high to be competitive at
ground level. On the other hand, for specific and specialized components

vi

such as elements to be placed in a satellite or a satellite launcher, the
circuits are duplicated and triplicated to reduce or completely eliminate
the effect of cosmic radiation in a space environment. Another approach
is to tolerate the effect at the circuit level and manage it in the software.
The program is modified either manually or dynamically using a com-
piler to add spatial and temporal redundancy. These redundancies make
it possible to detect and correct errors due to cosmic radiation with vari-
ous levels of success. At sea level, servers which operate for long periods
of time are also victims of soft errors. To improve their reliability, avail-
ability and serviceability manufacturers protect them by adding errors
correction codes (ECC) in TLBs, caches and central memories.

In this work, a micro-kernel operating system has been modified so
that it can protect its user processes against transient errors caused by
cosmic radiations, using a software based technique called blended hard-
ening. This work does not address SEU induced faults and crashes of
the operating system itself because it is assumed that the operating sys-
tem can be modified to be SEU resistant: this is one (large) program
to modify. However, there are so many different programs running over
an operating systems that modifying them all would be a boundless
work. This is the reason why this thesis addresses specifically the case
of programs that cannot be modified to become SEU resistant and run
on top of the operating system. The hardening job is implemented in
the operating system. The focus of this work is on SEU affecting the
processor itself and its caches, not the central memory because central
memories can be protected in hardware with (relatively) simple circuits
such as ECC with scrubbing. It is thus assumed that the central mem-
ory will not be modified directly by SEU. However, bit flips in processor
registers and caches can cause processes to crash or behave haphazardly
and such a faulty process can perform unwanted changes to the central
memory. To avoid these indirect consequences of SEU, processes must
be constrained, if faulty, to only be able to modify memory areas the
contents of which can be afforded to be lost. The rest of the memory is
called "protected memory": it must be immune to SEU induced mod-
ifications as well direct as indirect. The blended hardening technique
is based on dividing each running process in short processing elements.
Short enough to be, with a very high probability, only subject to, at
most, a single SEU or multiple SEUs not masking each other effects.
It consists of exploiting the exceptions initiated by all available hard-
ware fault detection mechanisms and by using a method belonging to
the DWC (Double execution With Comparison) class of fault tolerance

vii

techniques to detect silent transient SEU faults, those causing false re-
sults but no exception. All the process memory is read-only for the
process. Only the parts of the memory of the process needing to be
modified during the execution of the processing element are read/write
in a partial copy of the process memory (this part of memory is called
"working set" or "result" of the processing element). The processing
element is run twice. The modified memory areas are then compared. If
no fault happened, the result of the two executions will be identical and
the next processing element can be run. SEU can cause the process to
crash, i.e. produce an exception that will be detected by the operating
system, or can cause the results of the two executions to be different.
Thus all errors are detected. In case of error, the execution of the same
processing element is restarted instead of starting the next one. Any er-
ror induced by a transient modification of data contained in the memory
can be detected and recovered that way. Any kind of user process can be
hardened. This looks simple and, indeed, it is simple to implement if one
may modify the program to implement it but applying it to unmodified
user processes raises a lot of problems. How to divide the process in
processing elements? Which variables of the process must be copied in
the read-write memory of the processing element? What if the process
uses the values of date and time? And many more. The hardest work of
the thesis was identifying and solving these issues for a target operating
systems in order to demonstrate the feasibility of the hardening method.
For instance, processing elements are limited by system calls, and by a
new technique of counting instructions which is used to limit the dura-
tion of the processing element to a time where only one SEU can occur
when the delay between system calls is too long. The right number
of instructions to avoid SEU to be undetected (which can only happen
when several SEUs mask each others effects) has been determined by a
statistical analysis. The protection of memory against processes behav-
ing haphazardly is obtained by an innovating use of the paging system.
The implementation has been based on a micro-kernel operating system,
Minix3 v3.4.0. The micro-kernel itself (to handle the hardening itself)
and the virtual memory manager (to implement protected memory) have
been modified. All other part of Minix remain unchanged. Only a sin-
gle core of the computers has been used in this work because Minix3
mostly targets these and in order to reduce the solution search space.
The implementation has been tested by fault injection in a benchmark
program suite and in recompilations of the Minix programs: faults have
been injected in user programs at random times at a rate simulating the

viii

worst case rate observed in typical space missions, that had also been
used to define the duration of processing elements. The effect of SEU in
all processor registers has been simulated. All errors were recovered.

This research target COTS processors. But not all COTS processors
are equal regarding resistance to transients faults. Some COTS proces-
sors are partially hardened in order not to endure transient faults at
ground level. Typically these are designed for high availability servers
(for instance Intel Xeon) and mission critical embedded system (for in-
stance Intel Atom). These processors support multibit ECC for pro-
tecting memories and critical registers. Of course course we assume
that such partially hardened COTS are used. Our software makes them
suitable for spatial missions critical.

Acknowledgements

This thesis would not succeed without the unwavering support of
some people I want to thank.

I would like to thank Prof. Marc Lobelle for leading this thesis. His
advice and direction allowed to realize this thesis. His good humor
and his optimism convinced us to persevere when it was difficult.
The many discussions we had in his office gradually illuminated
the path leading to this thesis.

I would like to thank his wife Hilda for her moral support. She
allowed us to spend very pleasant moments of relaxation when she
invited us often to lunch or dinner.

I would like to thank Prof. Eugéne C. Ezin. Despite his busy
schedule he agreed to co-lead this thesis. His advice and guidelines
have been invaluable to us.

I would like to thank Professor Olivier Bonaventure for his help.
His technical advice on the operating system development envi-
ronment has been a breath of fresh air for us. His comments on
the first 5 chapters of the thesis helped to improve the quality of
the document.

I would like to thank Mr. Michel Melotte for his help. His explana-
tions and his experience in radiation allowed help me to compute
the single event error rate that contributed to the writing of the
chapter 3 of my thesis. Thank you for your explanations and your
patience.

I would like to thank Prof Nobert Hounkonnou. He initiated with
Belgian cooperation the project that lead to this thesis.

I would like to thank Professor Antoine Vianou and all the mem-
bers of the doctoral school"Sciences de I'Ingénieur " of the Univer-
sity of Abomey-Calavi for the scientific environment they allowed
me to have during my stays in Benin.

I would like to thank ADRI and ARES CCD for providing the nec-
essary funding for the completion of this thesis. Without forgetting
Mr Christian Duqué, Mrs Emmanuelle Paul, Mrs Dominique Soc-
quet, Mrs Danisa Zaparata, Mrs Gabriela Bidegain for their warm
welcome.

I would like to thank all members of UCL computer engineering
department without forgetting Mrs Vanessa Maons, Mrs Chantal
Poncin, for their logistical support and smiles.

I would like to thank all the members of the Computer Train-
ing and Research Institute, Prof. Eugéne C. Ezin, Prof. Gaston
Edah, Mrs. Gnonlonfoun Miranda, Dr. Arnaud Ahouandjinou,
M. Jeréme Zohoun. They provided me with the right working
environment during my stays in Benin.

I would like to thank my research team members Jean-Marie Kabase-
ley for his good advice and unwavering support, Parfait Tokpon-
non for the good times we spent discussing our common problems,
Laurent Lesage for his early advice.

I would like to thank my friends Fiacre Kinmangbahohoué , Cé-
saire Yadouléton, Hervé Ahouantchédé, Méton-Méton Atidehoun,
Edoh Maxime, Houndji Ratheil, John Aoga, Lionel Metongnon,
Gael Aglin.

I would like to thank all the brothers and sisters of the assembly
of Jehovah’s Witnesses of "Wavre Ouest" for their support with-
out forgetting Berthe N’sumpi, Tina Mavuela, Christelle KEM-
BOU NUMBI, Germaine Habiba NGOUA, Véronique Mascard,
the DENIS family, the DESTIN family, the STORMS Family, the
BERTHE family, the JULIANO family.

I would like to thank my brother Ange Assogba and and my sis-
ters Aurore Assogba, Lucie Assogba, and Eudoxie Bessan for their
support.

I would like to thank Patrice Daavo and his family. As a father he
took care of me and supported me. Thank you.

I would like to thank my wife Esther for her patience and support
at every stage of this thesis. I am infinitely grateful for all the
sacrifices she has made. She has always endured my long absences
with a smile and hope by continuing to take good care of our
daughters. I will not stop saying thank you.

I would like to thank all those whose name I have not mentioned
but who in one way or another helped me in the realization of this
thesis. Thank you to all of you.

List of Acronyms

AES Advanced Encryption Standard
BHT Blended hardening technique

BIOS Basic Input Output System

CMOS Complementary Metal Oxide Semiconductor
COTS commercial off-the-shelf

CPU Central Processing Unit

CRC cyclic redundancy check

CR Control Register

DAFT Decoupled Acyclic Fault Tolerance
DCE Detected Corrected Error

DDDC Double Device Data Correction
DECTED Double Error Corrected Triple Error Detected
DIMM Dual Inline Memory Module

DPR Dynamic Partial Reconfiguration
DRAM Dynamic Random Access Memory
DUE Detected Uncorrected Error

DWC Double Execution With Comparison
ECC Error Corrector Code

FDSOI Fully Depleted Silicon On Insulator
FinFET Fin Field-effect transistor

FIT Failure In Time

FPGA Field-Programmable Gate Array

FPU Floating Point Unit

xii List of Acronyms
FTR Forward Temporal Redundancy
GDTR Global Descriptor Table Register
GEO Geostationary earth Orbit
IDTR Interrupt Descriptor Table Register
10 Input Output

ISS International Space Station

L1 Level 1 cache

L2 Level 2 cache

L3 Level 3 cache

LDTR Local Descriptor Table Register
LEO Low earth orbit

LET Linear Energy Transfer

LLC Last Level Cache

LMCE Local Machine Check Exception
MBU Multi-bit Upset

MCA Machine Check Architecture
MCE Machine Check Exception

MD5 Message Digest 5

MEO Medium earth orbit

MMX MultiMedia eXtensions

MPX Memory Protection eXtension
MTBF Mean Time Between Failure
MTTF Mean Time To Failure

MTTR Mean Time To Repair

List of Acronyms xiii

PARSEC Princeton Application Repository for Shared-Memory
Computers

PCD Page-level cache

PFN Page Frame Number
RAS Reliability Availability Serviceability
SBU Single Bit Upset

SDDC Single Device Data Correction
SEB Single Event Burnout
SECDED Single Error Corrected Double Error Detected

SEE Single Event Effect

SEFI Single Event Functional Interrupt
SEL Single Event Latchup

SER Soft Error Rate

SET Single event Transient

SEU Single Event Upset

SIHFT Soft Implemented Hardaware Fault Tolerance
SIMD Single Instruction Multiple Data

SPENVIS SPace ENVironment Information System
SPLASH Stanford Parallel Applications for Shared-Memory
SRAM Static Random Access Memory

SSE4.2 Streaming SIMD Extensions version 4

TLB Translation Lookaside Buffer

TMR Triple Modular Redundancy

TSX Transactional Synchronization eXtension

List of Symbols

Errors per bit per second

Average time while a variable remains unchanged in L1 cache

Preambule
Acknowledgements
List of Acronyms
List of Symbols
List of Figures

List of Tables

I Background

1 Introduction

1.1 Context and Problem statement
1.2 Contribution of the thesis
1.3 Outline of the thesis

Contents

viii
ix
xi

XV

XXV

2 Sources and consequences of faults in computer systems 9

2.1 Faults, errors and failures in programs 9
2.1.1 Program oo 9
2.1.2 State and state predicate of a program p 9
2.1.3 Program’s computation 10
2.1.4 Fault, error, failure 10
2.1.5 Fault tolerance 10
2.1.6 Types of fault tolerance 11
2.1.7 Measures of fault tolerance 11
2.1.8 Origin of the fault 12

2.2 Techniques to mitigate or prevent SEU 12
2.2.1 Hardware approaches 13
2.2.2 Software approaches 13
2.2.3 Hybrid hardening approaches 14

2.3 A short survey of pure software hardening techniques . . . 15
2.3.1 Single-thread approaches 15

2.3.1.1 Source-to-source based transformation . . 15
2.3.1.2 Compiler based transformation 15
2.3.2 Multi-threaded approaches 16

xviii Contents

2.3.2.1 Source-to-source based transformation . . 16
2.3.2.2 Compiler based transformation 16
2.4 A short survey of hybrid hardening techniques 17
2.5 The blended hardening technique (BHT) 21
2.6 Discussion on pure and hybrid hardening techniques . . . 24
2.7 Conclusion 25
3 Assessment of the problem 27
3.1 Imtroduction 27
3.2 COTS processors hardware hardening assets 27
3.2.1 RAS: Reliability, Availability and Serviceability . . 28
3.2.2 The central memory 30
3.23 Thecaches 31
3.2.4 Processors registers and logic 31
3.2.5 Buses and I/O systems 32
3.2.6 Short presentation and discussion of Xeon RAS
features 33
3.2.7 Exception management in recent architectures . . 34
3.3 Risks related to systems and control registers 35
3.3.1 CROregister 37
3.32 CR2register 38
3.33 CR3register, 38
3.34 CRd4register, 39
3.4 General purpose registers, segment registers and eflags
register L 41
3.4.1 General purpose registers 41
3.4.2 Segment registers 41
3.43 Eflagsregister. oL 42
3.5 Memory management register 42
3.5.1 GDTR and IDTR 42
352 LDTRand TR 42
3.6 Risks related to undetected SEU effects 43
3.6.1 Possible SEU induced faults in application processes 44
3.6.2 Analysis of BHT sensitivity to multiple SEU . . . 45
3.6.3 Multiple Single event error rate evaluation method 47
3.7 Conclusion 63
4 Fault tolerance in operating systems 65
4.1 Introduction.o o 65

4.2 Operating systemo 65

Contents xix

I1

4.3 Basic features of an operating system 66
4.4 Different classes of operating systems 67
4.4.1 Hardware Architecture 67
4.4.2 Software architecture 68
4.4.2.1 Monolithic 69
4.4.2.2 Micro-kernel 69
4.4.2.3 Distributed operating systems 70
4.4.3 The needs in response time 71
4.5 Operating systems as part of fault tolerance 71
4.6 Choice of an operating system 72
4.6.1 Minix3 history and goals 72
4.6.2 Minix3 Structure 73
4.6.2.1 The micro-kernel pseudo processes 73
4.6.2.2 The entry and exit points of the micro-

kernel oo 74
4.6.2.3 The mainservers. 76
4.6.2.4 The memory manager (VM) 7
4.6.3 Running benchmarks on Minix3 78
4.7 Conclusiono 80
Methodology 81

Principles of hardening processes in the operating sys-
tem, using BHT 83
5.1 Introduction. 83
5.2 Principles of BHT 83
5.2.1 Definitions 84
5.2.2 Exception mechanism 85
5.2.3 Double execution With Comparison (DWC) 85
5.3 Delimiting processing elements 86
5.3.1 System calls as frontier 87
5.3.2 Timeout as frontier 88
5.3.3 Breakpoint and Timeout as frontier 88
5.3.4 Instruction retirement counter 89
5.3.5 Converting time to numbers of instructions 90
5.3.6 Frontier of a processing element 92
5.4 Discussion on issues raised by retirement counter 92

5.5 Precise event based sample 95

XX

Contents

5.6 Double execution With Comparison (DWC) for Minix3

PrOCESSES .« v v v e e e e e e e e e e 96
5.6.1 DWCin Minix3 96
5.6.2 Stepsof DWC 97
5.7 Protected memoryo L. 99
5.7.1 Definition L. 99

5.7.2 How to protect PRAM against direct SEU effects? 99
5.7.3 How to protect PRAM against indirect SEU effects?100
5.7.4 How to protect process’s memory against itself? . 101

5.74.1 First approach 101
5.7.4.2 Second approach 102
5.7.4.3 Third approach 103
5.8 Handling other events during double execution 104
5.8.1 Asynchronous and synchronous events compared
to process execution flow 104
5.8.2 Interrupt handling mechanism in processor 104
5.8.3 Schedulingissues 106
5.8.3.1 Clock and others external interrupts . . . 107
5.83.2 Pagefaults 107
5.83.3 Systemecalls 108
5.8.3.4 Breakpoints 108
5.8.3.5 Others exceptions 108
5.9 Modifications of the process memory by the operating
system or other processes 109
5.9.1 Resultsof systemcalls 109
5.9.2 Shared memories: exec, mmap & Co 110
5.9.2.1 Execsystemcall 110
5.9.2.2 Mmapsystemcall 110
5.9.2.3 Shared memory 110
5.10 Consistency issues between caches and central memory . . 111
5.11 Machine check architecture 114
512 Conclusion 114

Implementation of hardening processes in the operating

system, using BHT 115
6.1 Introduction. L. 115
6.2 Hardening Manager 116
6.2.1 Requirements L. 116
6.2.2 Implementing the Hardening Manager 116

6.3 HEC 118

Contents xxi
6.3.1 Requirements 118
6.3.2 Starting the firstrun 119

6.3.2.1 Requirements. 119
6.3.2.2 Implementation details 119
6.3.3 Starting the second run 120
6.3.3.1 Requirements. 120
6.3.3.2 Implementation details 121
6.3.4 StoppingaPE 000000000 121
6.3.4.1 Requirements. 121
6.3.4.2 Minix 3 entry points 122
6.3.43 DWCand Minix3 123
6.3.5 Restarting PE between the two runs : hardening task

6.4

124

6.3.5.1 Requirements. 124
6.3.5.2 Implementation details 124
6.3.6 Comparison stage: hardening task 125
6.3.6.1 Requirements. 125
6.3.6.2 Implementation details 125
6.3.7 Restoration stage: hardening task 126
6.3.7.1 Requirements. 126
6.3.7.2 Implementation details 126
Protected memory(PRAM) 126
6.4.1 Pre-allocation of US1 and US2 : Building PE
lusl ws2list 127
6.4.1.1 Requirements. 127
6.4.1.2 Pre-allocation of US1 and US2 in the
VM ..o 129
6.4.1.3 Pre-allocation of US1 and US2 in the
micro-kernel 129
6.4.2 Copy-on-write allocation of US1 and US2 129

6.4.2.1 Handling caused page faults in kernel . . 130
6.4.2.2 Principles of handling caused page fault

inthe VM 132
6.4.2.3 Handling messages from micro-kernel . . 133
6.4.2.4 Handling caused page faults in VM

:do_hpagefaults 133
6.4.2.5 Copy-on-write allocation of US1 and US2

in VM. o0 o 134

6.4.2.6 Copy-on-write allocation of US1 and US2
in micro-kernel 134

xxii Contents

6.4.3 Changes in process memory space 135
6.4.3.1 Memory allocation to the process 135
6.4.3.2 Freeing process memory 135
6.433 Fork 136
6.4.3.4 Freeing USland US2 137

6.4.4 Restricting write access to USO frames 137
6.4.4.1 Requirements. 137
6.4.4.2 Implementation: functions set _pe mem _to_ro

and vm_setpt_to _ro 138

6.4.5 USO content change: USOH modules 138

6.4.5.1 Tracking USO content change 139

6.4.5.2 Copying USO content to US1 and US2 . . 139
6.4.6 USO contents change during system call handling

or kernel call handling: SCH module 140
6.4.6.1 Requirements. 140
6.4.6.2 Implementation 140
6.4.7 USO contents change in shared memory: SMH
module L 141
6.4.7.1 Requirements. 141
6.4.7.2 Implementation 141
6.5 Hardening Exception handler 143
6.5.1 Requirements 143
6.5.2 Implementation 145
6.5.3 Page fault handler 146
6.5.3.1 Requirements. 147
6.5.3.2 Exception entry point from hardware to
kernel:
The hardening exception _handler func-
tion: page fault 147
6.5.4 Machine check architecture handler 148
6.5.4.1 Requirements. 148
6.5.4.2 Implementation details 148
6.5.5 Performance monitoring counters 149
6.5.5.1 Requirements. 149
6.5.5.2 Implementation 150
6.5.6 The single stepping handler (SSH) 151
6.5.6.1 Requirements. 151
6.5.6.2 Implementation Details 152
6.6 The hardening software and Minix3 153

6.6.1 The Minix3 native page fault handler 153

Contents xxiii

6.6.1.1 Requirements. 153
6.6.1.2 Implementation details 154
6.6.2 What happens when, during hardening,

the scheduler wants to change process? 154
6.6.2.1 Requirements. 154
6.6.2.2 Implementation 155
6.6.3 system call, kernel call and interrupt handler . . . 155
6.6.3.1 Requirements. 155
6.6.3.2 Implementation 156
6.6.4 The Minix function swith _to_user 156
6.6.4.1 Requirements. 156
6.6.4.2 Implementation 156
6.6.5 Exec, fork clear kernel call 157
6.6.5.1 Requirements. 157
6.6.5.2 Implementation 157
6.6.6 Interrupt handling 157
6.7 Userlibraryo 158
6.8 Conclusiono 158
IITI Results 161
7 Results 163
7.1 Test environment 163
711 Qemu 163
7.1.2 Hardware 163
7.1.3 Software oL 164
7.2 Performance tests. oo L. 165
7.2.1 Performance loss due to hardening 165
7.2.2 Minix 3 POSIX compliance test 166
723 MD5and GZIP, 166
7.2.4 Dhrystonetest L. 167
7.2.5 Compiling Minix3 170
7.2.5.1 Compiling the micro-kernel 170
7.2.5.2 Creating new Minix3 boot image 170
7.2.5.3 Discussion on the overhead 171
7.2.6 Multi-threading support 172
7.2.7 Floating point and retirement counter 173

7.3 Tests by fault injection at run-time and evaluation of the

results 174

xxiv Contents
7.3.1 Faults injection during MD5 and GZIP 176

7.3.2 Fault injection during the compilation of micro-
kernel and unixbenckmarks 177

7.3.2.1 Fault injection during the compilation of
unixbenckmarks L. 177

7.3.2.2 Fault injection during the compilation of
the micro-kernel 178
7.3.3 Analysisof theresults 178
7.4 Towards cyclotron validation 180
IV Conclusions and future works 183
8 Conclusions and future works 185
81 Conclusions 185
8.2 Futureworks oo 188
A Annex 193
Al Annex 1 193
A2 Annex 2 ... 193
A3 Listings 211
A.3.1 Hardening Manager (HM) 211
A.3.2 Double execution with comparison (DWC) 213
A.3.3 Protected memory (PRAM) 226
A.3.4 VM Protected memory (VMPRAM) 245
A.3.5 VM Copy-on-write (VMCOW) 250
A.3.6 USO change handler (USOLh) 257
A.3.7 System call handler (SCH) 259
A.3.8 USO change handler (USOLh) 264
A.3.9 Hardening exception Handler 274
A.3.10 Retirement counter 277
A.3.11 Machine check architecture 283
A.3.12 Single stepping handler 285
A.3.13 Hardening software and the micro-kernel 287
A.3.14 Hardening software and the VM 307
A.3.15 Hardening software utility 322
A.3.16 USER Space library for hardening 324

3.1

4.1
4.2

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5
7.6

7.7

List of Figures

Phases of hardening a processing element 46
OS architecture Lo 66
Evolution of the Index Score by the tick/second 79
Hardening global architecture 117
Protected RAM architecture 128
Hardening exception architecture 145
Instruction retirement counter architecture 151
Single stepping architecture L. 152
Overhead evolution of Md5 on different file size (14MB to

1,40GB)o oo 167
Overhead evolution of GZIP on different file size (14MB

to 1,LAOGB) 168
CPU intensive program (Dhrystone) for ¢t = 250us 169
CPU intensive program (Dhrystone) for ¢ = 25us 169
Injected errors inside registers during compilation of unixbench-
marks 178
Injected errors inside registers during compilation of micro-

kernel 179

Combined injected errors 179

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.10
3.12
3.14
3.9
3.11

3.13

3.15

5.1

6.1

7.1
7.2
7.3

Al

A2
A3

List of Tables

Effect on the system when CRO0’s bits are modified by SEU 37
Effect on the system when CR3’s bits are modified by SEU 39
Effect on the system when CR4’s bits are modified by SEU 39
SER trends for unhardened bulk CMOS, FDSOI and Fin-

FET technologies in FIT/Mbit at ground level 52
A trends for bulk CMOS, FDSOI and FinFET technolo-
gies in (errors/s)/Mbit at ground level 52
Py for bulk CMOS, FDSOI and FinFET technologies at
ground level for IMbit 52
SFE Ry for bulk CMOS, FDSOI and FinFET technologies
at ground level for IMbit 53
Parameters to feed into compute A using the tools SPEN-
VISor OMERE 55
Py and P, in GEO orbit space environment (FDSOI) . . . 56

Py and P4 in GEO orbit space environment (Bulk CMOS) 57
Py and Py in GEO orbit space environment (FinFET) . . 58
SER rates (/day/bit) from OMERE in GEO orbit space

environment (FDSOI) 60
SEE rates (/day/bit) from OMERE in GEO orbit space

environment (Bulk CMOS) 61
SER rates (/day/bit) from OMERE in GEO orbit space

environment (FinFET) 62
Unhardened SER at ground level for CMOS for the same

amount of bitsat risk o000 62
Converting time in a number of instructions 91
Hardening state variables 118
Hardware for the virtual environment 163
Hardware for the physical environment 164
Fault injections in various programs 177

SEE rates (/day/bit) from OMERE in LEOISS orbit space
environment (FDSOI) 193
Py and Py in LEOISS orbit space environment (FDSOI) . 194
SEE rates (/day /bit) from OMERE in LEOISS orbit space
environment (FinFET) 195

List of Tables

A4 Py and Py in LEOISS orbit space environment (FinFET) 196
A.5 SEE rates (/day/bit) from OMERE in LEOISS orbit space
environment (Bulk CMOS) 197
A.6 Pyand Py in LEOISS orbit space environment (Bulk CMOS) 198
A.7 SEE rates (/day/bit) from OMERE in MEO orbit space
environment (FDSOI) 199
A.8 Py and P in MEO orbit space environment (FDSOI) . . . 200
A.9 SEE rates (/day/bit) from OMERE in MEO orbit space
environment (FInFET) 201
A.10 Py and Py in MEO orbit space environment (FinFET) . . 202
A .11 SEE rates (/day/bit) from OMERE in MEO orbit space
environment (CMOS) 203
A.12 Py and Py in MEO orbit space environment (Bulk CMOS) 204
A .13 SEE rates (/day/bit) from OMERE in Open space orbit

space environment (FDSOI) 205
A.14 Py and Py in Open space environment (FDSOI) 206
A.15 SEE rates (/day/bit) from OMERE in Open space orbit

space environment (FinFET) 207
A.16 Py and Py in Open space environment (FinFET) 208
A.17 SEE rates (/day/bit) from OMERE in Open space orbit

space environment (Bulk CMOS) 209

A.18 Py and Py in Open space environment (CMOS Bulk) . . . 210

Part 1

Background

CHAPTER

Introduction

1.1 Context and Problem statement

The context of this research is coping with a natural phenomenon which,
combined with the evolution of technology causes trouble in computers
and electronics systems: radiation, generally due to solar activity, con-
sisting of high energy particles that leave charges on microchips when
colliding with their surface[Heill]. This phenomenon creates trouble in
electronic devices [VFRO7]. The diminishing size and voltages in use in
microchips increases their sensitivity to these phenomenons because the
charge holding a bit of information becomes smaller and can more easily
be changed by the charge transferred by a high energy particle colliding
with the chip|Heill] [VFRO7| . Sometimes these effects are permanent,
but more often they are transient. This thesis targets the transient ef-
fects which cause mainly trouble in memory systems, processors and
devices registers. Transient effects of collisions of charged particles with
electronic devices are called single event upset (SEU). They are common
in space environments, at high altitudes and in irradiated areas. A SEU
is a transient fault, in one or several neighboring memory cells, caused
by the energy transferred from a high energy particle to an electronic
circuit. In a computer, the fault caused by a SEU could affect data,
the instruction opcode or the program execution flow [VFR07| [Nic02].
With the diminishing size of memory cells, a single particle may harm
several cells. SEU can be classified as [Heill]:

e Single-bit upset (SBU) when a particle strike toggles a bit-flip in
a memory cell or latch

e Multiple-bit upset (MBU), when the event toggles two or more
bits in the same word or multi-bit latches

e Multiple-cell upset (MCU) when the event toggles bits of two or
more memory cells (words)

e Single-event transient (SET), when the event causes a voltage
glitch in a circuit, which becomes a bit error when captured in
a storage element

4 Introduction

e Single-event functional interrupt (SEFI), when the event causes a
loss of functionality due to the perturbation of control registers,
clock signals, lockup, etc.

Avoidance or mitigation of SEU effects can be tackled in hardware
or in software or both [RRTV99]. They can also cause a malfunctioning
of a circuit or even a direct system crash [Heill]. Crashes can also occur
as a consequence of a change of the program execution flow.

1.2 Contribution of the thesis

In this thesis a micro-kernel operating system has been modified in order
to protect its users application processes against transient faults. Hard-
ening these processes is done transparently. User application programs
are not modified at programming time nor at compilation time. All the
software hardening functions are implemented in the operating system.

There are several reasons for preferring a hardening technique that
neither modifies the program code nor depends on what this code is
actually doing.

A first reason is that the code to harden is not always available. This
does, of course, not apply to the code controlling the spacecraft and on
which the survival of the spacecraft depends: this code is made to mea-
sures, according to the requirements that may include SEU hardening.
However, spacecrafts may include computers in their payload and the
software in these payloads may be off-the-shelf software that was not de-
signed for space by companies that want neither to release their sources
nor to spend resources on hardening their software.

A second reason is that software is expected to be error free, but
when the software is used in irradiated areas, this means not only bug
free but also not sensible to SEU. These qualities are different and both
are expected to be guaranteed, but the required guarantees are not the
same for the absence of bugs and for resistance to SEU. The absence
of bugs is expected in all software and the way to guarantee it is not
dependent on where the software is to be used: on the ground or in space.
On the other hand, systems will only be considered as SEU-resistant
if they have been tested under irradiation, generally in a cyclotron. If
anything is changed in the software (e.g. new release) or its environment,
the tests have to be redone.

This is why hardware hardening is often preferred, even if much
more expensive. If a system is hardened in hardware, its quality of "be-

1.2. Contribution of the thesis 5

ing hardened" does not depend on the software running on it. However
the previous sentence said "if", not "if and only if". Indeed the quality
of "being hardened" will also be independent on the software to harden
if the hardening is not embedded in the software to harden. This is
why implementing the hardening in the operating system without any
requirement on the programs to harden is interesting: if the operat-
ing system is proved to be both bug free and SEU resistant and if it
can harden application software running on it, then, like with hardware
hardening, when new application software must be added or when a new
release must be installed, it must only be guaranteed to be bug free, not
SEU resistant, because that quality is provided by something external
to this software.

A hardened operating system that is also able to harden its appli-
cation software, whatever this software is doing would thus be a de-
sirable alternative to hardened hardware. Of course, the hardening of
respectively the hardware or the operating system and its application
hardening add-on has to be demonstrated.

In this work it is assumed that the operating system itself is immune
to SEU effects. This work is thus a first step towards the complete hard-
ening of computer systems including all their unmodified application
processes against errors caused by SEU. This hardening of the applica-
tion processes by the operating system has to be the first step because
hardening only the operating system would be of limited use if the same
hardening work had to be done for each application program, which
would be an unbounded work. It is thus necessary to show first that it
is possible to harden unmodified application processes from within an
operating system. This is the main contribution of this thesis.

Hardening the operating system itself will be a lot of future work
but the operating system is a single software to harden and it may be
modified. In order to limit this amount of work, a micro- kernel operat-
ing system has been selected. In a micro-kernel operating system, many
traditional operating system functions are subcontracted to separate sys-
tem processes and most of them can be handled in the same way as user
application processes, so by hardening the application processes, some
system processes that do not include the new hardening functions can be
hardened as well. However, some exceptions are expected, in particular
system processes handling peripheral devices could have to be adapted
to take into account SEU induced errors in peripheral device registers.

The selected micro-kernel operating system, Minix3 only supports
single core computer. Only single processing core are considered. Modi-

6 Introduction

fying Minix3 to add multi-core support is possible but would have been
a completely different development than the purpose of this thesis. It
is thus considered as out of the scope of this work. Some of the shelf
processor dedicated to servers and mission critical embedded systems
include already a few hardware hardening features, but insufficient for
use in space environment. The use of such a processor is assumed in this
work. TLB, L2 and L3 caches of the chosen processor are considered to
be protected against direct SEU effect.

The unmodified user application process hardening by the operating
system has been completely implemented and tested with injection of
faults similar to those caused by SEU on realistic programs such as
classical benchmarks, usual UNIX commands and recompilation of the
benchmarks.

The hardening method includes several technical innovations. The
first is that the choices are based on hypotheses based on realistic sta-
tistical analysis in order to be able to guarantee the efficiency of the
protection. Another is a new instruction counting technique allowing to
execute exactly twice the same instructions without any knowledge of
what the program does. A third innovation is an efficient way of using
the pagination system for the protection of the memory of a process
against erratic behaviors of this process if it is hit by a SEU.

The measured average overhead is 141% for computing and system
call intensive applications (GZIP and MD?5 is 2,41 times lower).

The method has been validated by fault injection at run time. Faults
have been injected into critical processor registers at random times at a
typical rate observed in space conditions (satellites orbiting the Earth).
All injected faults have been detected and corrected. Other tests include
a higher than natural number of events, but biased by the fact that the
hypotheses on which the hardening techniques are based are respected,
which would not be the case at these higher event rates.

1.3 Outline of the thesis

The next chapter presents the state of the art on fault, error, failure
and fault tolerance techniques. Chapter 3 presents an assessment of
the problem and the key features offered by current processor architec-
tures. Chapter 4 presents the choice of an operating system. Chapter 5
presents the principles of hardening user applications using the blended
hardening technique (BHT). Chapter 6 presents the implementation of

1.3. Outline of the thesis 7

hardening user applications using the blended hardening technique on
the chosen operating system. Chapter 7 presents fault injections tests
and performance tests. Chapter 8 presents the conclusion and future
works.

CHAPTER

Sources and consequences
of faults in computer
systems

Introduction

This chapter presents the state of the art on fault tolerance principles
and techniques with focus on random transient faults. First theoretical
aspects of faults, errors, failures are outlined. Then the techniques to
mitigate or tolerate faults are presented. After this chapter the reader
will have a clear idea on the characteristics of fault tolerance techniques
relevant for this work, ie. their strengths and their limitations.

2.1 Faults, errors and failures in programs

2.1.1 Program

According to [KA96] a program is composed of a finite set of variables
and a finite set of processes. Each variable belongs to a non-empty do-
main. Each process is composed of a finite set of actions; each action
has a unique name and is in the form: name :: guard — instruction.
Guard is a Boolean expression for program variables. The action in-
struction updates zero, one or more variables of the program atomically
and instantaneously. Let p be a program.

2.1.2 State and state predicate of a program p

According to [AG93, KA96| a state of p is defined by a value of each
variable of p chosen in the domains of each of these variables. A state
predicate of p is a Boolean expression on the variables of p. An action
of p is active in a state if its guard condition (predicate state) is true in
this state. A process is active in a state when some process actions are
active in this state.

10 Sources and consequences of faults in computer systems

2.1.3 Program’s computation

According to [AK98, KA96] a computation of p is a fair and bounded
sequence of steps. In each step, the action of p active in the current
state is chosen and the instruction associated with this action is exe-
cuted atomically. Equity comes from the fact that if at each step of
the sequence it is the same action of p that is active it will be chosen
for execution. So we check if we have to redo the action again before
proceeding to the next action. If necessary, we wait for the predicate of
the next action to be true to execute it. The bounded number of steps
means that when the sequence ends the guard condition of all actions of
p are false.

2.1.4 Fault, error, failure

In the field of fault tolerance of computer systems, a fault is considered
to be the identified or suspected cause of an error. An error is however
a part of the state of the system that can lead to a system failure. The
system fails when it no longer respects its specifications [Pul01, KKO07].
By definition transients faults are those that cause transient or perma-
nent failures. Transient failures cease as soon as these faults cease. The
system converges to a stable state. Permanent failures are irreversible
even when the fault disappears. Permanent faults cause irreversible fail-
ures even when the fault disappears. Byzantine or intermittent faults
are oscillating faults, they do not cease, sometimes they are active and
then they are inactive [KKO07]

Some faults could be detected or not by the hardware. Detected
faults could be corrected or not. They could also be fatal or catastrophic.
The undetected fault could be benign or critical.

2.1.5 Fault tolerance

According to [?], p is F-tolerant for the invariant S (F is a class of faults
and S is the invariant of the program p) if and only if there is a predicate
T that satisfies the following three requirements:

e At each state where S is true, T is also true, i.e. S =T

e From any state where T is true, if any action of p or F' is executed,
the resulting state is a state where T' is true.

e From any state where T is true, all calculations of p only result in
a state where S is true.

2.1. Faults, errors and failures in programs 11

The predicate T' is a fault-span [AGV96|, a limit in the space of the
states of p in which the state of p can be disturbed by the occurrence
of faults of F. If the faults continue to occur, the states of p remain
within this limit. When the faults stop, p converges to states where the
invariant S is true.

2.1.6 Types of fault tolerance

Behaviors of a program in presence of faults F can be classified in three
types of fault tolerance including masking of faults, non-masking of
faults and fail-safe tolerance. This classification is based on how the
problem specifications are met in the presence of faults. In other words
the program [AGV96|:

e p masks the faults of F' if and only if, when a fault of I’ occurs in
a state where S is true, p continues to remain in a state where S
is true. (S is the invariant of p). That is, the specifications of the
problem are always respected by the program.

e p does not mask the faults of F' if and only if, when a fault of F
occurs in a state where S is true, p can be disturbed and evolve
to a state where S is false. However, the program p is restored in
one satisfactory state S a certain time after the end of faults of F.

e p is fail-safe tolerant to F' for S if and only if there is a predicate
R such that p is F-tolerant for SV R, the application of any action
of p or F' in a satisfactory state S V R results in a satisfactory
state SV R. This is sometimes called "graceful degradation". A
particular case called "fail-stop" is, in case of fault, S remains
satisfied or the system stops (R is then stopped).

2.1.7 Measures of fault tolerance

Three metrics are used to measure the fault tolerance of a system. The
Mean Time To Failure (MTTF) is the average time the system operates
until a failure occurs. Whereas the Mean Time Between Fuilures is
the average time between two consecutive failures. The Mean Time To
Repair (MTTR) is the time needed to repair the system following the
first failure [KKO7].

MTBF = MTTF + MTTR (2.1)

12 Sources and consequences of faults in computer systems

2.1.8 Origin of the fault

The fault could come from the program itself. A programming error
or an unavailable or invalid input provided by user or others programs
could generate a fault inside the program. Such a fault could be avoided
by increasing the reliability of the program (checking the input data
before using them etc) [Whi03].

The faults could also come from the device on which the program
is running (hardware failure). That could be a byzantine fault. The
replacement of the hardware could reduce the risk of this kind of fault
[AGMT17].

The fault could also come from high energy particles created by
radioactivity in the device’s package. That is a transient fault. Replacing
the device package could remove the risk of this kind of fault [SBD17].
The high energy particles could also be created intentionally to disturb
the normal behavior of the program. This phenomenon could be found
in the security field where an attacker would want to bypass the access
control of the system or want to bypass the authentication mechanism
or want to steal data [GWJL18|.

However Single Event Upset (SEU) is a phenomenon that occurs
when charged particles (from cosmic radiation) collide with an electronic
circuit. The impact causes a transfer of energy of the particles contained
in the radiation to the circuit. This can modify the charges of the
electronic circuit, causing bit state changes [Nor96]. The consequence
of this phenomenon on unprotected devices is the occurrence of errors
described as "soft error "because they are random, transient and do
not cause the deterioration of the circuit unlike" hard errors "which are
permanent and destructive for the material. The memories, the caches,
the registers and the processors are the most exposed to the consequences
of SEUs. There is data corruption causing any type of error to software
level i.e. crash, miscalculation, bad sequencing of processor instructions,
execution of a false instruction [TVVBI1S|.

2.2 Techniques to mitigate or prevent SEU

Several techniques have been developed to mitigate or prevent errors
caused by SEU in computer systems. There are techniques implemented
at hardware design level and techniques implemented at software level
also called the software-implemented hardware fault tolerance (SIHFT)
paradigm [RRV11] because basically the principles are similar in hard-

2.2. Techniques to mitigate or prevent SEU 13

ware and software hardening. There are pure software techniques and
hybrid techniques, that take into account specific hardware functions.

2.2.1 Hardware approaches

Hardware Protection from SEU effects can either lower the SEU proba-
bility of occurrence by using more resistant technologies, such as bigger
memory cells holding larger charges, by using sapphire or other insula-
tors as substrate rather that semi-conductors or by shielding the elec-
tronic devices. These techniques, already used for a long time are still
successful today [BMS07| [BPPT08], but they generally involve more
weight, thus more cost to bring the devices to space.

The second hardware protection method is by adding redundant
hardware in order to correct SEU caused errors on the fly, for instance,
by duplicating (DWC: duplication with comparison) or triplicating all
sensitive cells and circuits and adding a comparison or a voting circuit
(TMR: triple modular redundancy), by using error correction codes on
multi-bit cells etc [Pla80].

With both categories of techniques, specially designed and manufac-
tured electronic devices are needed. When only a few of these special
devices are built, they are much more expensive than mass produced
devices, usually called commercial off-the-shelf devices (COTS) [Nicll]
[CDL*16].

In the case of MBU (SEU affecting several bits in the same memory
word), some traditional hardware protection techniques (e.g. single bit
error correction techniques based on Hamming codes) are ineffective.
Software and software based techniques generally do not try to correct
single bits in words and can handle all types of SEU in the same way.

2.2.2 Software approaches

Software hardening techniques are generally also based on DWC or TMR
but implemented in software, either by a preprocessor transforming the
code before compilation or by a modified compiler [CRK*15, SHD'15,
BMD™"17|. These techniques are thus limited to a single programming
language, sometimes even to a single processor architecture and require
the availability of the source code of the program. Programs hardened
purely in software have only access to resources accessible to application
programs, i.e. their own (virtual) memory and user mode accessible
functions of the processor, none of which can really be trusted. Such

14 Sources and consequences of faults in computer systems

approaches can thus only hope to reduce the error rate but not to elimi-
nate completely errors. Based on simulations, Yun Zhang et al [ZLJA12]
claim a fault coverage around 99,9%.

2.2.3 Hybrid hardening approaches

Hybrid hardening techniques are software techniques using properties of
available hardware or simple additional hardware not requiring changes
to processor devices. Hybrid hardening techniques implement redun-
dancy in software, thus avoiding the need for duplicating or triplicating
hardware inside the processor [Amol5, WVB*15]. The redundancy in
the processor’s hardware is generally replaced by a redundancy in time,
although it could also be implemented by the simultaneous use of sev-
eral cores. The difference between pure software and hybrid hardening
is that pure software hardening techniques are not dependent on par-
ticular hardware features: they can generally be used on any computer
while hybrid hardening techniques require access to specific hardware
features of the computer and use these to provide a much higher success
rate than pure software techniques [Rot99] [SPR00] [MAAB13] [D6b14] .
For instance, in this work, error detection systems embedded in proces-
sors and activating the exception mechanism, as well as fault avoidance
features of caches and paging systems implementations of some common
modern processors are used.

A survey of software and hybrid hardening techniques focused on
shared Memory Multicore/Multiprocessor systems was published in 2011
by H. Mushaq [MAABI11]| He identified four techniques for error detec-
tion: using a watchdog timer or a watchdog processor or also by using
redundancy DWC or TMR. For error recovery, he identified also two
possibilities: checkpoint and repair and error masking.

Software and software based hybrid hardening techniques can target
different program granularity levels such as sub-instruction logic, each
instruction, a statically defined set of instructions, a dynamically defined
sequence of instructions, a procedure, threads of the program or the
program itself.

When an occasional fault is acceptable, all the hardening techniques
can be used to mitigate the effect of SEU. This may be the case for some
workload equipments where a temporary malfunction does not put the
whole vehicle at risk. For mission critical systems, all SEU induced
faults should be corrected.

2.3. A short survey of pure software hardening techniques 15

2.3 A short survey of pure software hardening
techniques

Software hardening techniques use data redundancy and diversity, com-
putation redundancy, time redundancy, procedure-level redundancy, si-
multaneous multi-threading, executable assertions to detect and if pos-
sible try to correct transient errors in software systems.

2.3.1 Single-thread approaches
2.3.1.1 Source-to-source based transformation

One approach in pure software hardening technique consists of trans-
forming high level code by adding redundancy in the code or in the
data. Based on a set of rules the source code is transformed by du-
plicating each variable and instruction. Typically, Rebaudengo et al
[RRTV99, GRRV03, CNV100] proposed a DWC approach to modify a
high level code at compilation time. Data and code are duplicated to
allow soft error detection by comparing duplicated data. That approach
is able to detect soft errors. In [Nic02] B. Nicolescu presents a software
approach to detect transient errors in digital architectures. Here a trans-
lator transforms a regular C program in a hardened C program, also by
duplicating data and instructions. Both proposals are low granularity
sequential DWC approaches. However, Nicolescu only detects errors; he
does not correct them. The result of that approach is a transformed
source code, not a transformed machine code. So it is not architecture
dependent and can be applied to any computer and architecture.
The drawbacks are that:

e The source code is needed before the software is hardened. Thus
the approach is not applicable to available binaries codes.

e That approach could not detect and correct low level errors such
as transient faults triggering unknown exceptions or the reset of
the CPU.

e The overhead on code size is around 4 times.

2.3.1.2 Compiler based transformation

SWIFT [RCVT'05] (SoftWare Implemented Fault Tolerance) is a com-

piler time approach which duplicates the instructions in a program and

16 Sources and consequences of faults in computer systems

inserts comparison instructions at strategic points during the code gen-
eration. It is also a DWC approach but with a coarser granularity.

2.3.2 Multi-threaded approaches

Several authors proposed comparable approaches but exploiting multi-
threading facilities to accelerate the process.

2.3.2.1 Source-to-source based transformation

[OKBT16] use a completely different approach exploiting Intel MPX
(Memory Protection eXtension) and TSX (Transactional Synchroniza-
tion Extensions) facilities to provide tolerance of faulty pointers. MPX
is an Intel extension to check pointer bounds. So they use MPX instruc-
tions to detect some bit flips in pointers. TSX is another Intel facility.
It allows optimistic mutual exclusion with rollback in multi-thread pro-
grams. They used it as rollback to recover from a faulty pointer. The
interest of this approach is that it mitigates errors that might not be de-
tected in programs protected by any of the preceding proposals. These
programs can recover from computational results but may still crash or
have an inappropriate behavior in case of pointer or jump errors. This
work can improve the situation for pointer errors but does not eliminate
all risks with pointers because it is limited to bounds checking.

Interesting work related to pure software hardening can also be found
in other fields, such as security. A. Barenghi et al. [BBK*10] introduced
instructions duplication and triplication as countermeasures to bit flip
injection attacks against the AES algorithm. He exploited the fact that
the AES algorithm on ARM processors uses only 9 out of the 12 available
registers to duplicate instructions. It is an instruction level approach
targeted at a specific piece of code.

2.3.2.2 Compiler based transformation

|ZLJA12| developed Decoupled Acyclic Fault Tolerance (DAFT) another
fine grain compiler level fault-tolerance but using simultaneous multi-
threading facilities. DAFT replicates all instructions in the original
program except memory instructions and library function calls. The
duplicated code is spread between a leading and a trailing thread. The
memory operations are executed once by the leading thread and are
made available as input values to the trailing thread. The same mech-
anism is used for library function calls. Instructions for fault checking

2.4. A short survey of hybrid hardening techniques 17

and communication between the two threads are inserted by the DAFT
compiler. DAFT was implemented on the LLVM compiler framework
and was evaluated with a mix of SPEC CPU2000 and SPEC CPU2006
on a six-core Intel Xeon X7460 processor with a 16MB shared L3 cache.
DAFT used Speculative Decoupled Software Pipelining to gain perfor-
mance and reduce the cyclic dependencies between the trailing thread
and the leading thread. So rather than waiting for the trailing thread the
leading one continues its execution. Speculation allowed to announce a
reduction of performance overhead of DAFT from 200% average to 38%
(or 1.38x) on average. But the speculation wakes up new challenges for
detecting faults and ensuring correct execution. Challenges for which
Yun Zhang et al [ZLJA12| proposed solutions. The announced fault
coverage is 99.993%.

[CC16| proposed a coarser grain TMR framework to develop a fault
tolerance program using multi- threading. The original program is repli-
cated in several threads, a watchdog thread is used to recover from
non-respondent threads. A majority voting protocol is used to recover
from faults. The implementation was based on the POSIX Pthread li-
brary. The approach was evaluated with DSPstone benchmark on an
Intel 3,4GHz corei7 3770 processor. A majority of injected faults were
recovered.

The interesting feature, beside using execution duplication and trip-
lication as protection against bit flips, is taking into account available
hardware resources, which characterizes the techniques presented in the
next section.

2.4 A short survey of hybrid hardening tech-
niques

Hybrid techniques add leveraging available hardware features of some
COTS processors to the techniques used in pure software hardening.

K. Li was the first who used copy-on-write to provide check-pointing
capabilities to parallel shared memory systems [LNP94| [LNP90|. This
technique allows to keep the state of the last checkpoint and work on
a copy of pages to modify when continuing the execution beyond the
checkpoint.

[Rot99] developed a micro-architecture method called cooperative
redundant threads using the combination of time redundancy and in-
struction redundancy to provide fault tolerance on a simultaneous multi-

18 Sources and consequences of faults in computer systems

thread architecture. Like in [ZLJA12| , the program is divided in two
threads, The A- stream which runs in advance of the R-Stream (re-
dundant). The operating system is not aware of the existence of the
R-Stream. The result from [Rot99] the A-Stream is saved in a delay
buffer. The result produced by R-Stream is compared to the contents
in the delay-Buffer. An error is detected when the comparison does not
match and the previous committed state of the R-Stream is used for
checkpoint. Otherwise the result of the R-Stream is committed. This is
DWC at instruction level implemented in the micro-program of a CISC
computer. It is a hybrid technique implemented within the CPU. It is
thus not "off the shelf hardware". Besides, not all SEU effects will be
detected, even if one assumes that the central memory is adequately
protected by other means. One can assume that the two pipelines will
not be disrupted by the same SEU, but other parts of the CPU could
be hit: only "gentle" errors occurring in a pipeline will be detected and
corrected. For instance, an error in an address register when the result is
written back to memory will not be detected, so the committed state of
the R-Stream could be faulty. A crash of the processor is not detected
either. This work is very similar, in its principles and possibilities to
[ZLJA12|, but it is implemented in the micro-program. This approach
was tested on a simulator of the proposed architecture.

H. Mushtaq [MAABI12| developed a user level library to provide a
fault tolerance capability to user applications. The code of the user
application is modified by using the multi-threading capabilities of re-
cent architectures. 4 threads are used for fault detection: a watchdog
thread, a checking point thread, a leader thread and a follower thread.
A shared memory is used for communication between these threads.
Checkpoint /rollback is used for error recovery. The execution is di-
vided in 1 second processing elements, called "epochs". At the end of
each epoch, the follower and the leader compute a checksum that are
compared to check the presence of transient errors. This checksum is
computed efficiently using the extension SSE4.2 which is available in
Intel core i processors since the Nehalem generation (2007).

In case of error, the leader and the follower are killed and the checking
point thread is activated. The latter creates a new follower and a new
leader from the last checkpoint created at the end of the previous epoch.
The dirty pages are identified by giving only read access to each thread
at the beginning of the interval. When the thread tries to access the page
for writing, the kernel sends a signal to the thread, so the page is noted
and a write access is given to the thread. This dirty page identification

2.4. A short survey of hybrid hardening techniques 19

mechanism is similar to the one implemented in this thesis.

The announced performance loss is 46%. The test was performed us-
ing 5 benchmarks, one from the PARSEC and four from the SPLASH-2.
The machine used to run these benchmarks has 8 cores (dual socket
with 2 quad cores), 2.67 GHz Intel Xeon processor with 32GB of RAM,
running CentOS Linux version 5, with kernel 2.6.18 [MAAB12] . An
improvement of that technique was described in [MAAB13| where the
CR(C32 instruction of SSE4.2 is used for comparison. That is a signif-
icant improvement because rather than comparing pairs of pages, they
used hardware facilities to compute the data CRC of each page and com-
pared the CRC. This contributed significantly to reducing the overhead
from 46% to 18%. Beside, the locality property of memory is exploited.
So when the signal comes, rather than giving access to one page, access
is given to N pages.

The program is not protected against indirect effects of a SEU, be-
cause all writable memory of the process is available during the hardened
execution. Indirect effects of SEU are when an SEU occurs and the pro-
cess misbehaves and writes faulty data in its memory space. Also when
the fault causes an exception resulting in the operating system killing
the faulty process, the whole process will be killed (the leader thread,
the follower thread and the checkpoint /rollback thread).

It must be noted that this work uses very long processing elements.
It is a coarse grain multi-threaded DWC approach. The original features
are the comparison of dirty pages for error detection and the coarse grain.
Since the user program is anyway modified, enforcing the two threads
to execute exactly the same instructions is not a hard problem here.

Lesage et al [LML11] use a hardening technique on which the present
work is based. Their work was targeted at stand alone programs on
small processors, without multi-thread facilities. Like in preceding pure
software and software based methods, double execution of processing
elements, with comparison (DWC) is implemented in software to detect
and correct SEU errors. Processing elements duration’s is medium (mil-
lisecond range). Their duration is tuned so that the probability of more
than one SEU occurring during the handling of one processing element
can be neglected for the technology and environment of the system. It
was the first DWC hardening technique where the duration of processing
elements is not dictated by the hardening solution but by the constraints
of the environment (radiation level and the sensibility of the hardware).

It used a simple hardware protected memory (the protection hard-
ware is implemented in a FPGA) The protected memory could not be

20 Sources and consequences of faults in computer systems

modified, except by using a complex writing sequence that programs mis-
behaving after being disturbed by a SEU will not execute "by chance".
The availability of protected memory, that cannot be modified as direct
or indirect effect of a SEU, allows to keep safely the program’s code and
a snapshot of its variables taken before starting the current processing
element. The use of protected memory is a second major difference with
the preceding methods.

Crashes and exceptions are detected by the standard exception han-
dling mechanism of the processor. In that case, the processing element
is also restarted from the last snapshot (after a hot reset keeping the
contents of the protected memory in case of system crash). This is a
third major difference with the preceding methods. The three innova-
tions were possible because the whole computer was controlled by the
stand alone program.

The program has to be written for hardening by calling appropriate
functions at appropriate points in its execution, but this was considered
acceptable for new small stand-alone programs. The work of Lesage et
al. [LML11] was validated by fault injection, both by simulation and in
the real device. It gave excellent results but with a huge time cost.

Bjorn Débel [D6b14| developed Romain, a framework that provides
transparent multi-threading redundancy as operating system service to
detect and correct transient hardware errors. The technique was im-
plemented on the Fiasco.OC micro-kernel. Each program written to
run on the Fiasco.OC micro-kernel can be replicated in several threads.
Each thread runs in its own address space. The number of replica is
configurable. A master thread is responsible for managing all replica,
comparing their states and recovering if needed. There is only one mas-
ter thread for each application. Master threads are able to communicate
with each other. All interactions of the replica with the outside world
(exception, interrupt, system call: called "externalization events)"
done via the master thread. The checking point off all replicas is when
they perform a system call or an exception is raised. The master thread
compares the "external" state of each replica, i.e. the registers and the
parameters of the system call. An error is detected when a total match
is not found. A voting mechanism is used to recover from the error. The
interesting features of this method are:

are

e cach thread runs in its own address space. Thus if a thread misbe-
haves it can only harm itself a little more, which is not important
because a misbehaving thread’s memory will be discarded anyway;

2.5. The blended hardening technique (BHT) 21

this advantage is similar to that of protected memory in [LML11]

e TMR or more redundant N-out-of-M voting schemes are used,
which means that the processing element will not have to be re-
played because the good result will be provided by the voting mech-
anism, but the price to pay is to execute each processing element
at least 3 times, which is less efficient than DWC if few processing
elements have to be replayed;

e exceptions are processed and recovered from like in [LML11] ;

e the code of the program to harden does not need to be modified,
which is a tremendous advantage over all previous methods;

e the processing elements are delimited by internal events of the pro-
gram: system calls and exceptions, which means that the harden-
ing system cannot enforce processing elements to be short enough
to only have to handle a single SEU; on the other hand the number
of replicas can be increased for programs risking several SEU in
the same processing unit.

However, the major limitation of this approach is that the comparison
only involves the part of the state that is externalized, i.e. visible out-
side the process. In other words, the replica agree only on their output.
Thus, undetected errors could accumulate and, later, diffuse in all repli-
cas if, after another SEU, the "silently" corrupted replica is selected as
reference.

Frenkel [FLB15] used a different approach, based on a COTS FPGA
(Xylinx Zynq Soc) and three new techniques: Forward Temporal Re-
dundancy (FTR) at circuit level, frame and module dynamic partial
reconfiguration (DPR) and offloading a circuit state preservation struc-
ture based on checkpointing and rollback. This is achieved with only
an 85% combinational and 125% sequential overheads. Detection and
correction latencies are of 4,5 ms and 320us respectively.

The approach was validated by fault injection in a simulation and
also Proton beam tested. It gave excellent results.

2.5 The blended hardening technique (BHT)

The present work is based on the same principles as Lesage’s work. These
principles, called "blended hardening technique" we reviewed here inde-
pendently of Lesage’s implementation. Both Lesage’s work, published in

22 Sources and consequences of faults in computer systems

2011, and this work are steps of a research project on the applicability
of blended hardening to full scale computing systems.

The motivation of [LML11] was to eliminate all SEU effects in a
standalone program divided into processing elements.

The aim of this thesis is to contribute to generalize this method to
full scale computing systems, with their operating system and many
processes.

The BHT uses available hardware facilities such as the exception
mechanism present in most processors and the machine check architec-
ture to detect hardware detectable transient faults caused by SEU and
DWC to detect silent faults, i.e. faults causing erroneous results that
are not detected by hardware.

The blended hardening technique is based on two fundamental as-
sumptions [AL19, LML11] :

1. The rarity of SEU. It states that, below some duration limit, only
one single SEU can harm in the system. This time period had
been evaluated based on experimental data [Mat10] for the target
hardware of [LML11|. In space conditions it was of the order of a
msec.

As a consequence, if processing is split in processing elements and
if executing them twice and comparing the result (DWC) is short
enough to be harmed at most once by SEU, then, this event can
occur during one of the two executions or during the verification
but not during more than one of these 3 parts of the handling of
the processing element. If the two executions give the same results
then an erroneous silent fault in the comparison can only produce
the faulty conclusion that the two executions gave different result
and the processing element will only be incorrectly restarted.

This does not mean that a single SEU may hit the system during
the two executions and comparison but that if several SEUs occur,
they will not mask each other effect, which could only happen if
exactly the same fault was produced in each execution. Or if the
results of the two runs differ but are considered as identical by a
faulty comparison.

This is called the "single SEU hypothesis" because even if several
SEU occur the effect will be the same as if there was only one and
the PE will be restarted.

2. The availability of a "protected memory" area that is totally im-

2.5. The blended hardening technique (BHT) 23

mune to all consequences of SEU, both direct and indirect. This
makes it possible to keep trusted snapshots and resume processing
safely from them; provided that the processing elements are both
atomic (i.e. their effect is always complete or nothing, never par-
tial) and idempotent (i.e. running them twice or more is equivalent
to running them once).

In practice "protected memory" must be hardware hardened against
SEU (e.g. ECC+hardened scrubbing) [BBNT07] and read only for run-
away programs, i.e. programs gone out of control as a result of a SEU-
aused error (indirect SEU consequence).

Assuming these two hypotheses, the hardened program is divided
into short processing elements. If an error is detected by hardware at
any time during the handling of the processing element the processor is
restored to a stable state and the execution of the processing element is
eventually restarted. Silent errors are detected by DWC:

1. Each processing element is run twice.
2. The results from these two runs are compared.

3. If they do match, the result is saved securely as a snapshot into
the protected memory and processing proceeds with the next pro-
cessing element,

4. else processing is restarted from the last snapshot saved in the
PRAM (Protected Random Access memory).

If a SEU occurred, it is detected, either by the exception mechanism
of the processor or by comparison of the results of the two executions of
the current processing element; if the SEU impacted comparison, it can
only be a false negative causing an unnecessary restart of the processing
element, but never a false positive because this would violate the single
SEU hypothesis. I/O must be hardened independently.

The effectiveness of the technique has been shown experimentally by
Lesage on a small stand alone program running on a Linux simulator and
also on a hardware prototype. The Linux simulator was a collection of
processes exchanging data through shared memory segments, and send-
ing signals to interact with each other. The hardware prototype has been
used and applied in an ESA proof-of- concept project with Thalés Aliena
Space ETCA on the feasibility of digital control for power management
aboard satellites. The software was implemented on 2 naked LEON

24 Sources and consequences of faults in computer systems

computers. The 2 boards were running real-time partially-hardened soft-
ware, exchanging messages with each other. Error injection was done
through the specific FPGA implementation [LML11] .

2.6 Discussion on pure and hybrid hardening
techniques

With the notable exception of [FLB15], that targets sub-instruction level
and is applicable to any kind of software as long as it runs on a specific
FPGA-based system-on-a-chip, pure software or hybrid hardening tech-
niques had only been targeted at standalone programs or single applica-
tion programs and not at whole computing systems including multiple
tasks or threads and an operating system.

There are several reasons for that. The first reason is the high over-
head induced by fault-tolerance tasks implemented in software. However
in many instances this performance loss is affordable because the per-
formance of the processor is much higher than needed. Programmers
take profit of this advantage to provide more reliable software systems
in other contexts than SEU hardening. For example to ensure data in-
tegrity, file systems use sophisticated algorithms such as CRC, RAID
[P1a80]. The overhead induced by these computation has been balanced
by the development of the processor industry which provides high speed
and high accuracy processors.

The second reason could be the high complexity induced by these
methods. It is expected to be complex to maintain the consistency be-
tween duplicated data and their states when there are multiple states in
different processes to keep consistent with the overall system [RRTV99).
Besides, hardening code must be added and the size of data is at least
doubled. Also to ensure the hardened execution of the processing ele-
ment as proposed in [AL19, LML11]|, the hardening code should keep
the memory state of each runnable process as it was at the start of the
current processing element and restore it when the process is ready to
run the processing element within the process for the second time.

Third, except in Débel [D6b14] and Frenkel [FLB15|, where the code
of the program needs not be modified, the code of the program to harden
must be modified, either by hand or by a tool. These modified programs
must respect the functional specification of the original program and its
timing requirements.

Fourth, so far, only data processing has been discussed. Other prob-

2.7. Conclusion 25

lems can arise from interactions of the software to harden with an envi-
ronment that is not hardened. For instance, in [LML11| what happens
when I/O operations are run twice? Is it always correct with the I/O
communication protocol? How to adapt the technique to make the hard-
ening action transparent to the system interaction with its environment?

Fifth, how to guarantee that the hardening code is also hardened?
Are his data correct every time? What happens when the hardening
code is also victim of SEU and causes an exception. In [LMLI11| the
rarity assumption ensures that only one SEU can occur during the DWC
execution of a processing element (run twice, results compared, results
saved into the protected memory) [LML11]. Thus a SEU could occur
either during one of the two execution phases, or in the comparison
phase or in the saving phase. Even if the SEU induced an error within
the hardened code and it is uncontrollable, the secure mechanism for
writing into the protected memory ensures the integrity of saved data.
Thus the runaway program is quickly killed (at the latest when the PE
is stopped because it reached its maximum duration) and the program
can be resumed from the previous safe state.

Sixth, the technique of running each PE twice ensuring the detection
of any data or code corruption error is not always directly applicable:
for instance, when it is related to maintaining the system time. How
is it possible to distinguish the difference in results of the two runs due
to the normal evolution of time or to a fault caused by occurrence of a
SEU?

These are a few of the problems expected when a complete com-
puter system with its operating system and application processes is to
be hardened. Other problems will of course be identified when trying to
solve the ones above.

2.7 Conclusion

The state of the art of fault tolerance, with focus on random transient
faults such as SEU, was presented. Hybrid hardening approaches are
promising alternatives to hardware hardening approaches. They are able
to combine desirable features of both hardware and software techniques,
and provide levels of protection impossible for pure software techniques
without the cost of hardware hardened processors. The questions are:
can they provide the needed level of protection using mass produced
commercial off-the-shelf hardware and with an acceptable overhead. The

26 Sources and consequences of faults in computer systems

next chapter will present the assessment of the problem and some key
processor architecture features that make possible implementing a hy-
brid hardening approach in this thesis.

CHAPTER

Assessment of the problem

3.1 Introduction

BHT aims to use COTS processors to provide fault tolerance capability
to application processes. The assessment of the problem consists of an
analytic study of assets and risks. Assets are the fault tolerance features
present in some COTS processor architectures that could be used for
implementing BHT. The risk assessment is carried out in two parts.
The first part consists in analyzing the effect of the SEUs on control
registers (control path) that do not directly affect the user process but
can disrupt the operation of the system. The faults cause an exception,
a reset, or an effect on data processing similar to a SEU on the data
path. The second part analyzes the impact of SEUs on the registers of
the data path. Here the fault will not necessarily cause an exception.
A silent fault is also possible. If the single SEU hypothesis is respected,
DWC will detect silent faults. However the risk exists that two faults
could mask the effect of each other. The probability of such uncorrected
faults will be evaluated.

3.2 COTS processors hardware hardening as-
sets

Software and hybrid hardening techniques are intended to allow the
utilization of "off-the-shelf" state-of-the-art processors in environments
exposed to radiations. The work presented here is hybrid which means
that it uses existing hardware features of state of the art processors.
Because state-of-the-art processors are not all alike, a specific target
had to be selected: recent Intel Xeon and Atom processors, because they
already include useful Reliability, Availability and Serviceability (RAS)
features. Some knowledge on the distinctiveness of these processors is
needed to understand some aspects of this work. Therefore, a summary
of the document "Performance Analysis Guide for Intel Core i7 and Intel
Xeon 5500 processors" by Dr. David Levinthal is provided in Annex 1
|[Lev09|. This part is common to most recent Intel processors [Lev09].

28 Assessment of the problem

3.2.1 RAS: Reliability, Availability and Serviceability
The Reliability, Availability and Serviceability (RAS) of COTS pro-

cessors is an important issue for processor manufacturers. There are
roughly three categories of usage of processors: personal computers
(smartphones, tablets, laptops, desktops,workstations), servers and em-
bedded computers. Except for workstations for which server grade hard-
ware is sometimes used, personal computers are idle, sleeping or turned
off most of the time, either because their user is busy somewhere else
or simply because a human being is immensely slower than a computer,
which is waiting for input most of the time. This idleness has two con-
sequences:

1. the processor will stay cold which makes it less prone to transient
errors [PBR17] and ;

2. most errors will hit unused resources and have no consequences.

Processors designed for personal computers are optimized for speed and
energy efficiency (particularly for notebooks). The manufacturer’s tar-
get for high end personal computers processors is the field of gaming
applications. For instance, presentations on new Intel Core 13, 15 and
I7 emphasize performance enhancing architectural features. They never
mention RAS, nor architectural features contributing to RAS, such as
Machine-Check Architecture, Machine-Check exceptions, ECC or parity
protection of memory cells in or out of the processors.

On the contrary, server processors are intensively used for massive
computation and their RAS characteristics are considered as extremely
important: both server unavailability and erroneous results can have se-
rious financial consequences [LS17]. These processors are designed for
performance but also for reliability, availability and serviceability. In-
tel produced already in 2011, an interesting white paper on RAS for
servers |Proll]. They quote a paper of Schroeder et al., on a large scale
field study on errors in servers ram [SPW11]. A large fleet of Google
servers was monitored during two and a half years, representing sev-
eral millions of DIMM.Days (usage of a memory module during a day).
All the servers in the study were protected by ECC, either SECDED
(Single Error Corrected Double Error Detected, the most common ECC
scheme) or IBM Chipkill technology [JSDK13| (there are now several
similar technologies that interleave bits from several 4-bit-wide chips so
that adjacent bits in a chip are never in the same word, which reduces by
42 times [SDB*15| the number of uncorrected faults: Extended ECC,

3.2. COTS processors hardware hardening assets 29

Chipspare, SDDC,DDDC [CY12, KF82])), that can correct up to 4 ad-
jacent faulty bits in a word. The study found that 8% of the DIMM
memory modules and one third of the servers were affected by Detected
and Corrected Errors (DCE). However there were also errors that were
detected but not corrected (DUE): this affected 1,3% of the machines
and 0,22% of the DIMMs per year. And an uncorrectable error leads
to a shutdown of the entire machine and the replacement of the faulty
DIMM. Correctable errors are more frequent in some DIMMs and these
have a higher probability of experiencing an UE. Besides, the order of
magnitude of the frequency of DCE was one order of magnitude higher
than expected, based on cosmic radiations at ground level, and the dis-
tribution of these events was higher for some types of DIMMs and for
some DIMMSs in particular: in servers, the effect of cosmic radiations
is much lower than that of manufacturing defects (this is why faulty
DIMMs are replaced). This means that, even for space applications, the
choice of DIMMSs and tests to reject those that are more error-prone are
important.

On servers, the state of the art of RAS aims at avoiding computa-
tional errors and crashes using improved ECC techniques able to correct
several faulty bits, but also at identifying defective DIMMs before they
are victim of an uncorrectable error and, in case of uncorrectable error in
DIMM or in the processor itself, to detect it and to limit its scope. The
way to try to reach these goals is by including a lot of fault detectors in
the system (This is called the Machine Check Architecture) and report
these events by exceptions (Machine Check exceptions) in order to let
the software handle the event: logging it in case of error corrected by the
hardware, or, if the error was not correctable by the hardware, letting
the Operating System (or the BIOS, if the operating system cannot cope
with the fault) try to confine the error to the process that was affected.
If this process had been designed in a fault tolerant way, inform it of
the fault to let it recover if it can, else kill it, avoiding to affect other
processes. If the processor appears to be unstable, log as much info
as possible for later debugging and shutdown the system. In multicore
and multiprocessor systems, recent developments (Local Machine Check
Exceptions: LMCE) make it sometimes possible to stop a single core
rather than the whole system [Ngul7].

For servers, RAS characteristics of processors are advertised along-
side their performance enhancing features [Corl8|.

For embedded processors, faultless operation is even more important
than for servers: faults can result not only in loss of time or erroneous

30 Assessment of the problem

computations, but equipment can be destroyed and even people killed.
Here performance is not the first objective: they are energy efficiency
and RAS.

Presentation of RAS features in Intel documents is common for server
processors, the Xeon line, and for embedded processors, the Atom line.
While Xeons can be also be found in high end workstations, Atoms are
also found in low-end notebooks, but Xeons are designed for servers and
Atoms for embedded systems. Atoms are much cheaper than Xeons
and their RAS features are thus more modest, but sufficient to avoid
malfunctions, even though recovery requires more often software partic-
ipation.

Before looking at what is actually implemented in current proces-
sors designed for RAS, it is useful to identify which hardware features
are necessary to avoid crashes of systems or programs or faulty results
of programs, assuming each RAS actor (hardware, firmware, operat-
ing system, programs) does what is expected of it in order to provide
reliability, availability and serviceability; and which hardware features
can be considered as optimization improving only the availability or the
serviceability, i.e. shortening the recovery time in case of incident or
providing useful information to the service team, for instance when the
incident has been solved by the hardware without consequences for the
software.

3.2.2 The central memory

The highest number of incidents are caused by central memory, just
because it is the largest. They can be transient and random (such as
those caused by cosmic radiations), transient but linked to a deficiency
of a device, or permanent. All these faults can flip one or several bits of a
word, in the same device, thus, at most n bits if n bit wide chips are used
(n is often 4 or 8). Therefore protecting memory with parity or even
SECDED or DECTED ECC is insufficient [CY12, KF82|. Techniques
using only one bit of each chip in each word, such as chipkill are necessary
to avoid errors caused by multi-bit faults. To avoid multiple events to
accumulate, scrubbing is necessary and it must be organized in such a
way that it does not introduce itself faults.

Hardware memory mirroring is sometimes used but it is only useful if
errors are detected and if no faulty write operation can occur (because
false data would be written in the two copies). TMR memories are
apparently not used in COTS systems.

3.2. COTS processors hardware hardening assets 31

3.2.3 The caches

The second largest memory area to protect is the caches. There are
several big differences between cache memories and main memories. One
is that caches only hold copies of information, not the original (except
during the short time between writing in write-back caches and when
data are rewritten in central memories). This means that faults in caches
must be detected, but not necessarily corrected when it is possible to
re-fetch the good value from central memory.

Another difference is that central memory cells are one-transistor
dynamic rams (DRAM) while cache memory cells are static memory
(SRAM), because they are faster than dynamic memory. Static mem-
ory cells are 6 transistors flip-flops. Changing their state requires much
more energy and, while a SEU hitting DRAMs could change the state
of several contiguous bits of a word in the same chip by hitting sev-
eral neighbouring transistors (this is why sophisticated error correction
schemes such as chipkill are necessary), a SEU hitting a SRAM must not
only be much more energetic to change its state, but, since the area of a
bit is larger, the risk of changing the state of more than two bits in the
same word is very low, because a much larger area must be affected to
influence the state of transistors belonging to 3 bits than for one or two
(two would be affected if the SEU hits just between transistors of the
two bits). Therefore simple parity checking in caches will detect most
SEU induced faults, SECDED ECC will detect all faults and correct one
bit faults and DECTED will make the cache errorless in case of single
SEU. Sridharan reaches the same conclusions (not those for DECTED
that were not covered by his measurements) by measurements on two
HPC systems: Hopper (located at Oakland, California, low altitude) and
Cielo (located at Los Alamos, New Mexico , altitude 2400 m) [SDB*15].
SEU in caches are corrected or detected the next time the word is read
in the block. If a fault is only detected, a hit to the block is handled as
a miss and the block is re-fetched from the next level cache or from the
central memory.

3.2.4 Processors registers and logic

Transient faults can occur not only in memory and in caches but also in
processors registers and logic, in buses and in I/O devices. In processors,
they can happen in the data path registers and logic, resulting generally
in erroneous results. Like for caches, these faults must be detected and
the current instruction must be aborted and, if possible restarted. If

32 Assessment of the problem

the fault is detected by hardware, exception will occur. If the fault, is
not detected by hardware it will in the case of blended hardening be
detected by an exception later or by DWC.

Transient faults can also happen in the control path and, in the
worst cases, leave the processor in an inconsistent state. The important
here is to confine as much as possible the consequences of the fault and
inform the software. Faults in the control path are detected by hardware
and cause an exception, or CPU reset or an unrecoverable corruption
of the core (or the whole processor) requiring an external reset. In the
case of multi-core and multi-processor machines, whenever possible the
consequences must be contained to the local core[Proll].

3.2.5 Buses and I/0 systems

Bus transfers must also be secured with error detection and correction
systems. Buses are the links used to interconnect the different part of
the computer to each other, the memory to the CPU, the CPU to the
IO system, the IO system to the memory. Data goes through the bus
system when it is read or when it is written. During the transferring,
data may be victim of transient faults. Thus the arrival data could be
different from the original data. An integrity check is then important
on the bus system to ensure data integrity during their transfer. Error
reporting is also important to inform software of data corruption when
it happens. That is possible with the new generation of Intel bus sys-
tems, QuickPath Interconnect (Intel QPI). Intel QPI is an advanced bus
system implementing routing mechanism to interconnect multi-cores to
each other and to the IO hub. Intel QPI is a high performance commu-
nication system which implements an integrity check with CRC on data
travelling through its links. When an error is detected the Intel QPI
Retry feature is used for error correction by re-transmitting the failed
data [Proll].

Securing IO means, on one side, avoiding information change within
the computer but also making sure that the correct information is ex-
changed with the external world. One particularity of securing IO is
that 10 is generally processed by the OS before being transmitted to a
process.

3.2. COTS processors hardware hardening assets 33

3.2.6 Short presentation and discussion of Xeon RAS fea-
tures

Intel processors are compatible with their ancestors, so features of a
generation of architecture will remain present in successor architecture
unless Intel has a very good reason to change. And the change will
then be abundantly discussed and justified in the presentation of the
new architecture. More generally, when new features are introduced,
most documents on the new generation of architectures will focus on
the new features In 2011, the Xeon E7 (Westmere micro architecture)
caches and TLBs had the following characteristics that were discussed
in the document describing this architecture [Proll]. It can be assumed
that newer architectures have at least the same level of protection even
if it not specially documented.

e 48-bit virtual addressing and 44-bit physical addressing;

e 32 KB level 1 instruction cache, virtually indexed, physically tagged,
with ECC (SECDED);

e 32 KB level 1 data cache, virtually indexed, physically tagged,
with parity protection ;

e or 16 KB level 1 data cache virtually indexed, physically tagged
with ECC (SECDED) on data and on tag;

e 256 KB L2 instruction/data cache with ECC (SECDED);

e 30 MB LLC (Last level Cache, in this case L3) instruction/data
inclusive cache with ECC (DECTED on data and SECDED on
tag.

There is no explicit indication on the protections mechanisms of TLBs,
registers etc. neither in the data-sheet nor in the software developers
manuals of the Xeon 7, and this is understandable because developers
of peripheral hardware, of firmware and of software are not supposed
to interact with these protection mechanisms, except through the ma-
chine check architecture that will be discussed below. However, the Intel
white-paper "Intel Xeon processor E7 family: Reliability, Availability
and Serviceability” published in 2011 says explicitly (appendix B)Aa:
"ECC is used to protect processor registers, processor caches and system
memory from transient faults that can corrupt data without damaging
the hardware. Besides, if TLB faults occur, they are reported in the

34 Assessment of the problem

Machine Check Architecture Model Specific registers, which implies at
least a detection mechanism" |cglcll|. In the paper of M. Natu "Auto-
nomic Foundation for Fault Diagnosis", one can read "The MCA feature
provides a mechanism for detecting and reporting hardware (machine)
errors such as: system bus errors, memory errors, parity errors, cache
errors, and Translation Look-aside Buffer (TLB) errors” [MN12|.
Moreover, Local Machine Check Exceptions (LMCE) [Ngul7] have
been recently added to the Machine Check Architecture in order to avoid
perturbing all the cores when a fault affects a single core. This is in line
with providing the level 3 cache, which is shared between the cores with a
better protection (DECTED instead of SECDED ECC) than the Level2
cache, whose access is limited to the local core and the L1 cache that
only serves the current process. In other words, protection against faults
that can have far reaching consequences is higher than against faults that
can only influence the current process or the local core. Bearing this in
mind, what can be the consequences of a fault affecting a TLB, and,
in particular, the Page Frame Number Field? This is the type of fault
that could have the widest reach in a computer system because it could
cause an erroneous write operation anywhere in physical memory, thus
inducing an error not only in other cores of the same chip but in any
core of any processor sharing the same central memory. And, because
access restrictions are based on virtual addresses, there is no way to
stop such an erroneous access once the PFN has been issued by the
TLB. Therefore, to be consistent with the rest of the architecture, the
TLB must have the highest level of protection, i. e. at least DECTED
on the PFN array. In that case, because the TLB is static memory, an
unstopped TLB fault should only be possible in really extreme events.

3.2.7 Exception management in recent architectures

Recent architectural changes such as increasing the size of the level 2
cache, not sharing it with the level 3 (That is now only fed by data
ejected from the level 2; new data being now directly imported in level
2, and not in the non inclusive level 3) [Mull7] do not change the above
conclusions: TLBs, level 2 and 3 caches, as well as central memory can
be adequately protected against direct effects of SEU in XEON (and
ATOM) COTS processors, but faults caused by SEU are still possible
when other parts of the processor are hit. Most uncorrected faults will
be reported by Machine Check Exceptions, but not necessarily all and if
they are reported, current OSes usually only log the event and, if they

3.3. Risks related to systems and control registers 35

can, warn or kill the malfunctioning tasks and try to contain the error
so that other processes and cores are not affected. Very few programs
are written in such a way that they can recover when warned of an
error. The purpose of using blended hardening in the operating system
is to let the operating system itself correct the errors so that it is not
any more necessary to warn or kill the affected process. It exploits and
complements the hardware RAS features built in some COTS processors.

Some RAS features are very important for blended hardening. The
extremely low probability of errors caused by SEU hitting TLB means
that TLB can be trusted to implement PRAM. The extensive fault de-
tection mechanism implemented in the machine check architecture and
the detailed reports provided by the MCE make possible for the operat-
ing system to handle these events. The efficient protection of the level
2 and 3 caches reduce drastically the surface sensitive to SEU in the
processor.

3.3 Risks related to systems and control regis-
ters

Beside the context of the running program (which is the set of saved
values of the registers needed to restart the process when it is preempted,
considered as the process’s private registers)

1. there are unnamed register hidden in the data path and data path
logic (in pipelines etc);

2. system registers and control registers which are managed by the
operating system, that can be corrupted by SEU.

All these registers are announced to be ECC parity protected [Prol1].
But the logic interconnecting the registers is much harder to protect
and could result in inserting wrong values in protected registers (ECC
protects values staying in registers or memory words but is helpless
against faulty values being injected in ECC protected registers). One
can deduce from this that the more frequently the value of a register is
modified the higher the risk of injecting a faulty value. Therefore if all
registers are ECC protected, errors in the data path will be much more
frequent than in control registers. However the consequence of faults in
control registers will be discussed in the following. Although these errors
should be much less frequent than errors in the data path resulting in
faults being injected in context registers.

36 Assessment of the problem

Some of the control registers are initialized when the operating sys-
tem is loaded and remain unchanged as long as the computer is up.
The others are mode dependent, they are initialized when the CPU is
switching for one mode to another mode. Some are structural for the
system, this means that they are used to store key values of the system
components such as addresses of the system tables in memory (interrupt
descriptor table, local descriptor table, global descriptor table etc).

This section is based on reference [Proll] and has been verified by
injecting faults in these registers to see what happens. The tests were
done on Intel(R) Core(TM) i5 CPU and on Qemu running on Intel(R)
Core(TM) i7 CPU L640/2.13GHz.

A running task also has characteristics specific to it, for example the
privilege mode or the features to which it has access.

Control registers (CRO to CR4) allow to configure the processor so
that the tasks and the system can operate correctly. The values of these
registers do not only affect the operation of the current task but the
operation of the whole system. The control registers CR0O to CR4 define
the characteristics of the running task and the processor state. They
are only available at privilege level 0. If a SEU hits them and changes
their state (this should not have bad consequence because they are ECC
protected) or if because of a SEU, on the writing logic for instance,
a faulty value is written in (as explained above, ECC-like protection
does not help in this case), the system will be in an unstable state. For
example assuming that the paging is enabled (bit 0 and bit 31 of CRO are
both set), if one of these bits is toggled, the paging will be disabled while
the operating system is running in a mode where paging is supposed to
be enabled. That will generate a general protection exception. Another
example is the bit 6 of CR4 which enables machine check exception when
it is set, so if a SEU disables it when it is set, a lot of machine check
exceptions could be lost. However, because these registers are ECC
protected and rarely modified, this kind of events should be extremely
rare.

The memory management registers such as GDTR, IDTR, task reg-
ister, and LDTR specify the location of the data structures used to
manage the protected mode. A SEU can modify their values. That can
evolve a special exception. For example if the location of GDTR is mod-
ified, the operating system will not be able to restore to a stable state.
That will result in a reset of the CPU.

Although the risk of modification of control registers because of SEU
is low, the next sections will evaluate what could happen.

3.3. Risks related to systems and control registers 37

3.3.1 CRO register

This register contains bits that control the state of the processor and
its mode of execution. It consists of 32 bits in the case of the IA32
architecture including 11 bits that software can handle and 21 reserved
bits. Table 3.1 shows the description of each bit and what can happen
when one of them is erroneously modified because of a SEU.

Table 3.1: Effect on the system when CRO’s bits are modified by SEU

Bits Description Effect on the
system
0 1 enable protected mode. 0 | General Protec-
enable real mode tion exception
1-3 controls the CPU’s handling | nothing to report
of an exception while one of
the following modules has cur-
rent processing (x87 FPU /
MMX / SSE / SSE2 / SSE3
/ SSE4
4 When set indicates that the | nothing to report
processor supports the Intel
387 DX math coprocessor
5 Controls the X87 FPU error | nothing to report
report mode
6-15 Reserved nothing to report
16 When set Prevents the task | nothing to report
running in ring 0 from mod-
ifying a read-only memory
17 Reserved nothing to report
18 Enable automatic alignment | nothing to report
checking
19-28 Reserved nothing to report
29 Controls the cache write | General protec-
through properties tion exception
30 When set disables the cache nothing to report
31 When set enable paging Error report in
Qemu

38 Assessment of the problem

Changing most bits in the CRO register generates either exceptions
or has no effect. Bit 31, which controls the addressing system, puts the
system in an unstable state. All these errors do not result in a reset of
the processor but are reported to the operating system. The latter can
therefore handle them in the appropriate manner to allow the system to
continue running.

3.3.2 CR2 register

This register contains the linear address at which a page fault has oc-
curred. It is not editable by software. When a SEU changes one or more
bits in this register, that would lead in the worst cases to an erroneous
handling of the page fault. Three cases are to be considered:

e The SEU modifies on or more bits in the offset part of the address.
The page fault could be correctly handled without detection of the
fault.

e The SEU modifies either the page directory entry of the page or
the page table entry of the page but the wrong value points to a
valid address within the process memory space. Since the process
does not want to access this page a new page fault will be triggered
which would be handled properly in this case.

e The SEU modifies either the page directory entry of the page or
the page table entry but the wrong value points to an invalid ad-
dress outside the process memory space. In this case the process
will be killed because that invalid address violates the memory
management policy.

3.3.3 CR3 register

This register contains three types of information: the root page table
address, the PCD and PWT bits that control the caching mechanism
(cache L1, cache L2, and cache L3) of the data structures of this page
table. A bit change of this register can

e Either corrupt the address of the root page table. That would
most probably cause a simple page fault when the current task is
not running in ring 0 or a reset of the processor in when the task
is running in ring 0.

3.3. Risks related to systems and control registers 39

e Disturb the caching mechanism of the data structures of this table
of pages. That will cause the cache to be disabled or enabled
incorrectly.

The table 3.2 shows what happens when these bits are modified.

Table 3.2: Effect on the system when CR3’s bits are modified by SEU

Bits Description Effect on the
system
0-2 Reserved nothing to report
3-4 control caching nothing to report
5-11 Reserved nothing to report
12-31 Linear address of root page ta- | CPU reset
ble

3.3.4 CRA4 register

The CRA4 register enables or disables processor features. Most of these
features are not used within a classic OS. These features are used by the
operating system. Since the operating system always restores the actual
value of the register at context switch, a change in the register when
running a user program will have no impact on the system. Errors may
be confined within the current task. The following table 3.3 shows the
impacts on the system when these bits are modified by SEUSs.

Table 3.3: Effect on the system when CR4’s bits are modified

by SEU
Bits Description Effect on the
system

0 Enables interruption and ex- | nothing to report
ception handling in virtual-
8086 mode when set

1 Enable hardware support for | nothing to report
virtual interrupts when set

2 Restricts the execution of the | nothing to report
RDTSC statement to ring 0
tasks when set

40 Assessment of the problem
3 Allow to support the DR4 and | nothing to report
DRb5 register when set
4 Enable use of 4Mb page when | CPU reset
set
5 Enable use of more than 32 | CPU reset
bits physical address when set
6 Enable machine check excep- | nothing to report
tion when set
7 Enable the global page feature | nothing to report
when set
8 Enable the execution of the | nothing to report
RDPMC instruction for tasks
running in any ring when set
9 Indicates that the OS | nothing to report
supports FXSAVE and
FXRSTOR statements
10 Indicates that the OS sup- | nothing to report
ports the handling of un-
masked SIMD floating-point
exception
11-12 Reserved General protec-
tion exception
13 Enable VMX operation nothing to report
14 Enable SMX operation General protec-
tion exception
15 Reserved General protec-
tion exception
16 Enable RDFSBASE, RDGS- | General protec-
BASE, WRFSBASE, WRGS- | tion exception
BASE instructions
17 Enable process-context identi- | General protec-
fiers tion exception
18 Indicates that the OS sup- | General protec-
ports XSAVE, XRTOR in- | tion exception
structions
19 Reserved General protec-

tion exception

3.4. General purpose registers, segment registers and eflags

register 41
20 Enable supervisor mode exe- | General protec-
cution prevention tion exception
21-31 Reserved General protec-
tion exception

3.4 General purpose registers, segment regis-
ters and eflags register

3.4.1 General purpose registers

The number of general purpose registers is 8 (EAX, EBX, ECX, EDX,
ESP, EBP, EDI, ESI). These registers are used for basic operations,
procedure calls and system calls. When the values of these registers are
changed by a SEU that may cause a miscalculation error or exception.
In the case, for example, of the SP and FP registers which control the
management of the stack, a modification of the values of these registers
because of a SEU could point the stack to an inaccessible memory area
which could generate a page fault. That will be the same for SI and
DI registers which often contain operands addresses. A fault in these
registers could also trigger a page fault or miscalculation. The values
in these registers changes up to once by instruction. They are thus the
most sensitive to SEU effects. The faults in these registers are expected,
detected and corrected by BHT (by replaying the PE).

3.4.2 Segment registers

Segment registers contain 16-bits memory segment selectors. A memory
segment selector is an index that identifies the descriptor of the memory
segment in the global descriptor table (GDT) or in the local descriptor
table (LDT). The segment memory descriptor contains all the attributes
of the memory segment (base, limit, privilege level). The segment regis-
ters CS, DS, and SS contain the selectors for the code, data, and stack,
respectively. An erroneous modification of the 16 least significant bits of
these registers would result in a modification of the selector. This could
result in an erroneous selector or a valid selector that does not match
the characteristics of the current task. In both cases an exception will
be reported and the operating system will take the appropriate decision.

These registers are ECC protected. A SEU hitting them would have
no consequence but even if it had, the effect would be contained to the

42 Assessment of the problem

current PE and would be detected and corrected by BHT.

3.4.3 Eflags register

This 32-bit register contains status bits, control bits, and system bits.
It impacts both the running task and the system globally. This register
controls interrupt activation, single stepping and many other features.
The tests performed by modifying the bits of this register only led to ex-
ceptions and miscalculations managed by the BHT. However, the modi-
fication of bit 17 which corresponds to the activation of the Virtual-8086
mode has resulted in a reset of the CPU.

3.5 Memory management register

3.5.1 GDTR and IDTR

The GDTR register contains the linear address of the global descriptor
(32-bits) and its limit (16-bits). A modification because of a SEU of one
or more bits in the linear address of this table would result in a reset of
the processor. Because that table contains the memory description of
the whole system, including the operating system memory. However, a
change in the limits just causes a restriction of access to a valid segment
descriptor. The same analysis is valid for the IDTR. The IDTR contains
the linear address of the interrupt descriptor table. That table contains
selectors which point to the global descriptor table for their correspond-
ing segment descriptor. A corrupt address in the IDTR will lead to a
reset of the CPU. These registers are rarely modified thus not much at
risk.

3.5.2 LDTR and TR

The LDTR and TR registers contain a segment selector (16bits), the
linear address of the table (LDT or task segment), the limit and the
attributes of the segment. The segment selector is loaded into LDTR or
TR by the OS with LLDT or LTR instruction. The processor automat-
ically loads in the register the linear address of the table, the limit and
the attributes of the descriptors. If a SEU changes the selector value
this could lead to either an invalid selector or a selector that does not
match the task. In both cases, either it will generate an exception or a
page fault. If a SEU modifies the linear address of the table this could

3.6. Risks related to undetected SEU effects 43

lead to either a page fault or an exception. If a SEU modifies the limit
if it leads to a decrease in the table size, valid descriptors will become
inaccessible this could lead to a page fault or a general protection fault.
If this leads to an erroneous increase in size, this will be undetected until
the next context switch.

3.6 Risks related to undetected SEU effects

Tolerating transient faults in a computer system means detecting the
faults and correcting them. However a fault could occur during detection
or during correction. Another problem is that a fault could hide the
effect of another fault: the typical simplistic example is a second faulty
bit in a parity protected word.

This thesis is part of a project aiming to apply the blended hard-
ening technique to complete computer systems. The specific problem
addressed in this thesis is preventing all effects of SEU occurring during
the execution of application processes over an operating system. The
operating system itself is assumed to be immune to SEU effects: it is
assumed to have been modified to protect itself.

In order to limit the work to a size compatible with a PhD thesis,
only a single processing core are considered. Adapting Minix3 and the
result to multicore systems is future work.

One of the principles of the blended hardening technique is to orga-
nize fault detection and correction in such a way that one has to cope
with a single fault at a time during the whole process of detection and
correction of the fault. This will be true either if only a single fault oc-
curred or if several faults occurred but do not mask each other, i. e. that
the fault will be detected as easily as if it were a single fault. SEU are
uncorrelated random events and, compared to the clock rates of current
processors, they are relatively rare, even in space, (although at human
perception rate, they are frequent in space). Therefore one should be
able to find a time interval sufficiently short that it is possible to have to
cope at most with a single SEU (or several not hiding each other) and
sufficiently long to allow a processor to do a significant amount of work
during this time. One can divide the transient faults induced by SEU
in 5 categories:

e those that hit unused hardware: nothing to do about these;

e those that are automatically corrected by hardware (such as ECC):
these are not harmful except if they accumulate, which can be

44 Assessment of the problem

avoided, e.g. by hardened scrubbing in the case of ECC: this will
not be discussed in detail in this thesis;

e those that are immediately detected by hardware and cause an ex-
ception: the correction of these must be initiated by the exception
handling function. Designing efficient functions to correct faults
detected by hardware is part of this thesis.

e those that lead to an infinite loop or block the execution: there
must be a kind of time-out mechanism to get out of such situations.
This too is addressed in this thesis.

e those that silently cause computational errors in the blended hard-
ening technique, these are detected by DWC. If the results of the
two executions of a processing element differ, the correction is ini-
tiated.

When a corrective action must be initiated, the processing element is
restarted after the necessary housekeeping, if needed: detecting the
fault(s) is thus mandatory but identifying it exactly is often not nec-
essary because restarting the PE will correct it. The risk of failing
detection because two faults might hide each other effect only exists for
the two last types of faults. The way to avoid this risk is by limiting
the duration of the processing elements to keep to an acceptable level
the probability of two faults masking each other. Because the duration
of the processing element has been selected to be short enough for the
processing element to be exposed to at most one SEU or several ones not
masking each other to ensure the detection of the SEU or SEUs effect,
the comparison phase will detect the difference in the results.

In the following section, the possible faults that could be induced by
SEU in application processes will be identified, and the rate of occurrence
of SEU induced errors will be evaluated in order to determine how long a
processing element may be so that only at most a single transient faulty
situation has to be corrected. Systems running in space environment are
the main target of this chapter, those running in terrestrial environments
are only considered for reference.

3.6.1 Possible SEU induced faults in application processes

The first case, depending on the duration of PEs is the infinite loop: it
will be interrupted, at the latest, at the end of the maximum allowed
execution time of the current execution of the processing element.

3.6. Risks related to undetected SEU effects 45

The second case depending on the duration of PEs is the processing
element finishing the two runs apparently in a normal way, but producing
different results. That will be detected when the results of the two
executions will be compared. In this case the duration of the processing
element is critical, because if two SEU could occur, they may not mask
each others effect, i.e. produce two identical, but faulty results.

It must be noted that the case of the erroneous comparison must
not be considered here, because comparisons are performed in the OS
that is assumed to be immune to SEU effects. This part will be briefly
discussed in the chapter about future work.

With the two hypotheses of the blended hardening technique (rarity
of SEU and availability of protected memory), nothing prevents thus all
SEU caused errors happening in application processes to be identified
and corrected. Proving that it is possible and showing how to do it is
the core of this thesis.

3.6.2 Analysis of BHT sensitivity to multiple SEU

For SEU detected by hardware, the duration of the processing element
is irrelevant: as soon as the SEU is detected, the current run (first or
second) is aborted and the PE is restarted.

For infinite loops, the shortest the PE, the faster the fault will be
detected but there is no critical time limit.

However the duration of the PE is critical for the detection of silent
faults. A critical parameter for detecting silent faults in the blended
hardening technique is the maximum duration T of the two executions
and comparison of results of a processing element in which the occur-
rence of more than one SEU or several ones not masking each other can
safely be neglected.

In the case of hardening application processes by the kernel (which
is assumed to be immune to SEU), it is not the real time but the user
time, i.e. only time spent in user mode during the execution of the two
runs that must be considered.

What happens during 7' can be seen on Fig 3.1 showing the time
line of the handling of a processing element, where:

e T, is the computation time to launch correctly the first execution
of the processing element.

e T} is the time to run the first execution of the processing element.

46 Assessment of the problem

-1 <
—

Ta Tbh Tc Td Te

Figure 3.1: Phases of hardening a processing element

e T, is the computation time to save the current state of the current
processing element and restore the current process state as it was
just before entering the processing element (time 0 Fig 3.1) and
launch the second execution of the processing element.

e T, is the time to run the second execution of the processing ele-
ment.

e T, is the computation time to compare the results of the two ex-
ecutions of the processing element and decide to proceed to the
next or to restart the current processing element.

T=T,+Ty+T1.+T3+ 1T, (3.1)

T, T, and T, are spent in the system, which is assumed to be immune
to SEU. So, only T; and T,; have to be taken into account for hardening
application processes in the operating system,

T'=T,+1y (3.2)
The different possible scenarios producing faulty result are:
1. One or more SEU occur during T3 and none occurs during 7.
2. One or more SEU occur during Ty and none occurs during Tp.

3. One or more SEU occur during 7 and one or more SEU occur
during Ty and they produce different results.

4. One or more SEU occur during 7, and one or more SEU occur
during Ty and produce the same erroneous results.

3.6. Risks related to undetected SEU effects 47

Of course, the delicate point is distinguishing scenarios 3 and 4. To
obtain 4, the two SEU must hit the same area (in registers or data
caches) when it includes the same data and toggle the same bits or
trouble the execution of instructions that will eventually cause the same
faulty changes.

Scenarios 1, 2 and 3 will be recovered by BHT because either an
exception will occur or the two results will be different and it will be de-
tected at comparison stage and the processing element will be restarted.
Only scenario 4 can cause a wrong result to be accepted. The sum of
the durations of the two executions of the processing element must thus
be short enough for the probability of occurrence of that scenario to be
negligible. The above probabilities can be computed.

3.6.3 Multiple Single event error rate evaluation method

It must first be remembered that the COTS processors considered here
(those destined to high availability servers and mission critical embedded
systems at ground level) are partially hardened and some of their parts
are adequately protected. This is the case of level 2 and 3 caches and
TLBs: faults caused by SEUs hitting these parts will be corrected by
DECTED ECC or cause a machine check exception. They will either
have no consequence or be handled and will not cause a silent error.

The purpose of this section is to identify a duration short enough
to keep Py (the probability of occurrence of the fourth scenario above)
under an acceptable threshold but not too short in order to avoid intro-
ducing too much hardening overhead.

One can start with an educated guess based on the values in [LML11]
for an older technology and what could lead to an acceptable overhead,
based on experiments on MINIX3 [AL16|. From this, P4 can be com-
puted and, if needed, the value for T and T, can be adjusted. Let us
assume that, for instance, that T, = T; = 250us and check if this would
produce an acceptable error rate for BHT hardened software [AL19).
SEU are independent discrete random events. The number of such
events occurring in a given time interval follows thus a Poisson law
[FHR10, vB98|, of parameter \.t where A is the rate of occurrence of
SEU (soft error rate, computable with tools such as OMERE [TRA18|
and SPENVIS [HQSDO00| for the number of bits of the device under test
and t is the time interval where the events occur. The probability of
getting k events in the time interval ¢ is thus

48 Assessment of the problem

k
PN = k) = (A;!) « exp(—\t) (3.3)

The probability to have at least one event within time period t is:

P(N >1)=1- P(N, =0) (3.4)

P(N >1)=1—exp(—At) (3.5)
The probability of occurrence of one or more errors in 73 and one or
more errors in Ty is

Let Ty, = T4 and A in errors/s in one bit and n be the number of bits
in the processor.
Py = (1 —exp(—X\ x n xt))? (3.7)

The probabilities of occurrence of the 4 scenarios of section 3.6.2 are

P =P, x(1-Py) (3.8)
Py=Pyx (1- D) (3.9)

Py =P, x (Pyx (1-19)) (3.10)
Py=P,xP;x$§ (3.11)

Where P, and P, are computed using equation 3.5, t is respectively T,
and T;. And § is the probability to have one or more SEU producing the
same false results from the first and second execution of the processing
element.

The most interesting value is P4 because this is the residual error
probability in a processing element after a successful application of BHT.
The situations where SEUs hitting the two executions can produce ex-
actly the same erroneous results are the listed below. In all of them one
must remember that, because L1 caches are cleared before each execu-
tion of a PE and registers are re-initialized, the effect of a SEU in the
first run cannot persist in the second run.

Knowing A in errors per second (also noted SER, but then in errors
per billion hours) (Note that it would be more consistent to say faults
per second or per billion hours, but maybe because they are evaluated
on unhardened devices, they are generally called errors). The following
formulas are obtained for PO:

3.6. Risks related to undetected SEU effects 49

Py=(1—-exp(—=AxTp)) x (1 —exp(—AxTy)) (3.12)

where A is in errors/s/bit.
with T}, = Ty = 2.5 x 107 %s
From equation 3.12

Py = (1—exp(—2.5 x 107 x \))? (3.13)

N = 4M Bits this is enough to cover all the processor registers
(less than 200 x 64bits) and the L1 caches (I-cache+D-cache, typically
64Kbytes or 128Kbytes).

To compute Py different cases must be considered:

1. During each of the two runs, SEUs hit L1 program cache blocks
holding the same instructions in the time interval between they
were last used and the time they are re-used in the same place
in the program by the PE. The SEU must modify the same bits
in that instruction in the same way without making it an illegal
instruction, that would produce an exception that would be de-
tected. The time where the SEU could happen is up to the whole
duration of the run, but the average length of a loop iteration is
more realistic (because reusing the same instruction generally oc-
curs in loops) and loop iterations are often rather short, much less
than 100ns on the average. The SEU may hit any bit in a word
during the first execution, but must hit the same bit of the same
word during the second execution.

Py = % % (1 — exp(—A x w x t1)) x (1 — exp(—A x 1)) (3.14)

e 71 is the number of words in the L1 program cache.

o (1—exp(—A x w X t1)) is the probability of hitting any bit in
a word.

e (1 —exp(—X xty)) is the probability of hitting a given bit in
the word.

with A in events/bit.sec, t1 is 100 ns and nq the number of bits in
the L1 program cache and w the size of a word.

Equation 3.14 does not take into account the possibility of produc-
ing an illegal instruction. That would be detected by exceptions.
It is thus an over-estimation of Py 1

50

Assessment of the problem

2. During each of the two runs, SEUs hit a L1 data cache block
holding a variable with the same value in the time interval between
it was last used and the time it is re-used in the same place in the
program by the PE. Here, three cases must be considered:

(a)

numerical or alphanumerical variables. In this case the SEU
must modify the same bits in that variable in the same way.
The time where the SEU could happen is up to the whole
duration of the run (because this is the longest time a variable
value may stay in the L1 data cache. The SEU may hit any
bit in a word during the first execution but must hit the same
bit of the same word during the second execution.

Pio = %x(l—exp(—)\ x w x £))x (1—exp(—A x 1)) (3.15)

with A in events/bit.sec, t is the maximum duration of a run
of the processing element and ny the number of bits in the
L1 data cache.

boolean variables. These are more tricky, because, if their
correct value is zero (false), changing any bit to one will be
interpreted as true, thus all bits must be considered also in the
second run instead of just one. However, in most instances,
booleans are produced by comparison instructions and used
immediately in a conditional jump. Here again, assuming the
average time between setting the value of a boolean and its
last use may be assumed to be far below 100ns.

Pyop = % X (1 — exp(—A x w X t2))? (3.16)

with A in events/bit.sec, w the size of a word, to = 100ns and
no the number of bits in the L1 data cache.

boolean-like variables: these are typically numerical variables
used in a > ,>=,<, or <= comparison, where the boolean
result of the comparison depends on the values of more that
one bit. According to an evaluation by Peter Kankowski in
2009 [Kan09], CMP instructions represent 5% of instructions
in typical programs. In this case, it seems reasonable to use
the same probability as for numerical variables but taking
into account all the bits of the variable in both executions
and take 5% of the result.

Pyo. = 0,05 x % x (1 — exp(—A x w x t))? (3.17)

3.6. Risks related to undetected SEU effects 51

with X in events/bit.sec, w the size of a word, t is the maxi-
mum duration of a run of the processing element and ns the
number of bits in the L1 data cache.

3. During each of the two runs, SEUs modify in the same way a reg-
ister when it holds the same variable with the same value between
the time this value is written in the register and the time it is used
in the same place in the program by the PE or the same faulty
value is injected at that time by faulty data path logic. The time
where the SEU could happen is very short, the worst case being
probably the frame pointer that stays unchanged for the duration
that a function is executed without calling another one, but again
the SEU must hit the same bit. 100ns seems to be a safe estimate
of the time a value may stay in the register and be reused.

Pps = % x (1 — exp(—X x w x t3))2 (3.18)

This is a gross over estimation because the formula for boolean
variables is used. with A in events/bit.sec, w the number of bits in
a word, t3 = 100ns and n3 the number of bits in the register file.

P, is the sum of all the Py, probabilities. Because t; =ty = t3, let’s
call it 7 and ny = no, let’s call it n. (Negene) and let’s rename ng, n,

(nregister) .
Py = Pii + Piog + Proy + Piae + Pz (3.19)

where n, = size in bits of L1 program cache : 32 or 64 kbytes = 256
or 512 kbits

n, = size in bits of register file (including hidden register in the data
path): approximately 200 x 64 bits = 12,8 kbits

Py and Py at ground level can be computed from Software Error
Rates (SER) data for unhardened devices in [HAR15| presented in Ta-
ble 3.4 where G. Hubert et al. showed the soft Error rate as a function
of technology for CMOS, FDSOI and FinFET. These result were con-
sidered at ground level (Toulouse location, 43 136 0 16" North and 1 126
0 38" East) [HAR15] in FIT/Mbit. One FIT (Failure In Time) equals
one failure per billion of hours (10° hours).

Py is so low at ground level that Py is not worth computing. Py and
P, are probabilities to have an undesired situation in a 250us processing
element. However, the radiation hardening community thinks in FIT,

52

Assessment of the problem

Table 3.4: SER trends for unhardened bulk CMOS, FDSOI and FinFET

technologies in FIT /Mbit at ground level

SER 14nm 22nm 28nm 32nm 45nm 65nm
CMOS 10* 5 x 103 103 10° 103 103
FDSOI | 5 x 10° 102 103 102 102 102
FinFET | 8 x 10 | 7x 10° | 5 x 10% | 7 x 10% | 8 x 10% | 8 x 10?

thus they are interested not in Py and Py but in SERg and SE R4 where
SER; = P; x 3600 x 10° = P; x 3,6 x 10" | expressed in FIT.
These results can be converted in (errors/s)/Mbit.

Table 3.5: A trends for bulk CMOS, FDSOI and FinFET technologies
in (errors/s)/Mbit at ground level

A 14nm 22nm 28nm 32nm 45nm 65nm
CMOS | 2.78 x | 1.39 x | 2.78 x | 2.78 x | 2.78 x | 2.78 X
1079 1079 10710 | 10710 | 10710 | 10710
FDSOI | 1.39 x [2.78 x [2.78 x | 2.78 x | 2.78 x | 2.78 x
10-1 J107't J107 107ttt j107tt 1o
FinFET| 222 x [1.94 x | 1.39 x | 1.94 x | 2.22 x | 2.22 x
10719 1071 107 1071 1071 10710

Table 3.6: Py for bulk CMOS, FDSOI and FinFET technologies at
ground level for 1Mbit

Py 14nm 22nm 28nm 32nm 45nm 65nm
CMOS | 482 x | 1.21 x | 4.83 x | 483 x | 4.83 x | 4.85 x
10—25 10—25 10—27 10—27 10—27 10—27
FDSOI | 1.21 x | 4.89 x | 4.83 x | 4.89 x | 4.89 x | 4.89 x
10—27 10—29 10—27 10—29 10—29 10—29
FinFET| 3.08 x | 2.36 x | 1.21 x | 2.36 x | 3.08 x | 3.08 x
10727 10727 10727 10727 10727 10727

3.6. Risks related to undetected SEU effects 53

Table 3.7: SERy for bulk CMOS, FDSOI and FinFET technologies at
ground level for 1Mbit

SERg 14nm 22nm 28nm 32nm 45nm 65nm
CMOS | 1.74 x | 434 x | 1.73 x | 1.73 x | 1.73 x | 1.73 x
10—12 10—13 10—14 10—14 10—14 10—14
FDSOI | 435 x | 1.76 x | 1.73 x | 1.76 x | 1.76 x | 1.76 X
10715 10716 10714 10716 10716 10716
FinFET| 1.11 x | 851 x | 4.35 x | 851 x | 1.11 x | 1.11 x
10—14 10—15 10—15 10—15 10—14 10—14

SERy , that represents the worst case residual error rate after suc-
cessfully applying the BHT, is so low (one billion times or more below the
most severe requirement) that one may say that, at ground level, with
processing elements of max 250usec, and SER as published in [HAR15],
the BHT can recover all failures caused by SEU even if one assumes that
all double SEU (one or more in each execution) are fatal. With the more
realistic analysis of SER, , the error rate would be immeasurably low.

These values can similarly be analyzed in space environment. To
do that, one can use Table 3.8 where Qi, cross section, Ty; and h gy,
were got from [HAR15] which gives the (same) critical charge for CMOS,
FDSOI and FinFET transistors for various technologies node from 65nm
to 14nm. OMERE-TRAD |[TRA18| was used to compute the value of the
unprotected Soft Error Rate. The following formula is used to compute
the Linear Energy Transfer (LET): if the LET is in MeV.cm?/myg, c in
pm and the critical charge Q in pC then the formula is:

22.5 X Qerit x 1000
cx 232.11

The following assumptions were made (they are commonly assumed
by our industrial partners and based on their experience [Mat10]):

LET =

(3.20)

e For FDSOI nano-scale technology ¢ = Ty;
e For FinFET nano-scale technology ¢ = 2 x hy;y,
e For Bulk CMOS nano-scale technology ¢ = 2 x 0, 35um

The Soft Error Rate (SER) for unprotected devices is computed using
OMERE in errors/sec.bit, thus it is noted A\. OMERE is a desktop

54 Assessment of the problem

application provided by the company TRAD (Test Radiation). Three
phases are needed to compute SER in OMERE or SPENVIS:

e The environment definition: the parameters of the spatial envi-
ronment are defined, including the altitude, the solar activity, etc.
Four environments have been considered the LEO (Low earth or-
bit) where the ISS (International Space Station) is located, the
MEO (medium earth orbit), the GEO orbit (geostationary orbit)
and open space beyond the geostationary altitude.

e The spectrum definition: This step consists in defining the ra-
diation sources by choosing models representing the energies of
particles.

e Computing the soft error rate. At this stage the data in table 3.8
parameters are provided to OMERE or SPENVIS.

These tools provide SER in errors per day per bit. Based on A,
we can compute Py and P, for space environments. The LET values
are normalized (LET=linear Energy Transfer in MeV /cm; normalized
LET=LET /density in Mev.cm?/mg).

Based on discussion we have had with our industrial partners the
direct effect of protons should be considered for the fine technologies
like those we consider. OMERE allows to include the direct effect of
protons while SPENVIS does not. We choose OMERE.

Events are grouped into two categories. Events caused by heavy
ions and events caused by protons. For the GEO environment shown in
Table 3.9, heavy ion events are scarce compared to proton events. The
total effect is dominated by the protons. This is the same for the three
considered technologies (CMOS, FinFET and FDSOI). The results are
shown in Table 3.11 and Table 3.13.

For all three technologies the 14nm node has the lowest SER while
the 65nm node has the highest SER. We would expect the opposite
because the 14nm node has a gate smaller than all other nodes. The
researchers community and the space industry do not yet have a good
understanding of the behavior of these technologies exposed to charged
particles in space environment.

For the three technologies only the probabilities Py, and Pjo. are
significant. While the probabilities Py1, Pyop, Py3 are negligible. The risk
therefore lies in considering only the numeric variables and the boolean-
like variables.

3.6. Risks related to undetected SEU effects

55

Table 3.8: Parameters to feed into compute A using the tools SPENVIS

or OMERE
14dnm | 22nm | 28nm | 32nm | 45nm | 65nm
Qerit(fC) 8 x |12 x|2 x|3 x|4 x|6 X
102 |10t |10t 107" 107t | 107!
Cross section | 1077 [1.5 x [2 x |25 x |4 x |55 x
(em?) 10 |10 |10 |10 |107?
(FDSOI) Ty |5 x| 7 x |7 x |8 x |85 x|9 x
(um) 10=* [107* |107* |107* |107* |107%
(FinFET) 14 x {220x |28 x |32 x |45 x |65 X
hfin (um) 102 | 1072 1072 |[1072 |1072 | 1072
(FDSOI) 64.6 45.6 36.4 27.7 16.6 15.5
LET
(Mev.cm? /mg
(FinFET) 447 x | 4.31 x | 454 x | 3.46 x | 2.64 x | 2.77 X
LET 0-t |10t (107t |07t 107t |[107H
(Mev.cm?/mg
(Bulk 831 x | 554 x | 4.15 x | 2.77 x | 1.66 x | 1.11 x
CMOS) LET | 1072 | 1072 [10°2 |1072 |10°2 | 1072
(Mev.cm?/mg

56 Assessment of the problem

A to compute the probability Py* is obtained by the equation:

SER
86400 (3:21)

Given SER, A and the different probabilities can be computed. In
the tables below, it appears clearly that, in LEO, Py and SE Ry values
are so small compared to the unprotected processor at ground that it is
not necessary to consider the values of Py and SER,4. It can be seen that
with BHT system used in the ISS can provide a higher level of reliability
in more hostile environments such as the LEO orbit (the worst case is
open space on the earth orbit, which is not very different).

In MEO, GEO and open space orbit, the Py and SERy values are
too high to be acceptable. Here computing Py is thus useful (Only GEO
is showed here. The complete results can be found in Annex A.2).

SE R4 represents, in FIT, the residual error rate for the whole system
after successful application of BHT. These may be compared to the SER
for unhardened devices at ground level for the same amount of memory
(4Mbit), deduced from Table 3.4 for CMOS.

Table 3.10: Py and Py in GEO orbit space environment (FD-
SOI)

1l4nm | 22nm | 28nm | 32nm | 45nm | 65nm
A in er- | 1.31x | 1.90 x | 1.81 x | 1.76 x | 2.19 x | 1.98 x
ror/bit /s 10~ | 10" | 107" |1077 |1077" |1077
Py N = 4Mbits
A in er- | 5.49 x [7.97 x [7.59 x | 7.37 x [9.20 x [8.32 x
ror/4Mbits/s | 10~ | 10=* | 10°* |[10°! |[10°! | 107!
1) 1.88 x [3.97 x | 3.60 x | 3.39 x | 5.29 x | 4.32 x
1078 |10®% |10% |10 |[107® |10°®
SERy (FIT) | 6.78 x | 1.43 x [1.30 x | 1.22 x | 1.91 x | 1.56 x

104 10° 10° 10° 10° 10°
Py For n. = 256kbits
Pn 449 x | 9.46 x | 858 x | 8.08 x | 1.26 x | 1.03 x
10—23 10—23 10—23 10—23 10—22 10—22
Pyoy 2.81 x | 591 x | 5.36 x | 5.06 x | 7.89 x | 6.44 X
10716 10716 10716 10716 10716 10716
Py, 2.87 x [6.06 x | 5,49 x | 5.18 x | 8.08 x | 6.59 x

102 1072 |10t [107* 1072t | 107

3.6. Risks related to undetected SEU effects 57
Py,, 898 x [1.89 x | 1.72 x | 1.62 x | 2.52 x | 2.06 x
10—16 10—15 10—15 10—15 10—15 10—15
Py3 140 x | 2.96 x | 2.68 x | 2.503 x | 3.94 x | 3.22 x
10722 10722 10722 10722 10722 10722
Py 1.18 x | 248 x | 225 x | 2.12 x | 3.31 x | 2.70 x
10—15 10—15 10—15 10—15 10—15 10—15
SERy (FIT) | 4.24 x | 894 x | 811 x | 7.65 x | 1.19 x | 9.74 x
1073 1073 1073 1073 1072 1073
P, For n. = 512kbits
Py 899 x | 1.89 x | 1.72 x | 1.62 x | 2.53 x | 2.07 X
10—23 10—22 10—22 10—22 10—22 10—22
Pyog 5.61 x | 1.18 x | 1.07 x | 1.01 x | 1.58 x | 1.29 x
10—16 10—15 10—15 10—15 10—15 10—15
Py,, 575 x | 1.21 x | 1.10 x | 1.04 x | 1.62 x | 1.32 x
10721 10720 10720 10720 10720 10720
Py,, 1.80 x | 3.79 x | 3.43 x | 3.24 x | 5.05 x | 4.12 X
10—15 10—15 10—15 10—15 10—15 10—15
Py3 1.4 x| 296 x | 2.68 x | 2.53 x | 3.94 x | 3.22 x
10722 10722 10722 10722 10722 10722
Py 236 x | 497 x | 451 x | 4.25 x | 6.63 x | 541 x
10—15 10—15 10—15 10—15 10—15 10—15
SERy (FIT) | 849 x | 1.79 x | 1.62 x | 1.53 x | 2.39 x | 1.95 x
107° 1072 |107* [107* 107> |107?
Table 3.12: Py and P, in GEO orbit space environment
(Bulk CMOS)
14nm 22nm 28nm 32nm 45nm 65nm
A In er- | 1.78 x | 267 x | 357 x | 444 x | 7.12 x | 9.8 X
ror /bit /s 10°7 (1077 | 1077 |107" | 1077 |1077
Py N = 4Mbits
A n er- | 748 x | 1.12 x | 1.50 x | 1.86 x | 2.99 x | 4.11 x
ror/4Mbits/s | 1071 | 10° 10° 10° 10° 10°
= 3.5 X | 7.86 x | 1.40 x | 2.17 x | 5.57 x | 1.05 x
1078 0% (10" 107" |1077 |10
SERy (FIT) | 1.26 x | 2.83 x | 5.05 x | 7.81 x | 2.01 x | 3.80 x
10° 10° 10° 10° 106 106
Py For n. = 256kbits

58 Assessment of the problem

Py 836 x | 1.88 x | 3.35 x | 5.17 x | 1.33 x | 2.52 x
10—23 10—22 10—22 10—22 10—21 10—21
Pyo, 5.22 x | 1.17 x | 2.09 x | 3.24 x | 831 x | 1.57 x
10716 10715 10715 10715 10715 10714
Py,, 534 x | 1.20 x | 2.14 x | 3.31 x | 851 x | 1.61 x
10—21 10—20 10—20 10—20 10—20 10—19
Py,, 1.67 x | 3.75 x | 6.70 x | 1.04 x | 2.66 x | 5.04 x
10715 10715 10715 10714 10714 10714
Pys 261 x | 5.86 x | 1.05 x | 1.62 x | 4.15 x | 7.87 x
10—22 10—22 10—21 10—21 10—21 10—21
Py 2.19 x | 4.92 x | 879 x | 1.36 x | 3.49 x | 6.61 x

10—15 10—15 10—15 10—14 10—14 10—14

SER, (FIT) | 7.89 x | 1.77 x | 3.16 x | 4.89 x | 1.26 x | 2.38 x
1073 1072 1072 102 107¢ 1071

P, For n. = 512kbits

Py 1.67 x [3.75 x [6.70 x [1.03 x [2.66 x | 5.04 x
10—22 10—22 10—22 10—21 10—21 10—21
Pi2a 1.04 x [234 x [418 x | 6.47 x | 1.66 x | 3.15 x
10 107 | 107 | 10715 107 | 107
Py,, 1.07 x [240 x [428 x | 6.63 x | 1.70 x | 3.22 X
10720 1107* 1072 | 107* 107" | 107"
Py,, 3.34 x | 7.50 x | 1.34 x | 2.07 x | 5.32 x | 1.01 x
107 107 107" 107" J107™ [1071
Pys 261 x | 5.86 x | 1.0b x | 1.62 x | 4.15 x | 7.87 x
1072 107* | 107 [102" | 107 | 10°*
P, 438 x [9.84 x [1.76 x [2.72 x [6.98 x | 1.32 x

10-% 107" 107" 107" 107 107

SER4 (FIT) | 1.58 x | 3.54 x | 6.33 x | 9.78 x | 2.51 x | 4.76 x
1072 1072 1072 102 101 101

Table 3.14: Py and P4 in GEO orbit space environment
(FinFET)

14nm 22nm 28nm 32nm 45nm 65nm

A in er- | 1.78 x [2.67 x | 3.57 x | 444 x [712 x | 9.8 X
ror/bit /s 0= | 10" |10 |10°7" |10°7 |10°°7

Py N = 4Mbits

3.6. Risks related to undetected SEU effects 59

A in er- | 747 x [112 x [1.50 x | 1.86 x | 2.99 x | 4.11 x
ror/4Mbits/s | 101 | 10° 10° 10° 10° 10°
Py 3.49 x | 7.85 x | 1.40 x | 2.17 x | 5.57 x | 1.05 x
108 1078 1077 1077 1077 | 1076
SERy (FIT) | 1.26 x | 2.83 x | 5.05 x | 7.81 x | 2.01 x | 3.80 x
10° 10° 10° 10° 106 106
P, For n. = 256kbits

Py 8.29 x [1.87 x [3.35 x [517 x [1.33 x [2.52 x
10—23 10—22 10—22 10—22 10—21 10—21
Py2a 520 x | 117 x [2.09 x | 3.24 x | 831 x | 157 x
107 107 107! | 1071 10717 | 107
Py,, 532 x [1.20 x [214 x | 3.31 x | 8.51 x | 1.61 x
10720 1107* 1072 [107* 107 | 107"
Py,, 1.66 x | 3.75 x | 6.69 x | 1.04 x | 2.66 x | 5.04 x
10-% 107 107 107 J107 107
Py3 2.60 x | 5.85 x | 1.04 x | 1.62 x | 4.15 x | 7.87 x
107 107> | 107! | 1072 | 1072t | 107*
P, 218 x [4.92 x [878 x | 1.36 x | 3.49 x | 6.61 x

10 107 | 107 | 107 107 | 107
SER, (FIT) | 7.86 x | 1.77 x | 3.16 x | 4.89 x | 1.26 x | 2.38 x
103 | 1072 |10°2 1072 |10°t |107!

Py For n, = 512kbits

Py 1.66 x | 3.75 x [6.69 x [1.03 x [2.66 x | 5.04 x
1072 107> 107> | 107*! 10721 | 107!
Py2a 1.04 x [234 x [418 x | 6.47 x | 1.66 x | 3.15 x
10°% 107 107! | 1071 107 | 107
Py,, 1.06 x | 240 x [428 x | 6.63 x [1.70 x | 3.22 x
10720 1107* 1072 | 107* 107" | 107"
Py,, 3.33 x | 749 x [1.34 x [2.07 x | 5.32 x [1.01 x
10715 10715 10714 10714 10714 10713
Py3 2.60 x | 5.85 x | 1.04 x | 1.62 x | 4.15 x | 7.87 x
10722 107> 1072t | 1072t 10720 1072t
Py 4.37 x 1 9.83 x | 1.76 x | 2.72 x | 6.98 x | 1.32 X

10715 10715 10714 10714 10714 10713
SERy (FIT) | 1.57 x | 3.54 x | 6.32 x | 9.78 x | 2.51 x | 4.76 %
10°2 (1072 1072 | 1072 |107t | 107!

On average the expected protected values in space are about thou-
sand times better than unprotected values at ground level for meo, geo

60 Assessment of the problem

Table 3.9: SER rates (/day/bit) from OMERE in GEO orbit space
environment (FDSOI)

14nm | 22nm | 28nm | 32nm | 45nm | 65nm
Cosmic rays | 2.69 x | 4.41 x | 1.37 x | 4.13 x | 4.03 x | 1.19 x
(Heavy Ions | 10712 | 10712 | 1071 | 107 | 1075 | 10715
Rate)
Trapped 0 0 0 0 0 0
protons
(Protons
Rate)
Solar pro- | 3.41 x | 4.94 x | 450 x | 4.17 x | 490 x | 3.76 x
tons (Pro- | 1073 | 10=3% |10°% |107% |107% | 1073
tons Rate)
Cosmic rays | 3.57 x | 5.36 x | 7.14 x | 891 x | 1.42 x | 1.95 x

(Protons 10=* [107* |107* |[107* |107® |1073
Rate)

Heavy lons | 2.69 x | 4.41 x | 1.37 x | 4.13 x | 4.03 x | 1.19 x
rate 10712 [10712 | 1071 [107" | 1071 | 1071°

Protons rate | 3.77 x | 5.47 x | 5.21 x | 5.06 x | 6.32 x | 5.71 X
102 |[10% |10 |107% |[10=* |1073
Total rate 3.77 x | 547 x | 5.21 x | 5.06 x | 6.32 x | 5.71 X
103 1073 1073 103 1073 1073

3.6. Risks related to undetected SEU effects 61

Table 3.11: SEE rates (/day/bit) from OMERE in GEO orbit space
environment (Bulk CMOS)

1l4dnm | 22nm | 28nm | 32nm | 45nm | 65nm
Cosmic rays | 2.21 x | 3.45 x | 4.52 x | 5.36 x | 8.64 x | 1.11 x
(Heavy Ions | 10~7 |10~ |[1077 | 1077 | 107" |10°6
Rate)
Trapped 0 0 0 0 0 0
protons
(Protons
Rate)
Solar pro- | 4.78 x | 7.17 x | 9.56 x | 1.19 x | 1.91 x | 2.63 X
tons (Pro- | 1072 [1073 | 107 |[1072 | 1072 | 1072
tons Rate)
Cosmic rays | 3.58 x | 5.36 x | 7.15 x | 8.94 x | 1.43 x | 1.97 X

(Protons 10=* [107* |107* |[107* |107® |1073
Rate)

Heavy TIons | 2.21 x | 3.45 x | 4.52 x | 5.36 x | 8.64 x | 1.11 x
rate 10=7 (107" | 1077 |10 |10°7 | 1076

Protons rate | 5.14 x | 7.70 x | 1.03 x | 1.28 x | 2.05 x | 2.82 x
103 |10% 1072 1072 |1072 | 1072
Total rate 514 x | 7.70 x | 1.03 x | 1.28 x | 2.05 x | 2.82 x
1073 1073 1072 |1072 |107%2 | 1072

62 Assessment of the problem

Table 3.13: SER rates (/day/bit) from OMERE in GEO orbit space
environment (FinFET)

14dnm | 22nm | 28nm | 32nm | 45nm | 65nm
Cosmic rays | 4.32 x | 847 x | 9.54 x | 9.45 x | 2.05 x | 1.11 X
(Heavy Ions | 10=% | 1078 | 1078 |1078 |10°7 |10°°¢
Rate)
Trapped 0 0 0 0 0 0
protons
(Protons
Rate)
Solar pro- | 4.77 x | 7.16 x | 9.54 x | 1.19 x | 1.91 x | 2.63 x
tons (Pro- | 107 [1073 | 107 |[1072 | 1072 | 1072

tons Rate)

Cosmic rays | 3.58 x | 5.36 x | 7.15 x | 894 x | 1.43 x | 1.97 x
(Protons 0=t |10 |10t |10t |[107® |1073
Rate)

Heavy Ions | 4.32 x | 847 x | 954 x | 9.45 x | 2.05 x | 1.11 x
rate 0% [10®% |10 |[10® |1077 | 1076

Protons rate | 5.13 x | 7.70 x | 1.03 x | 1.28 x | 2.05 x | 2.82 x

Total rate 5.13 x | 7.70 x | 1.03 x | 1.28 x | 2.05 x | 2.82 X

Table 3.15: Unhardened SER at ground level for CMOS for the same
amount of bits at risk

14nm 22nm 28nm 32nm 45nm 65nm
CMOS SER | 4x10% [2x10% | 4x103 | 4x 103 | 4x10% | 4x10°
(FIT) at
ground level
4Mbits

3.7. Conclusion 63

and open space orbit. It is less than the FIT order.

Several comments should be made about these results. One is that it
has not been taken into account here that SEU can not only cause false
results to the processing element but also send it into an infinite loop or
crash it. Infinite loops are stopped after the maximum allowed execution
time of the current execution of the PE and detected like computational
errors. Crashes cause exceptions which will be detected even in case
of double SEU. The above results, assuming that the SEU only cause
computational errors, are thus worst case results.

Another comment is about the sensitivity of the results to the choice
of the parameters. It has been assumed in this evaluation that all pro-
cessing elements had the same duration of 250usec. However, it will be
seen in the next chapter that most processing elements are a lot shorter
because of system calls that end processing elements prematurely, re-
ducing that way the risk for the a SEU to occur during an execution
of the processing element. The values found here are thus "worst case"
values from that point of view too. The orders of magnitude of the result
do thus not change abruptly for reasonable variations of the hypotheses.
The conclusion is thus that by applying BHT with the proposed param-
eters the residual error rate in space will be 1000 times lower than on
the ground and that it varies linearly with each of the parameters: no
bad surprise is thus to be expected.

However because the probabilities are so small, unimagined events
could happen like in Fukushima: it should not hence happen in a century
as long as you are not in the "wrong" century.

3.7 Conclusion

Processors implementing the RAS features are good support for imple-
menting the BHT. The error handling mechanism is exploitable to re-
store the system to a stable state regardless of the SEUs effects on any of
the processors registers. Bulk CMOS and FinFET nano-scale technolo-
gies present the same order of residual error, 1,58 x 1072 for technology
14nm node (the lowest) and 4.76 x 10~! for technology 65nm. Whereas at
ground level the SER in FIT are the order of 103 for unhardened devices
and the evaluation of the residual error presented here is pessimistic.

CHAPTER

Fault tolerance in operating
systems

4.1 Introduction

This chapter outlines first the role of an operating system in terms of
functionalities and its positioning within computer systems. Different
types of operating systems are presented. This will help to understand
the fact that an operating system is capable of handling the faults caused
by SEUs. The choice of the operating system used will be justified by
a short comparison of the classes of operating systems. The internal
functions of the related operating system will also be briefly presented.

4.2 Operating system

A computer system is composed of two parts: hardware and software.
The hardware consists of electronic circuits. The operating system is a
program or software that mainly plays two roles [SGG18].

Firstly it makes the details of using the hardware invisible to ap-
plication programs by offering an interface that they use. In other
words, instead of programmers spending most of their time configur-
ing the hardware before it is used, the operating system does the work
for them [TW8T7|. It provides a generic interface that can be used to
program or use a wide range of hardware. The application program-
mer will therefore have more time to focus on the functional aspects of
its application instead of wasting time configuring devices or equipment
[TW87, p. 3]. The operating system as software is therefore the inter-
mediary between the application program and the hardware as shown
in Figure 4.1.

Secondly, the operating system plays a role of facilitator and re-
sources handler of the machine. A facilitator role because it ensures a
good use of resources by several applications by making them available
and accessible appropriately [SGG18|. For example, when an application
wants to use memory, the operating system will first ensure the avail-
ability of this resource and then make it available to that application.

66 Fault tolerance in operating systems

APPLICATION SOFTWARE

N\

OPERATING SYSTEM

— N\

N, HARDWARE

Figure 4.1: OS architecture

It plays the role of resource handler because the amount of available re-
sources within the system is limited (for example, only one network card
might be available, the amount of memory might be limited etc.). How-
ever there might be a large number of applications or processes within
the system. Under these conditions, the operating system ensures that
the requests of the processes are satisfied according to the availability of
resources and the policy implemented [TW8T].

So an operating system can be a simple program but also a complex
program. The following section will present fundamental features of an
operating system.

4.3 Basic features of an operating system

A computer architecture provides a set of instructions for efficient use
of the processor and peripheral modules. Application programs are only
allowed to use instructions that cannot interfere with others application
programs or the general operation of the computer. The others instruc-
tions are called "privileged" instructions. The operating system is the
only software capable of executing the privileged instructions [Guill] of

4.4. Different classes of operating systems 67

the processor.

Thus, one of the basic features of an operating system is to allow
application processes to have access to the services requiring the use of
these privileged instructions by providing them with a suitable interface.
These privileged instructions are used for instance for the configuration
and use of input and output devices. Others are needed for the configu-
ration and use of the processor or processors or internal modules such as
the machine check architecture (MCA) [Guill] or virtualization[SGG18|.

Another feature of operating systems is to allow applications to be
identifiable entities within the operating system. That’s what leads to
the concept of process. A process is an entity that basically represents
an application [SGG18|. It has a unique identity, it has resources, it has
a life cycle, it interacts with other processes of the system. The life cycle
means that at some point the process appears in the system, interacts
with other processes, and then ceases to exist in the system. Thus, the
operating system makes all this possible by allowing the implementation
of the notion of process, the creation of processes, the communication
between processes, the management of the resources of a process, the
use of the resources of the systems by the processes especially the use of
the processor [TW87, p. 56].

Another feature of the operating system is to allow processes to ac-
cess to the input and output peripherals and different hardware. It pro-
vides an interface that allows processes to use and configure hardware.
It ensures communication between the I/O peripherals, and processes
through the interrupt mechanism [SGG18, p. 560].

4.4 Different classes of operating systems

Operating systems can be classified based on target hardware architec-
tures. They can also be classified based on their software architectures.
They can also be classified based on the need they fulfill.

4.4.1 Hardware Architecture

There are operating systems with specialized features for embedded sys-
tems. These operating systems are intended for architectures with lim-
ited resources such as microcontrollers and connected objects [JKHT 16].
They are dedicated to specialized systems such as medical equipments,
satellites, printers, electrical appliances, home appliances, medical equip-
ments, vehicles. They have features dedicated to the needs of the sys-

68 Fault tolerance in operating systems

tems that the applications that run on top of them are monitoring or
controlling [JKH"16]. We can mention Contiki [DGV04], QNX [Hil92],
WinCE, Vxworks.

There are operating systems for personal computers. These are most
popular operating systems for the public. They allow the use of lap-
tops and desktops. The most popular are Windows, Linux and Mac-OS
[WABMO04] [RDH"01]. They are present on purchased computers or can
be installed on computers from a storage device (USB, CD / DVD).

There are operating systems for mobile phones and tablets. In recent
years there has been an explosion in the more advanced use of mobile
terminals. The phone is not used for phone calls only. It can be used
to check emails, to do word processing, to surf the Internet [LY09],
i.e many features that were those of computers in the past. Mobile
devices operating systems have evolved to effectively meet these needs
[LLL*T11] [HA09]. The most popular ones are Android and iOS. Android
is a mobile operating system developed and maintained by the computer
giant Google [Devll|. It is based on the kernel of the Linux operating
system. It should be remembered that the kernel is the set of programs
that allow the operating system to provide the basic functionality that
we have described above. 10S is the operating system developed and
maintained by the computer giant Apple [NKH12| [SGG18].

There are server operating systems [KEGW96]. These are operating
systems that are adapted to the needs of the critical services provided
by the servers. These operating systems allow fault tolerance. They
guarantee the availability of services. They ensure a more efficient use
of resources by allowing a partitioning of services. We can mention
Windows Server, Linux based server Operating systems such as Debian
and redHat, and Solaris.

4.4.2 Software architecture

Two software architectures stand out for operating systems, monolithic
operating systems and micro-kernel operating systems. Distributed op-
erating systems can also be considered. Before defining what is a mono-
lithic operating system we want to remember that the operating system
is also considered as a process within a computer system in use. It
is also identified as process, it has an address space, it has resources
etc. We also want to remind that the features offered by the operat-
ing system to applications can be divided into two major groups, basic
features and advanced features. Among these basic features we have

4.4. Different classes of operating systems 69

the management of input and output devices, management of interrupt
and exceptions, communication between processes. All the advanced
features are the high-level services provided by the operating system.
Among other things, we have file management, drivers for implementing
devices protocols, advanced process management and so on.

4.4.2.1 Monolithic

A monolithic operating system is an operating system that will bring
together all the basic features and advanced features in the same pro-
cess [DKDT15| [Daul6]. The operating system will be a large process
that runs within one address space. Basic features are active at all
times. Advanced features are generally enabled through libraries loaded
dynamically on demand. When they are no longer useful they can be
removed from the system’s memory.

The biggest benefit to having such an architecture is performance.
The operating system is able to respond very quickly to the requests
of application processes without the need to switch more than once
(in some cases, not even once) address space [JKH'16]. Similarly the
amount of messages for processing a request is reduced.

On the other hand, the biggest disadvantage is maintenance and
fault isolation. To maintain a monolithic operating system, you have to
work and test a very large code, because the basic features and advanced
features are strongly coupled. The portability of the modules is more
expensive. Moreover, as soon as a module fails in an monolithic oper-
ating system it is the entire operating system that is faulty. The most
popular monolithic operating systems are Linux and Windows [Rat15].

4.4.2.2 Micro-kernel

On the other hand, a micro-kernel operating system will put in the same
process only the most basic functionalities (which we will call micro-
kernel or kernel) and sub-contract all advanced features to separate pro-
cesses (we will call servers). Thus the kernel will have its own address
space, different from those in which all other servers run [JKH'16]. It
can have the ability to restart a server when it fails. It provides commu-
nication and hardware access services to the servers. The micro-kernel
forwards requests from application processes to the appropriate server
that perform its high level function based on low level services the server
asks to the micro-kernel. There are generic servers that provide standard

70 Fault tolerance in operating systems

services. There are also specialized servers that provide specialized ser-
vices. For example, for file management, there are servers that provide
generic file management services. This is the case of the vfs (virtual file
system) server of the Minix 3 operating system. And also the servers
that provide specialized services for example mfs (minix file system) for
the management of file systems of the type minix in the case of the
Minix3 operating system.

The biggest advantage of micro-kernel operating systems is the mod-
ularity and fault isolation. Modularity provides more flexible and easy
maintenance and fault management. A server can be replaced, up-
graded or removed, without making changes in the micro-kernel and
other servers. Similarly a failure in one server does not propagate sys-
tematically in the kernel and other servers. The failure can be controlled
either by restarting a new instance of the failed server or by shutting
down the server if it is not critical to the entire system. Jorrit Herder’s
work [HBGT09] has shown how within the Minix3 operating system it
is possible to restart as needed faulty services such as hardware drivers.

The biggest disadvantage of micro-kernel operating systems is the
loss of performance [Daul6|. It takes a lot of message exchanges for
processing a query, because advanced services are scattered in different
independent processes. Andrew Tanenbaum in his book has shown that
for the processing of a simple request to read a block of data in a file
identified by its descriptor requires 8 messages and the participation of
2 servers and the device driver in addition to the micro-kernel [TW87].
Thus performance remains the biggest drawback of micro-kernel oper-
ating systems.

However this loss of performance is compensated by their greater
reliability compared to monolithic operating systems. The most popu-
lar micro-kernel operating systems are Mach UNIX |GJR'92|, Minix 3
[THBO6], QNX [Hil92] and L4 [EH13].

4.4.2.3 Distributed operating systems

Distributed operating systems are operating systems that run on more
than one machine. They combine the resources of two or more machines
to provide more efficient services to application processes. They use
agents that are deployed on each individual machine to manage local
resources and processes. They use network communication protocols
for communication between agents. All of this is done transparently
because they are designed to make application processes feel like they

4.5. Operating systems as part of fault tolerance 71

are running on a single machine. They are widely used within clusters.
The most popular distributed operating systems are Mosix [HAM 18,
MJK*18, BLI8, BGW93|, Amoeba [MJK'18, TVRVST90, KT91|.

4.4.3 The needs in response time

Bounded response times may be required in some applications. We are
talking about real-time applications. Events must be taken into account
within a specified time. After this time the value of the response to the
request may be null or negative. A null value response means that the
answer has no effect. While a negative value response means that the
delay of the response caused damage in the system or in its environment
[Kopl1, Butll].

There are hard real-time applications, and soft real-time applica-
tions. An application is real time hard when time constraints are strict.
While in the case of a soft real-time application temporal constraints
are more flexible. Thus an operating system on top of which this kind
of application runs must have functionalities enabling it to satisfy the
requirements of the requests coming from such applications in order to
allow them to strictly respect their time constraints [JLT85]. Therefore,
there are real-time operating systems that are designed to optimize time
management to take events into account to ensure that time constraints
are met. The most popular real time operating systems are FreeRTOS
[HH16], RealPi [Del18], MicroC OS II [SZF16].

4.5 Operating systems as part of fault tolerance

Fault tolerance is not a new concept in the field of operating systems.
Operating systems have often been used to provide continuity of service
despite hardware failures in the case of input and output devices.
Remember that a fault that occurs in a running system occurs at a
given time and could generate errors. These errors could be silent (no
error reported but uncorrected results). These faults could also trigger
exceptions (abnormal event) or a reset of the whole machine. Being the
central element of the system from the software standpoint, the operat-
ing system is the first to be informed of these abnormal events if they
are detected. It has the freedom to make decisions that can correct the
instability caused by the event to reduce the perimeter of spread of the
fault. Thus an operating system can be modified to ensure the redun-
dancy of information, taking into account any abnormal event reported

72 Fault tolerance in operating systems

by a known or unknown exception. Also elements present within the
processors can also be used to extend the functionality of the operating
system to make it more fault tolerant.

4.6 Choice of an operating system

We choose Minix 3, a micro-kernel operating system. Minix 3 is a micro-
kernel operating system developed by Andrew Tanenbaum [TW87]|. It
has a clear structure. It is well written and adequately documented
[Her10]. As a micro-kernel operating system, Minix 3 is also more mod-
ular than most traditional operating systems. It is possible to harden
one part of the operating system without affecting the other parts. Also,
an error inside one module of the operating system is not directly prop-
agated to the others parts of the system thanks to the fault isolation
mechanisms implemented inside Minix 3 [HBG*09].

It has thus many features desirable for a proof of concept research
on operating systems. In Minix 3, service is provided to application
processes via system calls. As a micro-kernel operating system, Minix 3
outsources some traditional kernel services to server processes running
in privilege level 3 (on Intel386-like processors) [TW87|. Outsourcing
is implemented through messages exchanged between the micro-kernel
and the server processes.

4.6.1 Minix3 history and goals

Minix, and its successors, Minix 2 and Minix 3, was originally designed
for teaching purposes when AT&T, owner of the UNIX operating sys-
tem, decided to close its sources that were often used as an example in
operating systems design courses. Andrew Tanenbaum and his team of
Vrije Universiteit Amsterdam designed then Minix, a simple, small and
clean open source operating system, with a Unix-like user interface. The
original Minix was targeted at the IBM PC [TW87] . It was based on the
micro-kernel paradigm, where each class of services is isolated in a sep-
arate server that could easily be understood and modified by students.
Now Minix 3 has been ported to several state-of-the-art architectures
(IA32, ARM) |Neel6| and targets not only teaching purposes but real-
life applications. Because it cannot compete with Linux for desktop
or server use, mainly because this requires porting a huge number of
applications for a platform to succeed on the desktop, Minix 3 targets
embedded systems [Tanl6|. The latest version of Minix 3.4.0 supports

4.6. Choice of an operating system 73

live update of user applications and servers. With that capability the
system does not need to be rebooted after a security update or when a
patch is applied to the system |[GKT13b].

Minix 3 suffers from a few shortcomings: the choice of peripheral
drivers is limited mainly to the hardware used by the development team
and, in particular, USB support is totally missing. This is not important
for teaching purposes where Minix3 is generally run on a simulator, but
limits its usability in real-life applications.

Besides, having been originally designed as a desktop-oriented op-
erating system (at a time when there were much fewer applications on
desktops), many of its characteristics are still tuned to events happening
at desktop-like speeds: the system clock is at 60 Hz, the scheduling time
quantum is one to ten clock ticks. Fortunately the Minix 3 interrupt
handling policy is to keep interrupt handling routines as short as pos-
sible, so that they do not interfere too much with scheduling decisions
(interrupt routines can be seen as very high priority tasks bypassing the
scheduler). As a consequence, Minix 3 can mainly be used for embed-
ded systems needing response times only slightly better than those of a
human operator. There are many such applications, and Minix 3 being
much simpler than, for instance, real-time Linux, it can be successful in
this field.

However, SEU hardening is a job that requires much faster response
times, so it was necessary to push Minix 3 in this unexplored territory
to see how it would behave.

4.6.2 Minix3 Structure

4.6.2.1 The micro-kernel pseudo processes

Minix3 is a micro-kernel operating system. The microkernel consists of
six pseudo processes running in the same address space. They are called
kernel tasks.

ASYNC is used for notification of asynchronous events. Minix3 al-
lows synchronous and asynchronous communication between processes.
Synchronous communication is when the sender process involved remain
blocked until the message has been transmitted and the answer received.
While during an asynchronous communication the sender process is not
stopped after sending the message and can be notified by the ASYNC
pseudo process of the kernel that the message was taken into account.
ASYNC is responsible for informing the sender process when the re-

74 Fault tolerance in operating systems

quested answer is ready. Meanwhile the sender process can continue to
execute, it is not blocked. As soon as an answer is available, the ASYNC
pseudo process informs the sender.

IDLE, as its name indicates, occupies CPU cycles when no task is
ready to be executed. That means, the queues of the scheduler are
empty. This is just a function that runs in a loop. It halts the processor
and counts the number of clock cycles spent doing nothing.

CLOCK, as its name suggests it takes care of all the features related
to time management, alarms, clock ticks, watchdogs. We will say that
it is the watch of the microkernel.

SYSTEM is the interface between the micro-kernel and the servers.
The requests from the servers are received by this pseudo process. It an-
alyzes the requests and judges their authenticity by checking the source,
the type of requests and the parameters provided in relation to the ex-
isting policy in the system. If the elements are consistent with the policy
the corresponding handler is called to respond to the request. It should
be noted here that there are two types of queries. The kernel calls that
are queries whose destination is the microkernel itself and the system
calls whose destination is another server process. The software inter-
rupt mechanisms that the kernel uses for the implementation of this
mechanism are SYSENTER and SYSCALL.

KERNEL is the pseudo process that handles communication between
processes and scheduling. Does a process need to send a message to
another process? It is this pseudo process that takes care of copying
the message from one address space to another. It also deals with the
change of state of a process (running, blocked, ready).

HARDWARE is the pseudo process that supports all the hardware
interrupt mechanism. It handles interrupt vectors and corresponding
handlers to respond to hardware interrupts from input and output de-
vices as efficiently as possible.

4.6.2.2 The entry and exit points of the microkernel

Like most operating systems, the Minix3 microkernel has multiple en-
try points. The first entry point is only used once, when the system is
booting, to jump from from the boot loader to the micro-kernel. It is
the kmain function which is in the file kernel/main.c of the source tree.
This function initializes the data structures of the micro-kernel. Tasks
performed by this function include configuring the processor to operate
in protected mode, initializing the process table, initializing scheduler

4.6. Choice of an operating system 75

queues, initializing interrupt and exception vectors, initializing the priv-
ileges tables. Then, one of the most privileged servers previously loaded
into memory by the boot loader is selected in the scheduler queue to
run. That is the memory manager (VM), which initializes the memory
of the boot processes. This transition from kernel to VM goes through
the switch _to_wuser function, going from kernel mode to user mode.

The switch to wuser function is the exit point of the micro-kernel.
From this function the processor moves from the execution of a privileged
micro-kernel’s pseudo process to the execution of an unprivileged user
process or the IDLE process. In this function, the ready process in the
head of highest priority non empty queue will be executed if the running
process is no longer ready.

After we get out of the micro-kernel via the switch to wuser func-
tion we will come back when one of the following events occurs: clock
interrupt, hardware interrupt, software interrupt including system call
or kernel call. Interrupt vectors have been previously configured by the
kmain function.

All interrupt handlers are defined in the mpx.S file. For clock, input
and output devices vectors, the entry points are defined in the assembler
macros hwint _master and hwint_slave. The value of the IRQ allows to
determine the source of the interruption, for example when the source
is the clock, the value is 0.

For software interrupt vectors, the entry points are different depend-
ing on whether they are SYSENTER or SYSCALL. For SYSENTER the
entry point is ipc_ entry sysenter. While for SYSCALL there are sev-
eral entry points, ipc_entry softint orig, ipc_entry softint wum, ker-
nel_call_entry orig, kernel call entry um.

Ipc_entry softint_orig and ipc_entry _softint _um are used for inter-
process communication This initiates the sending of a message from a
sender process (the one that performed the SYSCALL) to a receiver
process, (the SYSCALL destination). The message contains the source,
the query type, and the parameters to run the query. The response of
the request is also sent by the same mechanism, through a SYSCALL
initiated by the recipient process, that becomes the sender, to the old
sender process that becomes the recipient. The micro-kernel acts as a
post officer through the do _ipc function.

Kernel call _entry orig and kernel call _entry wm are used to ask
for services performed by the micro-kernel itself. In this case the recip-
ient process is the micro-kernel itself. It does the appropriate checking
and executes the handler corresponding to the type of request contained

76 Fault tolerance in operating systems

in the message.

In all instances, the answer is copied in the original sender’s ad-
dress space (just above the stack, which grows downwards). The latter
becomes ready and continues its execution.

Exception entry points are the EXCEPTION ERR CODE and
EXCEPTION NO ERR CODE macros. Values are set for the
most common error codes. For example for a page fault the error code
is 14. Some handlers are defined for the most well-known exceptions.
These handlers are executed when the corresponding event occur. When
an unsupported exception occurs, either the process that caused it re-
ceives an appropriated signal, or the kernel panics, when the exception
occurred during its execution.

4.6.2.3 The main servers

The most important servers are:

e the memory manager (VM) which is in charge of managing the
memory space of all the processes;

e the process manager (PM) which is in charge of managing process
filiation services such as the fork system call, the exec system call
ete;

e the virtual file server (VFS) which is in charge of managing file
system servers;

e peripheral driver processes and file system servers; they are sub-
mitted to fault isolation constraints so that their failure cannot
stop nor harm the system;

e the reincarnation server (RS) which is a kind of watchdog check-
ing periodically if reincarnable processes such as peripheral driver
processes are still operational and, if not, replaces them with a
fresh instance; HBGT09]

e the scheduler server (SCHED) that prepares the queues used when
the picker in the micro-kernel must decide which process to run
next.

One server that does not exist in Minix 3 is a swapper, in charge of
keeping enough memory free for new demands, by swapping out pages
that are unused for a long time. This is because Minix3 does not support

4.6. Choice of an operating system 77

swapping at all. This is not a limitation: swapping was introduced in the
time when memory was a rare and expensive resource, which is generally
not the case anymore. In this work it is thus assumed that hardened
processes are locked in memory, which is anyway the most obvious and
simplest way not to have to add code to harden situations that will,
anyway never occur in properly dimensioned systems.

Minix 3 scheduling is based on sixteen privileged queues managed
by the SCHED server. The final decision is taken by the process picker
in the micro-kernel: a simple routine that goes through the heads of
each of these 16 queues, picks the first runnable process and chooses the
process to run between this user process and the server processes, then
resumes the execution of the process it selected. The picker is called
each time an external event (hardware interrupt) or an internal event
(exception, trap or system call) is managed by the micro-kernel if the
current running process is preempted or not runnable [Her10].

4.6.2.4 The memory manager (VM)

The data structures used by the VM to represent memory are
e Phys block that represents physical frame in memory.

e Since several pages can map to the same frame in memory (copy-
on-write when creating a new process or a memory mapped file),
the phys region data structure has been created. It allows to put
in a linked list all the pages that map to the same frame. Thus the
memory manager has a clear view of the pages sharing the same
frames of virtual memory.

e The pages are organized in virtual regions materialized in the
vir_region data structure. A region is a continuous range in the
virtual address space of the process. They have a starting address
and a length. The data structure include a pointers to a list of
phys_region . Similarly a phys region belongs to one and only
one virtual region. A virtual region is the property of one and
only one process. Different regions can start at the same virtual
address. A virtual region can be either a directly mapped region,
or a region shared between multiple processes or a cached disk
block region or region mapped to a portion of a file.

When a page fault occurs, the first check made by the memory man-
ager is to see if the virtual address where the page fault occurred cor-

78 Fault tolerance in operating systems

responds to a region belonging to the faulty process. If this is not the
case the process is simply stopped. If this is the case the memory man-
ager checks if the page where the process made the page fault exists in
the list of phys region of the virtual region, if it is not the case a data
structure phys_region is created and a frame is allocated. Then access
is verified. If the process attempts to write and the page is not writable,
the appropriate action is taken. That means a signal is sent to stop the
process. If the page is accessible, access is granted and the process can
continue to run.

4.6.3 Running benchmarks on Minix3

The implementation of the hardening requires having the process to
be very frequently interrupted to respect the principle of the scarcity of
SEUs. It will be interrupted about 4000 times per second of execution or
once every 250us. What might be the impact on the overall performance
of the Minix 3 operating system? To find out, a benchmark was run with
different clock tick values and different quantum values allocated to each
process.

Benchmarks [AL16] have been run on standard Minix 3, with differ-
ent clock periods (called tick) and with different time-sharing quanta for
scheduling. The results are presented in the following diagrams. The
first one shows all the results; the 3 other ones are zooms on the small
variations of the index for each value of the tick. The quantum being a
multiple of the tick, short quanta are only possible for short ticks. So the
horizontal scale of the three last diagrams is not the same. The bench-
mark program was Dhrystone. Dhrystone was developed by Reinhold
Weicker in 1984|Wei84].

The Dhrystone test contains simple integer arithmetic, string opera-
tions, logic decisions and memory accesses intended to reflect the CPU
activities in most general purpose computing applications. A moderate
performance penalty has been noticed with short ticks.

Small variations have also been noticed for different scheduling quan-
tum values. The tick penalty is around 20% for the shortest tick inter-
val (39us) and around 15% of penalty for a tick interval of 78us. The
penalty is caused by the time to handle the clock interrupts. The ob-
servation that the changes linked to the quantum are so small could be
explained by the fact that the end of a process quantum is only taken
into account when no external event occurs before the end of the quan-
tum (system calls,exceptions, hardware interrupts or exception or clock

4.6. Choice of an operating system 79

System Benchmarks Index Score

Dhrystone test with uninstrumented Minix variable tick/s and process's quantum

800
500 |
400
1n7 195 273 352 781 3125 12500 50000 200000
T3 156 234 313 391 1563 6250 25000 100000

quantum size of each user process in ps

W 25600ticks/second: tick=39us ® 12800ticks/second: tick=78us © 60ticks/second: tick=17ms

System Benchmarks Index Score
System Benchmarks Index Score

=

2o o n I I pepempp——

F— qammszons
TP — s e

770
o 765
& 160
=
g
2 755
=
g 750
-
2
S 745
[sn]
E 70
Z

117 195 273 352 78l 3125 12500 50000 200000
78 156 234 313 391 1563 6250 25000 100000

Quantum size in ps

— 25600ticks/second: tick=39ps

Figure 4.2: Evolution of the Index Score by the tick/second

interrupt). Thus end of quantum effects have a limited impact.

These results show that stopping more often a process during it exe-

cution will not impact drastically the overall performance. The penalty
of 15% can be afforded. When the process will be divided on processing
elements, a penalty of 2 or 3 times is expected. Because the double
execution will induce and a performance overhead of 100% and it is ex-
pected that all hardening computation will also induced a performance

80 Fault tolerance in operating systems

overhead of 100%.

4.7 Conclusion

This chapter discussed operating system issues relevant for fault toler-
ance. We were able to make a choice: Minix 3. We have detailed key
features of Minix 3. We have seen that an operating system should
be able to protect application processes that run above it because all
the events that occur and are detected are passed on to the operating
system so that it can make the appropriate decisions. In the next chap-
ter we will state the main principles that we will follow in the rest of
the work to allow the operating system to protect application processes
against transient errors. Not only when the errors are signalled through
exceptions but in all cases.

Part 11

Methodology

CHAPTER

Principles of hardening
processes in the operating
system, using BHT

5.1 Introduction

Allowing an operating system to harden its application processes re-
quires a rigorous methodology. In this chapter the principles on which
the hardening work is based are presented. Problems related to the
implementation of the methodology will be clearly stated. Proposed so-
lutions will also be discussed followed by an analysis of the strengths
and weaknesses of each approach. By reading this chapter, the reader
will have a clear idea of the questions that must be asked in the con-
text of hardening application programs by the operating system. The
first section presents the general principles including the hypotheses,
the exception mechanism to correct faults detected by hardware and the
DWC used to identify and correct fault not detected by the hardware.
The second section presents the approach to delimit the frontier of a
PE. The third section introduces the mechanism of DWC. The fourth
section presents the principles of protected memory. The fifth section
presents the principles of external event management. The sixth section
discusses the consistency of protected memory with caching and shared
memory operations.

5.2 Principles of BHT

In a few words, the application of the BHT principles to hardening user
processes from within the operating system consists of exploiting the
exceptions initiated by all available hardware fault detection mechanisms
and by using a method belonging to the DWC (Double execution With
Comparison) class of fault tolerance techniques to detect silent transient
SEU faults, those causing false results but no exception.

Principles of hardening processes in the operating system,
84 using BHT

5.2.1 Definitions

The CPU is modeled by R, H,US. R represents the set of visible regis-
ters. These registers include control registers, segment registers, memory
management registers, general purpose register. H represents hidden
registers. These registers contain all the internal registers of the control
path and the data path. US represents the contents of the physical
memory of the process.

No state of H is taken into account later. Because the registers in
H are not accessible. The BHT method detects and corrects errors that
occur within H registers.

A processing element PE, is an instruction flow, idempotent and
atomic triggered from an initial state (R;, US;) and producing a final
state (Ry, USy). R; and Ry represent the values in the processor regis-
ters. US; and U Sy represent the entire contents of the physical memory
of the process. Atomicity means that the intermediate states of the PE
are not visible outside of the PE. Only the final state is taken into ac-
count. Idempotency means that whatever the number of times PE is
executed from the initial state, the final state always remains the same.
BHT requires to satisfy 3 requirements:

1. Duration: A processing element must be short enough to be exe-
cuted twice in a time short enough to have to take care of, at most,
one SEU. In [LML11]| , processing elements were defined when the
program was designed, which is not possible here because applica-
tion programs could have been designed anytime anywhere in the
world.

2. Atomicity : A processing element must be atomic, which, in the
present context, means that there may not be any interference with
the outside world during an execution of the PE. In particular, a
visible result is only produced at the end of the PE. This result
must be complete (and correct) or nothing. This is necessary both
to allow an exception to abort the execution of a PE and to obtain
the same results after two faultless executions of the PE.

3. Indempotency : A processing element must be idempotent,
which means that if it is executed several times from the same
initial state, its result must be the same as if it had been executed
just once. Without this property, DWC would be meaningless.

5.2. Principles of BHT 85

5.2.2 Exception mechanism

The exception mechanism is used by the hardware to signal abnormal
situations to the software. Exceptions may be due to normal running
program’s behavior, in which case exception handlers can easily handle
them. In addition, exceptions may be due to an external independent
event (a SEU for example). In this case the exception handler of the
OS usually cannot handle the event properly. It should be adapted
accordingly. In the context of fault tolerance, this native mechanism,
present in all operating systems, can detect faults. However, it could be
difficult to distinguish an exception caused by a SEU and an exception
due to the operation of the process itself. By coupling the mechanism
of exception and the DWC this becomes possible. The DWC can make
the difference between a normal exception and an abnormal exception.
The technique of the DWC will be detailed below.

5.2.3 Double execution With Comparison (DWC)

Hardening based on DWC fault detection is made possible by keeping
the code and state of the process to harden out of harm caused as well
by direct hits by SEU as by processes misbehaving after being hit by a
SEU. Therefore the code and 3 copies of the data (actually one complete
copy and two partial copies including only the frames of the process, that
are modified during the execution of the current processing element) are
kept in protected memory that cannot be modified, neither by a SEU
nor by processes misbehaving after being hit by a SEU. Implementing
such protected memory is one of the issues discussed below.

Let’s call Copyg the process data (memory content and CPU regis-
ters value) if the BHT is not applied to it. Copy; represents the data
(memory content and CPU registers value) used during the first run.
Copys represents the data (memory content and CPU registers value)
used during the second run. The memory content part of Copy; and
Copyy are created when the system sets up the page table of the pro-
cess. They are updated each time the process memory changes (increase
or decrease).

Copy; =US;, R; (5.1)

US; is the memory content of Copy; and R; is the CPU visible register
values.

At the beginning of the processing element, the code and data pages
are marked as read-only. Copyg resides in protected memory. Copyy is

Principles of hardening processes in the operating system,
86 using BHT

never changed during the execution of the processing element. All the
data pages of the process are mapped to US; are marked as read-only
(at the first PE of this process).

The processing element is then executed a first time. A subset of U.Sy
is modified during this execution. R; is produced during this execution.
The frames and registers of Copy; become protected memory at the end
of the first execution. The modified subset of US; is called the working
set.

The same applies to the second execution. A subset of U.Ss is modi-
fied during this execution. Rs is produced during this execution. At the
end of the two executions, Copy; is compared to Copys. If the results
are the same, the contents of Copy; or Copys is copied into Copy O.

If the results do not match, the double execution is restarted again
using Copy 0. This method belongs to the DWC (Double execution
With Comparison) class of fault tolerance techniques. The following
issues are detailed in the next sections

e How can the limits of a processing element be defined without
inserting anything in the code at/or before compile time?

e How can protected memory for application processes be imple-
mented in the operating system?

e How can DWC of application processes be implemented inside the
operating system?

e How must external (e.g. interrupts) and internal (e.g. traps and
faults) events be handled in the frame of BHT hardening?

e How must memory areas shared by several hardened processes be
taken into account by the hardening code inside the operating
system?

e How must the results of system calls be incorporated in Copy0,
Copyl and Copy2?

e How can the caches be kept consistent with the memory by the
hardening code in the operating system?

5.3 Delimiting processing elements

As in the case of the stand alone program of [LML11], the application
process is divided in processing elements (PE). A processing element is

5.3. Delimiting processing elements 87

a set of instructions executed within a thread of the running process.
In [LML11] , processing elements were defined when the program was
designed, which is not possible here because application programs could
have been designed anytime anywhere in the world.

Finding suitable statically defined subprogram entities usable as pro-
cessing elements and manageable by the operating system is not possible
because there is no way to make sure that they meet the requirements
in duration, atomicity and idempotency. So it is necessary to dynami-
cally find events that can constitute frontiers for the PE in the process
execution flow.

5.3.1 System calls as frontier

Indeed, the possible statically defined candidates accessible to the op-
erating system are the whole process itself, its threads and the piece of
code between two successive system calls of a single thread (assuming no
interrupt has to be handled in between), because these depend only on
the code of the program. Some exceptions, such as page faults are also
linked to the code. They are discussed later. The whole process and its
threads do, in many instances not meet any of the three requirements.
The piece of code between two system calls could be a good candidate.

Indeed, because an application process only interacts with the out-
side world trough system calls (if it does not use shared memory, or in-
structions reading external state information such as RDTSC in 1A32),
if a snapshot of its state is taken by the kernel before returning back to
user mode at the end of a system call, the processing element from this
system call to the next is both atomic and idempotent, because noth-
ing but the memory of the process will have changed and this can be
safely discarded and replaced by the snapshot taken before starting the
processing element, if needed. (Do6bel had come independently to the
same conclusion [D5b14]). However the delay between two system calls
can be too long to be sure that only a single SEU can occur in between.
In order to avoid this, one must add something to interrupt the process
before the next system call, if it does not come early enough.

As a general rule, processing elements can not thus be defined stat-
ically in all cases.

Principles of hardening processes in the operating system,
88 using BHT

5.3.2 Timeout as frontier

The most obvious way to stop a program when its duration exceeds
some limit is to use a timeout. Time-outs exist in any time sharing
operating system because, unless they were interrupted before by an
external event, processes are preempted at the end of their scheduling
time quantum. Unfortunately this time quantum is usually much longer
than the time in which only a single SEU can be expected. Even the
system clock period, of which the time quantum is usually a multiple,
can be too long. In the particular case of Minix3, it is around 17 msec (60
ticks/sec). Shortening this delay means more frequent clock interrupts
and this is acceptable according to the results presented in the preceding
section. However, the system clock has another, more critical, default: it
is asynchronous with the execution of the program, so, even if its period
were short enough, it could not be used to terminate a processing element
because each processing element must be executed twice and the clock
could not stop it twice exactly after the same instruction. The timer
that must end a processing element must be started when the execution
of the processing element is started. Using a dedicated hardware timer
to trigger an interrupt and stop the running processing element after
the required delay T does not work either, even if the hardware timer
is synchronized on the same clock as the processor because the process
time is suspended during other external interrupts and the hardware
counter will go on running during this time. Actually what needs to be
counted is not the cycles of the oscillator driving the processor but the
instructions of the program being hardened. That way, and only that
way, the counter will be synchronous with the program.

The real requirement for DWC in BHT is to execute twice exactly
the same sequence of instructions and doing it in a time short enough
to avoid having to take care of more than one SEU.

Therefore, a timer could be used for the first execution in order to
stop the execution after the maximum acceptable execution time but us-
ing it also for the second execution will not necessarily stop the execution
after the same number of instructions.

5.3.3 Breakpoint and Timeout as frontier

One possibility, inspired by the design of debuggers, would be to tempo-
rally replace the instruction following the last instruction executed in the
first execution with a breakpoint instruction for the second execution,
in order to trigger a breakpoint exception exactly after the instruction

5.3. Delimiting processing elements 89

where the previous execution was interrupted by the time-out. The
problem with this approach is that the breakpoint will be triggered the
first time the processing element arrives at that address but it might
have to pass there many times before the "right time". There are thus
two problems.

First, in order to pass over the breakpoint location, this breakpoint
will have to be removed and replaced by the original instruction, that
will have to be single stepped, then the breakpoint will be reinserted and
the processing will go on until the next encounter of the breakpoint. This
can significantly slow down the running processing element and involve
a high performance loss. Second, how is it possible to decide that the
breakpoint has been reached the "right" number of times: because the
breakpoints are only used in the second execution, the right number
of occurrences of this breakpoint is unknown when starting the second
execution. Therefore the only way to know is to check a timer to see if its
value is the duration of the first execution. This is almost as imprecise
as working with the timer alone, so trying to use breakpoints that way
is useless.

The problem is thus to find a counter that is synchronous with the
execution of the instructions of the program, even if the time taken
to execute these instructions differs in the two executions, because of
cache misses, of external interrupts causing delays until the pipeline is
emptied, etc.

5.3.4 Instruction retirement counter

Fortunately, recent architectures such as IA-32 and Intel 64 architectures
include a set of performance monitoring counters in Model Specific Reg-
isters (MSR) which can count several runtime execution parameters of
the process: the number of retired instructions, the number of cache
misses, the number of cycles and so on can be counted. A NMI can be
generated when such a counter overflows. Since it is possible to configure
the counter to be only active when the computer runs in USER mode
(privilege level 3), instructions executed within interrupt routines (clock
interrupts, page faults, external interrupts), are not taken into account
because they are executed in another mode (privilege level 0) [TWS8T7].
Counting the number of retired instructions with this infrastructure is
exactly what is needed.

Intel performance monitoring counters are available on Intel x86 ar-
chitectures since the Pentium (1991). Three components are involved,

Principles of hardening processes in the operating system,
90 using BHT

the performance monitoring selector, the performance monitoring counter
and a set of instructions to read and write both the controller and the
counter. The performance monitoring selector is used to set the behav-
ior of the performance counter. In this case, the performance counter
must be set to count only the instructions retired of the user process.
Then the selector must be enabled to allow the processor to trigger a
NMI when the counter overflows. The APIC and ACPI facilities allow
the processor to trigger such exceptions. They are called Inter Processor
Interrupts. The performance monitoring selector and the performance
monitoring counter are read with the instruction RDMSR and are writ-
ten with the instruction WRMSR. Because the performance monitoring
infrastructure is used here to count retired instructions, it will henceforth
be called the "retirement counter".

5.3.5 Converting time to numbers of instructions

However, since the retirement counter counts instructions and not time,
it is not a time-out. There is thus a dilemma: counting time is necessary
to respect the maximum processing element execution time requirement,
but counting micro-instructions is the only way to execute twice exactly
the same instructions. This dilemma can be solved in two ways:

1. For the first execution of the processing element initialize the in-
struction retirement counter just before starting the processing el-
ement and do not activate the NMI, but use a time counter to stop
the processing element and then, read the value of the retirement
counter in the interrupt routine stopping the first execution of the
processing element. Then use that value for the second execution
and let the retirement counter overflow stop the second execution
of the processing element with a NMI.

2. The time requirement for the processing element is an upper limit,
thus everything will be fine as long as the processing element is
stopped before that maximum time, so another solution is to con-
vert time into a number of instructions that will be executed in
a time shorter than the limit. Since all instructions do not take
the same time only a mean number of instructions and a variance
could be obtained, but with these data one could find a "safe"
number of micro-instructions. This way, it is possible to use the
retirement counter to stop both executions.

5.3. Delimiting processing elements 91

Table 5.1: Converting time in a number of instructions

Measurements have been performed on an Intel Core2 Quad CPU Q9400
2,66GHzx4. Only one core was used. The test was performed with a
time slice of 1/60 sec (about 17 msec), the normal tick value for Minix.
We can infer that for a time slice of 250us the average instruction will
be 1,5% of these, but the standard deviation might be higher.

Program type Average Standard Standard
instruction | deviation deviation %
count

Pure computation | 84056488 1611308 2%

(Drhystone)

This is about 2 instructions per clock cycle. This is possible because each
core (only one is used here) of a processor with a Core2 architecture can
decode 4 X86 instructions per clock cycle and issue 4 micro instructions
that, in most instances correspond exactly to x86 instructions. This
means that user programs use effectively half the raw computing power
of the processor, which is not bad at all.

Principles of hardening processes in the operating system,
92 using BHT

Here, we use the second technique, because it does not need an ex-
tra timer and is simpler to implement, as will become clearer in the
following.

5.3.6 Frontier of a processing element

The frontier of a processing element could be:

1. a kernel call or a system call initiated by the process itself: these
are statically defined events, implicitly defined when the program
was written;

2. a retirement counter overflow exception.

3. An exception, other than a hardened page fault exception: these
are faults caused either by a programming error or a SEU.

All other events do not constitute the normal end point of the process-
ing element. Among these events, there are the clock interrupts, page
fault exceptions caused by hardening code itself and all kind of external
interrupts

5.4 Discussion on issues raised by retirement
counter

Counting instruction exactly using the performance monitoring infras-
tructure to count instructions exactly involves two types of problems.
First, a NMI (or any other type of interrupt) will not stop immediately a
modern superscalar core, and, second, the precision of the performance
monitoring counters is intended for measuring performance indicators
but not for exactly counting instructions: the problem is similar to us-
ing floating point for accounting applicationsAé: these do not require
relative precision but absolute precision (up to the cent, whether one
counts tens of cents or billions of euros). Using floating point for ac-
counting applications is possible but requires precautions. Using perfor-
mance monitoring counters for counting exactly instructions is possible
but requires a good understanding of what exactly this infrastructure
counts. These two aspects are discussed below.

First, using the retirement counter, the two executions will, appar-
ently, stop after exactly the same number of instructions, but, unfor-
tunately, in some cases, they will not. The reason is that the NMI is

5.4. Discussion on issues raised by retirement counter 93

triggered when the instruction retirement counter overflows. A NMI is
considered as an "external interrupt". As such it will be processed be-
tween two architectural instructions. After the execution of the NMI
routine or later, the execution of the interrupted program will proceed
with the next architectural instruction of this interrupted program. In
a super-scalar pipelined processor, such as the recent Intel 32 and 64
bit processors, micro-instructions corresponding to many architectural
instructions are being executed simultaneously in the big factory that
such a processor is. The Reorder Buffer, that is the last stage in the
pipeline, takes care that the effect is the same as if the architectural in-
structions had been executed sequentially, one at a time, and the NMI is
processed when one of the architectural instructions is finished. Which
one is not specified in public documents. The simplest way to achieve
that is probably to just block the entrance to the pipeline when the
NMI is detected; the actual processing of the NMI would then only be
fired when all the instructions inside the pipeline would be finished (or
aborted in case of failed speculative execution). Since instruction retire-
ment is the last step of the pipeline, the extra number of instructions
would be up to the number of instructions lingering in the pipeline at
that time. This number could be huge: the "Reservation Station" (RS
on the schematic of Annex 1) where decoded instructions wait for a free
execution unit, has 18 entries in processors without hyper threading such
as the Core2 and the Core i5 used in tests or per thread in Core i7 pro-
cessors. There are 6 execution units and 128 positions in the Reorder
Buffer (ROB): total 152 locations where there could be instructions, all
of them already decoded but not yet retired (see Annex 1). It will often
be less because there can be bubbles in the pipelines and because some
instructions consist of several micro instructions, each using a location.

When the first solution (using a timer to end the first execution and
the retirement counter to end the second) is used, the number of instruc-
tions executed in the two executions of the processing element is almost
always different. Indeed, when the time counter of the first execution
triggers an interrupt, the value in the retirement counter readable in the
interrupt routine will be that of the last instruction that entered the
pipeline before the timer interrupt. So, if that value is used to stop the
second execution, in this second execution, the NMI will occur when that
instruction leaves the pipeline and all the instructions in the pipeline at
that time will have been executed. Thus, the second execution will nor-
mally be longer than the first. This fact cannot be ignored because it
will happen again if the processing element is restarted: ignoring this

Principles of hardening processes in the operating system,
94 using BHT

and just restarting the PE would block the program for ever. In the
second execution, the value to use to control the issuance of the NMI
must be the number read in the retirement counter between the two
executions minus the number of instructions that will be in the pipeline
when the instruction, the retirement of which causes the NMI, is retired,
at the end of the second execution. That number cannot be known in
advance.

There is a workaround: after the end of the second execution, the
first execution can be continued in single stepping mode (trap after each
architectural instruction) until the number of instructions of the second
execution is reached.

In the second solution (using the retirement counter to stop both ex-
ecutions), the two executions might stop at the same instruction (which
is never the case with the first solution, as just explained) and even if
the two executions do not stop after the same architectural instruction
(situations where this happens will be explained below), they should be
closer to each other. Here too, single stepping can be necessary but for
fewer steps.

Tests have shown that, if no interrupt nor exception happens during
any of the two executions of the PE, both executions always stop exactly
at the same instruction. The effects of exceptions and interrupts are
discussed below.

The second problem with the retirement counter is the following: it
has been observed in some rare instances that the second execution stops
either exactly one micro- instruction before or after the first execution.
Tests have shown that this happens when the execution stopping one
instruction earlier than the other has been subject to an interrupt. How-
ever, in a superscalar architecture, interrupts are handled after emptying
the pipeline and the most straightforward way to detect this emptiness
is to inject in the pipeline a dummy NOP micro- instruction flagged
as depending of the results of all the micro-instructions that are in the
pipeline at this time. The pipeline will be empty exactly when that
pseudo NOP micro-instruction will be retired. Of course, this explana-
tion is only a speculation but it matches the observed behaviour and,
besides, AMD announces that, in their processors, interrupts add 1 to
their retirement counter [Adv16|.

This effect (1 added to the retirement counter for each interrupt or
page fault) is also observed when page faults occur in memory write
operations to a page not yet accessed in this execution of the PE.

A closer look at what can happen will clarify the implications and

5.5. Precise event based sample 95

how to stop exactly after the same architectural instruction.

Let N be the number of instructions programmed for triggering the
NMI in the first execution. At the end of this execution, the value read
in the retirement counter in the NMI handling routine will be

Nei =N +x1 (52)

where 1 is the number of instructions already in the pipeline when
happens the NMI caused by the retirement of the Nth micro-instruction
of the processing element. Thus z; is known because N is a constant
and Nej can be read in the NMI handling routine.

There will be exceptions during the first execution: page faults (as
will be explained Section 5.7 on the implementation of protected mem-
ory). There might be other ones, but these are caused by program faults,
and not considered in this section.

The number of page faults could be different in the two executions,
in this case, even if the same value N is used in the two executions and
even if x1 is taken into account, the two executions can involve different
numbers of instructions, because of the NOPS inserted when handling
interrupts as explained above.

At the end of the first execution, the real number of instructions
executed is thus

Ni+x1—n (53)

where y; is the number of page faults that happened during the first
execution

If the retirement counter is again initialized, between the two execu-
tions, to trigger a NMI after N instructions, the number of instructions
of the second execution will be

N 4+ 9 — o (54)

z9 and yo can be known like x; and y;.

The only thing to do in order to have exactly the same number
of architectural instructions in the two executions is to single step the
execution lagging behind the other until

N+z1—y1 = No+w2 — 42 (5.5)

5.5 Precise event based sample

Intel has made available a functionality based from the Intel core ar-
chitecture, precise event based sample [Spr02a, Spr02b|. This feature

Principles of hardening processes in the operating system,
96 using BHT

uses a debug store and interrupt performance counter to store a set of
architectural state of the processor just after the instruction that gener-
ated the overflow exception. This makes it possible to have the precise
processor state when the performance event occurred. That is useful for
debugging purpose. But this does not stop the execution flow as soon
as the overflow interrupt is triggered. It is thus not useful in BHT.

5.6 Double execution With Comparison (DWCQC)
for Minix3 processes

The principle of Double execution With Comparison (DWC) is to exe-
cute twice the same code starting with the same initial data and com-
paring the results of the computation. If they match, they are assumed
to be correct and execution proceeds, else execution is restarted from
the same initial data. The fact that the two executions occur in the
same thread, one after the other, in two threads, strictly in parallel or
one thread slightly delayed with respect to the other is not important
for DWC. What is important is to have strictly the same initial data for
the two executions but also to keep them for later, in case the execution
must be restarted. These initial data are the whole process state.

5.6.1 DWC in Minix3

In Minix 3, application processes are tasks running at privilege level
3. Like other processes they are characterized by their memory space
(stack, heap, bss, data and text), their context (internal processor regis-
ters) and state data maintained by the micro-kernel and servers processes
and the initial internal state of the processor.

e The memory space of the process is built at fork system call time
(duplication of the parent process memory space to create the
child’s memory space) or exec system call (creation of a new core
image for the process) and augmented each time the stack or the
heap grows.

e The process context is the set of internal register values of the
processor related to the process when it is running, i.e. any register
the contents of which could influence the execution of the PE.

e The state data of each process in the OS are scattered in data
structures of the micro-kernel, the memory manager (VM), the

5.6. Double execution With Comparison (DWC) for Minix3
processes 97

process manager (PM), the virtual file server (VFS), the reincar-
nation server (RS) and the scheduler (SCHED). Each server has its
own process table where it maintains the data structures needed
to respond to a request from the process. These state data are
private data for each of these server processes and they cannot be
modified during any of the executions of a PE except in an inter-
rupt routine and even if an interrupt routine changes this state,
this will not interfere with the executions of the PE because the
process can only be made aware of this change through a system
call. Thus these state data need not be taken into account for the
DWC.

Only the memory manager and the micro-kernel have been modified
to harden application processes: the VM manages the process memory
space and the micro-kernel modifies the process state and takes care of
the process context data. The other server processes are not involved
during the DWC steps. The micro-kernel is also responsible, when a
processing element has succeeded its DWC, to decide to continue with
the next processing element of the same process or to choose the next
running process, as proposed by SCHED.

5.6.2 Steps of DWC

The steps to perform a sequential Double execution With Comparison of
processing elements in a single thread are as follows: When the process
is ready to start, at the end of processing the "fork" system call, when
Minix 3 has finished preparing the new process for execution, the part
of the state of the process used in hardening consists of the initial con-
text called here Ry, and a set of frames called here USjy, including the
variables of the process (stack and static variables, the heap is empty at
that time).

1. The micro-kernel creates a copy, called here Ry, of the initial con-
text of the processing element in its data structures. At that time,
US, and US5 have already been allocated. At that time R; and
Ry are empty. All pages of the PE are mapped to US, as read-
only. R; and US; will be used during the first execution and Ro
and USs during the second execution.

2. Before the first execution begins, the data pages of the processing
element point to the frames of US]. They are set to read-only

Principles of hardening processes in the operating system,
98 using BHT

thus not accessible in writing by the process. During that first
execution, several events can occur:

e copy-on-write page faults happening either after a fork like
usually in Minix3. These page faults are processed by the
VM server, like always in Minix3. The USp frames inherited
from the father are replaced by new USy frames privates to
the child. That ends the PE.

e hardening caused page faults on US] frames. These page
faults are handled by the micro-kernel that gives access to
the process and put the page in the process working set.

3. At the end of the first execution, the values of Ry have been
produced. The contents of the corresponding frames of US; has
changed. The modified set of frames of US] is called "working
set".

4. The micro-kernel keeps R; and redirects the data pages of the
process towards USy and sets all pages as read-only.

5. The second execution of the processing element is performed us-
ing Ry and USy. During that second execution, several events can
occur, in particular, the same page faults as during the first exe-
cution. At the end, the values of Ry and US, have been changed.

6. The micro-kernel compares Ry to Ry. If they match, it compares
US; to USs. If they match, it copies USs to USy, Rs to Ry. There
are thus now 3 identical copies of each element of information. If
one or more of the comparisons fail, the values Ry and USy are
respectively copied in Ry, Re, US] and US> and the sequence is
restarted from these values.

In all future processing elements the DWC is performed as follows:

1. Before first execution of the PE, the data pages of the processing
element point to the frames of US;. They are set to read only
except if they were modified during the previous PE.

2. During the first execution, several events can occur,

e in particular, copy-on-write page faults may still happen, like
usually in Minix 3 .These page faults are processed by the
VM server, if they did not yet exist in US; and USs. That
ends the PE.

5.7. Protected memory 99

e Or because of attempts to write in read-only pages of USj.
These pages are set to read-write by the micro-kernel which
adds them to the "working set".

3. At the end of the first execution, the values of Ry are saved in
PRAM.

4. The micro-kernel saves R and restores the saved Rs; the micro-
kernel redirects the data pages of the process towards U.S,. Before
starting the second execution USy includes all the frames corre-
sponding to those of U.S; at the end of the first execution

5. The second execution of the processing element is performed using
Ry and USs5. Normally, the page faults that could occur during
the second execution are the same as in the first execution At the
end, the values of Ry and U Sy have been changed.

6. The micro-kernel compares R; to Ro. If they are identical, it com-
pares the pages of the working set in US] and USs. If they match,
it copies the modified pages of U.Ss to USy and Ro to Ry There are
thus now 3 identical copies of each element of information. If one
or more of the comparisons fail, the original values Ry and U.Sy
are respectively copied in Ry, Rs, US1 and US, and the sequence
is restarted from these values

5.7 Protected memory

5.7.1 Definition

Protected memory (PRAM) is memory that cannot be modified by a
direct hit by a charged particle nor indirectly by any process behaving
in an erratic way after having been victim of a SEU. The running pro-
cess can not write in PRAM. However, it will be shown that protected
memory may be read by the running process. Information in PRAM is
sufficient to restart the system whatever happens due to a SEU.

5.7.2 How to protect PRAM against direct SEU effects?

Protection of memory against direct hits is classic: that is why ECC
memories have been invented and improved with scrubbing and multi-
bit protection for years [EMO00] [MBO05]. However, protecting central
memory with multibit ECC and scrubbing is not enough. The program

Principles of hardening processes in the operating system,
100 using BHT

memory space consists of different levels: main memory, but also , L1,
L2 and L3 data caches, L1, L2 and L3 instructions caches (some caches
can be common to program and data). Fortunately caches and TLBs
are protected for the target processor (XEON lines and ATOM) [cglcll]:
TLBs as well as L2 and L3 caches are the best protected memory cells in
a computer and corruptions to L1 caches could only cause harm to the
current discardable copy of the PE variables: such faults are discussed
in chapter 3.

5.7.3 How to protect PRAM against indirect SEU ef-
fects?

On the other hand, the user processes can misbehave, but, in Minix 3,
processes are protected against each other (this is part of the job of the
VM server), so the main threat is the hardened process itself. The user
accessible registers (called here the context), located in the processor, are
not protected and the running process can become erratic after having
been subject to a SEU hitting the processor and it can wrongly modify
values in its memory space.

Because processes can misbehave, they may not be allowed to modify
their memory. Therefore, when they want to modify their memory, they
must do it on a discardable copy, one for each of the two executions
(these partial copies are called US; and US3). Only when the two
modified copies will have been found identical after the two executions,
can the original memory area of the process (called USj) be updated
with precaution by the OS.

PRAM is implemented in the same way as protection against mod-
ifications of the state of any process by any other process, i.e. using
the pagination memory management unit (MMU) of the processor: the
standard Minix 3 VM server restricts access of a process to the memory
space that has been allocated to it and lets the program modify its data
(the code is read-only). In the same way, a process is protected against
itself by modifying the VM server to place all its data in read only mode
using the pagination memory management unit of the processor.

Of course, for this kind of protection to be effective, no SEU caused
error may modify the data used by the MMU in a way causing a change
in data located in PRAM. MMU data consists of page tables that are in
the memory space of the VM server, thus safe, and processor registers,
which might not be safe. The involved processor registers are those in the
Translation Lookaside Buffer (TLB) and the registers used for memory

5.7. Protected memory 101

write operations. Whatever the way it is implemented, a TLB is always
an associative memory allowing to find a physical frame number given
a page number.

If a SEU hits the page number, the faulty page number can be out
of the addressing space of the process and will never be used (because
only a single SEU needs to be considered in a PE), the fault will not
cause any error, just the loss of a few nanoseconds to replace this useless
entry. The faulty page number can also be another page number of the
process. It could be used but this could only result in faulty data to
be read (which will, at worst, cause reexecution of the PE) or written,
which could only happen in a writable frame belonging to the process.
Since PE can only write to discardable copies, such a fault can, at worst,
cause reexecution of the PE. Thus a SEU in the page number cannot
harm protected memory, i.e. memory in which the PE is not allowed to
write.

On the other hand, if there is a fault in the frame number, anything
could be modified anywhere in memory. Therefore these memory cells
are the best protected in a computer and really well protected in Xeons
and Atoms, because, if they were not, any other protection scheme would
be totally useless [cglcll].

The valid bit is always true because all entries are always used, except
just after a TLB flush, but this is rare, does not last long and then
all entries are zeroed; thus a fault on the valid bit could only bring it
from true to false and invalidate a good entry; as above, only a few
nanoseconds would be lost. Therefore using the TLB as our foundation
for implementing protected memory is safe.

5.7.4 How to protect process’s memory against itself?
5.7.4.1 First approach

A first solution is, that used after a "fork" system call to avoid copying
all the memory of the father process in the child’s. Indeed, in most in-
stances, the child will call an "exec" immediately after the fork to install
a new program in his memory. Thus sharing the code between father
and child and allocating lazily data space to the child ("on demand")
reduces copying data that might not be used. The adaptation of this
method to PRAM is to make the data of the process inaccessible to
write access when the first execution of the processing element starts.
Of course, as soon as the process tries to access its memory, a page fault

Principles of hardening processes in the operating system,
102 using BHT

occurs. The VM server can be modified to copy the contents of the page
in a second frame and replace the original frame with the copy in the
process page tables and set the page in read-write mode.

This way, all the pages that the process needs to access would, one
after the other, be replaced by read-write copies during the first execu-
tion of the processing element. Between the two executions, the frames
corresponding to these read-write pages, accessed during the first exe-
cution, would be saved in the PRAM and replaced in the memory space
of the process by fresh copies of their original counterparts hidden in
PRAM. The same page faults will occur during the second run. They
will be handled in the same way so the two execution will be independent
to each other.

Only the final memory contents of the process, at the end of the
DWC, would be passed to the next PE. All other frames could be freed.
This solution minimizes the amount of memory space used for hardening
and avoids consistency problems between multiple copies of the same
data in different frames, but involves copying several pages for each
processing element and as many context changes between the micro-
kernel and the VM server. It is thus very expensive in computing time.

5.7.4.2 Second approach

Another solution exists. It is much less expensive in computing time.
In this solution 3 copies of the user space memory are used: UJSp, that
is always in PRAM, is complete (code and all data) and only changes
atomically at the end of each processing element. US; and US3, only
include the frames of the process that have been modified since the
beginning of the execution of the process. US] is used during the first
execution and USsy during the second. The frames of USy, US7 and
USy are always in PRAM, except a few frames of US; during the first
execution and of US5y during the second execution, as explained below.

In this solution, like in the first one, when the first execution of the
processing element starts, the code pages of the process are in read-only
(RO) mode and the data pages of the memory space are set to read-
only (RO) too, thus not accessible in writing by the process. The pages
point to frames of USy, if they exist, otherwise, of USy. When the U .S,
frames exist, they are set to read-write when they have been modified
by the previous PE or by the system call handler or kernel call handler.
Otherwise they are set to read-only.

Of course, as soon as the process tries to access any data page in the

5.7. Protected memory 103

read-only part of its memory, a page fault occurs. If that page is not
yet in US7, a copy on write is performed with the help of the VM, like
above (This can happen only once for each page in the whole execution
of the hardened process). But if the page is already in USj, then the
VM is not involved: the micro-kernel has been modified to simply set
the page to read write mode. This way, all the pages that the process
needs to access will, one after the other, become accessible during the
first execution of the processing element.

Between the two executions, US; frames will be replaced by USs
frames in the pages of the process for the second execution. The same
page faults will occur as in the first execution and the micro-kernel
will set these pages to read write mode. At the end of the processing
element, the two sets of modified frames (or their CRC, if possible with
the processor in use) are compared.

If they match, the frames modified in the second execution (U Sz2) will
be copied in the frames dating from the end of the previous processing
element (U Sp). The pages will then be pointed to frames of U Sy until the
next PE, so the hardening copy-on-write will remain transparent for the
whole system. When standard Minix code is executed, the pages of the
process point to frames of U .Sy, the only ones that are known by standard
Minix. If the compared frames do not match, the original frames (U.Sy)
are copied in those of US7 and US; and the double execution of the
processing element is restarted. In this second solution, the processing
time is much lower because avoidable frame copies are avoided, but the
existence of several copies of the same information requires care to avoid
inconsistencies. Changes to USy by Minix3 or others processes sharing
memory regions with this one must be reflected in US; and USy just
before starting the next PE.

5.7.4.3 Third approach

The second approach involves the VM server during execution of the
processing element. Tests have shown that, this is very expensive in
performance lost. The approach has been modified to eliminate the
intervention of the VM server during execution of the processing element.
US1 and U Sy frames are allocated when the VM sets the process page
table. Before starting the hardened execution of the process US; and
U S, are already allocated. They correspond to read-write data pages in
the process’s table page. To avoid comparing all the memory space of
the process hardened page faults are caused. But they are handled by

Principles of hardening processes in the operating system,
104 using BHT

the micro-kernel that gives access to the process and puts the page into
the working set of the process. Only the pages present in the working
set are compared during the comparison phase.

5.8 Handling other events during double exe-
cution

5.8.1 Asynchronous and synchronous events compared to
process execution flow

Minix is a multi task event driven micro-kernel operating system. These
events come from outside and inside the running process. Some of these
events can interrupt the running process. The outside events which could
interrupt the running process are hardware and clock interrupts. Out-
side events are asynchronous relatively to the process execution and to-
tally transparent to this process. When a processing element is restarted
these events will not happen again. Other events of the same type can
happen but normally not exactly at the same point during the execution
of the process.

The inside events which could interrupt the running process are sys-
tem calls initiated by the process itself and exceptions caused by the
process: division by zero, page fault, etc. Such events are synchronous
with the process because, if we restart a processing element in the same
conditions (with the same system data, memory space and context) they
will re-occur at the same point during the process execution.

When an event (inside event or an outside event) occurs, the execu-
tion of the process is suspended, an event handling routine is executed
by the operating system, then the execution of the process is resumed.

5.8.2 Interrupt handling mechanism in processor

In the epoch when computers were executing a single instruction at a
time, external events were handled at the end of the current instruction.
Now, in pipeline processors, there are not one but several instructions
being executed in the pipeline at any time. The general rule is that the
event will be handled between two architectural instructions, i.e. when
an architectural instruction is retired, in order to keep the atomicity of
the instructions and to need only the program counter to know where to
restart the process after processing the event, but the rule does not say
after the retirement of which architectural instruction. Actually, which

5.8. Handling other events during double execution 105

architectural instruction is selected is irrelevant for the behavior of the
processor, because the only difference would be a delay of at most a
few nanosecond for the start time of the event handling function. In
many processors, it is the last architectural instruction that entered the
pipeline, because, to implement this, the entrance to the pipeline has
only to be blocked until that instruction is retired. This is not in the
reference manual but an educated guess confirmed by tests. When the
interrupt handling routine starts, the pipeline is thus empty and, in
order to be able to resume the interrupted process, the processor must
only save the instruction pointer and the status register(s) of the process
(in most instances other registers accessible to the program will be saved
in software in the interrupt routine). Two things must be noted here:

1. The number of instructions leaving the pipeline between the inter-
rupt and the start of the interrupt handling routine is at most the
number of places in the pipeline but may be lower because there
may be bubbles in the pipeline because some instructions could
be needing resources or data not yet made available by another
instruction, ahead in the pipeline.

2. The performance monitoring counter of retired instructions, men-
tioned in section 5.3.4, generates NMI interrupts, not exceptions
and these events are thus considered as outside events although
they are perfectly synchronized with the process execution. The
event occurs after the given number of instructions has been re-
tired, but the event will only be processed when the pipeline is
empty. This is why if the retirement counter is checked in the
interrupt routine, it will not point to the instruction whose retire-
ment caused the interrupt but to one of the following instructions.

When an inside event occurs, the "simple" solution of waiting for
the pipeline to be empty is not acceptable: for instance, if a page fault
occurs, it must be handled immediately, i. e. in the middle of the
execution of an instruction.

This means much more work (for the processor) than for an outside
event, because the entire internal state of the processor, including the
state of all the instructions in the pipeline should be saved if the process-
ing were to be resumed exactly from where it stopped (Motorola 68000
processors were working that way). Besides, after the end of the event
handling routine, the process may not always be resumed with the next
instruction, because the event (in this instance, the page fault) occurs

Principles of hardening processes in the operating system,
106 using BHT

before the instruction is completed. After solving the cause of the page
fault, the instruction must then either be continued from the point were
it was suspended (as in Motorola 68000 processors) or the effect must be
undone and the instruction must be restarted. This second possibility
is the choice of the IA-32 and Intel 64 architectures. Fortunately, pro-
grammers of these architectures do not need to take care of this because
the effect is the same. They must only know to which of 4 categories
the event belongs:

1. Traps: INT I, breakpoints, etc.: the process is resumed after the
current instruction.

2. SYSENTER or SYSCALL instructions used by Minix3 for system
calls: effect similar to an INT but faster. They need not be trans-
parent because they are part of the process itself. The process is
resumed after the current instruction. Actually, they are just a
subroutine call that includes a change of the protection level from
3 to 0, which gives access to the code of the function into the ker-
nel space that is included in the memory of all processes, but not
accessible when they run in protection level 3.

3. Faults: page faults, divisions by zero, etc.: the process is resumed
before the current instruction.

4. Aborts (double faults such as page fault within a page fault han-
dling function, etc.): the process cannot be resumed.

All the possible events must, of course, be taken into account by
the hardening software. The good news is that event processing is not
done in user mode, thus the instructions performed to handle events
are not taken into account by the retirement counter. Besides, the fact
that the duration of the processing element could be longer than the
time constraint to avoid double SEU is not important because SEU
are uncorrelated with each other; thus, if an execution of a processing
element is sliced by events, what counts is the sum of the durations of
the slices, which remains nearly the same as without events (only the
number of bubbles in the pipelines may change).

5.8.3 Scheduling issues

Another common characteristic of typical event handling routines is that
they could change the relative priority of processes and cause a reschedul-
ing. The Minix scheduler consists of two parts. The first is the handling

5.8. Handling other events during double execution 107

of the scheduling queues in the SCHED server. This one decides in what
order user processes should be allowed to run, but does nothing. The
second is the picker, in the micro-kernel, that actually replaces the run-
ning process by the first user process of the highest priority scheduling
queue or by a server process of its own choice [SHT10].

The picker, in the micro-kernel, has been modified by adding state
variables to run the processing element twice before switching to an-
other process. The picker will unconditionally select the current hard-
ened process until the end of the DWC processing of the processing
element. Interrupt handling routines may let the SCHED server update
its priority queues, but the picker will only consult the SCHED server
between processing elements, not after interrupts, system calls or NMI
caused by the retirement counter overflow, of course, if the process is
still runnable. Delaying process priority changes by interrupts until the
end of the current processing element is not a necessity but a simplifica-
tion that should not have a significant influence on the system behavior
because processing elements are short.

The different types of events and their handling in the context of
BHT hardening are as follows.

5.8.3.1 Clock and others external interrupts

These could only influence the execution of the processing element by
changing the priority of its process if its time slot is elapsed. This
may not happen because it would stop the PE in a way that cannot
be reproduced in the other run and the PE would have to be restarted.
Therefore, the only thing to change is, in case the event changed the
priority of the running process, not to call the picker immediately but
to note to call it before starting the next processing element.

5.8.3.2 Page faults

When BHT is used, there are four types of page faults,

e real ones, occurring typically because the page is swapped out
(which never happens because Minix3 does not support swapping,
but might happen in other cases such as lazy loading memory
mapped files for instance); these are identified because the page
has no associated frame. These normally end the PE.

e Copy-on-write page faults identified because the page is valid, is in

Principles of hardening processes in the operating system,
108 using BHT

read-only mode but is a data page pointing to an associated frame
belonging to the parent process. These normally end the PE.

e Copy-on-write page faults identified because the page is in read-
only mode but is a data page pointing to an associated frame
belonging to USp.Their processing is then the standard one of
Minix 3, except that they are added both to US; and US,. The
page points to the US; frame and is changed to read-write.

e Other page faults. These occur during both executions. The page
is in read-only mode and is pointing to an associated frame of
USp or US5. The micro-kernel has been modified to handle these.
When they occur, it sets the page to read-write mode. The page
is added to the working set.

5.8.3.3 System calls

A system call (SYSENTER or SYSCALL instruction on IA-32) ends the
processing element, as explained in section 5.3.1.

5.8.3.4 Breakpoints

A type of system call used for debugging purposes. Can be inserted at
compile time or at execution time, but this necessitates modifying the
code during execution. Nothing to change from the classical Minix 3
behavior.

5.8.3.5 Others exceptions

Exceptions can have two causes: they can be the consequence of a pro-
gramming error (say a dangling pointer) or of a SEU. Exceptions are
maybe the most frequent and easiest way to detect a SEU and correct
its effect because they are detected by the standard hardware of the pro-
cessor and, if it is the exception event itself that is caused by the SEU,
it won’t cause any harm, just the unnecessary restart of the processing
element.

The only problem is to distinguish exceptions caused by program-
ming errors from SEU induced exceptions. This is easy because SEU
induced exceptions are random events asynchronous with the program,
while exceptions caused by programming errors are synchronous with
the program. In order to distinguish the two kinds of exceptions, one

5.9. Modifications of the process memory by the operating
system or other processes 109

must note where the exception occurred in the processing element (ad-
dress and /or value of the retirement counter) and restart the processing
element. If the exception had been caused by a programming error it
will happen again at the same place. In that case the standard proce-
dure of Minix 3 must be followed (abort the process) else, it was a SEU,
and it will not happen a second time, at least not just in the same place
and restarting the processing element was the right thing to do.

5.9 Modifications of the process memory by the
operating system or other processes

5.9.1 Results of system calls

Results of system calls must be handed over to the process. In Minix 3
there are traditional synchronous system calls (the result is transmitted
when the system call returns). In this case the results can be in the
registers or in messages and buffers in the process memory. Minix 3 also
supports asynchronous system calls. In this case, the result is provided
later (at the end of another processing element in a hardened Minix3).
Minix 3 sends then a message to the process to warn it that the result
of an earlier system call has been provided. A message is actually a
64 bytes data structure written by the OS in the process memory in a
reserved area just above the stack. Buffers are OS frames mapped into
the process addressing space.

All this must of course be taken into account in the triplicated system
used here: the "standard" OS will modify Ry, and UJSj.

R, Ry, US; and US> must be modified accordingly by the hard-
ening code. Ry and the message data structures are modified by the
micro-kernel; they are "small" data structures and their modifications
are simply performed 3 times on Ry, R1, and Ry or on USy, USy and
US,. The buffers are larger. In order to cope with these, all the pages
are redirected to USy before starting the system call processing. After
the execution of the system call the frames modified in U Sy (their "dirty
bit is set") are copied to US; and US,.

Principles of hardening processes in the operating system,
110 using BHT

5.9.2 Shared memories: exec, mmap & Co
5.9.2.1 Exec system call

Before an exec system call is performed, the memory of the process is
released. So, if it is a hardened process, all memories frames in U Sy,
US| and USs are released too. The process manager, memory manager
and the virtual file server builds a new memory core for the hardened
process in USy. The first time the hardened process runs:

e All read-write data pages in process’s memory space are set to
read-only mode.

e US) and USy will be build progressively when the process will
access these pages.

5.9.2.2 Mmap system call

In case of mmap the process memory space is increased. So there will be
new pages in USy. They are set to read-only mode before the hardened
process will run. Besides, the process could share the frames of these
pages with another process in case of memory map of a file. This is a
shared memory problem that is handled in the next subsection.

5.9.2.3 Shared memory

Besides shared memory mapped files, that can be considered as a persis-
tent type of shared memory, Minix 3 supports classical shared memory.
In both cases, the problem is threefold:

e the list of processes which share these frames must be known

e modifications of these frames by other processes must be known
to the hardening code

e the modifications must be applied into US7 and U Sy before start-
ing again the hardened process.

Of course one situation must be strictly forbidden: sharing pages be-
tween hardened and unhardened processes. When such a situation is
detected, the culprit process is killed and a message is printed in the
system logs.

5.10. Consistency issues between caches and central memaitst

Obtaining the list of processes sharing a frame (whether as shared
memory or by sharing the same parts of a memory mapped file) is pos-
sible.

Identifying the changes in shared pages is not a big issue: the hard-
ening code must anyway identify all changes of the memory of hardened
processes to know which frames to update in US; and US5 at the end
of processing elements. When these frames are shared modifying them
in USp will also modify them in the USy of the processes that share it
because the frames are shared. The corresponding frames in US] and
USy of the other sharing process become thus inconsistent with their
USy and must either be updated at this time or flagged as invalid and
updated by copy-on write when each other hardened process starts its
next execution. We implemented the second solution.

5.10 Consistency issues between caches and cen-
tral memory

Recent Intel CPUs have 3 levels of cache. The first level has a Harvard
architecture, i.e. there are separate caches for instructions and data.
These caches are addressed using virtual addresses. However virtual
addresses are not used to tag the Level 1 cache blocks. Instead the
cache blocks are tagged using the physical addresses, and the virtual
addresses issued by the processors are translated into physical addresses
by TLB, as explained in the [Int64| [HP11].

This type of architecture using apparently virtual addresses but
where cache blocks are tagged with physical addresses is commonly
called "virtually addressed /physically tagged". A property of this archi-
tecture is that when an entry of one of the two Level 1 TLBs is invali-
dated, it is not possible any more to access the blocks of the correspond-
ing Level 1 cache that belong to the invalidated page. In other words,
these blocks are automatically invalidated. The two Level 1 caches (In-
structions and data) and the unified Level 2 cache are dedicated to a
single core.

The big Level 3 cache, on the other hand, is common to all the cores
and is addressed via the same main TLB as the Level 1 and Level 2
caches of each core, like the central memory. Like central memory, it
receives physical addresses. Its blocks are not invalidated by changes
in the TLB of one of the cores. However, the block contents must be
the same as the contents of the corresponding blocks in central memory.

Principles of hardening processes in the operating system,
112 using BHT

This is true most of the time except during write operations. The caches
of the IA32 architecture are "write back", which means that, from the
processor’s point of view, the write operation is finished as soon as the
data are in the Level 1 cache. When data are written in the Level 1
data cache, the other caches are updated as soon as possible, which is
rather fast for the 3 levels of cache. However, the write back scheme
of TA32 is not the traditional write back, where data are only written
to memory when the cache block has to be reused for other data. This
traditional writeback scheme will be called here "alap writeback" (As
Late As Possible). In IA 32, writing in central memory happens as soon
as the bus is free. Therefore the IA32 like caches will be called here
"asap writeback" caches (As Soon As Possible). Write operations to
the level 1 cache have the size of the operand of the writing instruction.
Write operation to the other caches have the size of a cache block, i.e.
64 bytes.
The cache related issues to consider in this work are:

1. SEU hitting caches

2. impact of the write back nature of the caches on the comparison
of the modified frames by the micro-kernel

3. impact of the caches on the replacement of US; frames by US,
frames between the two executions.

The possibility of a SEU affecting a cache has been taken into ac-
count in the probabilistic analysis of chapter 3 where Levels 1 caches are
included in the risk. Cache Level 2 and 3 are assumed to be adequately
ECC protected (DECTED); therefore a single SEU will not have any
effect, assuming it will not affect 4 bits or more of the same word. Only
one or several SEU on the same word block could cause a fault to be
undetected if 4 bits or more are modified. This risk can be considered
as negligible because a cache is a temporary storage. To make sure this
"temporary" characteristic is short enough, full cache flushes must be
performed often enough. Identifying how frequently cache flushes must
be forced to be entirely sure that no undetected error can happen in
the Level 3 cache between these flushes. Being rather rare, these flushes
should have no noticeable impact on performances.

The "asap write back" nature of the caches means that the central
memory will be updated shortly but not immediately after a write to
memory operation. When comparing US7 with USs, US; has not been

5.10. Consistency issues between caches and central memait3

modified for a long time, but frames of USs might have been modified
just before the end of the second execution. However, because the micro-
kernel uses the same page tables as the hardened process, it can use the
logical addresses of the pages pointing to USs for this comparison, i.e.
read them from the L1 that is up to date, while using other addresses
for accessing US]. Therefore the cache will not induce errors in the
comparison.

The third problem is that there are copies of the modified blocks of
the frames modified in U S7 in the Level 1 data cache that is using virtual
addresses. Which means that, at the beginning of the second run unless
the TLB is invalidated between the two executions, and even though
the US] frames in memory have been replaced by USy frames, at the
beginning of the second execution, the CPU will still use the copies in
the Level 1 cache, that are not copies of USs frames but of US| frames.
This means that the second execution will not use the same initial values
as the first and could become erratic as if it had been hit by a SEU. The
problem is that if the PE is simply restarted, the same problem will occur
again. Fortunately, this situation will not happen because the TLB is
invalidated automatically between the two executions because the micro-
kernel subcontracts, to the VM server, the replacement of U.S; by USs
frames and the VM server being a separate process with its own page
tables, the CR3 register is modified before starting the VM server in
order to replace the hardened process page tables by those of the VM
and, in the Intel architecture, replacing the contents of CR3 invalidates
the three TLBs and automatically invalidates the corresponding blocks
of the L1 cache. Although this invalidation may take a few cycles, the
delay between this TLB invalidation, and reuse, by the second execution
of the hardened PE, of the same addresses is long enough.

In the current implementation, the hardening work is split between
the micro-kernel, that uses the hardened process page tables when per-
forming hardening work, and the VM server that uses its own page
tables. Because of the change in the page tables, the CR3 register must
be modified both between the two executions of each PE and between
successive PEs, and this automatically clears the TLB and invalidates
the level 1 and level2 caches. If all the work had been performed in the
micro-kernel, the TLB should have been cleared explicitly.

Principles of hardening processes in the operating system,
114 using BHT

5.11 Machine check architecture

MCA is a feature found in processor architectures that can detect hard-
ware errors such as system bus errors, ECC errors, parity errors, cache
errors, and TLB errors. And it can report them to software. It consists
of specific registers called MSRs that are used to configure the MCA
and a set of MSR registers called register banks that inform about the
nature of the errors. The MCA is actually the functionality of the pro-
cessors that informs what is really happening in the big machine that
a processor is. Many errors are detected and corrected by error correc-
tion mechanism present within the processor (ECC, DECTED SECDED
etc). Errors that are not correctable are reported to the software if the
software has provided an ISR (interrupt software routine) for this type
of error. Otherwise the processor will just reboot or crash. The MCA is
based on the RAS features found in most mission-critical systems such
as servers or critical system control or monitoring systems. As part of
this thesis the functionality of the MCA is used to recover errors that
might escape the classic management of exceptions.

5.12 Conclusion

BHT principles and stated solutions have made it clear that it is pos-
sible to allow the operating system to harden its application processes.
However, some problems must be taken into account to make it possi-
ble. It has also been shown that both interrupt and exceptions will not
be able to disturb the atomicity and idempotency of PEs. It has also
been shown that the MMU remains a reliable mechanism on which the
implementation of the BHT can rely for the implementing the protected
memory. The following chapter discusses the actual implementation of
the BHT method in Minix 3. The latest version was used, the 3.4.0.

CHAPTER

Implementation of
hardening processes in the
operating system, using
BHT

6.1 Introduction

This chapter presents the implementation of the principles outlined in
the previous chapter. Remember that the blended hardening technique
used in this work is based on dividing programs in processing elements
short enough to assume that the hardening must only cope with a single
fault. Before starting each processing element, a snapshot of the entire
state of the process is saved in protected memory. If a fault is detected,
the processing element is aborted and restarted from the snapshot. If
no fault is detected, a new snapshot is taken and the next processing
element is started. Of course, the aim is to detect all faults. Two com-
plementary detection techniques are used. Many faults cause exceptions
or are detected by the machine check architecture that also produces
exceptions. These fault are processed in the exception handling routines
that immediately abort and restart the processing element. Other faults
cause the PE to produce a faulty result but no exception. They are de-
tected by double execution of the processing element and comparison
of the results. If the results (i.e the complete state of the process) dif-
fer, the processing element is restarted from the original snapshot. All
the hardening occurs in the operating system. Minix3 version 3.4.0 has
been modified to harden the execution of its application processes The
implementation was performed on the x86 architecture on which Minix3
runs. The style used is a narrative style to allow the reader to see step
by step the different events that occur during the execution of a pro-
cessing element (PE). Only the micro-kernel and the memory manager
have been modified in this implementation. The figure 6.1 shows the
global architecture of hardened Minix3. The micro-kernel part of the
the hardening software are subdivided into four modules, HM (Harden-

Implementation of hardening processes in the operating
116 system, using BHT

ing Manager), HEC (Hardening Execution Control), PRAM (Protected
RAM), HEH (Hardening Exception Handler). HM sets the hardening
environment by initializing hardening data structures. HM is the entry
point of the hardening software to enable or disable the hardening within
the OS. When HM sets the environment, HEC is responsible to execute
each hardened process as long as hardening is enabled. HEC handles the
DWC. HEC use functionalities provided by the others modules (PRAM,
HEH). PRAM implements the protected memory part. HEH imple-
ments the exception handling part of BHT. It informs the HEC module
when a PE should be stopped. The VM part of the hardening software
includes one hardening module, VPRAM. It is the module for providing
protected memory service and handle US1 US2 memory frames within
VM from their allocation to their deallocation. In the second section,
the functionalities and implementation choices of the HM module will
be detailed. In the third section the functionalities and implementation
choices of HEC module will be detailed. In the fourth section,the imple-
mentation of the protected memory will be presented. The presentation
will include both the kernel part and the VM part. In the fifth section
the management of exceptions will be addressed including the manage-
ment of retirement counter, of the MCA exceptions, the single stepping
and the faults detected by hardware. In the sixth section the changes
made to the Minix3 operating system will also be discussed. And finally
the last section presents the user interface of the hardening software.

6.2 Hardening Manager

6.2.1 Requirements

This module is the interface between the hardening software and the
rest of the operating system. It contains the following features:

e Initialization of the hardening data structures in the micro-kernel
and in VM

e Enabling or disabling hardening in the micro-kernel and in VM

e Starting the HEC module

6.2.2 Implementing the Hardening Manager

The data structures and hardening state variables are initialized with
the function init _hardening. (See listing A.3.1). They are set to their

6.2. Hardening Manager 117

Kernel

T | rec

i HEH EPRAM

i\

WMPRAM

Figure 6.1: Hardening global architecture

respective default value. The instruction retirement counters and the
machine check architecture are also initialized. The table 6.1 shows the
state variables, their meaning, and their default values.

Another feature of the Hardening Manager is enabling or disabling
hardening. This means that when you start the operating system, hard-
ening is not enabled by default. It can be activated through a user library
available on the command line. Hardening must therefore be activated in
the micro-kernel and in the VM. This is done using the do hardening
function which receives from the PM (Process Manager) the parame-
ters to enable or disable hardening. Details on these parameters will
be presented in the user library section. The do hardening function
will enable or disable hardening in the micro-kernel and send a message
to the VM. The VM will do the same with the function do _hardening
present in the VM address space.

The hardening manager is also used to start the HEC module with
the function start dwe. This function is the entry point of the HEC
module.

118

Implementation of hardening processes in the operating
system, using BHT

Table 6.1: Hardening state variables

Variables names

Meaning

Default
values

h__enable

to tell that a hardening
execution of a PE is in

0 (means
no)

PE state should be re-
stored

progress
h_proc_mnr the id of the current PE | 0 (no pro-
process cess)
h_step DWC step (1 or 2) 0
h_restore Between two runs the | 0 (means

no)

h_unstable state

A fault is detected and
the correction is
progress

n

0

h_can_start hardening

Hardening is enabled

0 (means
no)

6.3 HEC

6.3.1 Requirements

The DWC module is the central module of the hardening software. It

provides the following services:

Saving initial state

Starting the first run

Restoring PE context and memory to initial state

Starting the second run

Comparing the results

Restarting the double execution in case of nonconformity of the

results.

6.3. HEC 119

6.3.2 Starting the first run

6.3.2.1 Requirements

The restore _user context function is the transition point from kernel
mode to user mode. This is a point of no return for the kernel. It is in
this function that the context of the user process is restored to allow it
to run. This function is therefore the exit point from the kernel to the
process that will start its execution in a hardened way. So the function
start _dwec is called from there. Specifically to start the first run the
following requirements are taken:

e The initial state should be saved. That means, the process key
information should be stored in the protected memory

e The hardening step should be initialized at FIRST step

e Write access to process data should be restricted. That means all
the process’s pages accessible in writing must be marked read-only.
That is done by the PRAM module.

e The instruction retirement counter should be initialized. It must
be configured to count and to overflow and send an exception af-
ter the instruction number specified in the previous chapter i.e.
1260848 instructions in order to respect the principle of the scarcity
of SEUs.

6.3.2.2 Implementation details

In the function start dwc the hardening is enabled for the process con-
figured to be executed in hardened manner. (See listing A.3.2). Hard-
ening is activated through the global variable A _enable. If h_enable
is 0 no hardening is in progress. If it is 1 a hardening is in progress.
So at the entry of this function (start dwc), h_enable is checked to
know if a hardening is in progress. Suppose h_enable is 0 so there is
no hardening in progress. The criteria necessary for a process to be ex-
ecuted in a hardened way are then checked. Two criteria are that the
process to be hardened is not the memory manager (VM) and has the
bit PROC TO HARD in its hardening flag set.

If the process conforms to the criteria. Be sure that there is no
active hardening step. The hardening steps are found in the global
variable h_ step. If this variable is 0 there is no active hardening step.
When it is FIRST RUN, the first execution step is active. When

Implementation of hardening processes in the operating
120 system, using BHT

it is SECOND _RUN, the second execution step is active. When it
is VM RUN, the intermediate step that allows the memory manager
(VM) to execute during hardening is active. Note that, at this point,
only a SEU hitting the kernel could result is A _step to be non-zero.

Suppose there is no active hardening step. The identification number
of the process is memorized. That identification is saved in the global
variable h_proc_nr. This number will be used later to find the process
being hardened. Then the hardening step h_step is changed from 0 to
FIRST RUN. The first step of the PE is started. This is done with
the function update step. Then the PRAM module is called to restrict
write access to the PE memory data according to the PRAM policy.
This is done through the function set _pe mem to_ ro.

Then the initial context of the process is saved. This will be use-
ful to restart execution of the PE in case of comparison failure. That
was explained in the previous chapter. This is done with the function
save__copy Q.

Then the instruction retirement counter is initialized so that it can
count the instructions and trigger an exception in case the threshold
instruction number is reached. This is done through the
set _remain_ins_counter value 0 function. The functionalities of
this function will be described in more detail later.

And finally the hardening is enabled. The variable h__enable be-
comes 1. From this moment the user process can begin its execution.
That’s what happens, its context is restored and it starts to run.

6.3.3 Starting the second run
6.3.3.1 Requirements

Starting for the second run is a little different from starting for the
first run. Before starting for the second run the hardening is already
activated. The event that causes the end of the first run informs that the
second run may begin. Specifically, the following tasks are performed:

e Verification of key information of the PE

e Backup of the lusl wus2 list. The working set list is the set of
pages that have been modified during this PE or the preceding
one. The lusl wus2 list is the set of (usl,us2) memory frames ad-
dress allocated to the PE for hardening purpose to be used during
first and second run. It contains the addresses of the frames be-
longing to US0O, US1 and US2. The frames of USO are the frames

6.3. HEC 121

of the working set list that belong to the protected memory. They
are therefore not modified by the PE during any of the two exe-
cutions. The frames of US1 and US2 respectively constitute the
set of frames modified by the PE during the first and the second
execution.

e Restoring the PE register and state variables as they were at the
beginning of the first EP run.

e Write access is restricted to the process. That means all these
pages accessible in writing are marked read-only.

6.3.3.2 Implementation details

When starting the second execution of the PE, the hardening is already
active so h_enable is 1. The variable h_restore has also been enabled
to allow the restoration of the state of the PE as it was at the beginning
of the first run. The variable h_restore is enabled when the event that
ends the first run was handled.

A check is made to ensure that the process to be executed is the
current PE. Then the state of the PE is restored to what is was at the
beginning of the first run. The pointer to the working set list is copied
in a local variable. The size of the working set list is also copied in a
local variable. The state at the beginning of the first run will be reused
for the second execution.

Then the state at the beginning of the first run is restored using the
restore__copy 0 function The context (ie the values of the registers)
and the process’s kernel state variables are taken into account during
the restoration.

Then the pointer to the working set list and the size of the working
set, list are restored from the local variables. The function
set_pe _mem_to_ro is then called to make the PE’s pages inaccessible
for writing.

Thus the same page faults will be generated and they will be handled
by the kernel like during the first run.

6.3.4 Stopping a PE

6.3.4.1 Requirements

The previous chapter defined the events that could be considered as the
frontier of PE. It should be ensured that when the process is interrupted

Implementation of hardening processes in the operating
122 system, using BHT

by one of these events, it should not change any state within the micro-
kernel before the final commitment of the PE. The various points of
entry into the micro-kernel have been identified and the execution flow
at these different points has been modified to satisfy this requirement.
These entry points are the interfaces between the Minix 3 microkernel
and the HEC module. The next section will describe these entry points.

6.3.4.2 Minix 3 entry points

In order to stop a PE in the right way, it was necessary to locate the
locations in Minix3 where interrupts, exceptions, traps and faults are
taken into account. The mpz.s file contains all of these entry points.
This file contains all the handlers of traps, interrupts, exceptions, and
faults that occur within the Minix3 operating system. As it has been
described in Chapter 5 of our thesis a number of events can stop a PE.

In Minix 3 the implementation of the system call is made with the
SYSENTER software interrupt and four other software interrupts are
defined on the vectors 32 to 35 namely

e IPC_VECTOR_ORIG

e IPC_VECTOR UM

e KERN CALL VECTOR_ORIG and
e KERN CALL VECTOR UM

The entry point from the hardware to the software identified in this
mpz.s file for each of these vectors are

e ipc_entry sysenter

ipc_entry softint orig

ipc_entry softint _um

kernel call entry orig and
o kernel call _entry um

So when the user process initiates a system call or a kernel call, it is
from one of these addresses that the execution continues in the kernel
to later execute the appropriate handler for the system call whose query
type and the parameters are in the registers initialized in user space

6.3. HEC 123

before the software interrupt instruction. The reader will be able to
refer to chapter 4 and 3 for more explanation about these events in the
x86 architecture and in Minix 3. When the CPU traps at one of these
addresses the normal execution of Minix3 leads to either execution of
the do_ipc function or execution of the kernel call function. Each of
these functions handles system calls or kernel calls respectively.

6.3.4.3 DWC and Minix 3

To perform the double execution, this execution flow has been modified.
The following objectives have been pursued. As soon as the trap occurs,
the DWC mechanism will have to:

e Be able to know if it is time to stop the execution of the PE or not
e Know the current stage of DWC

e Be able to restart the execution of the PE without any changes
made within the kernel to handle this event.

e Secondly, this diversion of the flow of execution should not influ-
ence the normal handling of the system call or the kernel call. For
example, the handling of the system call or the kernel call should
not be done twice.

To achieve these objectives, firstly, code for checking the hardened
execution steps has been added. If it is step 1 or step 2, the flow of exe-
cution is diverted to the hardening task entry entry point. As soon as
the execution flow arrives at this point, the function C (hardening task)
is also called. The features of this function are detailed below.

Secondly, the registers necessary to execute the kernel call or the
system call are saved before the execution flow deviation. The values
of these registers are used during the comparison phase to ensure that
both run produces the same states. These values are also restored to
the registers before continuing to handle the system call or kernel call
at the end of the hardened processing of the PE. Indeed, calling the
hardening task entry function may have changed the values of these
registers.

Implementation of hardening processes in the operating
124 system, using BHT

6.3.5 Restarting PE between the two runs: hardening task

6.3.5.1 Requirements

The PE may have to be restarted between the two runs, or when the
comparison fails, or when the retirement counter has counted different
values during the first and second runs. The processing element must
be restarted. Therefore, the PE’s memory should be restored as well as
its context. The HEC module uses the PRAM module to restore PE
memory.

6.3.5.2 Implementation details

Security checks at the beginning of the function hardening task. At the
entry of this function (hardening task) the hardening state is verified.
Then the running process is read in p. A check is made to ensure that
the running process is the current hardened process. Also this function
should be called either at the first or the second execution step of the
PE. Then the save context function is called.

The function save context as its name suggests, saves the PE con-
text. This backup will be used during the comparison phase. Standard
and accessible registers are saved in global variables. Each register has
two representatives, one for each run stage. It is the same for the state
variables related to PE within the kernel. So depending on whether it
is the first or the second execution, the corresponding backup function
is called (save copy 1 and save copy 2).

Then if it is the first execution, the global variable h _restore is mod-
ified to RESTORE FOR SECOND RUN in order to remember
that the PE will have to be restored to its state before the beginning of
hardening at its next execution. This takes us to the second part of the
restore__user _context function that we explained earlier. The reader
should refer for further understandings.

Then the function vm_reset pram of the PRAM module is called.
In the case of the first execution, it allows the mapping of each USO
frame to each page in the kernel’s working set list. As soon as the
mapping is done, the function vm_reset pram returns. And the func-
tion run_proc_2 is responsible for starting the second run. There is
no return to the calling point of the hardening task function. In the
meantime, there will be a pass through the restore user context func-
tion and the change of state of the global variable h _restore will enable

6.3. HEC 125

the restoration to the state before the start of the PE as explained above.
But if this is the second PE run, the comparison stage starts.

6.3.6 Comparison stage: hardening task
6.3.6.1 Requirements

The registers produced during the two runs must be compared. Pages
modified during the two runs must also be compared. When all com-
pared elements are equal the PRAM module copy the modified US2
frames contents to their corresponding USO frames. And finally the
HEC module hands over to the Minix 3 micro-kernel (the latter will
process either a system call, a kernel call, an exception, a scheduling).
Otherwise the HEC module restarts the PE.

6.3.6.2 Implementation details

Then a comparison of the registers produced during each run (first run
and second run) is performed. (See listing A.3.2). That is the compar-
ison phase. If the comparison is successful, ie each pair of two-by-two
register have the same value. The pairs of contents of usl frame and
us2 frame of each page where a page fault occurred are compared.

The execution goes to the restoration stage, if the comparison of the
registers or the comparison of the pairs of contents of usl frame and us2
frame of each page where a page fault occurred does not proceed well,
that is to say that at least one pair of registers does not have the same
value or one of the pairs of contents of usl frame and us2 frame of each
page where a page fault occurred are not the same. If such comparison
failure occurs, the state is restored to the the initial state of the hardened
PE.

However, if each comparison succeeds, that is to say that the contents
are exactly the same, we proceed to the reset of each hardening variable.
Each frame us0 is mapped to each corresponding page in the working
set list. All hardening state variables are reset. This means that the
hardening of the PE is complete. The system can proceed with the nest
PE of the hardened process or choose another process to harden. It
may be the same process as previously chosen or another process. This
decision is made by the native scheduler of Minix 3 that we have not
modified.

Implementation of hardening processes in the operating
126 system, using BHT

6.3.7 Restoration stage: hardening task

6.3.7.1 Requirements

One of the features of the HEC module is to restore the PE from the
current state (context plus memory) to state saved in protected memory
(context plus memory). This restoration is needed between two runs
before starting the second run, and when the comparison has failed
(restore to the initial state). A restoration of a saved state is also needed
when the execution of the first run must be done in single stepping mode.

6.3.7.2 Implementation details

When a fault is detected, the variable h_restore takes the value
RESTORE FOR FIRST RUN to indicate that the initial state of
the PE must be restored before restarting the PE.

The variable h_unstable state is set to H UNSTABLE. That
means the system is in an unstable state. The exception handler, the
system call handler and the kernel call handler will be informed to not
spread the unusual events to the other parts of the system. They will
just return. Thus the hardening code will handle that fault by restarting
the PE.

Each page in the working set list is mapped to the corresponding
frame of US0O. So the memory of the PE is restored to US0O. The process
is prevented from running until the point where it is restarted is reached.
The PE is not restarted immediately like during the restoration of the
first run. Thus the handlers (exception, system call and kernel call) will
have time to be informed to not spread the unstable state to the others
parts of the system.

Then the PE’s registers and all initial variable of the PE will be
restored and the PE will be restarted when the execution switches from
the kernel mode to the user mode. The two runs will be executed. The
DWC will be proceeded normally.

6.4 Protected memory(PRAM)

Protected memory may not be modified during any of the two executions
of the PE. When the process is started all its pages are linked to the
frames of USO. At this time, all the pages of the process are set to
read-only. Besides, all the memory of the computer is assumed to be
efficiently protected by ECC against direct SEU effects. USO is thus at

6.4. Protected memory(PRAM) 127

that time protected against all modifications by the process itself and
by SEU.

The protected memory requires the PE not to be able to modify
its memory directly. During execution of the PE, if it tries to modify
its memory, new frames must be allocated to it and the contents of
the protected frames copied into the newly allocated ones. This can be
implemented in two ways:

e to pre-allocate the frames before starting hardened PE execution
e or allocate frames by copy-on-write.

The copy on write is used a lot in the field of file system and memory
management usually for sharing pages between several tasks as long as
they do not need to modify them for their own and only use. [Pet02,
Chu96|. The principle is to copy the data in a new frame when the task
wishes to modify it. So a private copy is created for the task.

This is the case for example when creating a new process with the
fork system call. The principle requires the memory of the parent pro-
cess to be duplicated in order to create the memory of the child process.
A more efficient way to implement the fork using the copy-on-write prin-
ciple is to map the pages of the parent process and the child process to
the frames belonging to the parent process. However, care must be taken
to make all these pages read-only. Thus the father and child could con-
tinue to run until one of them tries to modify data, in this case for the
page or pages concerned one or more frames are allocated to the process
that tries to write (either to the father or the child).

Experience has shown that in Minix3, copy-on-write allocation is
very expensive in performance. That needs multiple context switches to
allow the VM to run. It was preferable to choose the pre-allocation. For
this purpose, before the start of a PE, the VM PRAM module in the
VM allocates for each process data page a pair of frames (usl, us2).

6.4.1 Pre-allocation of US1 and US2 : Building PE
lusl us2 list

6.4.1.1 Requirements

US1 and US2 frames are essential for the PE during the first and second
run. These frames are used by the PE when it modifies its data. These

frames can be allocated during PE execution (via copy-on-write) or be-
fore PE execution (when the VM allocates the USO frame to the PE

Implementation of hardening processes in the operating
128 system, using BHT

EVMPRAM I EPRAM |

(use “use
v

I N

T sMH SCH

Figure 6.2: Protected RAM architecture

process). Allocation during PE execution is handled by the VMCOW
module in the VM and preallocation is handled by the VMPRAM mod-
ule in the VM. Each PE has a list containing the addresses of US1 and
US2 stored in the micro-kernel and in the VM.

The VMPRAM module in the VM is used whenever the VM changes
the page table of a hardened process. The VM changes the page table
of a process when one of the following events occurs:

e Creation of a new process, so a new page table is created for the
process

e The hardened process makes an exec system call

e A page fault occurred on a writable page by the process. In this
case a new frame is allocated to it.

e The running process asks for memory allocation

The purpose of this module is to ensure that each page present in the
page table and accessible for writing by the PE has the corresponding
frames in US1 and US2.

6.4. Protected memory(PRAM) 129

6.4.1.2 Pre-allocation of US1 and US2 in the VM

The usl and us2 frames allocation is activated in the pt _writemap func-
tion. This is the Minix3 function for modifying the page table in the
VM. If the written entry has the write bit set, that means the VM has
just given write access to the hardened process. A call is made to the
function tell kernel for wusl wus2. As the name suggests this func-
tion will allocate the frames usl and us2 and pass their addresses to the
micro-kernel.

At the beginning of the tell _kernel for wusl wus2 function, a check
is made whether the page already exist in the lusl ws2 list of the pro-
cess. If no, new frames usl and us2 are allocated and associated with
the page. Otherwise, that means that us0O was released, just update the
us0. The quadruplet (v, us0, usl, us2) is then sent to the micro-kernel
by the sys addregions to ws kernel call.

6.4.1.3 Pre-allocation of US1 and US2 in the micro-kernel

In the kernel level, the add regions to ws function (In the PRAM
module) retrieves the quadruplet (v, us0, usl, us2). With v as index a
quick check is made to see if the page already exists in the lusl wus2
list. If so, us0 is updated. Otherwise a new data structure is created to
store the quadruplet. Copying data from us0O to usl and us2 is not done
immediately. Because it is possible that after modifying the page table
a server process could copy data in the new pages for the process. A
flag is enabled to allow the actual copy to be done later when the HEC
module will prepare the execution of the PE.

6.4.2 Copy-on-write allocation of US1 and US2

Before starting the first run or the second run of the PE, all the pages
pointing to USO are set to read-only. All the page pointing to US1
(resp. US2) are also set to RO except those that were modified during
the previous PE (in order to identify by page faults which frames are
modified by the PE and must be compared for DWC at the end of the
PE). Setting in this way pages to read-only will cause page faults. These
page faults caused by the hardening are called "caused page faults".

Implementation of hardening processes in the operating
130 system, using BHT

6.4.2.1 Handling caused page faults in kernel

The function check wvaddr 2 of PRAM module handles the copy-on-
write page faults. This function can be called only when one of the
hardening steps are enabled:

e FIRST RUN;
e SECOND_RUN or VM_RUN.

Hence the verification is done at the beginning of the function.

Then, the entry in the page directory (pde) and the entry in the page
table (pte) are computed from the virtual address. The virtual address is
also stored in global variables page fault _addr 1 and page fault addr 2.
These are respectively the page fault address during the first and the
second run. That is used during the comparison step.

Using pde as index and the root address of the process page table,
the value of the page directory entry is read. This value contains the
address of the page table of this directory, and also flags giving the state
of this entry. These flags are checked.

If the page directory is not writable (1386 VM W RITE) or is not
an accessible directory in USER mode (1386 VM USER) or is not
present (1386 _VM PRESENT) or is a directory containing global
pages (I386_ VM GLOBAL) or a directory containing big pages (4MB,
1386 VM BIGPAGE), the page fault is managed by the VM with-
out of intervention of the hardening software. It’s a normal page fault.
A directory of global pages is used by the kernel for shared code and
data (shared libraries, shared data, etc.). Big pages are pages over 4K.
Currently, to my knowledge, Minix3, only supports 4K pages.

Then the address of the page table is read. This address is extracted
from the value of the page directory entry read previously. With this
address as the base and the pte as offset, the value of the entry of the
page table is read. Two checks are made, the presence of the page. If
this check is not verified, the page fault is treated as a normal page fault
by the VM. That will end the PE.

The address of the frame (pfa) is extracted from the value read.
If this address is null, the page fault is processed by the VM. Then a
search is made in the block list of the lusl ws2 list using the function
look _up _pte. Each block of this structure consists of the data structure,
struct pram_mem_ block.

e The id used to reference the block in the list.

6.4. Protected memory(PRAM) 131

e The variable vaddr : This is the base virtual address of the page.

e The variable us0 contains the address of the current frame of the
page in USO. This is the address of the frame as known by the rest
of the system. In the case of Minix3, it is the VM that knows this
address in its data structures. In the case of a serious event, it is
from the data of this frame that the data of the page is restored.

e The usl variable contains the address of the frame that stores the
results of the first run. uwsl belongs to USI.

e And finally the variable us2 contains the address of the frame that
stores the results of the second execution. us2 belongs to US2.

When the look up pte function returns a null element, that means
the page fault address does not belong USO. Then the page fault is a
normal page fault handled by the VM. Because the lusl wus2 list may
not change in any way during hardening, that will end the PE.

Then ensure that the usO attribute of the block returned by the
working set matches the address of the frame read using the page table
entry (pfa). Make sure that the us0 and vaddr attributes of this block
are non-null.

Then we mark this block as a block on which a page fault caused by
hardening has occurred i.e that the page has been set read-only by the
function vm__setpt _root _to_ro, and a page fault occurred on that page
during that current PE. This makes it possible to reduce the number of
frames to be compared during the comparison step. Only blocks that
have this bit enabled in their flags will be processed.

Update the value of h _rw described above.

The kernel can handle the page fault without informing the VM if the
usl and us2 frames have already been allocated for this page. Otherwise
the VM is informed to do this allocation. For this reason, in case the VM
must be informed, the bit PRAM LAST PF is enabled for this block
representing the page so that, as soon as the VM makes the allocation,
the kernel can update the attributes of the block at its level (usl, us2
and us0).

To avoid having more than one data structure that manages the same
page in the working set list, the function look up unique pte allows
us to make sure of this. This should not happen except after a SEU
touching the micro-kernel.

Implementation of hardening processes in the operating
132 system, using BHT

6.4.2.2 Principles of handling caused page fault in the VM

In the Minix 3 operating system the memory is managed entirely by a
server process: the VM. When the system starts, the bootloader informs
the kernel of available memory. The latter takes the amount of memory
it needs and sends a message to the VM containing the sizes and the base
of the available memory blocks. All memory requests are forwarded by
the micro-kernel to the VM. There is no dynamic allocation of memory
in the micro-kernel. All micro-kernel memory is allocated statically. It
is therefore not possible to implement copy-on-write without involving
the VM. The VM has to play three roles for the hardening:

e Allocate the frames for US1 and US2 and free them when their
corresponding USO frame is freed.

e If copy-on-write is used ask the kernel to copy the contents of the
frame of USO respectively in US1 and US2 for the second execution,
when these frames do not yet exist.

o If copy-on-write is not used the VM just allocates frames for US1
and US2 before starting the PE execution and and frees them when
their corresponding USO frame is freed.

For this the VM maintains a data structure similar to the lusl wus2 list
maintained within the micro-kernel. A way has been found to keep these
two lists synchronized.

Moreover it is also within the VM that the big changes in the memory
space of the process are made. For example, through the mmap, mumap,
brk system calls, the memory space of the process may change without
the micro-kernel being informed of that change. The lusl wus2 list being
maintained from one PE to another, it was necessary to find a way
to inform the micro-kernel of each change. The simplest decision was
to release the lusl wus2 list each time one of these events occurs and
recreate it after needs. It is not very effective. More effective approaches
will be discussed in the section 6.4.3 for each of these cases (allocation
and free).

There are also other events such as exec system calls that are handled
in a similar way except that the kernel is by default informed in this case
precisely.

6.4. Protected memory(PRAM) 133

6.4.2.3 Handling messages from micro-kernel

The main function of the VM, main.c file was modified. In this function
the VM waits to receive a message from the other system processes or
from the micro-kernel. As soon as a message is received the VM verifies
the source and type in order to call the appropriate routine to handle
the request. The VM was modified to take into account the three new
message types described above VM HRIPAGEFAULT (the faulty
page is read-only and the page fault occurred during the first run of the
PE) VM HR2PAGEFAULT (the faulty page is read-only and the
page fault occurred during the second PE run).

If the concerned pages fault is caused by hardening (that means the
message typeis VM HRIPAGEFAULT orVM HR2PAGEFAULT
) we have written a special manager that deals with the treatment of
that page fault, do_hpagefaults.

6.4.2.4 Handling caused page faults in VM
: do__hpage faults

The do_hpage faults function is a bit like do_page faults but without
the unnecessary extra function call to handle the page fault, the Minix3’s
native page fault handler. The reason to write a new function is to
dissociate the handling of page faults caused by the hardening software
from normal page faults of Minix 3.

First the process accessing to the faulty page is identified. In hmap pf
function three frames are allocated for protected memory. Finally the
micro-kernel is informed to update the page’s attributes within its mem-
ory space.

Then one makes sure that the page corresponds to a valid memory
area of the process. This makes it possible to recover page faults due
to poorly initialized pointers. However in the context of hardening this
can only happen if the program is poorly written. It allows to locate
the virtual region of the page. This information is sent to the hmap pf
function.

The purpose of the hmap pf function is to extract the physical
block corresponding to the page and to make sure that the attempt of
the process is legitimate. That is, the process has the right to write to
this page. It is after all these checks that the memory allocation function
is called.

Implementation of hardening processes in the operating
134 system, using BHT

6.4.2.5 Copy-on-write allocation of US1 and US2 in VM

The function allocate _mem 4 hardening in the VMPRAM module
handles the VM part of the copy-on-write. This function takes as pa-
rameter the process, the virtual region, the physical region and and a
parameter to signal whether it is called during the first or second run.

One checks if the block exists in the working set maintained by the
VM. It should be noted that in case of copy-on-write allocation unlike
the micro-kernel the VM lusl wus2 list is built when the VM processes
page faults. So when the search is unsuccessful a new block is allocated
and added to the list of the working set of this process within the VM.

Before the block is added one frame was requested from free memory.
Then the VM updates the block’s attributes within its memory space
according to the hardening step (FIRST or SECOND run). The contents
of us0 are copied into each of the frame to ensure that the US1 (resp
US2) frame have the same data at this stage of hardening. The kernel
is aware of this through the kernel call sys hmem __map which actually
trigger do_hmem_map service within the kernel.

In case the block is already present, if usl or us2 is null a new frame
is requested. The value of usl or us2 is changed accordingly.

The content of the current frame is copied to usl (resp in us2) de-
pending on whether you are in the first or second execution. Then finally
the micro-kernel is informed for synchronization from the sys hmmap
system call.

6.4.2.6 Copy-on-write allocation of US1 and US2 in micro-
kernel

The do _hmem map function in the PRAM module handles the al-
location of US1 and US2 by copy-on-write part in the kernel. This
micro-kernel function closes the page fault management loop as part of
the hardening process. The page faults hardening work is split between
the kernel and the VM. After finishing its job the VM has passed the
addresses of the frames usl (resp. us2) to the micro-kernel.

This function, called when the sys hmem map system call is ac-
tivated, searches for the corresponding block in lusl wus2 list of the
micro-kernel. We have already said in the previous pages that the
PRAM LAST PF bit was enabled at the block level to remember the
page concerned by the page fault. So the search is performed based on
that bit. The block having this bit enabled is thus returned. The service

6.4. Protected memory(PRAM) 135

therefore updates the values of the block’s usl, (resp. us2) attributes.
The services also maps the page to usl, (resp. us2).

At the end of the execution of this step the kernel and the VM have
the same information on the page in which the page fault occurred. This
process will be repeated as long as the PE makes page faults.

6.4.3 Changes in process memory space

During the execution of the process its memory space may change. This
can be fatal to the process if the lusl wus2 list is not updated in accor-
dance with these changes performed by the VM. Normally the process
keeps the working set list until its exit. If its memory space does not
change US1, US2 and USO will remain unchanged. The changes that
would be the most fatal if the micro-kernel ignored them are the re-
placement of one region by another bigger region with change of physical
addresses, while the old virtual addresses range is included in the newer
address range. This can lead to inconsistencies in protected memory
and in the DWC mechanism.

The lusl wus2 list is built when the VM sets the page table of the
process.

The process memory may also grow when the process requests a
memory allocation. Process memory can be shrunk when the process
frees memory. There are also events such as exec, fork, and exit that
change the memory image of the process. In the case of fork, the data
pages of the parent process are set to read-only for copy-on-write pur-
pose. In the case of exec a new memory image that is allocated to the
process.

These events therefore influence the PE lusl wus2 list.

6.4.3.1 Memory allocation to the process

When the process memory is increased VMPRAM module in the VM
allocates the corresponding US1 and US2 frames and sends their ad-
dresses to the micro-kernel. That was explained in sections 6.4.1.2 and
6.4.1.3.

6.4.3.2 Freeing process memory

The process memory can be shrunk when the PE does a free system call
or when the process memory should be changed by new image during an
exec system call. When the process memory is shrunk, the VMPRAM

Implementation of hardening processes in the operating
136 system, using BHT

module in the VM frees the corresponding US1 and US2, frees the data
structure storing the addresses of US1 and US2 and informs the micro-
kernel so that the latter can do the same.

Freeing memory from a process memory space is done in the VM
using the function map _subfree of Minix 3. When the freeing of mem-
ory concerns a hardened process, the free region pmbs function of
the VMPRAM module is called. This function frees the data structures
of concerned pages in the lusl wus2 list of the VM, the usl and us2
frames of each concerned page are also freed using the VMPRAM mod-
ule function free pram_ mem _block. Then the function informs the
micro-kernel via the kernel call sys free pmbs, to do the same.

The micro-kernel handles the request with the do_ free pmbs ker-
nel call service. This service uses the free pram_mem _block wvaddr
function of the PRAM module which frees the pram mem_block data
structure from the lusl wus2 list of the micro-kernel for each page con-
cerned by the memory freeing using the free pram_mem_block func-
tion of the PRAM module.

6.4.3.3 Fork

In the case of a fork system call, the process memory changes. The data
pages remain the same, but they are all set to read-only. At the next
PE of this process, the memory state would not be consistent with the
protected memory policy. Minix 3 set the memory of the process to
read-only for copy-on-write purpose.

During the fork system call handling in the kernel, a flag is enabled in
the data structures representing the protected memory within the kernel
using the set fork label function for each process data page. This
flag simply allows these pages to be considered as pages that should be
processed by the VM in case a page fault occurs on them. The PRAM
policy is not applied to them as long as that flag is enabled. So as soon
as a page fault occurs on these pages the VM is directly informed. The
native Minix 3 handler processes the page fault. Because it is copy-on-
write that is made on this page, the VM may allocate a new frame to
this page and therefore modify the page table. As soon as the page table
is modified the function tell kernel for wusl wus2 of the VMPRAM
module updates the value of the USO address within the VM and informs
the kernel which does the same as explained in the sections 6.4.1.2 and
6.4.1.3.

6.4. Protected memory(PRAM) 137

6.4.3.4 Freeing US1 and US2

In the micro-kernel, freeing the working set list lusl ws2, consists in
removing each struct pram_mem_block * from the working set list,
starting from the top of the list until there is nothing left in the list.
Each block is marked as free, so it can be used by others PEs. The
attributes of each block are set to MAP NONE (us0, usl, us2). In
the VM the same operations are performed. In addition the frames usl
and us2 are released. They are returned to the free memory blocks list
managed by the VM. So they can be reused by other processes. Thus
the blocks allocated during the copy-on-write are not definitively held
by the system. They are freed as soon as the process releases its working
set, list. This shows an economical use of memory during the hardening
mechanism.

6.4.4 Restricting write access to USO frames
6.4.4.1 Requirements

One of PRAM’s module features is to prevent PE write access to USO
frames and to grant write access to US1 and US2 frames depending
on the nature of the current PE run. PRAM module uses the USOH
module for updating the contents of US1 and US2 when the contents of
the corresponding USOs have been modified during a system call or by
another process sharing the same USO with the PE.

1. Before starting the first RUN, the content of US1 and US2 frames
are updated if the corresponding frame of USO has been modified.

2. Before each run, write access is denied to some pages of the process
address space. At the beginning of the first PE, all the pages
accessible in writing are put in read-only. At the beginning of
other PEs when frames correspondents of USO exist in US1 and
US2, the page is set to read-only if it has not been modified during
the previous PE, nor during the previous system call or kernel call
nor by another process sharing the same pages with the process
to harden. Indeed pages recently modified will probably be reused
and they are directly added to the list of the pages to compare.
Pages not recently used are added to the list only if their DIRTY
bit is set during the PE.

Implementation of hardening processes in the operating
138 system, using BHT

6.4.4.2 Implementation: functions set pe mem to ro and
vm__setpt _to _ro

The function vm_setpt to ro is used when copy-on-write is used for
protected memory implementation. The function set _pe _mem to_ ro
is used when pre-allocation is used for protected memory allocation. The
core of these two function is the same. But the set _pe mem to rois
more efficient than vm__setpt _to_ro. So the pre-allocation was used in
the current implementation.

At the beginning when it is the first run of the PE, the function
handle _hme events of USOH module is called to update the US1 and
US2 frames, if their corresponding in USO has been modified. Details on
handling the USO frame changes out of hardening can be found in the
section 6.4.5.

In a loop the list lusl ws2 is browsed. For each pram mem _block
from the list:

e The physical address of the frame is extracted from the page table
entry

e If the page has been put in the list recently, the contents of us0
are copied to usl and us2

e If the process is sharing a memory region with other processes, the
corresponding page in the working set are marked shared. So when
the process modifies contents in that page, the other processes
sharing the same page will be notified. So they will update their
corresponding frames in US1 and US2.

e [f the page was modified during the previous PE or during handling
of a system call or a kernel call or by another process sharing the
page, the page is set read write. Otherwise it is set read-only.

At the exit of this function (set _pe _mem _to_ ro) all pages acces-
sible in writing from the PE are read-only and the working set is either
built from scratch or is updated.

6.4.5 USO content change: USOH modules

Frames contained in US1 and US2 are used during the DWC for the first
and second run of the PE. They are unknown to the rest of the Minix
system. While the frames of USO are the frames that all of Minix knows
to have been allocated to the process by the VM

6.4. Protected memory(PRAM) 139

Between PEs, there are the handling of system calls, and the exe-
cution of PEs of others hardened processes. The module USOH handles
change in USO frames (See listing A.3.6)

One of PRAM’s module features is to prevent PE write access to
USO frames and to grant write access to US1 and US2 frames depending
on the nature of the current PE run. PRAM module uses the USOH
module for updating the contents of US1 and US2 when the contents of
the corresponding USOs have been modified during a system call or by
another process sharing the same USO with the PE. This can happen:

e during the handling of a system call or a kernel call. That means
when the system call or the kernel call was processed, data have
been copied in the process’s address space. In Minix3, that is done
via the function virtual copy f.

e or when the kernel has copied a message in the process address
space.

e or when another process sharing pages with the process to harden
has modified the shared memory.

6.4.5.1 Tracking USO content change

The USOH module provides the enable _hme event in_procs function
that monitors the change in the USO frames of each hardened process.
As soon as the page is modified during the processing of a system call or
by another process, this function enables a flag. This flag will be used
to update the contents of US1 and US2 frames.

6.4.5.2 Copying USO content to US1 and US2

Each hardened process has a list of zones changed during the processing
of a system call, a kernel call or a modification of a shared memory.
The look _up hme function checks if an area of memory starting with
the same address does not exist yet in the process’s hme list. If it
does not exist, a new structure is allocated and initialized based on
the information received. However, if a hardening mem event data
structure already exists for a zone starting at this address, a check is
made to see whether the size of the new zone is larger than the size of the
old zone. When it is the case, the old zone is replaced by the new zone.
In the opposite case, the new zone is ignored beacause it is contained in

Implementation of hardening processes in the operating
140 system, using BHT

the old zone. This processing avoids having to copy the same data areas
multiple times.

Before starting a PE, the handle _hme events function goes through

the PE’s p_hardening mem _events list and with each
hardening mem _event data structure found, it updates the corre-
sponding area of US1 and US2 using the function
update _range _ws_usl us2_data.
The update range ws usl us2 data function has a parameter to
point to the PE, the start address of the zone and the number of
pages concerned. This allows it to update, for each concerned page,
the contents at the addresses of the US1 and US2 frames by calling
the update _ws wusl wus2 data_wvaddr function which does the actual
update work by making copies of USO to US1 and USO to US2.

6.4.6 USO contents change during system call handling or
kernel call handling: SCH module

6.4.6.1 Requirements

Minix 3 is a multi-tasking operating system; there is a strong inter-
action between different processes through data exchange. These data
exchanges can be made by sending messages (request initiation) or by
explicit data copy (copy of data from memory to memory, virtual or
physical). These data transfers are done directly on the USO frames by
the micro-kernel. It is therefore necessary to find the means to reflect
these data changes on the frames of US1 and US2 if they exist.

6.4.6.2 Implementation

At first, it was necessary to locate where USO is modified during a sys-
tem call or kernel call handling in the micro-kernel. Analyzing the code
allowed to find the functions delivermsg() and virtual copy f(). (See
listing A.3.7).The delivermsg() function is used to copy a message into
the address space of process. A message is a data structure with a max-
imum size of 56 bytes used in Minix3 for inter-process communication.
The virtual _copy _f() function is used to copy variable size data blocks
from the address space of one process to the address space of another
process.
At the end of these two functions a call to the function

add _hme_events has been added. This function notes that an area
of the process memory has been modified by storing the zone’s start

N

6.4. Protected memory(PRAM) 141

address and zone size in the hardening mem _event data structure.
This data structure will be processed later by the USOH module.
struct hardening mem event {

int id;

int flags;

vir _bytes addr base; // modified area base address

vir _bytes nbytes; // size

int npages; // number of pages

struct hardening mem event xnext hme;

}s

6.4.7 USO contents change in shared memory: SMH mod-
ule

6.4.7.1 Requirements

In Minix 3, a process cannot directly modify the memory contents of
another process. All data changes between processes occur normally
through system calls or kernel calls. However with the shared memory
mechanism, it is possible for two or more processes to share the same
memory area. Thus the modifications made by one are directly perceived
by the other sharing processes.(See listing A.3.8)

A request to create shared memory goes through the VM that creates
the shared memory region and associates it with the memory space of
the process. There are different types of memory managed by the VM:

mem_type t mem type anon, /* anonymous memory s/
mem _type directphys, /* direct physical mapping memory x*/

3 mem type anon_contig, /* physically contig anon memory x*/

SN

mem _type cache, /* disk cache x/
mem _type mappedfile, /* memory with file contents x/
mem_type shared; /* memory shared by multiple processes x*/

6.4.7.2 Implementation

For shared memories the type is mem type shared. When the VM
maps a shared memory in the address space of a process by calling the
map_page_region function, a kernel call is made from the VM to the
kernel with the parameters following :

e vm__endpoint: identifier of the process

e vaddr: start address of the region

N

- W

Implementation of hardening processes in the operating
142 system, using BHT

e length: the size of the region

e id: the unique identifier of the region

With this information the kernel calls the function add _hsr which
will add this information to the attributes of the process.
The hardening shared region data structure is used to store infor-
mation related to a shared region within the kernel.
struct hardening shared region {
int id; // unique identifier of the region known by the
kernel
int flags; // contains the states
int r_id; // unique identifier of the region known by the
kernel and the VM
vir _bytes vaddr; // start address of the region
vir _bytes length; // size of the region
struct hardening shared proc * r_ hsp; // list of processes
sharing this region
int n_hsp; // the number of processes sharing this region
struct hardening shared region * next hsr;

}s

Each process has a hardening shared region list linked to its data
structure. Likewise, each hardening shared region shared memory
data structure has a list of processes sharing that shared memory region.
A light data structure of the proc structure containing only the identifier
of the process, an id and a flags has been created to represent the process
in this list.

struct hardening shared proc{
endpoint t hsp endpoint;
int flags;
int id;
struct hardening shared proc xnext hsp;

}s

To guarantee the unicity of the shared regions and the processes
sharing them, two parallel list have been created. The all hsr s list
and the all _hsp_slist. The all _hsr s list contains all uniquely shared
regions. While the list all _hsp s contains all processes sharing a region
within the system.

So when the kernel is informed that a shared region has been added
to the memory space of the process, it calls the add _hsr function. The
role of this function is globally to add the new shared region to the
p_hardening shared_regions list of shared regions of the process.

6.5. Hardening Exception handler 143

For this, it goes through the list of shared regions of the process
using the look up hsr function looking for a region with the same
characteristics as the new region:

e the same base address
e the same size

e and the same region id

If a region is found, no addition will be made. Otherwise, if a region is
not found, the all hsr s list is searched using the look up wunique hsr
function to check if another process does not share a memory region
with the same characteristics. If such a region is found it is added to the
p_hardening shared regions list of shared regions of the process and
the process is added to the r_hsp list of processes sharing that memory
region.

Otherwise, a new hardening shared region data structure is al-
located. This new data structure is added to the all hsr s list and
to the ppardening shared_regions list of the process. And finally the
process is added to the r__hsp list of processes sharing this region.

Later at the end of a PE when the comparison is successful, a call
to the vm_reset _pram function is used to check the modified pages
during the PE execution. When one of these pages is a shared page, the
enable _hme event in_procs function enables the hme event in all
processes sharing this page.

6.5 Hardening Exception handler

6.5.1 Requirements

The exception mechanism is a way for the hardware to report unhan-
dled hardware events or unusual events to the software. For example, a
counter that overflows (the hardware will reset the counter, but the soft-
ware will be notified) or a request for access to an area of memory that is
normally not accessible (the MMU will prevent access, but the software
will be notified). When we say that the software will be notified, this is
not systematic, in the sense that if the hardware is intended to signal an
event, a handler should be provided by the software to handle this event.
If no handler is provided the event will just be ignored. A handler is
provided if the event is relevant to the proper operation of the software.

Implementation of hardening processes in the operating
144 system, using BHT

For common exceptions such as division by zero, page faults, handlers
are provided by default in almost all operating systems. However for
MCA exceptions for example, there is no default handler. Because the
events of the MCA remain relevant events only for specialized operating
systems.

However, whether there is a handler or not, the expected behavior of
the software must be consistent with that of the hardware. This means
that the handler must be able to correct the condition that led to the
exception situation. Otherwise the hardware will persist indefinitely,
signaling the exception. For example, the management of a page fault
ends either with the authorization of access or with the termination of
the faulty task. In the case of a normal execution the exceptions are
deterministic when performing a task. This means that if the task is
executed N times under the same conditions without external changes,
the same exception will be repeated N times. On the other hand, if there
is a change in the execution conditions of the task, for example a handler
that corrects the state that caused the exception or if the source of the
exception does not depend on the program (if it is the consequence of
SEU for instance), the exception will not be repeated. In the case of
hardening Minix3, the source of an exception may be due to the normal
operation of the PE, to the occurrence of a SEU or to the hardening
itself (some exceptions due to page faults, see above and exception due
to single stepping). The three categories must be handled differently
and must thus be identified .

1. If the exception is due to hardening, it is expected and, after pro-
cessing, the current execution is resumed

2. If the exception is caused by MCA and reports a fault corrected
automatically by the hardware, nothing needs to be done and the
current execution is resumed.

3. If the exception occurs for the first time in this PE during the
second run, it is caused by a SEU. The PE must be aborted.

4. In all others cases, The DWC will be used to detect the origin of
the exception (internal to the program or SEU). If the exception
comes from a fault external to the program (SEU for example) the
comparison phase will result in a failure because the two runs will
be stopped at different places: the execution with the exception
caused by SEU will be aborted prematurely. Only if the exception

6.5. Hardening Exception handler 145

occurs at the same place the normal exception handling of Minix
will be activated.

— ———

Kerne \ \\ \
/ k|

|

z HEH 4% SSH z IRH z PFH z MCAH

Figure 6.3: Hardening exception handler architecture

HEH (hardening exception handler) is the exception handler. It calls
the following modules:

e SSH: Single stepping handler to handle single stepping phase

e IRH : Instruction retirement handler, to handle exception from
retirement counter

e PFH: Page fault handler, to handle page fault exception.

e MCAH: MCA Handler, to handle MCA exception.

6.5.2 Implementation

In the implementation of exception processing the processor traps at the
exception__entry or exception entry from wuser entry point of the
Minix3 mpx.S file. All exceptions are trapped to one of these addresses.
Exception from user space task traps at exception entry from _user.
As it was done for the system calls, the execution flow is diverted to
the hardening exception entry address which calls the C function
hardening _exception _handler which will be detailed in the part con-
cerning the exception mechanism as fault detection. However the deci-
sion to continue the handling of the exception is taken at return from
this function. (See listing A.3.9 and and listing A.3.13)

At the beginning of this function it is verified that hardening is ac-
tivated. Then it is also verified that the process that is causing the

Implementation of hardening processes in the operating
146 system, using BHT

exception includes the current PE. The h_stop pe variable is set to
H Y ES to signal that the decision to interrupt the PE execution stage
has already been made. It is the handling of the exception by the hard-
ening module that will decide to not stop the PE.

All the exceptions are not treated in the same way by the hardening
module.

e In the case of page fault, the page fault handler (PFH module) is
called to handle the exception,

e In the case of MCA exception the MCA / MCE handler (MCAH
module) is called to handle the exception,

e In the case of NMI, the retirement counter handler (IRH module)
is called to handle the exception,

e In the case of DEBUG exception, the single stepping handler (SSH
module) is called to handle the exception.

In the case of all the others exceptions not directly related to hard-
ening, the principle remains the same. which means :

e h_stop pe remains to H Y ES to stop the PE’s step
e The event is logged

e Later the comparison phase will reveal whether the exception is
normal or due to a fault. In the case of a normal exception the
comparison phase will succeed. On the other hand, in the context
of an exception due to an external event (a SEU for example) the
comparison phase will fail.

e If the exception is a fault, the error will not be propagated through-
out the system. The handler will just return without doing any-
thing. Exception management has already been taken into account
by the hardening exception manager.

6.5.3 Page fault handler

Both in the first and second run, the hardened process will start its
normal execution, at some point of execution it will try to write in its
memory. An exception will be triggered. So there will be a trap in
the kernel that will result in exception entry of the mpz.S assembler
file. Assembly code has been added in order to call the C function
hardening _exception _handler.

6.5. Hardening Exception handler 147

6.5.3.1 Requirements

In the case of page faults the function hardening exception handler
must be able to:

e Determine if the page fault is a normal page fault or a page fault
due to protected memory

e If this is a normal page fault, this function must change the hard-
ening state to stop the execution of the PE. And the page fault
will be processed in the standard way by Minix. Otherwise the
page fault is handled by the kernel.

The hardening exception handler function is an exception han-
dling function for hardening. The function check wvaddr 2 will deal
with the details related to the caused pages faults.

6.5.3.2 Exception entry point from hardware to kernel:
The hardening _exception _handler function: page fault

At the entry point of this function, a check is made to know if hardening
is activated. This function can only be called if the hardening is active.
Then the pointer to the process structure of the running process is loaded
into a variable of type struct *proc, named here p. Through p, it is
possible to access all the attributes of the running process as defined in
the kernel process table.

A check is then made to find out if the current PE belongs to the
running process. Another check is made to make sure that this process
is not the VM.

When the exception is a page fault exception, two global variables are
reset. These are h_normal pf and h_rw. The variable h_normal pf
indicates that the page fault being processed is not caused by the hard-
ening itself (because the page has been set to RO and the PE tries to
write in it) but a page fault specific to the execution of the process. So
if the value of h_normal _pf is NORMAL PF then the page fault
is normal. But If it is 0 it means that the page fault is caused by the
hardening. The variable A rw informs the VM about the hardening
step during the page fault occurs (FIRST or SECOND run) and also
it informs Minix3’s native page fault handler whether that page fault
could be handled by the kernel or not.

There are 3 possible values,

Implementation of hardening processes in the operating
148 system, using BHT

e RO PAGE FIRST RUN : means that page fault occurred
during the first execution

e RO PAGE SECOND _RUN : means that page fault occurred
during the second execution

e K HANDLE PF : means that page fault must be handled by
the kernel without calling the VM. The page fault is handled by
the kernel itself when the frames for US1 and US2 exist. The
kernel will just do the mapping between the frame and the page
and enable the write bit.

Then the address where the page fault occurred is read. And the
function check wvaddr 2 of the PRAM module is called with a pointer
to the current running process (p) data structure and the address of the
root page table of this process (p__seg.p_cr3). It also takes as parameter
the virtual address where the page fault occurred. The function takes
also as last parameter the address of the global variable h_rw.

On return from this function if the return value is different from OK,
h_normal_pf becomes NORMAL PF, which means that this page
fault is not caused by hardening. In this case the PE is stopped.

When the variable h_rw equals to K HANDLE PF it means
that this page fault must be handled by the kernel alone without in-
forming the VM.

6.5.4 Machine check architecture handler

6.5.4.1 Requirements

When an MCA exception is reported the source of the error does not
matter. The goal is to know if the PE execution can continue after the
error or not. When the execution can continue the PE continues its
execution otherwise the PE is aborted and restarted.

6.5.4.2 Implementation details

When an MCA exception occurs, status of the error is read in the
IA32 MCG_STATUS register. The MCIP bit (2) of this register
signals if the exception is MCA exception. When the bit is not set, it
assumes that the OS has just received a false exception. In this case the
signal to stop the PE is sent to DWC module. (See listing A.3.11)

6.5. Hardening Exception handler 149

When it is a MCA exception, the RIPV bit informs if the error was
corrected or not by the RAS mechanism of the processor. When the error
was already corrected, the execution of the PE can continue normally.
Otherwise the signal to stop the PE is sent to the module HEC.

6.5.5 Performance monitoring counters

The IA32 _PMC1 architectural performance monitoring counter, found
in most Intel processor architectures, was chosen. It allows to count
most events including instruction retirement. The selector associated
with this counter is A PERFEVTSFELL. It is used to configure the
counter to count the instructions in user mode or privileged mode. It
can be configured to trigger an exception when the counter overflows.

6.5.5.1 Requirements

Many modern processors include Performance Monitoring Counters (PMC)
gathering data on performance related events. Supported events differ
from model to model [Adv16]| [Int16]. The following events are com-
monly supported:

Instructions Retired

Unhalted Core clock Cycles

Cache misses

Branch Instruction Retired

Branch Misses Retired

PMC registers can be configured to monitor various events. They can
be initialized to a preset value and incremented each time the moni-
tored event occurs. Each counter is associated with a set of control
registers that helps select the counted events, when they are taken into
account (in user or kernel mode or both), and other specific parameters
related to the event to be counted. Some processors also feature some
fixed-function performance counter registers and their associated control
registers [Int16].

Furthermore, PMC control registers enable the generation of Perfor-
mance Monitoring Interrupts (PMI) when the counter overflows. Pro-
gramming a performance monitoring unit to count instructions retire-
ment can then be implemented as follows by system software, operating
with kernel privileges:

150

Implementation of hardening processes in the operating
system, using BHT

. Select the PMI delivery mode in the APIC (Advanced programmable

interrupt controller [Adv16| [Int16]): special interrupt vector, sys-
tem management interrupt (SMI) or non-maskable interrupt (NMI)

. Select a PMC and configure its associated control registers to select

retirement events.

. Before launching the counting phase, set the counter with a nega-

tive value corresponding to the desired number of instructions to
execute.

Configure the control register to generate PMI when the counter
overflows.

. Upon return to user mode (privilege level 3), the processor starts

executing the user process, incrementing the counter after each
instruction until the counter register reaches zero. The PMI will
then be delivered through a built-in local APIC, according to the
APIC configuration parameters from step (1).

Architectural version of PMC were used. These features are present
in all Intel processors since the Pentium, so they are present in Xeons
and Atoms processors.

6.5.5.2 Implementation

The strategy adopted consisted (See listing A.3.10) of:

e Configuring the counter to count retirement instructions in user

mode and to trigger an exception when the counter overflows

Let be X the number of instructions the processor will have to ex-
ecute before the overflow of the counter. The counter is initialized
to Z = (264 — X).

At the beginning of the PE, the counter is initialized Z before the
transition from kernel mode to user mode.

The PE will be interrupted several times, either by page faults
exception caused by the hardening, by clock interruptions, or by
hardware interruptions. To preserve the integrity of the number of
instructions to be executed by the PE before the overflow at each
context switch, the contents of the counter is read and stored in
an attribute of the process data structure. When the process is
restarted, the stored value is written to the counter.

6.5. Hardening Exception handler 151

e To avoid having an overlap in the count of the instructions of the
PE and the number of instruction of the memory manager, the
counter is enabled to count only if the process that will be exe-
cuted is the current PE. Otherwise, the counter is simply disabled.
Because during the hardened execution of a PE only the memory
manager or the PE itself are allowed to run

The handler checks the status bit (bit 1) in the MSR register
INTEL PERF GLOBAL STATUS. When the bit is enabled, that
means the counter has overflowed. In this case the handler clears the
status bit and resets the counter. This event stops the PE execution.
The last value read from the counter is stored in two different variables
(first_run_ins and secnd_run__ins) for each run. At the end of both
executions, when first run_ins and secnd_ run_ins are the same,
the hardening goes to the comparison step. Otherwise the hardening
goes to the single stepping phase.

Kernel

IRH

|
|
IUSE
|

S5H

Figure 6.4: Instructions retirement counter architecture

6.5.6 The single stepping handler (SSH)
6.5.6.1 Requirements

The SSH module is called by the IRH module when at the end of the
double execution the instruction counter counts different values for the
two runs and the context produced by the two runs are differents. The
SSH module will have to execute the run that executed fewer instructions
(let’s call it the late run) in single stepping mode to catch the run that

Implementation of hardening processes in the operating
152 system, using BHT

executed more instruction. The module must configure the processor to
execute the PE in single stepping mode and handle the debug exception.

6.5.6.2 Implementation Details

Initializing single steping

The IRH module sends to the SSH module the values of the read int the
retirement counter in the exception routine for both runs. With these
information the SSH module is able to determine the run to execute
in single stepping mode to catch up the other. When it is the second
run, there is no need to restore its state. The MF STEP bit is set
to tell Minix3 that this process should be executed in single stepping
mode. The variable h_unstable state is set to H _STEPPING to
indicate that the hardening software is in single stepping mode.(See
listing A.3.12)

When it is the first execution that must be executed in single step-
ping, the same configuration is made, the activation of the bit M ' STEP
and the update of the variable h_unstable state to H _STEPPING.
The PRAM module is called to restore the memory of the PE at the
first run (through the call of the function vm_reset _pram). The HEC
module is also called to restore the register from R2 to R1 (by calling
the restore_for stepping first _run function). The h_ step variable
is set to FIRST STEPPING to indicate that the first run is in single
stepping mode. DEBUG exception handler

Kernel\

S5H

|
IUSE

FPRAM

Figure 6.5: Single stepping architecture

The handler changes the origin_syscall variable to
PE _END IN NMI to signal that the event that stopped the PE

6.6. The hardening software and Minix3 153

is the retirement counter overflow. Because this variable is changed in
the HEC module when an exception occurs. The TRACEBIT bit of the
PSW register is reset to disable the single stepping mode, the context
is saved for comparison by the HEC module. The software instruction
counter of the late run is incremented (first _run_ins for the first run
and secnd _run_ins). A comparison is made between first run_in
and secnd_run_in. If they are equal the control passes to the HEC
module for the comparison phase. If they are not equal the PE is con-
figured to do the single stepping and it is restarted.

6.6 The hardening software and Minix3

6.6.1 The Minix3 native page fault handler

6.6.1.1 Requirements

The Minix 3 page fault manager, like most exception handlers in the
Minix3 operating system, has undergone some changes to support hard-
ening. It has been said previously that two methods are used to allow
the OS to execute application processes in a hardened way: an inno-
vative use of the exception mechanism present in all architecture and
the DWC method. So to allow the exception management mechanism
to be a pillar for hardening the following objectives must be achieved
regarding the management of page faults:

e Be able to detect page faults caused by hardening

e Be able to not report the same page faults twice. Once from the
first run and once from the second run

e Be able to detect page faults caused by hardening but which must
be processed by the micro-kernel itself

e Be able to detect page faults caused by hardening but needing to
be handled by the memory manager

e Be able to block the spread of errors in the rest of the system
from a page fault caused by an external fault, such as a SEU. In
other words, as soon as the system is in an unstable state, the page
faults must be handled by the exception handler of the hardening
which normally will contain the fault within the limits of the PE

Implementation of hardening processes in the operating
154 system, using BHT

victim of the exception. This approach is common in processor ar-
chitectures with RAS (Reliability, Availability and Serviceability)
functionality [BKRF02, Qua00, DeL08§].

6.6.1.2 Implementation details

Some changes have been made to the Minix3’s native micro-kernel page
fault handler so that it can meet the hardening requirements. See list-
ing A.3.13.

After it gets the value of the address where the page fault has oc-
curred, it checks the valueof h_rw. If h_rwequals K HANDLE PF,
it means the kernel has already handled the page fault. The handling has
already been done by the kernel in the function check vaddr 2 that we
have described above. The handling involved enabling the WRITE bit
(I386_ VM _WRITE) in the process’s page table entry and mapping
the page to the corresponding frame in US1 or US2. In this case the
page fault handler returns. It has finished his job.

Otherwise if h_rw is equal to one of the values :

e RO _PAGE FIRST RUN

e or RO PAGE SECOND RUN

the type of message to send to the VM is changed.

In this case the VM is allowed to run during hardening. So h_ step is
VM RUN and its old value is stored in the global variable h _step back.
Of course the previous value of h_step back is checked to see if it is
zero, h_step, h _step back are global variables.

The type of message to send to the VM have been changed: one
of the following types will be sent to it VM HRIPAGEFAULT (the
faulty page is read-only and the page fault occurred during the first run
of the PE), and VM HR2PAGEFAULT (the faulty page is read-only
and the page fault occurred during the second run of the PE) based on
the values of the variable h _rw as described above.

This message is then sent to the VM.

6.6.2 What happens when, during hardening,
the scheduler wants to change process?
6.6.2.1 Requirements

During the execution of a PE of a hardened process, only the kernel,
VM or the PE itself can be executed. The kernel can run whenever

6.6. The hardening software and Minix3 155

needed (activated by system or kernel call, exception or interrupt). The
VM can run when ordered by the kernel when there is a page fault it
must handle. The PE can run as long as it is executable until it is
interrupted by the retirement counter that would send an exception or
that it interrupts itself (exception or system call).

6.6.2.2 Implementation

In order to enforce this policy, the function hpick proc is used. See
listing A.3.13. At the beginning of this function one verifies that the
hardening is enabled. Then we get a pointer to the hardened process
from its previously saved id. We choose to retrieve the pointer from the
id in case the current process is different from those of the PE (again it
should never be the case except if caused by SEU).

Then one checks if the PE is suspended because of a page fault. If
the VM is executable, allow it to continue running to allow it to process
the page fault. If the VM is not executable, there is a problem, PANIC.

If the PE is not suspended by a page fault. This means that the VM
has just finished processing a page fault. Change a transition from the
intermediate state to one of the FIRST RUN or SECOND RUN
state is required. First it checks that the PE is executable, if it is not,
there is a problem, PANIC. Otherwise we can continue the execution of
the PE.

In the case where it is not in the intermediate state and the PE is not
executable, it checks if it is because of its quantum which is exhausted, if
yes the PE is aborted using the function abort pe and the scheduler can
reschedule the process of the PE and choose another process or the PE
process to run. Or if it was interrupted by the retirement instruction
counter it is renabled if the processing of the exception of the retire-
ment instruction counter is completed and the execution of the PE is
continued.

In all other cases, PANIC. There is a problem.

6.6.3 system call, kernel call and interrupt handler
6.6.3.1 Requirements

When a SEU causes a spurious system call, a kernel call, or an exception,
double execution can detect and correct the error. However the harden-
ing software does not directly influence the execution of Minix 3. So at
the end of the PE processing the system call handling, or kernel call or

Implementation of hardening processes in the operating
156 system, using BHT

exception will handle the event that has been reported by the material.
The hardening software must be able to signal to the managers that this
event is an erroneous event.

6.6.3.2 Implementation

When such events occur the HEC module sets the variable

h_unstable state to H UNSTABLE. Some lines of code have been
added to the system call handler, kernel call handler and interrupt han-
dler, thus if A unstable state is equal to H UNSTABLE they do not
handle the event, they just return. listing A.3.13. The HEC module will
reset the value of that variable to H STABLE when the fault will be
corrected.

6.6.4 The Minix function swith _to user

6.6.4.1 Requirements

When a fault is detected by exception or when the comparison phase
fails, it is possible to restart the double execution immedialty. It has
been found that starting it immediatly prevents handling events that
have been created by the fault. Another way has been found which
consists to:

e Prepare the PE for a restart

e Pass the execution control to Minix handlers. They will abort the
events created by the fault.

e And finally restart the PE.

6.6.4.2 Implementation

Switching from kernel mode to user mode after handling a system call,
an exception or an interrupt goes through the switch to wuser function.
A few lines of code were added at the end of this function so that the
PE’s process is started instead of the process chosen by the Minix 3
scheduler. The HEC module changes the h _unstable state variable to
H UNSTABLE when the comparison fails. So, in this function, when
the value of this variable is H UNSTABLE the PE is executed instead
of the process chosen by the scheduler. listing A.3.13

6.6. The hardening software and Minix3 157

6.6.5 Exec, fork clear kernel call
6.6.5.1 Requirements

The memory space of a process issuing exec, fork, clear, kernel calls
will be changed. In the case of exec, the process memory space will be
replaced by new memory image totally different to the previous. In the
case of fork kernel call, the process memory space will be set to read-only
for copy-on-write purpose. In the case of clear kernel call, the process
memory space was just been released by the VM. To be consistent the
lusl ws?2 list, should also be modified.

6.6.5.2 Implementation

In the do__exec and do_ clear functions of the micro-kernel the function,
free_pram_mem_ blocks of the PRAM module is called. This function
simply frees the list lusl wus2. At the end of this function this list is
empty.

In the case of the do_ fork function, if hardening is enabled, the
hardening parameters of the child process are initialized to allow it to be
executed by the hardening software when it is scheduled. listing A.3.13.
If the parent process is hardened its lusl wus2 list are labelled to be
handled by VM for copy-on-write purpose.

6.6.6 Interrupt handling

An interrupt is non-deterministic, so it cannot end a PE. However an
interrupt could have direct effect on the current PE. The possible effects
are:

e Change of the state of the process. This means that the process
could become blocked. This can be fatal for the hardened execu-
tion.

e Copy of data into the PE’s stack. This could induce inconsistency
in the protected memory.

When an interrupt occurs within Minix3 a notification is sent to all
concerned processes. When the source of the interrupt is the clock, (a
timer for example has expired) a signal is sent to the process (SIGALRM,
SIGPROF). Sending the signal changes the state of the process from run-
ning to RT'S SIG PENDING. When this happens during hardened

execution, that is fatal for the hardened process. In the case of the

Implementation of hardening processes in the operating
158 system, using BHT

others interrupt a notification is sent to the process. Sending a notifica-
tion could include copying data in the process stack. Doing that during
the hardened execution of the process could induce inconsistency in the
PRAM

The interrupt is a non-deterministic event, it is impossible to repro-
duce that event exactly at both executions.

The solution was therefore to delay the signal or the notification
until the end of the hardening of the current PE. To do that a new
attribute has been added to the struc proc. That attributes records non-
deterministic events that have happened during the hardened execution.
Thus at the end of the hardened execution of the current PE the signals
and the pending notifications are sent.

6.7 User library

A user library has been written for using the hardening software. list-
ing A.16. This library provides the following commands:

e hardening <1> to enable hardening for all new process created
with fork system call

e hardening <2> to disable hardening for all new process created
with fork system call

e hardening <4> <pid> to enable hardening for the process identi-
fied by pid

e hardening <8> <pid> to disable hardening for the process iden-
tified by pid

6.8 Conclusion

Hardening implementation choices and the exception management mech-
anism were presented. The exception handling mechanism relies on the
HEC for the correction of SEU errors detected by the hardware. Due to
a modification of the native exception handling of Minix 3 the faults are
contained. The DWC can detect silent faults. Code has been added to
Minix 3 to adapt to the hardening of its application programs. In the
same way certain functions of the micro-kernel and the VM have been

6.8. Conclusion 159

retouched a little to make them compatible with the hardening soft-
ware. The other servers were not affected at all. Hardening is therefore
transparent to them.

Part 111

Results

CHAPTER

Results

7.1 Test environment

7.1.1 Qemu

Qemu [Bel05] has been used for the development. Qemu is an emulator.
It makes it very easy to emulate many processor architectures. Qemu is
very useful for operating system development . It allows to display log
information through a virtual serial port. It allows also to debug using
gdb. Thus, it is possible with a step-by-step execution to analyze the
written code to detect and correct any error [Ass19].

7.1.2 Hardware

The development and the preliminary tests were done in a virtual envi-
ronment using Qemu. The virtual environment was run on a computer
with the characteristics specified in Table 7.1. This computer was ac-
quired for the thesis.

Table 7.1: Hardware for the virtual environment

Characteristi(ﬁs Values

Processor i7-640LM

CPU Fre- | 2.13GHz

quency

Lithography 32nm

Memory 8GB

Cores 2

L3 cache 4 MB 16-way set associative shared cache

L2 cache 2 x 256 KB 8-way set associative caches

L1 cache 2 x 32 KB 4-way set associative instruction
caches 2 x 32 KB 8-way set associative data
caches

w N e

164 Results

Table 7.2: Hardware for the physical environment

Characteristiqs Values

Processor 15-2400

CPU Fre- | 3.1GHz

quency

Lithography 32nm

Memory 4GB

Cores 4

L3 cache 6 MB 12-way set associative shared cache

L2 cache 4 x 256 KB 8-way set associative caches

L1 cache 4 x 32 KB 8-way set associative instruction
caches 4 x 32 KB 8-way set associative data
caches

When the modified operating system was ready in the virtual envi-
ronment, it has been installed on a physical computer having the char-
acteristics specified in Table 7.2. For future work the target processor
would be acquired (a XEON processor) in order to take advantage of
the RAS features offered by these types of processors.

7.1.3 Software

The source code can be downloaded from [Ass19|. Then download ver-
sion 3.2.1 of Minix3 from the official site www.minix3.org . Install on
a computer or a virtual machine (VMWare or Virtualbox). By using
an ssh connection overwrite the Minix3 source with the one downloaded
from [Ass19]. Then follow the process specified on the official Minix3
website for the compilation of the new kernel. As soon as the new kernel
is compiled and the machine is restarted on the new image, the following
commands must be executed to compile and install the user library.

cd /usr/src/test,

make

cp hardening /bin,

Then start the hardening with :

hardening 1

7.2. Performance tests 165

Initiate the fault injection during hardening with the following com-
mand:

hardening 128

Disable the fault injection during hardening with the following com-
mand:

hardening 256
Stop the hardening, with the following command:

hardening 2

7.2 Performance tests

A hardening software assessment should be done in three aspects:

e The ability of the hardened software to continue to provide its
services like the unhardened software.

e The performance lost must be reasonable so that the CPU time is
not fully used to execute hardening code.

e The ability of the hardening software to actually detect and correct
all covered classes faults and report not corrected fault.

Hardened Minix3 will be evaluated based on these three criteria. To
achieve that, we need to choose appropriated benchmark programs to
execute to prove that the hardened Minix3 meets the criteria.

First, an operating system must meet the POSIX standard. The
POSIX compliance test programs are chosen to be executed. Second,
based on the state-of-the-art a good benchmark has relatively high ex-
ecution time and combines system calls and computation. So we chose
programs like GZIP and MD5 that fall into this category. Third Pro-
grams like Dhrystone are computation intensive programs. The com-
pilations of an entire system are complex enough to cover a fairly high
range of use cases.

7.2.1 Performance loss due to hardening

Hardening unmodified application programs has a cost, even if no errors
have to be corrected. This cost is the computation time of the second
execution plus the extra processing involved by each PE, i.e. mainly

166 Results

the page faults giving access to the PE memory at the beginning of
each execution (when the page is not yet in the working set) and the
comparison of the results of the two executions, which are included in
the set of pages modified by the PE.

The overhead due to the double execution is not compressible and
is independent of the length of the PE. The other overheads are linked
to the PE independently of its duration: the shortest the PE, the more
overhead. Actually most PE end in a system call, so, programs with the
highest number of system calls are the most expensive to harden. On
the other hand, in computing intensive programs, such as the Dhrys-
tone benchmark, most PE are ended by the retirement counter and may
involve single stepping that can also be costly.

7.2.2 Minix 3 POSIX compliance test

The POSIX compliance tests for Minix3 were run on the normal Minix3
and also on the hardened Minix3. The table contains the real time, the
user time, and the sys time for each programs. Each one involves several
processes.

The real time performance overhead varies between 0.008 and 10
with an average of 3.186 and a standard deviation of 1.025. The user
time overhead varies between 1 and 28 with an average of 7.62 and a
standard deviation of 6.86. The sys time overhead varies between 0.6
and 27.3 with an average of 7.62 and a standard deviation of 6.86. There
is a great fluctuation of the overhead. This is explained by the fact that
some programs have a real time (resp. user time and sys time) too small.
These programs are sets of small programs that do not run for a long
duration. These program can not be used to correctly evaluate the cost
of hardening. However they show that the hardened Minix respects the
POSIX standard.

7.2.3 MD5 and GZIP

MD?5 is a UNIX command that compute the 128-bit hash of a file. It is
system call intensive program. GZIP is a program that compresses a file
passed as a parameter to produce a file smaller than the original file. It
is also a program that makes many system calls. For different file sizes,
each of these commands was executed on the hardened Minix and the
normal Minix. For each run the CPU usage time allowed to calculate the
cost of hardening. The file sizes have been a first time varied between

7.2. Performance tests 167

14MB and 140 MB. Then between 140MB and 1.4GB. The file size did
not influence the cost of hardening which remained between 2 and 3
times.

The graphs of Figures 7.1, 7.2 show the performance evolution for
each of these commands. We observe a consistency around an average
in each case.

3,5

B e e e

15

CPU overhead of MD5

0,5

140 280 420 560 700 840 980 1120 1260 1400
Filesize(MB)

Figure 7.1: Overhead evolution of Md5 on different file size(14MB to
1,40GB)

7.2.4 Dhrystone test

Dhrystone was developed by Reinhold Weicker in 1984 [Sib84].The Dhry-
stone test contains simple integer arithmetic, string operations, logic de-
cisions and memory accesses intended to reflect the CPU activities in
most general purpose computing applications [LKC17, Yor02].
Dhrystone performs a lot of calculation, so it will be more often
stopped by the retirement counter. The results obtained in Chapter
3 have shown that it is necessary to maintain the duration of a PE
below t = 250us. This duration has been converted into a number
of instructions. At first the Dhrystone was run for different duration
on both the normal Minix and the hardened Minix. The cost of the
hardening methods was evaluated and plotted on Figure 7.3. That cost
is between 3 and 4 times. The duration of the PEs being long, an

168 Results

3,5

15

CPU overhead of GZIP

0.5

140 280 420 560 700 840 980 1120 1260 1400
File size (MB)

Figure 7.2: Overhead evolution of GZIP on different file size(14MB to
1,40GB)

overhead lower than for system calls intensive programs was expected.
Two reasons can explain the obtained results:

e Because of the non-determinism [DWA 19| of the retirement counter,
many PE involved single stepping. In average 90% of PE are ended
by the retirement counter. Among the PEs ended with the retire-
ment counter 86% of them involved single stepping.

e The second reason is due to the fact that the single stepping and
the long duration of the PEs exhaust the quantum of the process
more quickly. In these conditions more PE are just aborted. In
average 2% of the PEs are aborted. This should thus not have a
significant influence.

The results will be better if the retirement counter is more accurate.
Nevertheless the constant variation in the cost compared to the exe-
cution time of the Dhrystone is reassuring. This shows some stability
in the number of PEs executed by single stepping and the number of
aborted PEs.

What could be the impact on performance in the case where the
duration t is reduced. To find out, the same tests were repeated by
reducing the duration t to 25us. It has been found that the cost of

7.2. Performance tests 169

<@

Overhead of Dhrystone for (t=250ps)

R R R R - R R
1
\

T [— e e — T
1 5 1015 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100105110115120

running time (seconds)

Figure 7.3: CPU intensive program (Dhrystone) for ¢ = 250us

»

Y
ENEY
=
2w e i — o
£
5 @
=
5 ™
=
'g"s
@
< A
&

@

T T
1 5 1015 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100105110115120

running time (Seconds)

Figure 7.4: CPU intensive program (Dhrystone) for ¢t = 25us

170 Results

hardening has increased from between 3 and 4 to between 5 and 6. There
is an increase of two points (See Figure 7.4. This could be explained by
the increase in single stepping and the number of PE which is multiplied
by 10.

7.2.5 Compiling Minix3
7.2.5.1 Compiling the micro-kernel

The hardened Minix was used to compile the micro-kernel. The execu-
tion of the compilation consists of 586 small programs that run indepen-
dently. Among these programs, the shell (sh) represents 48.2%, and the
compiler clang represents 42.49%. The others programs are as, sed, rm,
muv, objcopy, Id and make.

The compilation required 278470 PEs. 4297 PEs were aborted be-
cause the quantum of the process was exhausted during the hardened
execution of the PE (1.54% of the total number of PEs). All PEs are
ended by a system call.

The total number of frames needed by the protected memory is
3263226 frames. The maximum number of frames needed by a PE is
14392 frames. The average number of frames needed is 11120 frames.

The total number of ticks in user mode is 136969 (38 min and 6
seconds). The total number of ticks in system mode is 51569 (14min
21s). It required 345 ticks (5.75 s) in user mode and 783 ticks (13.05 s)
in system mode for normal Minix. The overhead is 168 times compared
to the time of the compilation on the normal Minix3. The overhead
seems huge at first sight.

7.2.5.2 Creating new Minix3 boot image

A second compilation of the system was done using the make install
command in the src/releasetools folder. This compilation consists of
compiling the micro-kernel, the servers, the drivers. Its produces a new
bootable image. It was made on the hardened minix and the resulting
image was used to make new tests.

A total of 8597 programs were run during this compilation. The
shell (sh) represents 42.76% of these programs. The clang compiler rep-
resents 19.33%. The others programs are sed, rm, mv, as, objcopy, ld,
make, uname, cut, grep, cmp, stat, basename, sync, awk, sysenv, in-
stall, cc, abnt2.map _genma, dvorak.map _genm, french.map genm,
german.map_genm, japanese.map__ge, latin-america.m,

7.2. Performance tests 171

olivetti.map _ge, polish.map genm, russian-cp866.m,
russian.map__gen, scandinavian.ma, spanish.map_gen,

uk.map _genmap, us — std — esc.map _, us — std.map_genm, us —
swap.map_gen, russian-cpl251., ukraine-koi§-u., portuguese.map_,
abnt2.map_genma, pwd_mkdb, mkfs.mfs, cp, strip, gzip, touch , print-
root, tr, cat, Is.

The total number of PEs is 2355456. 0.2% of the PEs were ended
by the retirement counter. 0.81% of PEs have been aborted because the
process has exhausted its quantum. 98.9% of PEs have been ended by a
system call. 49.85% of the PEs belong to the clang compiler. This shows
that the clang compiler runs more than other programs. The shell (sh)
and the make represent respectively 16.03% and 20.51%. These three
programs represent 87% of the total PEs. These programs are the most
executed.

The protected memory required a total of 22708866 frames of 4KB
each. That corresponds to a memory of 86.62 GB. If these programs were
in memory from the start to the end of the compilation, it is obvious
that it would be impossible to make available such a large amount of
memory. Fortunately, each time the program ends, its protected memory
are released. 91% of this memory was used by the clang compiler, 4.60%
by the shell (sh), 1.10% by make and 1.06% by the cc compiler.

The compilation required 621052 ticks (2h 52min 30 s) in user mode
and 333145 ticks (1h 32mn 32s) in system. It required 3063 ticks (51.05
s) in user mode and 5993 ticks (1mn 39.88 s) in system mode for normal
Minix. The overhead is 106 times compared to the compilation time for
the normal Minix3. The overhead seems huge at first sight.

7.2.5.3 Discussion on the overhead

BHT is a fault tolerance technique at process level. Let C be the hard-
ening cost at process level. The previous tests (GZIP and MD5) have
shown that:

C=2+c¢ (7.1)

with € < 1.

However with the kernel compilation, POSIX conformance tests, the
value of € is very high and even higher than 1. An analysis of the
elements used during the hardened execution of these programs can help
us to understand the reasons for these major differences. During the
hardened execution of a PE a list representing the frames US1 and US2

172 Results

is used respectively for the first and second execution. Elements are
often searched in that list and the linked list is often browsed:

e It is browsed at the beginning of the first execution and the second
execution in order to implement the protected memory policy to
restrict access to some PE’s pages to the process.

e It is browsed each time a page fault occurs during the hardened
execution.

e [t is scanned between the two run in order to keep modified pages
during the first run of the PE.

e [t is browsed during the comparison phase.

e [t is browsed at the end of the comparison to remap each page of
the working set on the frame of USO.

The complexity of browsing a linked list is O(n) where n is the size
of the linked list. Thus, the higher is n, the less negligible is the time of
browsing the list for a process.

That explains the overhead found during the execution of the kernel
compilation in the hardened Minix.

In fact for the programs GZIP and M D5 the size of the linked
list US1_US?2 is respectively 193 and 57 elements. While for kernel
compilation the maximum size of the linked list for a processes is 7196
elements. More processes run during this compilation have had to use
US1 _US?2 lists whose sizes are beyond 6000. This greatly increases the
time spent in the hardening software.

One possible solution would be to use a hash table holding pointers
to a set of short linked lists instead of using a single list. This should
significantly reduce the browsing time when compared to a single huge
list. This way the performance would become more reasonable.

7.2.6 Multi-threading support

Testh9 is part of POSIX compliance tests of the Minix3. This program
tests the POSIX compliance of the mthread library developed by the
Minix3 team. Mthread is a library which implements multi-threading
at user level like the GNU pthread library. This program makes 7 tests:

e test scheduling: tests mthread create, mthread once,
mthread _yteld, mthread _join

7.2. Performance tests 173

test mutex: test the implementation of mutex

test rwlock:

test condition: tests the implementation of the condition feature
for thread synchronization

test _attributes: tests the use of get and set functions to read /
modify thread attributes test keys

Test59 was run on the hardened Minix. The goal is to show that the
hardened Minix supports multi-threading like the normal Minix. The
testh9 has passed successfully. A total of 4 programs were executed rm,
sh, mkdir and test59. The execution required 79 ticks in user mode and
32 ticks in system mode. The total number of PEs is 1721 with 80.9%
of PEs belonging to the test59 program. 0.23% of PEs were aborted
because the process’s quantum was exhausted. All PEs ended with a
system call. The number of frames needed for the protected memory is
3298 frames.

7.2.7 Floating point and retirement counter

Sanjeev Das et al. [DWA119] showed in their recent paper that despite
of 10 years of studying performance monitoring counters (PMC), recent
processors PMC have the same limitations: non-determinism and over-
counting.

In the case of floating-point operations, some xFPU instructions are
under-counted or over-counted [MVJ11, ZJH09).

Testd7 of the Minix3 POSIX conformance test suite is a floating-
point program test. When this test is executed on the hardened Minix
with the performance counter enabled, the test failed. An analysis of
the log message show that when a PE is interrupted by the retirement
counter, the comparison step fails because of the inaccuracy of the re-
tirement counter.

When the retirement counter is disabled the test does not succeed
too. In fact it blocks in a loop in which the PE is aborted because
the quantum of the process is exhausted. This shows that test47 is a
computing intensive program.

We chose to do another test where the retirement counter is always
off. But when the process exhausts its quantum, a new quantum is
allocated to it without calling the scheduling process. Test47 succeeded.

174 Results

The conclusions we can draw is that due to the non-deterministic
nature and the over-count of the retirement counter a program doing a
lot of floating-point calculation can not rely on the current version of
the retirement counter for their hardened execution. Programs such as
test47 that do a lot of calculation, then system calls can be executed in a
hardened way by disabling the retirement counter and giving quantum to
the process when the latter has exhausted its quantum (the user library
has been modified to take into account these features).

However programs that do only calculations hoping to be stopped by
an external timer such as whestone which is the floating point version
of Dhrystone cannot be taken into account in the current version of the
software hardening.

7.3 Tests by fault injection at run-time and eval-
uation of the results

In the radiation area the traditional way to verify the effectiveness of
radiation hardening techniques is by exposing the device to a cyclotron
beam, that sends many more particles that what happens in space, allow-
ing this way to verify in a short time the effectiveness of the protection.
This is not possible in the present case because pulsing the cyclotron
beam in a way to respect the single SEU per PE hypothesis would be very
hard. Therefore, the effectiveness was verified by bit flip injection. Fault
injection is an activity to test the reliability of a software or a library.
There are two categories of fault injection tools: run-time fault injection
tools and pre-runtime fault injection tools. The runtime fault injection
tools stop the program and inject fault in the current running program
context [GDJ*11, NCO1] . Whereas pre-runtime fault injection tools
need to a compiler to instrument the target code by inserting specific
faults at specific points of the program flow [MCV00, GKT13a, YGS08|.
Run-time fault injection is easy to implement and the developer does
not need to have the source code of the target program. EDFI is a
fault injection tool developed by Tanenbaum’s team which combines the
properties of pre-runtime fault injection tools and runtime fault injection
tools to provide more control and high coverage during a fault injection
campaign[NCDM13].

Because one of the aims of this research is not to have to modify the
application programs to harden, simple runtime injection was selected.
The clock interrupts are used to inject bit flips in the registers of the

7.3. Tests by fault injection at run-time and evaluation of
the results 175

running hardened process.
The fault injection using the clock interrupt must meet a number of
criteria to allow the tests to be relevant:

e In order to avoid having more than one SEU during the hardened
execution of a processing element we chose to inject the faults with
a periods of 10 PEs. We counts the number of PEs globally in the
system. At each clock tick when the difference between the current
number of PEs and the the previous injection is not greater than
10, the fault injection is not allowed.

e In the case where fault injection is allowed, at the hardened ex-
ecution of the next PE (regardless of the process) a fault will be
injected. The error is injected either at the beginning of the first
execution or at the beginning of the second execution.

e The fault should not be injected into the clock interrupt handler
routine. Because it is difficult to know at which stage of its exe-
cution the hardened process is at this time. If the fault is injected
just after the comparison phase that will induce flaws in the test.

Using this approach, the bits of the registers have been systemati-
cally inverted from bit 0 to bit 31. These registers are General-purpose
registers (EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP), Segment
registers (CS, DS, SS, ES, FS, and GS), EFLAGS (program status and
control) register, EIP (instruction pointer) register. This choice of reg-
isters is classical [YGSO08| and easy to implement. They are also validly
simulating SEU on combinatorial logic because their effect, if any, ends
up in a false bits in registers. The bit flips are introduced in the saved
values of the registers just before the beginning of the first execution or
at the beginning of the second execution when these values are loaded
in the real registers before resuming the interrupted process.

Using the clock (at 60 Hz in Minix 3) means injecting about 20 times
more errors than the mean frequency of SEU in space. The 10 hours
tests presented here are equivalent to 200 hours in space condition. The
tests were first performed on unmodified Minix3. The programs crash
quickly. They were then performed on hardening Minix 3. All programs
performed their tasks faultless: all errors were recovered.

By making fault injection tests three categories of errors are possible:

1. Computational errors, which are reported in data corruption or
erroneous instruction execution.

176 Results

2. The errors reported by the exception mechanism that lead either
to a panic within the micro-kernel or to the termination of the
running process.

3. The errors that lead to a hard reset of the CPU. In that case the
execution flow goes directly from the hardware to the BIOS, then
to the bootloader without a passage through the micro-kernel.

At that moment the first two categories of error are all corrected.
The third categories requires taking control of the reset vector, and a
modification of the bootloader to make it stateful. This aspect will be
solved during the implementation of the hardening of the micro-kernel.

The following programs have been tested:

e md>b, on a file of 1.4GB

e ¢zip, on a file of 1.4GB

e The micro-kernel compilation

The unixbench compilation

Running the muti-thread test59 program
e Dhrystone

Table 7.3 contains the different results.

7.3.1 Faults injection during MD5 and GZIP

MD5 and GZIP are single-process programs. The faults were injected a
single program. MD5 required 220085 clock ticks in systems mode and
user mode while GZIP required 23106 ticks in system mode and user
mode. Thus during the tests more faults were injected into MD5 than
in GZIP. 118033 faults were injected into MD5 while 4307 faults were
injected into GZIP (28 times more faults in MD5 than in GZIP). MD5
is a program that has spent more time in system mode than GZIP.

69.54% of faults injected into GZIP generated no errors. 21.15%
generated mis-calculation detected by the DWC. 9.31% were detected
by the exception mechanism. None of these injected faults generated a
hard reset of the CPU.

73.38% of faults injected into MD5 generated no errors. 18.94%
generated mis-calculation detected by the DWC. 7.68% were detected

7.3. Tests by fault injection at run-time and evaluation of
the results 177

Table 7.3: Fault injections in various programs

Program Number || Errors Errors No Er-
of fault || de- de- ror
in- tected tected
jected by by ex-

DWC ception

md5 (1.4GB) 118033 22351 9065 86617

gzip (1.4GB) 4307 911 401 2995

test59 149 71 66 12

make 3240 1258 807 1175

(unixbench-

marks)

make (the mi- | 29732 11838 7753 10141

crokernel)

Dhrystone 2537 987 775 775

by the exception mechanism. None of these injected faults generated a
hard reset of the CPU.

Both programs have similar profiles. They perform a lot of disk
accesses. They work more on data contained in memory. This explains
the fact that the faults in the register did not generate a significant
proportion of errors compared to the faults injected.

7.3.2 Fault injection during the compilation of micro-kernel
and unixbenckmarks

7.3.2.1 Fault injection during the compilation of unixbenck-
marks

The unix benchmarks compilation is a multi process program. A total
of 6 processes were executed (sh, clang, rm, cc, ld and make).

Figure 7.5 shows for the clang, Id and make processes more than 66%
of the injected faults generated errors. For these processes about 40%
of the errors were detected by the DWC while about 26% were detected
by the exception mechanism.

178 Results

100,008 [
90.00% |~
70,00%
60,00 [
50,00% [~
40,00%

10,000

0,00%

sh clang mm cc Id make

B Error detected by dwc ™ Error detected by exception No errors

Figure 7.5: Injected errors inside registers during compilation of
unixbenchmarks

7.3.2.2 Fault injection during the compilation of the micro-
kernel

The micro-kernel compilation is also a multi process program. A total of
9 processes were executed. Figure 7.6 shows the distribution of detected
errors. Faults in the process rm did not generate errors because only one
error was injected in that process. For processes clang, as, and objcopy
more than 70% of injected faults generated errors. For the process as
90% of injected faults generated errors.

7.3.3 Analysis of the results

In these, a first interesting result is that more than 1/3 of injected bit
flips do not cause any fault: the program is not disturbed. Faults occur
as a consequence of at most 2/3 of injected bit flips and roughly half
of these is detected by DWC and half by the hardware of the processor
itself (exceptions). Because the number of SEU hitting a processor in
space is two to three per second (this is one of the conclusions of the
statistical analysis performed to find an appropriate PE duration to
avoid a PE being it by multiple SEU) the number of PE to replay is
roughly 1 or 2 per second. Since the longest PE executions are stopped
by the retirement counter after less than 250us, one can conclude that

7.3. Tests by fault injection at run-time and evaluation of
the results 179

100.00%
90,00%
80,00%
70,00%
60.00%
50,00%

40,00%
30,00%

20,00%

10,00%

0,00%
sh clang m Id make objcopy mv as sed

B Error detected by dwc ™ Error detected by exception No errors

Figure 7.6: Injected errors inside registers during compilation of micro-
kernel

less that 1 PE in 1000 has to be replayed: this replay overhead is thus
negligible.

B Error detected by dwc 8 Error detected by exception © No ermors

Figure 7.7: Combined injected errors

Figure 7.7 shows the results for 15 days of accumulated tests. All
errors were recovered. The injection rate is 20 to 30 times higher than

180 Results

in real life. It corresponds thus to approximately one year of execution
in orbit without a single unrecovered error. Roughly half of the injected
errors (simulated SEU) have no consequences 2/3 of those with an effect
are detected by DWC and 1/3 by exception.

7.4 Towards cyclotron validation

As stated above, testing in a cyclotron the validity and the effective-
ness of the BHT applied to application processes running on a modified
Minix3 is not possible using classical cyclotron test methods. Indeed,
at the current state of the research, only application processes are hard-
ened, which means that the system will correct any error caused by a
SEU hitting the processor during one of the two executions of any pro-
cessing element, but neither having SEU hitting both executions or caus-
ing errors in the operating system itself are acceptable. For cyclotron
testing testing the effectiveness of the BHT applied to application pro-
cesses running on a modified Minix3 would mean turning on or off the
cyclotron beam in a few nanoseconds several thousands of time a second.
This is not possible: turning on a cyclotron can be fast but stopping the
beam would take several milliseconds. A possible test scenario, compat-
ible with what a cyclotron can do, would be using very long processing
elements: 10 times longer or more than what was used in computing in-
tensive tests. The cyclotron would be turned on at the beginning of such
a long PE, then off and when the cyclotron would have been stopped,
the PE would be halted, the OS would then, without irradiation start
the second execution of the processing element, compare the results and
decide to redo the PE or proceed to the next one. The cyclotron would
have to be tuned to a low shooting rate in order not to have more SEU in
the long PE than in a real one. This scenario has two major drawbacks:

1. Instead of simulating a space radiation exposure of a duration T in
a time t « T, the simulation would take more then 10 times more
time than real life in space. A very long cyclotron use would be
needed for this, which is definitely not cost effective.

2. No real program would be usable because their PE are too short :
it would have to be a program specially written for this experiment.

It is thus clear that testing the results in a cyclotron is not possible.
However, because a lot of tests have already been performed by sim-
ulation, a verification of some selected results would be possible. In

7.4. Towards cyclotron validation 181

particular, exposing in a cyclotron, not a real program but a specially
made program would be acceptable, if the purpose is only to compare the
results of fault injection and of cyclotron testing for selected programs.
Therefore, the second drawback could be acceptable. The other problem
is the unfordable duration of the test. This problem could be solved by
a technique proposed by Michel Melotte of Thales-Alenia-Space: use a
bi-processor and run the hardening OS and second execution of each
PE run on the second, while only the first execution of each PE is run
on the first processor. And of course, only the first processor would be
irradiated. That way, the beam would not have to be pulsed. However
modifying Minix3 to let it run one of the executions of each PE on a
separate processor is a significant modification of the system. The whole
process including modification of Minix, preparation of the experiment
and cyclotron testing would be several month’s work. In cannot fit in
the time frame of this thesis but is clearly interesting future work.

Part 1V

Conclusions and future
works

CHAPTER

Conclusions and future
works

8.1 Conclusions

The aim of this thesis was to show that an operating system can harden
its application processes without modifying their code and even without
knowing what they are doing, in order to make these processes insensible
to SEU in a space environment. Hardening the operating system itself
is out of the scope of this work. This is future work. It was decided
to harden application processes first because hardening the OS is much
more useful if application programs are hardened by the OS. If not a
work similar to harden the OS would have to be performed on each
user program. This would be unbounded work. Another good reason
to harden the application programs first is that the technique to harden
application processes would help simplifying the hardening of the OS
particularly in a micro-kernel OS where a lot of OS work is subcontracted
to applications programs.

The selected hardening technique is blended hardening, i. e. us-
ing software exploiting hardware available in some COTS components,
such as exception mechanisms (that are able to detect and report many
types of errors), memory protection systems embedded in paging sys-
tems, caches, and error correction systems built in memories, such as
ECC etc. Software exploits exceptions and complements them to detect
errors that the exception mechanisms cannot detect, such as computa-
tional faults and unwanted infinite loops. These errors, undetectable by
exception mechanisms are often called silent errors. Software error de-
tection and correction is based usually either on majority voting (most
frequently TMR: triple Modular Redundancy) or on double execution
with comparison (DWC). In this work DWC was selected, because, even
though SEU are frequent in space at a human scale (typically several
per second on a CPU) they are rare at the scale of the processor clock.
Thus needing only two executions instead of at least 3 most of the time
was considered an advantage.

A first problem to solve was cutting the code in processing elements

186 Conclusions and future works

to apply TMR or DWC. Two ideas from the state of the art were reused
here: keeping the processing elements short enough to have to handle
at most a single SEU in a PE (Lesage et al.) and using system calls
as frontiers between PE (Dobel who published it first although we were
working on this solution at the same time). These ideas are conflicting
because nothing prevents the delay between system calls to be too long
to guarantee that at most one SEU could happen in between. This is
the main cause why Dd&bel, who also tried to protect application pro-
cesses in the OS was not able to correct all errors. Here appear two
original contributions of this thesis: a statistical evaluation of the max-
imum duration of a processing element in order to suffer at most from a
single SEU and an innovative technique for counting with precision the
number of retired instructions. With these innovations it was possible
to define the ending frontier of a PE as either a system call or reaching a
predefined number of instructions small enough to guarantee suffering,
at most, from a single SEU, whatever happens first.

A second problem to solve was choosing an appropriate operating
system. Minix 3 was selected because it is a micro-kernel operating sys-
tem, with pre-existing fault tolerance features, excellent containment of
faults within modules (the micro-kernel, servers), many servers running
in user mode, and good available documentation.

The third problem was protecting memory against processes misbe-
having after having been hit by a SEU, i.e. indirect SEU effects. This
was done using the protections built in the paging system. An analysis
of the protection of the paging system showed that its protection is ad-
equate. Without such protection computer would just be too unreliable
for servers or mission critical embedded systems.

This a third original contribution of this these.

Memory areas that are neither sensible to direct effects of SEU
(howto is out of the scope of this these; it could be by ECC with scrub-
bing,) nor to indirect effects, using, in an innovative way, the protections
built-in the paging system, can thus be implemented. They are called
"protected memory". The availability of protected memory allows to re-
strict the comparison phase of DWC to the data pages accessed by the
current processing element. This comparison is performed in the OS,
that is assumed to be free of any SEU effect (this protection of the OS
is also out of the scope of this these). This comparison of the results of
two execution of each PE, along with the possibility to restart the whole
processing of the PE in case of error, request keeping 3 copies of the
part of the hardened process data memory that had been accessed by

8.1. Conclusions 187

the process. Keeping these three versions consistent was another diffi-
culty, in particular when system calls modify the contents of the process
memory (the Minix3 code executing the system calls is unaware of the
existence of these three copies), or when that memory is shared between
several processes (e.g. after fork and when using memory mapped files
or shared memories). The hardening of user processes required a small
semantic change to the behavior of the operating system: the scheduler
is not allowed anymore to preempt a process in the middle of a PE:
rescheduling requests that occur during the processing of a PE are de-
layed until the end of this PE. With the modifications developed in this
these in order to harden application processes, Minix 3 operating system
(3.4.0 and 3.2.1) are able to run privilege 3 processes with fault toler-
ance capability. The micro-kernel and the memory manager have been
modified. The results obtained so far show that software hardening in
the operating system is possible and that the performance degradation
is acceptable. When the hypotheses on the rate of SEU events are sat-
isfied, all errors are corrected and a statistical analysis tells us that the
residual errors (those that could happen when the hypotheses are not
respected) correspond to a FIT between 8.49 x 1073 and 1.95 x 10~2 for
FDSOI nano-scale technology and 1.58 x 1072 and 4.76 x 10~! for Bulk
CMOS nano-scale technology in GEO environment. The worst case for
FDSOI is the node 45nm with a FIT equals to 2.39 x 10~2. The best
case is the node 14nm with a FIT equals to 8.49 x 1073, At the time of
writing, the BHT approach allows to let Minix 3, running on Intel COTS
processors to remove all SEU effects in its application programs with the
required probability of success. This is the best result ever obtained in
hardening methods not requiring any specific hardware to be added, but
only software. This happens at an affordable cost that can be as low as
multiplying by 2,5 the execution time of the programs, but is still often
6 times for pure CPU intensive programs. The implementation has been
tested by fault injection in processor registers (program counter, general
purposes registers, segment registers and Intel performance monitoring
registers). All errors were recovered. A long time (15 days) test has
been performed, with both simple and complex programs. The results
obtained meet the expectations and the requirements of the space in-
dustry with one noticeable exception: the hardening technique has not
yet been cyclotron tested. Classical cyclotron testing methods are not
possible because respecting the "not more than 1 SEU per processing el-
ement" condition for the applicability of the hardening method coupled
with the necessity to only irradiate during the execution of application

188 Conclusions and future works

programs would require to switch on and off the cyclotron several thou-
sand times per second and ideally in less than a nanosecond. This is
obviously not possible. The work was thus tested by fault injection, but
very thoroughly. Although reobtaining the same information in a cy-
clotron would not be possible, limited verification of some of the results
would be possible after modifying Minix3 to run application programs
to harden and operating systems on separate processors and irradiating
only the processor executing hardened application programs. Another
possibility is to first harden the OS itself then the complete system could
be irradiated and the result would cover the complete system, not only
application programs. All this is future work: developing and testing
this will require several months. Floating point intensive calculation
programs are not fully supported by the hardening software. Because
the retirement counter is non-deterministic and non accurate for some
floating point instructions. Other improvements are planned. The first
is to remove the necessity of hardware scrubbing of the memory. This
will be tackled as future work by adding a scrubbing server to Minix3.
Finally, before actually using this work in space, the micro-kernel will
have to be modified to harden itself and some servers. This is feasible
because the sources of Minix3 are available.

8.2 Future works

1. Hardening the original Minix micro-kernel: The standard
minix micro kernel is actually a set of very small programs acti-
vated on demand by system or kernel calls, interrupts or excep-
tions. KEach of these programs is short enough to be considered
as a PE by itself. A first thing to do will be to evaluate (for in-
stance using the retirement counter) the length of each of these
programs, from the interrupt/exception/system or kernel call to
the return (often after sending a message). The second thing to
do is to evaluate the risk. This involves two aspects: first, what
is the probability of a SEU during this time; and second, for each
of these programs, what could happen in case of undetected SEU
and how can it be detected? Is there for instance a way to ver-
ify the correctness of the result and in case of undetected faulty
result, can it harm? Finally given the previous information, is it
necessary to modify this program to detect faulty results. How-
ever in a hardening Minix 3 most of the system time is spent in

8.2.

Future works 189

the hardening code, not in the original Minix code, so most errors
will occur in the hardening code itself.

. Hardening the hardening code added to the micro-kernel

Executing the hardening code in the micro-kernel is by far the
longest activity in the micro-kernel. Indeed, apart from the double
execution, most of the hardening happens in the micro-kernel and
the hardening increases the duration of the programs by the time
of the comparison and copy of pages. The probability of SEU
induced faults in these activities must be evaluated. Here again,
the SEU can be detected by exception or be silent. We assume
here that all comparisons are performed using CRCs. A silent
fault in a copy is unacceptable. Copies must thus also be verified
by CRC. The time of the copy will thus be increased by the CRC
computation, that can be performed by the same loop. A silent
fault in a CRC computation can only lead to a faulty CRC that
will cause rejecting a good value, thus a small loss of time to copy
again the block, or in the worst case to repaly the hardened user
PE. Of course all the hardening code will have to be analyzed to
find out what could go wrong because of silent errors out of the
copies and CRC calculations, if the consequences are acceptable
and how to detect these situations.

. Hardening the servers

Hardening the servers means understanding thoroughly their code
to find out

e if hardening them like application programs is sufficient

e if hardening like application programs can be simplified (be-
cause their processing is short some of them do probably not
need the precaution of the retirement counter to avoid being
too long),

. Retirement counter and floating point

Thoroughly investigate the issue of the retirement counter to sup-
port programs that perform floating-point computations. Simi-
larly make the retirement counter more deterministic to eliminate
the single stepping.

. Direct Memory Access issue

DMA can write directly to the process memory. That is used

190

Conclusions and future works

to speed up disk to memory access. How to guarantee that the
transferred data are not corrupted by a fault due to a SEU? The
integrity of the data should be verified after the transfer. The cur-
rent version of the hardening software does not take into account
this feature. Future work will take it in account by providing a
fault tolerant DMA.

. PRAM at page table scale

A profiling of the hardening software allowed to discover that the
handling of the protected memory at the scale of a page is very
expensive when the number of page of the working set increases.
A normal handling of the protected memory during an execution
of a processing element includes four tasks:

(a) Limiting access to data memory in the process memory space.
During this phase each of the data pages of the process mem-
ory space is analyzed in order to decide which one to put in
read-only or read-write.

(b) The handling of page faults. When a page fault is signaled
by the hardware, you must go through the list of data pages
in the process memory space to determine to which page the
address belong.

(¢c) Comparison of the pages modified during the two runs.

(d) Restoring the memory space of the process in the initial state
as expected by the others part of the OS.

Tasks (b) and (c) are executed on a subset of the data pages of
the process memory space. Their complexity is therefore not a
function of the growth of the number of data pages of the address
space of the process. On the other hand, operations (a) and (d)
are performed on all the data pages of the memory space of the
process. So when the number of pages increases, the complexity
of these tasks also increases resulting in high overheads for the
hardening software. For future work we plan to do operations at
the page table scale. In addition to having three frames per data
page, we intend to allocate three page tables per process. Thus,
operations (a) and (d) will be just a switch of page table instead
of an handling of each page.

Publications

- Assogba, Emery K and Lobelle, Marc. Hardening application pro-
grams by the operating system on COTS processors: what pro-
tection can be expected and at what performance cost. 2017 17th
European Conference on Radiation and Its Effects on Components
and Systems (RADECS), Geneva, pp.1-6, Oct. 2017

- Assogba, Emery K and Lobelle, Marc. Can MINIX Be "Tuned" in
Order to Satisfy Hard Real-time Constraints without Losing Its
Soul? MinixCon 2016 VUA,Amsterdam ,
http://www.minix3.org/conference/2016 /program.html# Talk-2,
Feb. 2016

- Assogba, Emery K and Lobelle, Marc. A new way to let the oper-
ating system harden its application processes against SEU. 23rd
annual single event effects (SEE) symposium coupled with the mil-
itary and aerospace programmable logic devices (MAPLD) work-
shop, San Diego, Mai. 2014

A.1 Annex1

APPENDIX

Annex

Intel Core processors "Performance Analysis Guide for Intel CoreTM i7
Processor and Intel XeonTM 5500 processors" by Dr. David Levinthal

PhD, available at

https://software.intel.com /sites/products/collateral /hpc/vtune/
performance-analysis-guide.pdf

A.2 Annex 2

Table A.1: SEE rates (/day/bit) from OMERE in LEOISS
orbit space environment (FDSOI)

14dnm | 22nm | 28nm | 32nm | 45nm | 65nm
Cosmic rays | 3.16 x | 5.21 x | 1.73 x | 9.93 x | 9.88 x | 2.99 x
(Heavy Ions | 107 | 1071* | 1071 | 10717 | 107'7 | 10%7
Rate)
Solar ioms | O 0 0 0 0 0
(Heavy Ions
Rate)
Trapped 1.91 x | 2.85 x | 3.57 x | 420 x | 6.24 x | 7.12 x
protons 10+ |10 |10* |107* |107* | 107*
(Protons
Rate)
Solar pro- | 2.93 x | 4.39 x | 5.86 x | 7.32 x | 1.17 x | 1.61 x
tons (Pro- | 10 | 107% |10°% |107¢ |10® |107°
tons Rate)
Cosmic rays | 3.10 x | 4.65 x | 6.20 x | 7.74 x | 1.24 x | 1.70 x
(Protons 105 |10 |10° |107° |107* |107*
Rate)
Heavy Ions | 3.16 x | 5.21 x | 1.73 x | 9.93 x | 9.88 x | 2.99 x
rate (in [107 | 107 | 107 | 10717 | 10717 | 10717
flare)

194 Annex

Heavy Tons | 3.16 x | 5.21 x | 1.73 x [9.93 x | 9.88 x | 2.99 x
rate (out-of- | 10714 | 107 | 1075 | 10717 | 10717 | 10717

flare)
Protons rate | 2.25 x | 3.36 x | 4.25 x | 5.04 x | 7.59 x | 8.98 x
(in flare) 0% |10* |10* |100* |10* |107*

Protons rate | 2.25 x | 3.36 x | 4.25 x | 5.04 x | 7.59 x | 8.98 x
(out-of-flare) | 10=* | 1074 |10 |107* |107* |107*
Total rate (in | 2.25 x | 3.36 x | 4.25 x | 5.04 x | 7.59 x | 8.98 x
flare) 10=* [107* |107* |107* |107* |107%
Total rate | 2.25 x | 3.36 x | 4.25 x | 5.04 x | 7.59 x | 8.98 x
(out-of-flare) | 10=* | 10=* |10* |107* |107* |107*

Table A.2: Py and P, in LEOISS orbit space environment (FDSOI)

14nm 22nm 28nm 32nm 45nm 65nm
A in er- | 1.30x | 1.94 x | 2.46 x | 2.92 x | 4.39 x | 5.20 x

ror /bit /s 0% [10®% |10 |[10® |107® |107°®
Py N = 4Mbits
Py 1.86 x [4.16 x | 6.65 x | 9.36 x | 2.12 x | 2.97 x

10719 {1071 | 10710 | 10710 | 107° | 107°
SERy (FIT) | 6.71 x | 1.50 x | 2.39 x | 3.37 x | 7.64 x | 1.07 x
102 103 103 103 103 10*
P, For n. = 256kbits
Py 1.17 x | 2.60 x | 4.16 x | 5.86 x | 1.33 x | 1.86 x
10717 10717 10717 10717 10716 10716
SER, (FIT) | 4.20 x | 9.36 x | 1.50 x | 2.11 x | 4.78 x | 6.69 X
0% [107® |107* |107* |107* |10°%
P, For n. = 512kbits
Py 2.33 x [520 x | 832 x | 1.17 x | 2.66 x | 3.72 x
10—17 10—17 10—17 10—16 10—16 10—16
SER, (FIT) | 840 x | 1.87 x | 3.00 x | 4.22 x | 9.56 x | 1.34 x
0% [107* |107* |[107* |107* | 1073

A.2. Annex 2 195

Table A.3: SEE rates (/day/bit) from OMERE in LEOISS orbit space
environment (FinFET)

1l4dnm | 22nm | 28nm | 32nm | 45nm | 65nm
Cosmic rays | 1.69 x | 4.06 x | 4.25 x | 3.75 x | 1.05 x | 1.88 x
(Heavy Ions | 107 | 107 |107% |10 |107% |10°8
Rate)
Solar ions | 0 0 0 0 0 0
(Heavy Ions
Rate)
Trapped 2.01 x | 3.02 x | 4.03 x | 5.04 x | 8.06 x | 1.11 x
protons 10=* |[10* |10 |1070* |107* |1073
(Protons
Rate)
Solar pro- | 2.93 x | 4.39 x | 5.86 x | 7.32 x | 1.17 x | 1.61 x
tons (Pro- [107% |[107% |107% |10 |107® | 107°

tons Rate)

Cosmic rays | 3.10 x | 4.65 x | 6.20 x | 7.74 x | 1.24 x | 1.70 x
(Protons 107° [107® | 107° |107® |107* |107%
Rate)

Heavy Ions | 1.69 x | 4.06 x | 4.25 x | 3.75 x | 1.05 x | 1.88 x
rate (in |10 |10 |107® |107? |107® | 1078
flare)

Heavy Ions | 1.69 x | 4.06 x | 4.25 x | 3.75 x | 1.05 x | 1.88 x
rate (out-of- | 107 107 |10 |10 |10°% | 1078

flare)
Protons rate | 2.35 x | 3.53 x | 4.71 x | 5.88 x | 9.42 x | 1.29 x
(in flare) 0+ [107* |107* |10* |107* |1073

Protons rate | 2.35 x | 3.53 x | 4.71 x | 5.88 x | 9.42 x | 1.29 x
(out-of-flare) | 10=* | 107* | 107* |107* |107* | 1073
Total rate (in | 2.35 x | 3.53 x | 4.71 x | 5.88 x | 9.42 x | 1.29 x
flare) 0=+ [107* |10* |[10* |[107* |1073
Total rate | 2.35 x | 3.53 x | 4.71 x | 5.88 x | 9.42 x | 1.29 x
(out-of-flare) | 10~* 1074 1074 1074 1074 1073

196

Annex

Table A.4: Py and P, in LEOISS orbit space environment (FinFET)

14nm 22nm 28nm | 32nm | 45nm 65nm
A in er- | 7.47 x | 545 x | 3.40 x | 2.73 x | 2.04 x | 1.36 x
ror /bit /s 0% |10 |10® |10°® |10°® | 1078
Py N = 4Mbits
Py 6.14 x | 3.27 x | 1.27 x | 817 x | 4.59 x | 2.03 x
1072 (107 | 107® |10710 | 10710 | 10710
SERy (FIT) | 2.21 x | 1.18 x | 4.59 x | 2.94 x | 1.65 x | 7.32 X
10* 10* 103 103 103 102
P, For n. = 256kbits
Py 3.84 x | 2.04 x | 7.97 x | 5.11 x | 2.87 x | 1.27 x
10716 10716 10717 10717 10717 10717
SER, (FIT) | 1.38 x | 7.36 x | 2.87 x | 1.84 x | 1.03 x | 4.58 X
103 |107* |[107* |[107* |107* |107°
P, For n. = 512kbits
Py 7.68 x | 4.09 x | 1.59 x | 1.02 x | 5.74 x | 2.55 X
10716 10716 10716 10716 10717 10717
SER4 (FIT) | 2.77 x | 1.47 x | 5.74 x | 3.68 x | 2.07 x | 9.16 X
103 (1073 |107* |[107* |107* |107°

A.2. Annex 2 197

Table A.5: SEE rates (/day/bit) from OMERE in LEOISS orbit space
environment (Bulk CMOS)

1l4dnm | 22nm | 28nm | 32nm | 45nm | 65nm
Cosmic rays | 2.18 x | 3.48 x | 4.57 x | 542 x | 8.90 x | 1.14 x
(Heavy Ions | 10=% | 107® |107% |10°8% |10°8 |10
Rate)
Solar ions | 1.46 x | 248 x | 2.92 x | 2.84 x | 5.64 x | 5.16 X
(Heavy Ions | 10=7 | 107 | 107 |10°" |10°7 |[10°7

Rate)

Trapped 2.02 x | 3.02 x | 4.03 x | 5.04 x | 8.06 x | 1.11 x
protons 100~* |(10* |107* |107* |107* | 1073
(Protons

Rate)

Solar pro- | 2.93 x | 4.39 x | 5.86 x | 7.32 x | 1.17 x | 1.61 x
tons (Pro- [107% |[107% |107% |10 |107® | 107°

tons Rate)

Cosmic rays | 3.10 x | 4.65 x | 6.20 x | 7.74 x | 1.24 x | 1.70 x
(Protons 107° [107® | 107° |107® |107* |107%
Rate)

Heavy Ions | 1.68 x | 2.82 x | 3.38 x | 3.39 x | 6.53 x | 6.30 x
rate (in | 1077 1077 | 1077 |1077 | 1077 |1077
flare)

Heavy Ions | 1.68 x | 2.82 x | 3.38 x | 3.39 x | 6.53 x | 6.30 x
rate (out-of- | 10=7 [10=7 | 10=7 |10°7 | 1077 |1077

flare)
Protons rate | 2.35 x | 3.53 x | 4.71 x | 5.89 x | 9.42 x | 1.29 x
(in flare) 0+ [107* |107* |10* |107* |1073

Protons rate | 2.35 x | 3.53 x | 4.71 x | 5.89 x | 9.42 x | 1.29 x
(out-of-flare) | 10=* | 107* | 107* |107* |107* | 1073
Total rate (in | 2.36 x | 3.53 x | 4.71 x | 5.89 x | 9.42 x | 1.30 x
flare) 0=+ [107* |10* |[10* |[107* |1073
Total rate | 2.36 x | 3.53 x | 4.71 x | 5.89 x | 9.42 x | 1.30 x
(out-of-flare) | 10~* 1074 1074 10~4 1074 1073

198

Annex

Table A.6: Py and P, in LEOISS orbit space environment (Bulk CMOS)

14nm 22nm 28nm | 32nm | 45nm 65nm
A In er-| 136 x | 204 x | 273 x | 3.41 x | 5.45 x | 7.50 x
ror /bit /s 0% |10 |10® |10°® |10°® | 1078
Py N = 4Mbits
= 2.05 x | 459 x | 817 x | 1.28 x | 3.27 x | 6.18 %
10719 {1071 | 1071 | 107 | 107® | 10710
SERy (FIT) | 7.36 x | 1.65 x | 2.94 x | 4.60 x | 1.18 x | 2.22 x
102 103 103 103 10* 10*
P, For n. = 256kbits
Py 1.28 x | 2.87 x | 5.12 x | 8.00 x | 2.05 x | 3.87 x
10717 10717 10717 10717 10716 10716
SER, (FIT) | 4.61 x | 1.03 x | 1.84 x | 2.88 x | 7.37 x | 1.39 x
105 |10* |107* |[107* |107* | 1073
P, For n. = 512kbits
Py 2.56 x | 5.75 x | 1.02 x | 1.60 x | 4.09 x | 7.74 x
10717 10717 10716 10716 10716 10716
SER4 (FIT) | 9.22 x | 2.07 x | 3.68 x | 5.76 x | 1.47 x | 2.79 X
0% (1074 |107* |[107* |107% | 1073

A.2. Annex 2 199

Table A.7: SEE rates (/day/bit) from OMERE in MEO orbit space
environment (FDSOI)

1l4dnm | 22nm | 28nm | 32nm | 45nm | 65nm
Cosmic rays | 8.22 x | 1.35 x | 4.28 x | 1.56 x | 1.54 x | 4.58 X
(Heavy Ions | 10713 | 10712 | 107 | 107% | 1071 | 10716
Rate)
Solar ions | 0 0 0 0 0 0
(Heavy Ions
Rate)
Trapped 2.86 x | 423 x | 4.95 x | 5,51 x | 7.85 x | 8.29 X
protons 102 |[10% |10 |107% |10=* |1073
(Protons
Rate)
Solar pro- | 3.03 x | 4.39 x | 4.00 x | 3.71 x | 4.35 x | 3.35 x
tons (Pro- | 107 1073 |10=* |10=* |107% | 1073

tons Rate)

Cosmic rays | 1.74 x | 2.62 x | 3.49 x | 4.36 x | 6.97 x | 9.56 x
(Protons 10=* [107* |107* |107* |107* |1074
Rate)

Heavy Ions | 8.22 x | 1.35 x | 4.28 x | 1.56 x | 1.54 x | 4.58 x
rate (in | 1071 [10712 | 107 | 1071 | 1071 | 10716
flare)

Heavy Ions | 8.22 x | 1.35 x | 4.28 x | 1.56 x | 1.54 x | 4.58 x
rate (out-of- | 107 | 10712 | 1074 | 10715 | 10715 | 10716

flare)
Protons rate | 6.07 x | 8.88 x | 9.30 x | 9.66 x | 1.29 x | 1.26 x
(in flare) 1073 | 1073 |10 |[10% |[1072 |1072

Protons rate | 6.07 x | 8.88 x | 9.30 x | 9.66 x | 1.29 x | 1.26 x
(out-of-flare) | 1073 | 1073 | 1073 | 1073 |1072 | 1072
Total rate (in | 6.07 x | 8.88 x | 9.30 x | 9.66 x | 1.29 x | 1.26 x
flare) 1032 (1073 |107® |[1073 |107%2 | 1072
Total rate | 6.07 x | 8.88 x | 9.30 x | 9.66 x | 1.29 x | 1.26 x
(out-of-flare) | 1073 1073 1073 1073 1072 1072

200

Annex

Table A.8: Py and P, in MEO orbit space environment (FDSOI)

14nm 22nm 28nm | 32nm | 45nm 65nm
A in er- | 3.51 x | 5.14 x | 5.38 x | 5.59 x | 7.46 x | 7.29 X
ror /bit /s 10°7 (1077 | 1077 |1077 | 1077 |1077
Py N = 4Mbits
= 1.36 x | 2.90 x | 3.18 x | 3.43 x | 6.12 x | 5.84 x
10°7 (1077 | 1077 |10°" | 1077 |1077
SERy (FIT) | 4.88 x | 1.04 x | 1.15 x | 1.24 x | 2.20 x | 2.10 x
10° 10° 106 10° 106 106
P, For n. = 256kbits
Py 849 x | 1.82 x | 1.99 x | 2.15 x | 3.83 x | 3.66 X
10715 10714 10714 10714 10714 10714
SER, (FIT) | 3.06 x | 6.54 x | 7.18 x | 7.74 x | 1.38 x | 1.32 x
10=2 1072 |1072 |107%2 |107' |107!
P, For n. = 512kbits
Py 1.70 x | 3.63 x | 3.99 x | 4.30 x | 7.67 x | 7.32 X
10714 10714 10714 10714 10714 10714
SER4 (FIT) | 6.11 x | 1.31 x | 1.44 x | 1.55 x | 2.76 x | 2.63 X
10=2 |10t |10°t |10t [10°t |10t

A.2. Annex 2 201

Table A.9: SEE rates (/day/bit) from OMERE in MEO orbit space
environment (FinFET)

1l4dnm | 22nm | 28nm | 32nm | 45nm | 65nm
Cosmic rays | 1.63 x | 3.39 x | 3.74 x | 3.60 x | 835 x | 1.34 x
(Heavy Ions | 10=% | 107® |107% |10°8% |10°8 |10
Rate)
Solar ions | 0 0 0 0 0 0
(Heavy Ions
Rate)
Trapped 3.25 x | 488 x | 6.50 x | 812 x | 1.30 x | 1.79 x
protons 102 |[10% |100% |1073 |1072 | 1072
(Protons
Rate)
Solar pro- | 4.24 x | 6.36 x | 848 x | 1.06 x | 1.70 x | 2.33 x
tons (Pro- | 1072 | 1073 |10 |1072 | 1072 | 1072

tons Rate)

Cosmic rays | 1.74 x | 2.62 x | 3.49 x | 4.36 x | 6.98 x | 9.60 x
(Protons 10=* [107* |107* |107* |107* |1074
Rate)

Heavy Ions | 1.63 x | 3.39 x | 3.74 x | 3.60 x | 8.35 x | 1.34 x
rate (in | 107® |[107® [10°® |107® |10°® |1077
flare)

Heavy Ions | 1.63 x | 3.39 x | 3.74 x | 3.60 x | 835 x | 1.34 x
rate (out-of- | 107 [1078 | 107® |107® | 107® |1077

flare)
Protons rate | 7.67 x | 1.15 x | 1.53 x | 1.92 x | 3.06 x | 4.21 x
(in flare) 1032 (1072 | 1072 [1072 |107%2 | 1072

Protons rate | 7.67 x | 1.15 x | 1.53 x | 1.92 x | 3.06 x | 4.21 x
(out-of-flare) | 1073 | 102 | 1072 | 1072 |1072 | 1072
Total rate (in | 7.67 x | 1.15 x | 1.53 x | 1.92 x | 3.06 x | 4.21 x
flare) 1032 (1072 | 1072 |[1072 |107%2 | 1072
Total rate | 7.67 x | 1.15 x | 1.53 x | 1.92 x | 3.06 x | 4.21 x
(out-of-flare) | 1073 1072 1072 1072 1072 1072

202

Annex

Table A.10: Py and Py in MEO orbit space environment (FinFET)

14nm 22nm 28nm | 32nm | 45nm 65nm
A in er- | 444 x | 6.66 x | 886 x | 1.11 x | 1.77 x | 2.44 X
ror /bit /s 10°7 (10" |10 |[10% |107¢ | 1076
Py N = 4Mbits
= 2.16 x | 487 x | 8.62 x | 1.35 x | 3.45 x | 6.51 x
07 (10" | 1077 |[107% |107¢ | 1076
SERy (FIT) | 7.79 x | 1.75 x | 3.10 x | 4.88 x | 1.24 x | 2.34 x
10° 10° 106 10° 107 107
P, For n. = 256kbits
Py 1.36 x | 3.05 x | 540 x | 849 x | 2.16 x | 4.09 x
10714 10714 10714 10714 10713 10713
SER, (FIT) | 4.88 x | 1.10 x | 1.94 x | 3.06 x | 7.78 x | 1.47 x
10=2 107t |10°t |107t |10t | 10°
P, For n. = 512kbits
Py 2.71 x | 6.10 x | 1.08 x | 1.70 x | 4.32 x | 8.17 X
10714 10714 10713 10713 10713 10713
SER4 (FIT) | 9.76 x | 2.19 x | 3.89 x | 6.11 x | 1.56 x | 2.94 x
1072 |10 | 107t |10t | 10° 10°

A.2. Annex 2 203

Table A.11: SEE rates (/day/bit) from OMERE in MEO orbit space
environment (CMOS)

14nm | 22nm | 28nm | 32nm | 45nm | 65nm
Cosmic rays | 1.07 x | 1.69 x | 2.22 x | 2.64 x | 4.27 x | 5.48 x
(Heavy Ions | 10=7 | 107 | 107 |10°" |10°7 |10°7
Rate)
Solar ions | 1.46 x | 2.48 x | 2.92 x | 2.84 x | 5.64 x | 5.16 x
(Heavy Ions | 10=7 | 107 | 107 |10°" |10°7 |[10°7

Rate)

Trapped 3.25 x | 488 x | 6.50 x | 813 x | 1.30 x | 1.79 x
protons 102 |[10% |100% |1073 |1072 | 1072
(Protons

Rate)

Solar pro- | 4.25 x | 6.37 x | 849 x | 1.06 x | 1.70 x | 2.33 x
tons (Pro- | 1072 | 1073 |10 |1072 | 1072 | 1072

tons Rate)

Cosmic rays | 1.74 x | 2.62 x | 3.49 x | 4.36 x | 6.98 x | 9.60 x
(Protons 10=* [107* |107* |107* |107* |1074
Rate)

Heavy lIons | 2.54 x | 4.17 x | 5.14 x | 548 x | 9.91 x | 1.06 x
rate (in | 1077 1077 | 1077 |1077 [1077 |107©
flare)

Heavy lIons | 2.54 x | 4.17 x | 5.14 x | 548 x | 9.91 x | 1.06 x
rate (out-of- | 10=7 [10=7 | 1077 |10 | 1077 | 1076

flare)
Protons rate | 7.67 x | 1.15 x | 1.53 x | 1.92 x | 3.07 x | 4.22 x
(in flare) 1032 (1072 | 1072 [1072 |107%2 | 1072

Protons rate | 7.67 x | 1.15 x | 1.53 x | 1.92 x | 3.07 x | 4.22 x
(out-of-flare) | 1073 | 102 | 1072 | 1072 |1072 | 1072
Total rate (in | 7.67 x | 1.15 x | 1.53 x | 1.92 x | 3.07 x | 4.22 x
flare) 1032 (1072 | 1072 |[1072 |107%2 | 1072
Total rate | 7.67 x | 1.15 x | 1.53 x | 1.92 x | 3.07 x | 4.22 x
(out-of-flare) | 1073 1072 1072 1072 1072 1072

204

Annex

Table A.12: Py and P, in MEO orbit space environment (Bulk CMOS)

14nm 22nm 28nm | 32nm | 45nm 65nm
A in er- | 444 x | 6.66 x | 886 x | 1.11 x | 1.78 x | 2.44 X
ror /bit /s 10°7 (10" |10 |[10% |107¢ | 1076
Py N = 4Mbits
= 2.17 x | 487 x | 8.62 x | 1.35 x | 3.46 x | 6.54 x
07 (10" | 1077 |[107% |107¢ | 1076
SERy (FIT) | 7.80 x | 1.75 x | 3.10 x | 4.88 x | 1.25 x | 2.35 x
10° 10° 106 10° 107 107
P, For n. = 256kbits
Py 1.36 x | 3.05 x | 540 x | 849 x | 2.17 x | 4.10 x
10714 10714 10714 10714 10713 10713
SER, (FIT) | 4.88 x | 1.10 x | 1.94 x | 3.06 x | 7.82 x | 1.48 x
10=2 107t |10°t |107t |10t | 10°
P, For n. = 512kbits
Py 271 x | 6.10 x | 1.08 x | 1.70 x | 4.34 x | 8.21 x
10714 10714 10713 10713 10713 10713
SER4 (FIT) | 9.76 x | 2.20 x | 3.89 x | 6.11 x | 1.56 x | 2.95 x
1072 |10 | 107t |10t | 10° 10°

A.2. Annex 2 205

Table A.13: SEE rates (/day/bit) from OMERE in Open space orbit
space environment (FDSOI)

14nm | 22nm | 28nm | 32nm | 45nm | 65nm
Cosmic rays | 9.20 x | 1.51 x | 4.78 x | 1.74 x | 1.71 x | 5.10 x
(Heavy Ions | 10713 | 10712 | 107 | 107% | 1071 | 10°¢
Rate)
Solar ions | 0 0 0 0 0 0
(Heavy Ions
Rate)
Trapped 0 0 0 0 0 0
protons
(Protons
Rate)
Solar pro- | 3.43 x | 4.96 x | 4.52 x | 4.19 x | 4.92 x | 3.78 x
tons (Pro- | 107 1073 |10=* |10=* |107% | 1073

tons Rate)

Cosmic rays | 1.91 x | 2.87 x | 3.83 x | 4.78 x | 7.64 x | 1.05 x
(Protons 10=* |[107* |107* |[107* |107* | 1073
Rate)

Heavy Ions | 9.20 x | 1.51 x | 4.78 x | 1.74 x | 1.71 x | 5.10 x
rate (in | 1071 [10712 | 107 | 1071 | 1071 | 10716
flare)

Heavy Ions | 9.20 x | 1.51 x | 4.78 x | 1.74 x | 1.71 x | 5.10 x
rate (out-of- | 107 | 10712 | 1074 | 10715 | 10715 | 10716

flare)
Protons rate | 3.62 x | 5.25 x | 4.90 x | 4.67 x | 5.68 x | 4.83 X
(in flare) 1073 103 103 |10 |[10% |1073

Protons rate | 3.62 x | 5.25 x | 4.90 x | 4.67 x | 5.68 x | 4.83 x
(out-of-flare) | 1073 | 1073 | 1073 | 1073 |107% | 1073
Total rate (in | 3.62 x | 5.25 x | 4.90 x | 4.67 x | 5.68 x | 4.83 X
flare) 03 (1073 |10® [107% |107% |1073
Total rate | 3.62 x | 5.25 x | 4.90 x | 4.67 x | 5.68 x | 4.83 x
(out-of-flare) | 1073 1073 1073 1073 1073 1073

206

Annex

Table A.14: Py and Py in Open space environment (FDSOTI)

14nm 22nm 28nm 32nm 45nm 65nm
A in er- | 210 x | 3.04 x | 2.84 x | 2.70 x | 3.29 x | 2.80 x
ror/bit /s 10~ | 107" |10 |1077 |1077 |10°°
Py N = 4Mbits
Py 482 x | 1.01 x | 8.84 x | 803 x | 1.19 x | 8.59 x
0% (107" |10 |[10® |1077 | 1078
SERy (FIT) | 1.74 x | 3.65 x | 3.18 x | 2.89 x | 4.28 x | 3.09 x
10° 10° 10° 10° 10° 10°
P, For n. = 256kbits
Py 3.02 x [6.35 x | 5.53 x | 5.03 x | 7.44 x | 5.38 x
10715 10715 10715 10715 10715 10715
SER, (FIT) | 1.09 x | 2.29 x | 1.99 x | 1.81 x | 2.68 x | 1.94 x
10=2 1072 1072 1072 |1072 | 1072
P, For n. = 512kbits
Py 6.04 x | 1.27 x | 1.11 x | 1.01 x | 1.49 x | 1.08 x
10715 10714 10714 10714 10714 10714
SER4 (FIT) | 2.17 x | 4.57 x | 3.98 x | 3.62 x | 5.35 x | 3.87 X
1072 (1072 | 1072 |1072 |107%2 | 1072

A.2. Annex 2 207

Table A.15: SEE rates (/day/bit) from OMERE in Open space orbit
space environment (FinFET)

1l4dnm | 22nm | 28nm | 32nm | 45nm | 65nm
Cosmic rays | 1.81 x | 4.15 x | 4.15 x | 4.00 x | 9.24 x | 1.48 X
(Heavy Ions | 10=% | 107® |107% |10°8% |10°8 |10
Rate)
Solar ions | 0 0 0 0 0 0
(Heavy Ions
Rate)
Trapped 0 0 0 0 0 0
protons
(Protons
Rate)
Solar pro- | 4.80 x | 7.20 x | 9.59 x | 1.20 x | 1.92 x | 2.64 x
tons (Pro- | 1072 | 1073 |10 |1072 | 1072 | 1072

tons Rate)

Cosmic rays | 1.92 x | 2.87 x | 3.83 x | 4.79 x | 7.66 x | 1.05 x
(Protons 10=* |[107* |107* |[107* |107* | 1073
Rate)

Heavy Ions | 1.81 x | 4.15 x | 4.15 x | 4.00 x | 9.24 x | 1.48 x
rate (in | 107® |[107® [10°® |107® |10°® |1077
flare)

Heavy Ions | 1.81 x | 4.15 x | 4.15 x | 4.00 x | 9.24 x | 1.48 x
rate (out-of- | 107 [1078 | 107® |107® | 107® |1077

flare)
Protons rate | 4.99 x | 7.48 x | 9.97 x | 1.25 x | 1.99 x | 2.74 x
(in flare) 1073 | 103 |10 |[1072 |[1072 |1072

Protons rate | 4.99 x | 7.48 x | 9.97 x | 1.25 x | 1.99 x | 2.74 x
(out-of-flare) | 1073 | 1073 | 1073 | 1072 |1072 | 1072
Total rate (in | 4.99 x | 7.48 x | 9.97 x | 1.25 x | 1.99 x | 2.74 x
flare) 103 (1073 |10 [1072 |107%2 | 1072
Total rate | 4.99 x | 748 x | 9.97 x | 1.25 x | 1.99 x | 2.74 x
(out-of-flare) | 1073 1073 1073 1072 1072 1072

208

Annex

Table A.16: Py and P4 in Open space environment (FinFET)

14nm 22nm 28nm | 32nm | 45nm 65nm
A in er- | 2.89 x | 433 x | 5.77 x | 7.23 x | 1.15 x | 1.59 x
ror /bit /s 10=7 (10" | 100" |10 |107¢ | 1076
Py N = 4Mbits
= 9.17 x | 2.06 x | 3.66 x | 5.75 x | 1.46 x | 2.76 x
0% (107" | 1007 |10 |10°¢ | 1076
SERy (FIT) | 3.30 x | 7.42 x | 1.32 x | 2.07 x | 5.25 x | 9.94 x
10° 10° 106 10° 106 106
P, For n. = 256kbits
Py 5.74 x | 1.29 x | 2.29 x | 3.60 x | 9.14 x | 1.73 x
10715 10714 10714 10714 10714 10713
SER, (FIT) | 2.07 x | 4.64 x | 825 x | 1.30 x | 3.29 x | 6.23 X
10=2 1072 |1072 |107% |10t |107!
P, For n. = 512kbits
Py 1.15 x | 2.58 x | 4.58 x | 7.20 x | 1.83 x | 3.46 X
10714 10714 10714 10714 10713 10713
SER4 (FIT) | 4.13 x | 9.29 x | 1.65 x | 2.59 x | 6.58 x | 1.25 x
1072 (1072 | 107! |10 [107% | 10°

A.2. Annex 2 209

Table A.17: SEE rates (/day/bit) from OMERE in Open space orbit
space environment (Bulk CMOS)

1l4dnm | 22nm | 28nm | 32nm | 45nm | 65nm
Cosmic rays | 1.18 x | 1.85 x | 2.43 x | 2.88 x | 4.07 x | 6.00 x
(Heavy Ions | 10=7 | 107 | 107 |10°" |10°7 |10°7
Rate)
Solar ions | 1.46 x | 248 x | 2.92 x | 2.84 x | 2.72 x | 5.16 X
(Heavy Ions | 10=7 | 107 | 107 |10°" |10°7 |[10°7
Rate)
Trapped 0 0 0 0 0 0
protons
(Protons
Rate)
Solar pro- | 4.80 x | 7.20 x | 9.60 x | 1.20 x | 1.92 x | 2.64 x
tons (Pro- | 1072 | 1073 |10 |1072 | 1072 | 1072

tons Rate)

Cosmic rays | 1.92 x | 2.87 x | 3.83 x | 4.79 x | 7.66 x | 1.05 x
(Protons 10=* |[107* |107* |[107* |107* | 1073
Rate)

Heavy Ions | 2.64 x | 4.33 x | 5.35 x | 5.73 x | 6.79 x | 1.12 x
rate (in | 1077 1077 | 1077 |1077 [1077 |107©
flare)

Heavy Ions | 2.64 x | 4.33 x | 5.35 x | 5.73 x | 6.79 x | 1.12 x
rate (out-of- | 10=7 [10=7 | 1077 |10 | 1077 | 1076

flare)
Protons rate | 4.99 x | 7.49 x | 9.98 x | 1.25 x | 2.00 x | 2.75 x
(in flare) 1073 | 103 |10 |[1072 |[1072 |1072

Protons rate | 4.99 x | 7.49 x | 9.98 x | 1.25 x | 2.00 x | 2.75 X
(out-of-flare) | 1073 | 1073 | 1073 | 1072 |1072 | 1072
Total rate (in | 4.99 x | 7.49 x | 9.99 x | 1.25 x | 2.00 x | 2.75 X
flare) 103 (1073 |10 [1072 |107%2 | 1072
Total rate | 4.99 x | 7.49 x | 9.99 x | 1.25 x | 2.00 x | 2.75 X
(out-of-flare) | 1073 1073 1073 1072 1072 1072

210

Annex

Table A.18: Py and Py in Open space environment (CMOS Bulk)

14nm 22nm 28nm | 32nm | 45nm 65nm
A in er- | 2.89 x | 433 x | 5.78 x | 7.23 x | 1.16 x | 1.59 x
ror /bit /s 10=7 (10" | 100" |10 |107¢ | 1076
Py N = 4Mbits
= 9.17 x | 2.06 x | 3.67 x | 5.75 x | 1.47 x | 2.78 x
0% (107" | 1007 |10 |10°¢ | 1076
SERy (FIT) | 3.30 x | 7.43 x | 1.32 x | 2.07 x | 5.29 x | 1.00 x
10° 10° 106 10° 106 106
P, For n. = 256kbits
Py 5.74 x | 1.29 x | 2.30 x | 3.60 x | 9.21 x | 1.74 x
10715 10714 10714 10714 10714 10713
SER, (FIT) | 2.07 x | 4.65 x | 827 x | 1.30 x | 3.32 x | 6.27 X
10=2 1072 |1072 |107% |10t |107!
P, For n. = 512kbits
Py 1.15 x | 2.59 x | 4.60 x | 7.20 x | 1.84 x | 3.48 X
10714 10714 10714 10714 10713 10713
SER4 (FIT) | 4.13 x | 9.31 x | 1.65 x | 2.59 x | 6.63 x | 1.25 x
1072 (1072 | 107! |10 [107% | 10°

[N N N

[e

—

A.3. Listings

211

A.3 Listings
A.3.1 Hardening Manager (HM)

Listing A.1: Hardening Manager (HM)

#include "kernel/kernel.h"
#include "kernel/vm.h"

#include <machine/vm.h>

i|#include <minix/type.h>
7|#include <minix/syslib.h>

#include <minix/cpufeature.h>
#include <string.h>
#include <assert.h>
#include <signal.h>
#include <stdlib .h>

s|#include <machine/vim.h>

#include "arch proto.h"

#include "htype.h"
"hproto.h"
"rcounter.h"

/ "mca.h"
#include "../../clock.h"

| #ifdef USE_APIC

#include "apic.h"

#ifdef USE WATCHDOG

finclude "kernel/watchdog.h"

#endif

#endif

static void init hardening features(void);

static void init hardening features(void){

5|#1f USE_MCA
enables all mca features();
enable loggin ofall errors();
clears all errors();
enable machine check exception();
#endif
2| #if USE INS COUNTER

s|##if USE_FIX CTR

45

63

66
67
68

69

S N =

0 ~ ~ ~ ~ ~ ~ ~ ~ ~ =
o © W = ¢

® o
—

82

212

Annex

intel fixed insn_counter init();
#else

intel arch insn_ counter init();
#endif
#endif

}

void init_ hardening (void){
struct pram_mem block *pmb;
struct hardening mem event xhme;
struct hardening shared region xhsr;
struct hardening shared proc xhsp;

int i;
int h_ enable = 0;
int h_proc_nr = 0;

int h _do_sys call = 0;

int h do nmi = 0;

int hprocs_in_ use = 0;

int h_step = 0;

int h_ step back = 0;

int vm_should run = 0;

int pe_should run = 0;

int h_ restore = 0;

int h vim_end h req = O0;

int from_ exec = 0;

int proc_2 delay = 0;

int h_unstable state = O0;

int id_ last inject pe = 0;

int id_ current pe = 0;

int h_wait_vm_reply = H NO;

vir _bytes pagefault addr 1 = 0;

vir bytes pagefault addr 2 = 0;

struct hardening shared region =xall hsr_s

struct hardening shared proc xall _hsp s

h can_ start hardening = 0;

int n_hsps = 0;

int n_hsrs = 0;

u32 t cr0 =

u32 t cr2 =

u32 t cr3 =

u32 t cr4 —

u3d2 t cr0_1 = 0

u32 t cr0_2 0

ud2 t cr2_1 0

u32 t cr2_ 2 = 0;
0
0
0

I
)

I

o O oo

I

u32 t cr3_1 =
ud2 t cr3_2 =
u32 t crd4 1

NULL;
NULL;

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

A.3. Listings

213

ud2_t crd_2 = 0;
for (i=0; 1i<10; i++)
hc_proc_nr[i] = 0;
for (pmb = BEG PRAM MEM BLOCK ADDR;
pmb < END PRAM MEM BLOCK ADDR; pmb-++){

}

pmb—>flags = PRAM SLOT FREE;
pmb—>vaddr = O0;

pmb—id = 0;
pmb—>us0 = 0;
pmb—usl = 0;
pmb—>us2 = 0;
pmb—>next pmb = NULL;

for (hme = BEG HARDENING MEM EVENTS ADDR;

hme < END HARDENING MEM_EVENTS ADDR; hme++){

}

for (hsr = BEG_HARDENING SHARED REGIONS_ ADDR;
hsr < END_HARDENING SHARED REGIONS ADDR; hsr-+-+){

}

hme—>flags = HME SLOT FREE;
hme—>addr base = 0;
hme—>nbytes = 0;

hme—>id = 0;

hme—>npages = 0;

hme—>next hme = NULL;

hsr—id = 0;

hsr—>flags = HSR SLOT FREE;
hsr—>r_id = 0;

hsr—>vaddr = 0;

hsr—>length = 0;
hsr—>next hsr = NULL;
hsr—r hsp = NULL;
hsr—>n_hsp = 0;

for (hsp = BEG_HARDENING SHARED PROCS ADDR;

hsp < END HARDENING SHARED PROCS ADDR; hsp-++){

hsp—>hsp endpoint = 0;
hsp—>flags = HSP_SLOT FREE;
hsp—id = 0;

hsp—>next hsp = NULL;

A.3.2 Double execution with comparison (DWC)

~ U W N e

1C

11
12
13
14

-
ot

16
17
18

19

w
o

w

214

Annex

Listing A.2: Double execution with comparison (DWC)

#include "kernel/kernel.h"
#include "kernel/vm.h"

#include <machine/vm.h>

i|#include <minix/type.h>

#include <minix/syslib.h>
#include <minix/cpufeature.h>
#include <string.h>

#include <assert.h>

#include <signal.h>

#include <stdlib .h>

#include <machine/vm.h>
#include "arch proto.h"

#include "htype.h"
#include "hproto.h"
#include "rcounter.h"
#include "mca.h"

#include "../../clock.h"

#ifdef USE_APIC
#include "apic.h"
#ifdef USE_WATCHDOG

i|#include "kernel/watchdog.h"

#endif
#Hendif
static void update step(int step,

int p_nr, const char sfrom);
static void save copy_ O(struct procx p);
static void restore copy O(struct proc* p);
static void save context(struct proc *p);
static void restore copy 1(struct procx p);
static void save copy 2(struct proc *p);
static int cmp mem(struct proc *p);
static int cmp reg(struct proc *p);
static void save copy 1(struct proc *p);

void start dwc(struct proc *p){
/* Added by EKAx/

/% Here the system is switching from
* kernel space to user space
— If we are not runnning a hardened PE,
if the runnable process is hardened,

*
*
* a new PE must be started
*

$$$ h enable = 1 and h proc nr = p—>p ur

o o o oo oot ou o
No= O © 00w N O O

63
64
65

66

85
86
87
8¢

90
91
92
93
94
95
96
97

A.3. Listings 215

$$$ initialize the retirement counter
$$$ turn on ON the retirement counter
— else if we are running a hardened PE
(then h_enable is true)
$$$ if the runnable process is not
hardened or VM, panic
$$$ if the runnable process is VM, turn OFF
the retirement counter
8 if the runnable process is hardened turn
on the retirement
counter .
— else an unhardened process has been scheduled ,
then just do what classical minix does

X % ¥ ¥ ¥ X X X X ¥ X %X ¥ x

((h_enable = H DISABLE) &&
(p—>p_nr != VM PROC NR) &&
(p—>p _hflags & PROC_TO HARD)){
/% start a new PE x/
/* be sure that no process is
x already in the hardening execution x/
assert (h_wait_vm_reply = H NO) ;
assert (h_step = NO_HARD RUN) ;
/* remember the process in the
x hardening execution x/
h proc_nr = p—>p_ nr;
/*+*That is the start of the 1st runx/
update step (FIRST RUN, p—>p ur,

"starting pe from arch system: First run");
/*set the next running process frames to ROx/
//vm_setpt root to ro(p, (u32 t *)p—>p seg.p cr3);
set _pe mem to ro(p, (u32 t *x)p—>p seg.p cr3);
/% Save the initial state of the
x process in the kernelx/
save_copy 0(p);

3|#if USE_INS_COUNTER
/* initialize retirement counter x/
set _remain ins counter value 0(p);
#endif
/* enable the hardening x/
h enable = H ENABLE;
#if INJECT FAULT

if (could inject = H YES){

inject error in_ gpregs(p);
could inject = H NO;
}
#endif
}
if ((h_enable = H ENABLE) &&
((h_restore = RESTORE_FOR SECOND_ RUN) ||

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

143

216

Annex

(h_restore = RESTORE_FOR_FISRT RUN))){
/% besure it is the hardening PEx/
assert (h_proc_nr = p—>p nr);
/% save the working set, the woring set
size list before restorings/
struct pram mem block * pmb = p—>p lusl wus2;
int lusl_ us2 size =
p—p_lusl us2_size;
/* restore the initial state
* (context and kernel state data x/
restore_copy_0(p);
/* save the working set, the woring set
* size list after restoring =/
p—p_lusl us2 = pmb;
p—>p_lusl_us2_size =
lusl us2_ size;
/* Two possibilities of restoring
% 1— The Processing run correctly the first
* run and we have
* to continue to the second run
* 2— An error occurs, so we have to restore
* to the previous state and restart
* the first run *x/
switch(h restore){
case RESTORE FOR SECOND RUN:
/* update the hardening step variables
* to 2nd runx/
update step (SECOND RUN, p—>p ur,
"restoring arch system");
break;
case RESTORE FOR_FISRT RUN:
update step (FIRST RUN, p—p ur,
"restoring arch system");
break;
default :
panic ("UNKOWN RESTORING STATE") ;
}
/* reset the hardening state variables.
x The restoring goes wellx/
/**Restoring to start the second runxx/
/% set all data pages as not accessible x/
//vm_setpt root to ro(p, (u32 t *)p—>p seg.p cr3);
set_pe_mem to_ro(p, (u32 t x)p—>p seg.p_ cr3);
h restore = 0;
/% be sure the process remain runnablesx/
assert (proc_is runnable(p));

(44| #if INJECT FAULT

146

if (could inject = H YES){
inject _error _in_ gpregs(p);

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

A.3. Listings

217

could inject = H NO;

}
#endif
if (h_enable && (h_ proc nr != p—>p nr) &
(p—>p_nr != VM PROC NR))
/«Should never happenx/
panic("Interference in the hardening"
" task by: %d", p—p_ nr);
/* Should never happen. VM should run only
*+ when the hardened process
x trigger a page fault =/
if (h_enable && (p—>p_ nr = VM _PROC NR) &&
IRTS ISSET(proc addr(h proc_nr), RTS PAGEFAULT)&&
(h_step != VM RUN))
panic("Le VM tente de s’exAlcuter "
"sans une page fault %d\n", h_ step);
#if USE_INS COUNTER

if ((h_enable = H ENABLE) &&

(p—p_nr = h_proc_nr)){
we resume the current hardened PE
restore value of retirement counter
saved when the system switched
from the hardened PE context to
kernel context =x/

set _remain ins counter value 1(p);
enable counter () ;

/
/
/

* ¥ ¥ ¥ ¥

}

else /* a process which is not
*+ hardened has been selected by
the scheduler x/
reset _counter () ;
#endif
/#% Ensure that when we are in step 1 or
% 2 only The PE can runxsx/
if ((h_enable = H ENABLE) &&
((h_step = FIRST RUN) ||
(h_step = SECOND_RUN)))
assert (h_proc_nr =— p—>p nr);

/*% when vm should run || h_step = VM_RUN
xx1s the turn of VM to run sx/
if ((h_enable =— H ENABLE) && ((h_step =— VM RUN)
|| vm_should run))
assert (VM PROC NR = p—>p nr);
/x+End Added by EKAxx/

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

244

218 Annex

* hardening task *

void hardening task(void){
/%
% This function is called to end the PE execution.
Either the 1st execution it should start
the second execution
Either the 2nd execution
it should start the comprison phase
running process should be the current
hardenning process
The running process should not be the VM
% The hardening should be enable
*/
#if INJECT FAULT
restore _cr_reg();
#Hendif
assert (h_enable);
struct proc *p = get cpulocal var(proc_ ptr);
assert (h_proc_nr = p—>p nr);
assert (h_proc_nr != VM PROC NR) ;
/* Should only be called during 1st or 2nd run =/
assert ((h_step = FIRST RUN) ||
(h_step = SECOND_RUN)) ;
save context(p);
if (h_step = FIRST RUN){
/* End of the 1st execution x/
assert (h restore==0);
/* remember to restore the state 0 x*/
h restore = RESTORE FOR_SECOND RUN;
/+* set the page in the working set to first phys
xcopy the content of usO to usl and the content
x of pram2 phys to usOx/
vmn_reset _pram(p, (u32 t x)p—>p seg.p cr3,
CPY_ RAM FIRST) ;
/* launch the second run x/
run_proc_2(p);
/*not reachable go directly to
the hardening process x/

NOT REACHABLE;

* X X X X X ¥

else if (h_step = SECOND_RUN){
/* comparison of contextl and context 2.
* Here we compare the saved
* registers x/
if (!emp reg(p) || cmp mem(p)!=O0K) {
/* That means the system is in unstable state

A.3. Listings 219

245 % because the comparison stage failed.
246 * The solution is to cancel all

247 % thing that fault

248 * trigger in the system. The main

249 * objective is to

250 % keep the effect of that event

251 * in the kernel.

252 * it should certainly not be spread

253 * to the rest of the systemsxx/

254 h unstable state = H UNSTABLE;

255 vm_reset _pram(p,(u32_t x)p—>p seg.p_cr3,
256 CMP_FAILED) ;

257 h restore = RESTORE FOR FISRT RUN;

258 /%% Prevent the PE from runningsx/
259 p—p_rts_flags |= RIS _UNSTABLE STATE;
260 return;

261 }

262

263 /* copy of us2 to us0 =x/

264 vmn_reset _pram(p,(u32_ t x)p—>p seg.p_cr3,

265 CPY RAM PRAM) ;

266

267 /% reset of hardening global variables x/
268 h_enable = 0;

269 h_proc_nr = 0;

270 h step back = 0;

271 h step = 0;

272 h do_sys_ call = 0;

273 h do nmi = 0;

274 vm_should _run = 0;

275 pe_should run = 0;

276 h restore = 0;

277 h normal pf = 0;

278 h pf handle by k = 0;

279 /*% The system is in stable statesxx/

280 h unstable state = H STABLE;

281 /%% a normal page fault occur

282 *+ where the pqge is not in the working set*x/
283

284 h_rw = 0;

285 /%% Reset the instruction counter processsx/
286 p—>p_start count_ ins = O0;

287 id_current pe++; // Comment TODO

288 pagefault addr 1 = 0;

289 pagefault addr 2 = 0;

290 return;

291

292 else{

293 panic ("UNKOWN HARDENING STEP %d\n", h_step);

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

220

Annex

* cmp _mem *

static int cmp mem(struct proc *p){
if (p—>p_lusl us2 size <= 0)
return (OK) ;
int r = OK;
struct pram_mem block *pmb = p—>p lusl us2;
while (pmb){
if ((pmb—>us2 =— MAP NONE) ||
(pmb—>usl = MAP NONE)) {
pmb = pmb—>next pmb;
continue;
}
if (pmb—>flags & FWS){
if ((r = cmp_frames(pmb—>us2, pmb—>usl))!=0K)
return (r);
pmb—>flags &= "FWS;
}
pmb = pmb—>next pmb;

}

return (r);

static int cmp reg(struct proc *p){
/** Compare registers from first run and second run
xx [f one pair of register is different the return
* value is 0
x*% Otherwise the return value is non NULL
*% The function compares also the origin of the
* trap, fault, or interrupt
xx for the two runs. If they are not the same,
% the return value is Oxxx/

return (
(gs_1 — gs_2) &

(fs 1 = fs 2) &
(es 1 =— es 2) &
(ds_1 = ds_2) &
(di_1 — di_2) &&
(si_ 1 = si 2) &
(fp 1 = fp 2) &

A.3. Listings 221

343 (bx_1 = bx_2) &

344 (dx_1 =— dx_2) &

345 (ex 1 = cx_2) &

346 (retreg 1 = retreg 2) &
3a7| (pc_1 = pc_2) &

3a8| (es_1 = cs_2) &

349 (psw_1 = psw_2) &

350 (sp_1 = sp_2) &&

351 (ss 1 = ss_2) &

352 (orlgln 1 = origin_2) &
353 (eax sl — eax_s2) &
354 (ebx sl = ebx_s2) &
355 (ecx sl = ecx_s2) &
356 (edx_sl — edx 82) &&
357 (esi_sl = esi_s2) &
358 (edi_sl = edl s2) &&
359 (esp_sl = esp s2) &&
360 (ebp_ sl = ebp_ s2) &&
361 (pagefault _addr 1 = pagefault addr_ 2) &&
362 (er0_1 = cr0_2) &&
363 (er2 1 = cr2_ 2) &
364 (er3 1 = cr3_2) &
365 (crd 1 = crd_2)

366)5

367| }

368

369
370] static void save context(struct proc xp){
371 if (h_step = FIRST RUN)

372 save copy 1(p);

373 if (h_step = SECOND_ RUN)

374 save_copy 2(p);

375| }

376

377 //% ... "
378| ok run_proc_2 *

3 e *//

3s0| void run_proc_2(struct proc xp)

381 {

382 /* This the standard switch to user

383 % function of Minix 3 without

384 * kernel verification already performed

385 * before FIRST RUN

386 */

387 /% update the global variable "get cpulocal var"
388 * Which is a Minix Macro

389 >i<

300 get cpulocal __var(proc_ptr) = p;
391

392
393
394
395
396
397
398
399
400
401

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

222

Annex

switch address space(p);

/%% Stop counting CPU cycle for the KERNELxx/

context stop (proc_addr (KERNEL)) ;

/+* If the process isn’t the owner of FPU,
% enable the FPU exception x/

if (get _cpulocal var(fpu_owner) != p)
enable fpu exception () ;
else

disable fpu_ exception () ;

#if defined (__i386_)
assert (p—p_seg.p_cr3 != 0);
#elif defined(am)
assert (p—p_seg.p_ ttbr = 0);
#Hendif
restart local timer ();

/ *
* restore user context() carries out the
% actual mode switch from kernel
* to userspace. This function does not return
*/
restore user context(p);

NOT REACHABLE;

* update _step *

static void update step(int step,
int p_nr, const char sfrom){
/«xChange the hardening step to stepxx/
h step = step;

* save_copy_O *

static void save copy O(struct procs* p){

gs = (ul6_t)p—>p_reg.gs;
fs = (ul6_t)p—>p_ reg.fs;
es = (ul6_t)p—>p reg.es;
ds = (ul6_t)p—>p_ reg.ds;
di = (reg t)p—>p reg.di;
si = (reg_t)p—>p_reg.si;
fp = (reg_t)p—p reg.fp;
bx = (reg_t)p—>p reg.bx;
dx = (reg t)p—p reg.dx;

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

a57| /

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
174
475
476
177
478
479
180
481
182
183
484

485| /

186
487
488

189

A.3. Listings

223

cx = (reg_t)p—>p_reg.cx;
retreg = (reg_t)p—>p_reg.retreg;
pc = (reg_t)p—>p_reg.pc;
psw = (reg t)p—>p_reg.psw;
sp = (reg_t)p—>p_reg.sp;
cs = (reg t)p—>p reg.cs;
ss = (reg _t)p—>p_reg.ss;
p_kern trap_ style =
(int) p—>p_ seg.p_ kern trap style;
p_rts_ flags = p—p rts_flags;
cr0 = read cr0();
cr2 = read cr2();
cr3 = read cr3();
crd = read cr4()

)

* restore copy 0 *

static void restore copy O(struct proc* p){
p—p reg.gs = (ul6_t)gs;
p—p_reg.fs = (
p—p reg.es = (
p—p reg.ds = (
p—p_reg.di = (reg
p—p_reg.si = (reg 't
(
(
(
(

S :
S5
S5

g
f
e
d

p—p reg.fp =

p—p_reg.bx =

p—p_ reg.dx =

p—>p_reg.cx =

p—p_reg.psw = (reg_t)psw;

p—>p_reg.sp = (reg_t)sp;

p—>p_reg.pc = (reg_t)pc;

p—p reg.cs = (reg t)cs;

p—p _reg.ss = (reg t)ss;

p—p reg.retreg = (reg t)retreg;

p—p_seg.p_ kern trap style =
(int)p kern trap style;

p—p_rts_ flags = p_ rts flags;

write _cr0O(cr0);

write cr3(cr3);

write crd(crd);

static void save copy_ 1(struct proc #*p){
gs 1 = p—>p_reg.gs;

224 Annex

fs 1 = p—>p_reg. fs;
es 1 = p—>p reg.es;
ds 1 = p—>p_ reg.ds;
di_ 1 = p—>p_ reg.di;
si_1 = p—>p_reg.si;
fp 1 = p—>p_reg.fp;
bx 1 = p—>p_reg.bx;
dx 1 = p—>p_ reg.dx;
cx_1 = p—>p_ reg.cx;
retreg 1 = p—>p reg.retreg;
pc_1 = p—>p_reg.pc;
cs 1 = p—>p reg.cs;
psw_1 = p—>p reg.psw;
sp_ 1 = p—>p_reg.sp;
ss 1 = p—>p reg.ss;
p_kern trap style 1 =
(int) p—>p_seg.p_ kern_ trap style;

origin 1 = origin_syscall;
eax sl = eax_s;
ebx sl = ebx_s;
ecx sl = ecx_s;
edx sl = edx_s;
esi_sl = esi_s;
edi sl = edi_s;
esp sl = esp_s;
ebp sl = ebp_s;
cr0 1 = read cr0();
cr2 1 = read cr2();
cr3_1 = read cr3();
crd 1 = read crd();
}
* save copy 2 x

static void save copy 2(struct proc *p){
gs 2 = p—>p_reg.gs;
fs 2 = p—>p_ reg. fs;
es 2 = p—>p_reg.es;
ds 2 = p—>p_ reg.ds;
di_ 2 = p—>p reg.di;
si_2 = p—>p _reg.si;
fp_ 2 = p—>p_reg.fp;
bx 2 = p—>p_ reg.bx;
dx 2 = p—>p_ reg.dx;
CX_2 = p—>p_reg.cX;
retreg 2 = p—>p reg.retreg;
pc_2 = p—>p_reg.pc;

A.3. Listings 225

539 cs_2 = p—>p_reg.cs;
540 pSW_2 = p—>p_reg.psw;
541 Sp_2 = p—>p_reg.sp;

542 SS 2 = p—>p_reg.ss;

543 p_kern trap style 2 =

544 (int) p—>p_ seg.p_ kern trap style;
545 origin 2 = origin_syscall;

546 eax_s2 = eax_s;

547 ebx s2 = ebx_s;

548 ecx 82 = ecxX_s;

549 edx_s2 = edx_s;

550 esi_s2 = esi_s;

551 edi_s2 = edi_s;

552 esp_s2 = esp_s;

553 ebp s2 = ebp_s;

554 cr0 2 = read cr0();

555 cr2 2 = read cr2();

556 cr3_2 = read cr3();

557 crd 2 = read crd();

558| }

559

560 / * *
561| * restore _copy 1 =x

562 */

563] static void restore copy 1(struct procx p){
564| p—>p_reg.gs = (ul6_t)gs 1;

565 p—>p_reg.fs = (ul6_t)fs 1;
566| p—>p_reg.es = (ul6_t)es 1;
567 p—>p_reg.ds = (ul6_t)ds_ 1;
568 p—>p_reg.di = (reg t)di 1;
569 p—>p_reg.si = (reg t)si 1;
570/ p—>p_reg.fp = (reg _t)fp 1;
571 p—p reg.bx = (reg t)bx 1;
52| p—>p_reg.dx = (reg t)dx_ 1;
573 p—>p_reg.cx = (reg t)ex_1;
574| p—>p_reg.retreg = (reg t)retreg 1;
575 p—>p_reg.pc = (reg t)pc_1;
576| p—>p_reg.cs = (reg t)cs 1;

~

p—p reg.psw = (reg t)psw_1;
| p—>p_reg.sp = (reg _t)sp_1;
9| p—>p_reg.ss = (reg t)ss 1;
580 p—>p_seg.p_ kern trap style =
581 (int)p_kern trap style 1;
ss2| write cr0O(cr0_1);
583 write cr3(cr3_1);
write crd(crd _1);

R RS BEES BRSSP B |

226

Annex

A.3.3 Protected memory (PRAM)

Listing A.3: Protected memory (PRAM)

#include "kernel/kernel.h"
#include "kernel/vm.h"

#include <machine/vm.h>

6|#include <minix/type.h>
#include <minix/syslib.h>
s|#include <minix/cpufeature.h>
o|#include <string.h>

0|#include <assert .h>
11|#include <signal.h>
12|#include <stdlib .h>

15|#include <machine/vm.h>

16

18|#include "arch proto.h"

20|#include "htype.h"
21|#include "hproto.h"

3

NN NN NN
o] 2}

W W W W W w w N
S A W N = O ©

37

42

2|#include "rcounter.h"
3|#include "mca.h"
4|#include "../../clock.h"

|#ifdef USE_APIC

#include "apic.h"

+ifdef USE WATCHDOG
#include "kernel/watchdog.h"
H#endif

#Hendif

static int
look up unique pte(struct proc s*current p,
int pde, int pte);
static struct pram_ mem block % add pmb(struct proc #p,
phys bytes pfa,
vir _bytes v, int pte);
static int check pt_entry(u32 t pte v);
static struct pram_ mem block
add _pmb_vaddr(struct proc xp, phys bytes pfa,
vir _bytes vaddr, phys bytes usl, phys bytes us2);
static void vm_setpt to_ro(struct proc x*p,
u32 t xpagetable, const u32 t v);

AR B s
W N R O © 0 N O

(SIS S IS S IS S TS]
o N O Ot o C o]

o
©

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

A.3. Listings

227

* check vaddr_ 2 *

int check vaddr 2(struct proc x*p,
u32 t xroot, vir_ bytes vaddr, int srw){
/x A page fault occured. That function
check if the virtual addresse match
with a page entry whose access was
restricted by the hardened code.
If it is the case, the access is allowed
and the VM is not called when
the corresponding frame in US1 and US2 exist.
Otherwise the VM is called to
allocate the frame for USI or US2
if the virtual address does not match any
page in the current working set
that will end the PE. the VM will be called
to handle the mnormal page fault
When the corresponding frames in
US1 and US2 exist, the pmb is labelled to
remember that a page fault was occured in that
page. That is used at the
beginning of the fisrt or the second run to
set these page to read—write.
The addresses where the page fault occured is
store for the first and the s
second run. That is used during the comparison step.
*/
int pde, pte;
u32 t pde v, xpte_a, pte v;
int nblocks;
static int cnpf = 0;
struct pram mem block *pmb, xnext pmb;
assert ((h_step = FIRST RUN) ||
(h_step = SECOND_RUN)) ;
/% read the pde entry and the
* pte entry of the PF page x/
pde = I386_VM_PDE(vaddr) ;
pte = 1386 _VM_PTE(vaddr);
if (h_step = FIRST RUN)
pagefault addr 1 = vaddr;
if (h step = SECOND RUN)
pagefault addr_ 2 = vaddr;
/x read the page directory entry value of
xthe page table related to the virtual
x address x/
pde v = phys get32((u32_t) (root + pde));
/% check if the pde entry is present |,
*+ writable, not user, global

KK K K K X K X K K K K K XK K K KX X X X X X

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

143

228

Annex

* bigpage . Let the VM handle x/
if (check pt entry(pde v)!=0OK)

return (VM_HANDLED NO ACESS) ;
/*xread the page table addressxx/
pte_a = (u32_t x) I386_VM_PFA(pde v);
/x read the page table entry value x/
pte_v = phys get32((u32 _t) (pte_a + pte));
/* check the presence. If not present,
¥ let the VM handle it=x/
if (!(pte_v & 1386_VM_ PRESENT))

return (VM_HANDLED NO_PRESENT) ;

/% be sure that it is a modified page table entry

¥ otherwise let the VM handle it/

/* read the current frame valuex/

u32 t pfa = I386_ VM PFA(pte v);

/* check if the page is already in

* the working setx/

if (!(pmb = look up pte(p, pde, pte))){
/* remember we are working with a page
x already in the working setx/
/* the page is not in the working,
* that should never happen x/
return (VM_HANDLED PF ABS WS) ;

}

#if CHECK_ DEBUG

/% be sure we have a valid data structure x*/

assert (pmb) ;
/* be sure we have a valid virtual address
* and a valid ram physx/
assert (pmb—>us0!=MAP NONE) ;
assert (pmb—>us0 = pfa);
assert (pmb—>vaddr!=MAP NONE) ;
#endif
if ((pmb—>usl!=MAP NONE) &&
(pmb—>us2!=MAP NONE)) {
if (h_step = FIRST RUN){
pte_v = (pte_v & I386_VM_ADDR_ MASK INV)
1386 VM_WRITE | pmb—>usl;
pmb—>flags |= IWS_ PF FIRST;
else if(h_step = SECOND_RUN){
pte_ v = (pte_v & I386_VM_ADDR MASK INV)
1386 VM_WRITE | pmb—>us2;
pmb—>flags |= IWS_PF SECOND;
}
phys set32((u32_t) (pte_a + pte), &pte v);
*rw = K HANDLE PF;
pmb—>flags |= HGET PF;
return (OK) ;

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

172

173| /

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

192

A.3. Listings 229

}else if(h_step FIRST RUN){
/* VM _HRIPAGEFAULT':
* Tell the VM it is a Read—Only pagesx/
*rw = RO_PAGE FIRST RUN;
pmb—>flags |= IWS PF FIRST;

}
else if (h_step = SECOND_RUN) {
#if CHECK DEBUG
assert (pmb—>us0!=MAP NONE) ;
assert (pmb—>usl!=MAP NONE) ;
assert (pmb—>us2!=MAP NONE) ;
#endif
xrw = RO _PAGE SECOND RUN;
pmb—>flags |= IWS PF SECOND;
}

/*It is the first page fault on

*+ that page. Tell the VM to allocate 3 new
* frames pram2 phys, usl and us2 x*/
pmb—>flags |= PRAM_LAST PF;
pmb—>flags |= HGET PF;
/* be sure that the page is not insert

* more than once in the working setx/
nblocks = look up unique pte(p,

1386 VM_PDE(vaddr) ,I386_ VM_PTE(vaddr));
assert (nblocks <= 1);
return (OK) ;

* look _up_pte *

struct pram_ mem block % look up pte(
struct proc xcurrent p, int pde, int pte){

if (current _p—>p lusl_ us2 size > 0){
struct pram_ mem block *pmb =
current _p—>p_ lusl_ us2;
int __ pte, _ pde;
while (pmb) {
__pte = I38_ VM _PTE(pmb—>vaddr) ;
__pde = 1386_ VM _PDE(pmb—>vaddr) ;
if ((__pte—pte)&&(_ _pde—pde))
return (pmb) ;
pmb = pmb—>next pmb;
}
}
return (NULL) ;
}

193| /

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

234

235
236
237
238
239
240

241

230 Annex

/

* *
* look up unique pte *
b= o3 /

static int look up_ unique pte(
struct proc xcurrent p, int pde, int pte){
int npte;
if (current _p—>p lusl us2 size > 0){
struct pram_mem block spmb = current p—>p lusl us2;
int _ pte, _ pde;
npte = 0;
while (pmb){
_ _pte = I38_VM_PTE(pmb—>vaddr) ;
__pde = 1386_ VM _PDE(pmb—>vaddr) ;
if ((__pte—pte)&&(_ _pde—pde))
npte-+-;
pmb = pmb—>next pmb;
}

}

return (npte);

}

//* ... S
* look up_lastpf pte *

*x >k /

struct pram_mem block *
look up lastpf pte(struct proc scurrent p, int normal){
if (current_p—>p_ lusl_us2_size > 0){
struct pram_mem_block *pmb =
current p—>p lusl wus2;
while (pmb) {

if (pmb—>flags & PRAM LAST PF){
pmb—>flags &= "PRAM LAST PF;
return (pmb) ;

}

pmb = pmb—>next pmb;

}
return (NULL) ;

* free _pram mem blocks =

void free pram_ mem blocks(struct proc xcurrent p,
int no_msg to_vm){
/*x Delete of the blokcs in the PE working
x* set list. If the working
xx set list is empty the function return.

A.3. Listings 231

* Otherwise each blocks is delete
xx A the end of the function the working set
x of the PE should be empty sxx/
if (current p—>p lusl us2 size <= 0)
return;
struct pram mem block #pmb = current p—>p lusl wus2;
while (pmb) {
if ((pmb—>flags & H TO UPDATE) &&
(no_msg_to_vm = FROM EXEC)) {
pmb = pmb—>next pmb;
continue;
}
free_pram mem block(current p,
pmb—>vaddr, (u32_t *)current p—>p seg.p_ cr3);
pmb = pmb—>next pmb;
}
if (no_msg to_vm != FROM_ EXEC){
assert (current p—>p lusl us2 size =— 0);
assert (current p—>p lusl us2 = NULL);

* free _pram mem blocks *
—_— s
void free pram mem block vaddr(struct proc =rp,

vir _bytes raddr, int len){
if (rp—p_lusl us2_ size <= 0)
return;
int p;
int pde = I386_VM_PDE(raddr);
int pte = I386_VM_PTE(raddr);
vir _bytes page base =
pde * I386_VM_PT ENTRIES * 1386 PAGE_SIZE
+ pte x I386_PAGE_SIZE;
vir _bytes vaddr;
int n_pages covered = (len +
(raddr — page base) — 1)/(4%1024) + 1;
struct pram_ mem block spmb ;
for(p = 0; p < n_pages_ covered; p++){
vaddr = page base + px4%x1024;
pde = I386_ VM _PDE(vaddr) ;
pte = 1386_VM_PTE(vaddr);
if (!(pmb = look up_ pte(rp, pde, pte)))
continue;
free_pram mem block(rp,
pmb—>vaddr, (u32_t x)rp—>p_seg.p_cr3);

291

202 /

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

339

232 Annex

* free _pram mem block *

/
* >k /

void free _pram_ mem block(struct proc xcurrent p,

vir_bytes vaddr, u32_ t xroot){

/¥ Delete the block corresponding to vaddr

x from the PE woking set in

* VM address space. If the block is found

% it is remove from the list

* and the data structure in the whole

*+ available blocks is made free

x If the end of the list is reached

* the function return xx/

if (current p—>p lusl us2 size <= 0)

return;

struct pram_mem _block #pmb =
current p—>p lusl wus2;

struct pram_mem block *prev_pmb = NULL;

struct pram_mem _block *next pmb = NULL;

int _ pte, _ pde, pte, pde;

u32 t pde_ v, xpte_a, pte v;

pte = I386_VM_PTE(vaddr);

pde = I386_VM_PDE(vaddr) ;

while (pmb) {

__pte = I386_VM_PTE(pmb—>vaddr

)

__pde = 1386_ VM_PDE(pmb—>vaddr) ;
if ((__pte—pte)&&(_ _pde=—pde)){
pde_v = phys get32((u32_t) (

#if CHECK DEBUG

root + pde));

assert ((pde_v & I386_VM_PRESENT)) ;
assert ((pde v & 1386 VM_WRITE)) ;
assert ((pde_ v & 1386_VM_USER)) ;
assert (! (pde_ v & I386_VM_GLOBAL)) ;
assert (!(pde v & I386_ VM BIGPAGE)) ;

pte_a = (u32 _t *) I386_VM_PFA(pde v);
pte_v = phys get32((u32_t) (pte_a + pte));
assert ((pte_v & I386_ VM PRESENT)) ;
H#endif

pmb—>flags = PRAM SLOT FREE;
pmb—>vaddr = MAP NONE;
pmb—>id = 0;
pmb—>us0 = MAP NONE;
pmb—>usl = MAP NONE;
pmb—>us2 = MAP NONE;
current _p—>p_lusl_us2_size——;
if (prev_pmb)

prev_pmb—>next pmb = pmb—>next pmb;
else

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

A.3. Listings

233

current p—>p lusl us2 = pmb—>next pmb;
break;
}
prev_pmb = pmb;
next pmb = pmb—>next pmb;
pmb = pmb—>next pmb;

* vim_reset pram *

void vm_reset_pram(struct proc *p,

u32 t xroot, int endecmp){
This function is called at the end of
the PE, first or second run
It restore the PE memory space to USO
It copy the content of each frame
from the second (USO) run to
the corresponding frame in the USO when
the comparison succeeded

R T I

assert (p—p_nr != VM PROC NR) ;
assert ((h_step = FIRST RUN) ||
(h_step == SECOND_RUN)) ;
if (p—>p_ lusl us2 size <= 0)
return;
struct pram mem block #pmb = p—>p lusl us2;
/*% Go through the working set list*x/
while (pmb) {
#if CHECK DEBUG
assert (pmb—>us0!=MAP NONE) ;
assert (pmb—>usl!=MAP NONE) ;
assert (pmb—>us2!=MAP NONE) ;
if ((pmb—>us0 = MAP NONE) ||
(pmb—>usl = MAP NONE) ||
(pmb—>us2 = MAP NONE)) {
pmb = pmb—>next pmb;
continue;
}
#endif
/x% Yes a page fault occu get the pte and the
int pde, pte;
u32 t pde_v, xpte_a, pte v;
pde = I386_ VM PDE(pmb—>vaddr) ;
pte = I386_ VM PTE(pmb—>vaddr);

pdesxsx/

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
134
435
436
137

234 Annex

/*x+* Read the page directory value entrysxx/
pde v = phys get32((u32_t) (root + pde));
#if CHECK DEBUG
/*+Check PRESENT, WRITE, USER, GLOBAL and BIGPAGE:x*x/
assert ((pde_v & I386_VM_PRESENT)) ;

assert ((pde v & I386 VM _WRITE)) ;
assert ((pde_v & 1386_VM_USER)) ;
assert (!(pde v & I386_ VM GLOBAL)) ;
assert (! (pde_v & I386_ VM BIGPAGE)) ;
#Hendif
/+% Read the page table addressexx/
pte_a = (u32 t %) I386_ VM _PFA(pde v);
/*+* Read the page table entry valuesxx/
pte_v = phys get32((u32_t) (pte_a + pte));
#if CHECK DEBUG

/*% Verify the PRESENCExx/

assert ((pte v & I386_ VM PRESENT)) ;
#endif

/%% Read the frame addresssx/

u32 t pfa = I386_VM_PFA(pte v);

if ((h_step = FIRST RUN) &&

(endecmp = CPY RAM FIRST)) {

/*% That is the end of the first

* run let’s map the page to PRAM as

x* RW so before the starting of the PE

* the page will be set RO

%% During the second RUN the PE will make

* the same page fault

if (!(pte_v & 1386_VM_DIRTY) &&
(pmb—>flags & IWS PF FIRST)){
pmb—>flags &= "IWS PF FIRST;

if ((pmb—>us1!=MAP NONE) &&
(pmb—>us0 !=MAP NONE) &&
((pmb—>flags & HGET PF)
|| (pte_v & 1386 VM DIRTY))){
if ((pmb—>flags & IWS MOD KERNEL) &&
(pte_v & I386_VM_DIRTY))
pmb—>flags |= IWS_PF FIRST;
pte_v &= "I386_VM_DIRTY
if (phys set32((u32_t) (pte_a + pte),
&pte v)!=0K)
panic ("Updating page table"
" from second phy to us0"
"failed\n");
pmb—>flags &= "HGET PF;
pmb—>flags |= FWS;

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

485

186

A.3. Listings

235

}

if (h_step = SECOND RUN) {

switch (endemp){
case CPY _RAM PRAM:
/* The comparison succed let’s
copy the content of
us2 to usO0 and map the page to us0
Before the starting of the PE all
writable pages are set to
RO so we have to put now the page
as RW thus it will be
put to RO before starting the PE.
Otherwise it will be
ignored xx/
if (!(pte_v & I386_ VM DIRTY) &&
(pmb—>flags & IWS_PF_SECOND)) {
pmb—>flags &= "IWS_PF SECOND;

R S R I R R S SR SR SO

}

if ((pmb—>us2!=MAP NONE) &&
(pmb—>us0!=MAP NONE) &&
((pmb—>flags & HGET PF)
|| (pte_v & I386_VM_DIRTY))){

if ((pmb—>flags & IWS MOD KERNEL) &&
(pte_v & 1386 VM _DIRTY))
pmb—>flags |= IWS_PF SECOND;

if (cpy frames(pmb—>us2,
pmb—>us0) |=0K)
panic ("Copy second phys to us0
"failed\n");
if (pmb—>flags & WS SHARED)
enable _hme event in procs(p,
pmb—>vaddr, 1386 PAGE_ SIZE);
pmb—>flags &= "HGET PF;
pte_v &= 7I386_VM_DIRTY;

n

}

pte_v = (pte_v & I386_ VM_ADDR_ MASK INV)
1386 VM_WRITE | pmb—>us0;
if (phys set32((u32_t) (pte_a + pte),
&pte v)!=0K)
panic ("Updating page table from"
"second phy to usO failed\n");

if (pmb—>flags & IWS MOD_ KERNEL) {
pmb—>flags &= "TWS MOD_ KERNEL;

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

527

529
530
531
532
533
534

535

236

Annex

}

break;

case CMP_FAILED:
/x* The comparison failed let’s
%% copy map the page to PRAM
x+ and set it to RW. Thus before
xx the starting of the PE
xx the page will be set to RO.
x+x The PE state is restored
xx to USO

* ’/

pmb—>flags &= "IWS_PF SECOND;
pmb—>flags &= "IWS_PF_ FIRST;
pmb—>flags &= "HGET PF;
pmb—>flags &= "TWS MOD_ KERNEL;

if (((pmb—>usl!=MAP NONE) ||
(pmb—>us2!=MAP NONE)) &&
(pmb—>us0!=MAP NONE)) {
if (pmb—>us1!=MAP NONE) {
if (cpy frames(pmb—>us0, pmb—>usl)!=0K)
panic ("Copy second phys to"
" us0 failed\n");

if (pmb—>us2!=MAP NONE) {
if (cpy frames(pmb—>us0, pmb—>us2)!=0K)
panic ("Copy second phys"
" to usO failed\n");

}

pte v =
(pte_v & I386_VM_ADDR_MASK INV) |
1386 VM_WRITE | pmb—>us0;
if (phys set32((u32_t) (pte_a + pte),
&pte v)!=0K)
panic ("Updating page table from
"second phy to us0" "failed\n");

n

}
break;
default
/*+TO COMPLETEx x /
panic("Should never happen");
break;
}
}

pmb = pmb—>next pmb;

refresh tlb();

A.3. Listings 237

static struct pram_ mem block % add pmb(struct proc xp,

phys bytes pfa,
vir _bytes v, int pte){

struct pram_ mem block *pmb, #next pmb;

/* ask for a new pmb block in the free listx/

pmb = get _pmb () ;

/* be sure that we got a good blockx*/

assert (pmb) ;

pmb—us0 = pfa;

pmb—>vaddr = Vv + pte * 1386 _PAGE_ SIZE;

if (!pfa) pmb—>flags |= H HAS NULL PRAM,;

/x Insert the block on the process’s linked listx/
if (!p—>p_ lusl us2 size) p—>p lusl us2 = pmb;

else{

next pmb = p—>p lusl us2;
while (next pmb—>next pmb) next pmb = next pmb—>next pmb;
next pmb—>next pmb = pmb;
next pmb—>next pmb—>next pmb = NULL;
}
pmb—>id = p—>p lusl us2 _ size;
p—p_ lusl us2 size++;
return (pmb) ;

}

static int check pt_entry(u32 t pte v){
/* check if the page is presentx/
if (!(pte_v & 1386_ VM _ PRESENT))
return (VM_HANDLED NO PRESENT) ;
/* Check if it is a NON USER PAGEx/
if (!(pte_v & 1386 VM USER))
return (VM_HANDLED NO ACESS) ;
/* Check if it is a GLOBAL PAGE
x(buffer shared between os and process)x/
if ((pte_v & 1386_VM_GLOBAL))
return (VM_HANDLED GLOBAL) ;
/#% Check if it is a NON BIG PAGE
(BIGPAGES are not implemented in Minix)s*/
if ((pte_v & 1386_VM_BIGPAGE))
return (VM _HANDLED BIG);
/% Check if it is a WRITEx/
if (!(pte_v & I386_VM_WRITE))
return (VM_HANDLED NO ACESS) ;
return (OK) ;

585
586
587
588
589
590
591

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

622
623
624
625
626
627
628
629
630
631
632
633

238 Annex

* display mem

void display mem(struct proc xcurrent p){
if (current _p—>p lusl us2 size > 0){
struct pram_mem block xpmb =
current p—>p lusl wus2;
while (pmb) {
if (pmb—>us0!=MAP_ NONE)
printf("displaying vaddr 0x%lx
"pram 0x%lx first 0x%lx second: 0x%lx\n",
pmb—>vaddr, pmb—>us0 ,
pmb—>usl, pmb—>us2);
pmb = pmb—>next pmb;

n

/
* get pmb *
/
X * /
/% Return the first avalaible pmb in lusl us2 table.

xx If the table is full a panic is triggered
% otherwise the found pmb is returnedtable =/
struct pram mem block *get pmb(void){
int pmb_offset = 0;
/* start from the first pmb x/
struct pram_ mem block s*pmb = BEG PRAM MEM BLOCK ADDR;
/*xIf the first block is free return it=x*/
if (pmb—>flags & PRAM SLOT FREE) {
/*xReset the data in the
* block and return the blocksxx/
pmb—>flags &="PRAM SLOT FREE;
pmb—>next pmb = NULL;
pmb—>usl = MAP NONE;
pmb—>us2 = MAP NONE;
pmb—>us0 = MAP NONE;
pmb—>vaddr = MAP_NONE;
return pmb;
}
do{
/%% Otherwise go through the lusl us2
*+ and search the first available
%% bloc *xx/
pmb _offset++;
pmb++;
}while (! (pmb—>flags & PRAM SLOT FREE) &&
pmb < END PRAM MEM BLOCK ADDR) ;

/**%The end of the lusl us2 is reached panic #x/

634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

682

A.3. Listings 239

if (pmb _offset>= WORKING SET SIZE)
panic ("ALERT BLOCK LIST IS "
"FULL STOP STOP %d\n", pmb offset);

/*+The bloc is found, reset the content

x of the bloc and return itxx/
pmb—>flags &="PRAM SLOT FREE;

pmb—>usl = MAP NONE;

pmb—>us2 = MAP NONE;

pmb—>us0 = MAP NONE;

pmb—>vaddr = MAP_ NONE;

pmb—>next pmb = NULL;
return pmb;

}

int add region to_ ws(struct proc %p, u32_t xroot,
vir_bytes r_ base addr,
int length, phys bytes usl,
phys bytes us2){

u32 t pde_v, pte_v; // pde entry value
u32 t xpte_a; // page table address
u32_t pfa;

int i;

int pde = I386_VM_PDE(r_ base addr);
int pte = I386_VM_PTE(r_ base addr);
vir _bytes page base =
pde = I386_ VM PT ENTRIES * 1386 PAGE_ SIZE
+ pte x 1386 _PAGE_SIZE;
vir _bytes vaddr;
int n_pages covered =
(length +
(r_base addr — page base) — 1)/(4%x1024) + 1;
for(i = 0; i < n_pages covered; i++){
vaddr = page base + i*4%x1024;
pde = I386_VM_PDE(vaddr) ;
pte = 1386 VM PTE(vaddr);
pde v = phys get32((u32_t) (root + pde));
/*xread the page table addressx/
pte_a = (u32 t *) I386_ VM _PFA(pde v);
/* read the page table entry valuex/
pte_v = phys get32((u32_t) (pte_a + pte));
/+ read the frame address valuex/
pfa = 1386_VM_PFA(pte v);
struct pram mem block xpmb;
if (!(pmb = look up pte(p, 1386 VM _ PDE(vaddr),
1386_VM_PTE(vaddr))))
pmb = add _pmb_ vaddr(p, pfa, vaddr,usl,us2);
else
pmb—>us0 = pfa;

683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711

712
713
714
715
716
717

240

Annex

pmb—>flags |= H TO UPDATE;

}
return (OK) ;

}

static struct pram mem block % add pmb_ vaddr(
struct proc xp,
phys bytes pfa, vir bytes vaddr,
phys bytes usl, phys bytes us2){
struct pram_ mem block #pmb, xnext pmb;
/x ask for a new pmb block in the free listx/
pmb = get_pmb () ;
/* be sure that we got a good blockx/
assert (pmb) ;
pmb—>us0 = pfa;
pmb—>vaddr = vaddr;
pmb—usl = usl;
pmb—us2 = us2;
/* Insert the block on the process’s linked list=x/
if (!p—>p lusl us2 size)
p—p_lusl us2 = pmb;
else{
next pmb = p—>p lusl us2;
while (next pmb—>next pmb)
next pmb = next pmb—>next pmb;
next pmb—>next pmb = pmb;
next pmb—>next pmb—>next pmb = NULL;
}
pmb—>id = p—>p lusl us2 size;
p—p_lusl_us2_size++;
return (pmb) ;

int set_pe mem to ro(struct proc xp, u32 t xroot){
int pte, pde;
u32 t pde v, pte_v, pfa; // pde entry value
u32 t xpte_a; // page table address
if (p—>p_lusl us2_ size <= 0)
return (OK) ;
if (h_step = FIRST RUN){
/+* Whether USO was modified
* during system call handling, US1 and
% US2 should be updated accordingly.x/
if (handle _hme events(p)!=0K)
panic ("vm_setpt root to ro:
"handle _hme events failed\n");
free _hardening mem events(p);

n

S N

o

[SJS BN REPR BEP B N N N N |

A.3. Listings 241

}

struct pram_ mem block spmb = p—>p lusl us2;
while (pmb) {

pde = I386_ VM _PDE(pmb—>vaddr) ;

pte = 1386_VM_PTE(pmb—>vaddr);

pde v = phys get32((u32 t) (root + pde));

check if the pde is present
if (check pt_entry(pde v)!=0K){
pmb = pmb—>next pmb;
continue;
b

/ read the page table address
pte_a = (u32_t x) I386_VM_PFA(pde v);
/* read the page table entry valuesx/
pte_v = phys get32((u32 t) (pte_a + pte));
if (check pt_entry(pte v)!=0K){
pmb = pmb—>next pmb;
continue;

}

pfa = 1386_VM_PFA(pte v);

if ((p—>p_hflags & PROC_SHARING MEM) &&

!(pmb—>flags & WS _SHARED) &&

((look _up_ page in_hsr(p, pmb—>vaddr))=—0K)){
pmb—>flags |= WS SHARED;

if ((pmb—>flags & H TO UPDATE) &&
(pmb—>usl!= MAP NONE) &&
(pmb—>us2!=MAP NONE)){
if (cpy frames(pmb—>us0, pmb—>usl)!=0K)
panic("add region to_ ws: "
"first phys failed\n");
if (cpy frames(pmb—>us0, pmb—>us2)!=0K)
panic("add region to_ ws "
second phys failed\n");
pmb—>flags &= "H TO UPDATE,;

}
/* disable the WRITE bitx/

if (h_step = FIRST RUN){
if (!Ipfa){
free_pram mem block(p, pmb—>vaddr,
(u32_t *)root);
pmb = pmb—>next pmb;
continue;
}
if (pmb—>us1!=MAP NONE) {
pte_v =
(pte_v & I386_VM_ADDR MASK INV) | pmb—>usl;

242 Annex

if (!(pmb—>flags & IWS_PF FIRST) &&

0o

782 !(pmb—>flags & IWS_MOD_ KERNEL))

783 pte_v &= 7I386_VM_WRITE;

784 }

785 else

786 pte_v &= TI38_VM_WRITE;

787 }

788 else{

789 if (pmb—>us2!=MAP NONE) {

790 pte_v =

791 (pte_v & I386_VM_ADDR_MASK INV) | pmb—>us2;
792 if (!(pmb—>flags & IWS PF SECOND) &&

793 !(pmb—>flags & IWS MOD_ KERNEL))

794 pte_v &= TI386_VM_WRITE;

795 }

796 else

797 pte_v &= 7I386_VM_WRITE;

798 }

799

800 if ((pmb—>usl!=MAP NONE) &&

801 (pmb—>us2=—MAP NONE))

802 pte_v =

803 (pte_v & I386_VM_ADDR_ MASK INV) | pmb—>us0;
804 pte v &= 71386 VM_DIRTY;

805 /% update the page tablex/

806 phys set32((u32_t) (pte_a + pte), &pte v);
807 pmb = pmb—>next pmb;

808 }

809 return (OK) ;
s10| }

811
812

813| /% *
814| * vm _setpt root to ro x

815 ———— *//’

s16| /#* Browse the page table from page

s17| * directory O to page directory

g1g| *x I386_ VM _ DIR ENTRIES

s19| **x for each page directory entry the page
820/ * directory is not considered

g21| **x if the page directory

822| %% Is not present

823| kk %% has not write access

824 % *%x Is not accessible in USER mode
825 ks xx Is a global pde

826 kk xx Is a big page

g27| **% The page table of each pde is browse and
g28| % each page table entry
829 *% is considered to restrict access to the

830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
864
865
866
867
868
869
870
871
872
873
874
875
876
877

878

A.3. Listings

243

% processing element by calling the

% static void vm_setpt to_ ro(struct proc x*

x« , u32_t x, const u32 t) xx/

void vm_setpt root to ro(struct proc xp, u32 t xroot){

int pde; // page directory entry
assert (! ((u32_t) root % I386_PAGE_ SIZE));

assert (p—>p_nr != VM PROC NR); // VM is not included

if (h step = FIRST RUN){

/%% Whether USO was modified during

* system call handling, US1 and

*x US2 should be updated accordingly.x/

if (handle hme events(p)!=0K)
panic("vm_setpt root to ro:

"handle _hme events failed\n");
free _hardening mem events(p);

n

}
for (pde = 0; pde < I386_VM_DIR_ENTRIES; pde++) {

// start from 0 to I386_VM_ DIR ENTRIES = 1024
u32 t pde_v; // pde entry value
u32 t xpte_a; // page table address
// read the pde entry value
pde v = phys get32((u32_t) (root + pde));
// check if the pde is present
if (check pt_ entry(pde v)!=0K) continue;
// read the page table address
pte_a = (u32_t x) I386_VM_PFA(pde_v);
/+ call the function to handle the
* page table entries x/
vm_setpt to ro(p, pte a,
pde * I386_VM_PT ENTRIES * 1386 PAGE_SIZE);
}

return;

* vim_setpt to ro x

static void vm setpt to ro(struct proc x*p,
u32 t xpagetable, const u32 t v) {
/** Browse the page table entry from
* page table entry O to page directory
*x I386 VM _PT ENTRIES
xx for each page table entry the page table is
* mnot considered
x% if the page table entry
* % #*% Is not present

879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927

244

Annex

u3d2

*% x% Is not accessible in USER mode

* %k x*x the page does not map to a frame

xx for each page the virtual address and the

* physical address are stored in a

%% linked list embedded in the process

*+ data structure

xx The page access is modified from USER mode

*+ to Kernel mode

xx So when a page fault occur we are able to know
%+ if it is a normal page fault

xx or a page fault from that access modification.
*ok /

int pte; /+ page table entry numberx/

assert (!((u32_t) pagetable % I386 PAGE_ SIZE));

/* VM is not includedsx/

assert (p—>p_nr != VM PROC NR);

for (pte = 0; pte < I1386_VM_PT_ ENTRIES; pte++) {
/x start from 0 to I386 VM PT ENTRIES = 1024x/

_t pte_v; /x page table entry valuex/

u32 t pfa ; /x frame address valuex/
/* read the page table entry valuex/

pte_v = phys get32((u32_t) (pagetable + pte));

pfa

if (check pt_ entry(pte v)!=0K) continue;
/* read the frame address valuex/

= 1386 VM_PFA(pte v);
/% 1f the frame address value is zero
x continue Not label that pagex/

/* pmb is the data structure to

x describe that pagex/

/* next pmb is the data structure to put
%« that data is the linked list=x/

struct pram_ mem block *pmb, *next pmb;
u32 t vaddr = v + pte x 1386 _PAGE_SIZE;

if (!(pmb = look up pte(p, 1386 VM PDE(vaddr),
1386_VM_PTE(vaddr))))
pmb = add pmb(p, pfa, v, pte);
assert (pmb) ;

if ((p—>p _hflags & PROC SHARING MEM) &&
!(pmb—>flags & WS _SHARED) &&
((look up page in hsr(p, pmb—>vaddr))=—0K)){

pmb—>flags |= WS _SHARED;

}

/* disable the WRITE bitx/
if (h_step = FIRST RUN){

928
929
930
931

932
933
934
935
936
937
938
939
940
941

942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958

959

A.3. Listings

245

if (pmb—>us1!=MAP NONE){

pte v =

(pte_v & 1386 VM _ADDR MASK INV) |pmb—>usl;
if (!(pmb—>flags & IWS_ PF FIRST) &&
!(pmb—>flags & IWS_MOD_ KERNEL))
pte v &= 71386 VM_ WRITE;
}
else
pte v &= 71386 VM_WRITE;
}

else{
if (pmb—>us2!=MAP NONE) {
pte_v =
(pte_v & I386_VM_ADDR_MASK INV) |pmb—>us2;
if (!(pmb—>flags & IWS_PF SECOND) &&
!(pmb—>flags & IWS MOD_ KERNEL))
pte_v &= 7I386_VM_WRITE;
}
else
pte_v &= 7I386_VM_WRITE;
}
if ((pmb—>usl!=MAP NONE) &&
(pmb—>us2=—MAP NONE))
pte v =
(pte_v & 1386 VM _ADDR MASK INV) |pmb—>us0;
pte_v & “I386_VM_DIRTY

/* update the page tablex/
phys set32((u32_t) (pagetable + pte), &pte v);

}

return ;

A.3.4 VM Protected memory (VMPRAM)

Listing A.4: VM Protected memory (VMPRAM)

#include <machine/vm.h>

#include <minix/type.h>
#include <minix/syslib.h>
#include <minix/cpufeature.h>
#include <string.h>

#include <assert.h>

#include <signal.h>

#include <stdlib .h>

N

246 Annex

#include <machine/vm.h>

#include "htype.h"
#include "glo.h"
#include "proto.h"

‘|#include "util.h"

#include "region.h"
static void free pram mem block(
struct vmproc xcurrent p, vir bytes vaddr);

int tell kernel for wusl wus2(struct vmproc svmp,
vir _bytes v, phys bytes physaddr, size t bytes)
{

int pages = bytes / VM_PAGE SIZE, p;
phys bytes usl, usl cl, us2, us2 cl;
struct pram_mem block *pmb;
for(p = 0; p < pages; pt+t) {
/*already in usl us2 list?7x/
if (!(pmb = look up pte(vmp,
1386 VM_PDE(v) ,I386_ VM_PTE(v)))){
/+* no allocate usl and us2 and add it to usl us2
x list */
if ((usl_cl = alloc._mem (1, PAF CLEAR)) = NO MEM)
panic("tell kernel for usl us2 :"
" no mem to allocate for copy—on—write\n");
usl = CLICK2ABS(usl cl);
if ((us2_cl = alloc_mem (1, PAF CLEAR)) — NO MEM)
panic("tell kernel for usl us2 :"
" no mem to allocate for copy—on—write\n");
us2 = CLICK2ABS(us2 «cl);
pmb = add_pmb(vmp, v, physaddr, usl, us2);
}
else pmb—>us0 = physaddr; /«yes update USOx/
if (sys_addregionto ws(vmp—>vm endpoint, v, 1,
pmb—>usl, pmb—>us2)!=0K)
return (EFAULT) ;
v += VM_PAGE SIZE;
physaddr+=VM_PAGE _ SIZE;

}
return (OK) ;

}

struct pram_ mem block % add pmb(struct vmproc svmp,
vir _bytes v, phys bytes pfa,
phys bytes usl, phys bytes us2){
struct pram_ mem block #pmb, xnext pmb;
/+ ask for a new pmb block in the free list=x/
pmb = get_pmb () ;
/* be sure that we got a good blocksx/

61
62
63
64
65
66

67

© © &

(S N

[+

~

s

s e T B BN BN B R BN |

80
81
82
83
84

86
87
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

A.3. Listings 247

}

assert (pmb) ;
pmb—>us0 = pfa;
pmb—>vaddr = v,
pmb—usl = usl;
pmb—>us2 = us2;
/+ Insert the block on the process’s linked listx*/
if (!vmp—>vm lusl us2 size)
vmp—>vm_lusl_us2 = pmb;
else{
next pmb = vmp—>vm _ lusl_ us2;
while (next _pmb—>next pmb)
next pmb = next pmb—>next pmb;
next pmb—>next pmb = pmb;
next _pmb—>next pmb—>next pmb = NULL;
}
pmb—>id = vmp—>vm_lusl_ us2_size;
vmp—>vm _lusl us2 _size++;
return (pmb) ;

int free region pmbs(struct vmproc xvmp,

17| /

108

109

vir _bytes raddr, vir_ bytes length){
if (vmp—>vm _ lusl us2 size <= 0)
return (OK) ;
int p;
int pde = I386_VM_PDE(raddr);
int pte = I386_ VM _PTE(raddr);
vir _bytes page base =
pde * ARCH VM PT ENTRIES % VM_PAGE SIZE
+ pte * VM PAGE SIZE;
vir _bytes vaddr;
int n_pages covered = (length +
(raddr — page base) — 1)/(4%x1024) + 1;
struct pram_mem_block *pmb ;
for(p = 0; p < n_pages_covered; p++){
vaddr = page base + px4x1024;
pde = I386_ VM _PDE(vaddr);
pte = 1386 _VM_PTE(vaddr);
if (!(pmb = look up pte(vmp, pde, pte)))
continue;
free_pram mem block (vmp, pmb—>vaddr);
}
sys_free pmbs(vmp—>vm endpoint, raddr, length);
return (OK) ;

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

154

155(/
/

156
157

158

248

Annex

static void free pram mem block(

}

*
*
*
*
*
*
*

*

struct vmproc xcurrent p, vir bytes vaddr){
Delete the block corresponding to vaddr

from the PE woking set in

VM address space. If the block is found it is
remove from the list

and the data structure in the whole available
blocks is made free

If the end of the list is reached the function
return*/

assert (current p—>vm lusl us2 size > 0);
struct pram_mem block *pmb =

current _p—>vm_lusl_us2;

struct pram_ mem block sprev_pmb = NULL;
struct pram_mem block *next pmb = NULL;
int __ pte, __pde, pte, pde;

pte = 1386 VM _PTE(vaddr);

pde = I386_VM_PDE(vaddr) ;

while (pmb){

__pte = I386_ VM_PTE(pmb—>vaddr) ;
__pde = 1386_ VM _PDE(pmb—>vaddr) ;
if ((__pte—pte)&&(_ _pde=—pde)){
free_ mem (ABS2CLICK (pmb—>usl), 1);
free_ mem (ABS2CLICK (pmb—>us2), 1);
pmb—>flags = PRAM SLOT FREE;
pmb—>vaddr = MAP_ NONE;
pmb—>id = 0;
pmb—>usl = MAP NONE;
pmb—>us2 = MAP NONE;
pmb—>us0 = MAP NONE;
current p—>vm_ lusl us2 size——;
if (prev_pmb)
prev_pmb—>next pmb = pmb—>next pmb;
else
current p—>vm_lusl us2 = pmb—>next pmb;
break;

prev_pmb = pmb;
next pmb = pmb—>next pmb;
pmb = pmb—>next pmb;

*

struct pram_ mem block xget pmb(void){

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

207

A.3. Listings

249

/ % Return the first avalaible pmb in lusl us2

* table.
xx If the table is full a panic is triggered
x%x otherwise the found pmb is returnedtable x*/
int pmb_offset = 0;
/* start from the first pmb %/
struct pram_ mem block xpmb = BEG PRAM MEM BLOCK ADDR;
/*xIf the first block is free return it=x/
if (pmb—>flags & PRAM SLOT FREE) {
/++xReset the data in the block
x and return the blockxx*/
pmb—>flags &="PRAM SLOT FREE;
pmb—>next pmb = NULL;
pmb—>usl = MAP NONE;
pmb—>us2 = MAP NONE;
pmb—>us0 = MAP NONE;
pmb—>vaddr = MAP_ NONE;
return pmb;
}
do{
/*x%x Otherwise go through the lusl us2
x and search the first available
xx% bloc *xxx/
pmb _offset++;
pmb++;
}while (! (pmb—>flags & PRAM_SLOT FREE) &&
pmb < END PRAM MEM BLOCK ADDR) ;
/*xThe end of the lusl us2 is reached panic *x/
if (pmb_offset>= WORKING SET SIZE)
panic ("Block list is full stop %d\n",
pmb _offset);
/**xThe bloc is found, reset the content of
x the bloc and return itsx/
pmb—>flags &="PRAM SLOT FREE;
pmb—>usl = MAP NONE;
pmb—>us2 = MAP NONE;
pmb—>us0 = MAP NONE;
pmb—>vaddr = MAP_NONE;
pmb—>next pmb = NULL;
return pmb;

* look up_ pte *

struct pram_ mem block * look up pte(
struct vmproc xcurrent p, int pde, int pte){
/x% Search in the PE working set list the block
* with the given pde and pte

208
209
210
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

242
243
244
245
246
247
248
249

250 Annex

xx if the working set list is empty a NULL
* pointer on block is return.
xx If the end of
%% the working set list is reached without
* finding the block a NULL
%% pointer is return. If the block is found
* a pointer on the block is
*k returnsxx/
if (current p—>vm lusl us2 size <= 0)
return (NULL) ;
struct pram_mem block spmb = current p—>vm lusl us2;
int _ pte, _ pde;
while (pmb){
__pte = I386_VM_PTE(pmb—>vaddr) ;
__pde = 1386_VM_PDE(pmb—>vaddr) ;
if ((__pte—=pte)&&(pde=—pde))
return (pmb) ;
pmb = pmb—>next pmb;
}

return (NULL) ;

void free pram mem blocks(struct vmproc scurrent p){
/*% Delete of the blokcs in the PE working set list.
x If the working
*x set list is empty the function return. Otherwise
x+ each blocks is delete
xx A the end of the function the working set of the
x+x PE should be empty sxx/
if (current p—>vm lusl us2 size <= 0)
return;
struct pram_mem_block *pmb = current p-—>vm_lusl_ us2;
while (pmb) {
free_pram mem block(current p, pmb—>vaddr);
pmb = pmb—>next pmb;

}
assert (current _p—>vm_lusl us2 size =— 0);
assert (current p—>vm lusl us2 = NULL) ;

A.3.5 VM Copy-on-write (VMCOW)

Listing A.5: VM Copy-on-write (VMCOW)

1‘#includc <machine /vm.h>

o W N

~

[e

10
11
12
13
14
15

16

18
19
20
21
22
23
24
25
26

27
28
29
30

32
33

35
36
37
38
39
40
41
42
43
%
45
46
47
48
49

A.3. Listings

251

#include <minix/type.h>
#include <minix/syslib.h>
#include <minix/cpufeature.h>

i|#/include <string.h>

#include <assert.h>
#include <signal.h>
#include <stdlib.h>

#include <machine/vm.h>

#include "htype.h"

#include "glo.h"

#include "proto.h"

#include "util.h"

#include "region.h"

static int hmap pf(struct vmproc svmp,
struct vir_ region xregion,
vir _bytes offset, int write,
u32 t addr, int rw, int what);

* allocate _ mem 4 hardening *

void allocate _mem 4 hardening (struct vmproc vmp,
struct vir_ region xregion,
struct phys region xph, int what){
/*% When called allocate mem 4 hardening
x+ allocate a frame for the hardening
#% [f it is called during the first run,
x% the frame is allocated for USI
xx [f it is called during the second run,
xx the frame is allocated for US2
x+% The data in the corresponding frame in
xx USO is copied in the new frame
%% The kernel is informed to update the bloc
x% data structure within its own
% address space. xx/
struct pram_ mem block *pmb, *next pmb;
phys bytes new page 1, new_ page cl 1, phys back;
vir _bytes vaddr;
u32 t allocflags;
vaddr = region—>vaddr+ph—>offset ;
allocflags = vrallocflags (region—>flags);

vmp—>vm_hflags |= VM PROC TO HARD;

if (!(pmb = look up_ pte(vmp, 138 VM PDE(vaddr),
1386 VM PTE(vaddr)))){

/* rememeber that we are working with page

64

65

83

85
86
87
88
89
90
91
92
93
94
95
96
97
98

99

252

Annex

* already in the working setx/

pmb = get pmb () ;
assert (pmb) ;

#if CHRCK_DEBUG

#endif

assert (pmb—>us0 =— MAP _NONE) ;
assert (pmb—>usl =— MAP NONE) ;
assert (pmb—>us2 = MAP NONE) ;
assert (pmb—>vaddr = MAP_NONE) ;

/*+ Here on frame is allocated %%/
if ((new_page cl 1 = alloc_mem(1,
allocflags |PAF _CLEAR)) = NO_MEM)
panic ("allocate mem 4 hardening :"
"no mem to allocate for copy—on—write\n");

new_ page 1 = CLICK2ABS(new_ page cl 1);

/* copy the content of the current
* frame ram phys in the new frame
x allocated x/
if (sys_abscopy(ph—>ph—>phys, new page 1,
VM_PAGE SIZE) != OK)
panic ("VM: abscopy failed: when
"copying data during copy"
"on write page fault handling\n");
/* update the VM data structure =x
% linked the frames to usO, usl,
* us2 in the VM x/
pmb—>us0 = ph—>ph—>phys;
if (what = VM_FIRST RUN)
pmb—>usl = new page 1;
if (what = VM_SECOND RUN)
pmb—>us2 = new page 1;

n

pmb—>vaddr = vaddr;

/*xInsert the new pmb bloc into the
* process’s VM working set listsx/
if (!vimp—>vm lusl us2 size)
vmp—>vm _lusl us2 = pmb;
else{
next pmb = vmp—>vm lusl us2;
while (next pmb—>next pmb)
next pmb = next pmb—>next pmb;
next pmb—>next pmb = pmb;
next pmb—>next pmb—>next pmb = NULL;
}
pmb—>id = vmp—>vm _lusl us2 size;
vmp—>vm_lusl us2_size++;

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

A.3. Listings 253

/*%x Now inform the Kernel so the VM
* will update it part of
k% pmb attributes : usO, usl, us2
#+% after sys hmem map the micro—kernel
x% and the VM share the same
xx+ information on the pmb attributes.sxx/
if (what = VM_FIRST RUN){
if (sys_hmem map(vmp—>vm endpoint,
new page 1, —2L, —2L, 0)!=0K)
panic ("VM: sys hmem map failed: when
"informing the kernel during"
"copy on write page fault handling\n");

n

}
if (what = VM _SECOND RUN){
if (sys_hmem map(vmp—>vm endpoint, —2L,
new page 1, —2L, 0)!=0K)
panic ("VM: sys hmem map failed: when
"informing the kernel during"
"copy on write page fault handling\n");

n

}
else{
// TO COMPLETE
if ((pmb—>usl != MAP NONE) &&
(pmb—>us2!=MAP NONE)) {
pmb—us0 = ph—>ph—>phys;

}

if ((pmb—>usl = MAP NONE) ||
(pmb—>us2=—MAP NONE)) {
/%% Here on frame is allocated #xx/
if ((new_page cl 1 = alloc_mem(1,
allocflags |PAF CLEAR)) — NO MEM)
panic ("allocate _mem 4 hardening
"no mem to allocate for copy—on—write\n");
new page 1 = CLICK2ABS(new page cl 1);

}

switch (what){
case VM_FIRST RUN: // TO COMPLETE
if (pmb—>us1=—MAP NONE)
pmb—>usl = new_page 1;
/% copy the content of the current frame
* ram_phys in the new frame
* allocated =x/
if (sys_abscopy(ph—>ph—>phys, pmb—>usl,
VM_PAGE SIZE) != OK)

149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197

254

Annex

panic ("VM: abscopy failed: when"
"copying data during copy"
on write page fault handling\n");
if (sys_hmem map(vmp—>vm endpoint,
pmb—>usl,—2L, —2L, 0)!=0K)
panic ("VM: sys hmem map failed:
"when informing the kernel during"
"copy on write page fault "
"handling\n");
break;
case VM_SHCOND RUN: // TO COMPLETE
if (pmb—>us2=—MAP NONE)
pmb—>us2 = new page 1;
if (sys_abscopy (ph—>ph—>phys, pmb—>us2,
VM_PAGE SIZE) != OK)
panic ("VM: abscopy failed: when"
"copying data during copy"
"on write page fault handling\n");
if (sys_hmem map(vmp—>vm endpoint, —2L,
pmb—>us2, —2L, 0)!=0K)
panic ("VM: sys hmem map failed:
"when informing the kernel during"
" copy on write page fault "
"handling\n");

"

n

n

break ;
default :
panic ("Unkown value for what in
" hmap pf\n");

}
}

return;

do _hpagefaults =

void do_ hpagefaults (message sm)

{

endpoint _t ep = m—>m _source;
u32 t addr = m—>VPF ADDR;
u32_t err = m—>VPF FLAGS;
struct vmproc *vmp;

int s, mem flags = 0;

struct vir_region xregion;
vir _bytes offset;
int p, wr = PFERR_WRITE(err), rw = 0, what = 0;

A.3. Listings 255

198
199| if (vm_isokendpt(ep, &p) != OK)

200 panic("do pagefaults: endpoint"

201 " wrong: %d", ep);

202

203| vmp = &vmproc|[p];

204 assert ((vmp—>vm _flags & VMF INUSE)) ;

205

206 /* 1lst executionx/

207 if (m>m_type = VM _HRIPAGEFAULT)

208 what = VM_FIRST RUN;

209

210 /+ 2nd execution x/

211 if (m—>m type = VM HR2PAGEFAULT)

212 what = VM _SECOND_ RUN;

213

214 /* The virtual address is not

215 x belong a valid memory space x*/

216 if (!(region = map_lookup(vmp, addr, NULL))) {
217 panic("region null 0x%x\n", addr);
218] }

219 assert (region);

220 assert (addr >= region—>vaddr);

221 offset = addr — region—>vaddr;

222

223 /* Access is allowed; handle it.

224 x allocate the frame x/

225 if ((hmap_pf(vmp, region, offset, wr,addr,
226 rw, what)) != OK) {

227 panic ("VM: pagefault: SIGSEGV %d "

228 "pagefault not handled\n", ep);
229 if ((s=sys kill (vmp—>vm endpoint,

230 SIGSEGV)) != OK)

231 panic("sys kill failed: %d", s);

232 if ((s=sys_vmctl(ep,

233 VMCTL_ CLEAR PAGEFAULT,

234 0 /+unusedx*/)) != OK)

235 panic("do pagefaults: sys vmctl"

236 "failed: %d", ep);

237 return;

238 }

239

240 /+ Pagefault is handled, so now

241 x reactivate the process. x/

242 if ((s=sys_vmectl(ep, VMCIL CLEAR PAGEFAULT,
243 0 /+unusedx*/)) != OK)

244 panic("do pagefaults: sys vmctl"

245 " failed: %d", ep);

246

273

256

Annex

* hmap pf *

static int hmap pf(vmp, region, offset
write , addr, rw, what)

struct vmproc *vmp;

struct vir_ region *xregion;

5| vir _bytes offset;

int write;
u32_t addr;
int rw;
int what;
{
struct phys region xph;
int r = OK;
struct phys block xpb;

offset —= offset % VM _PAGE SIZE;

assert (offset >= 0);
assert (offset < region—>length);

assert (!(region—>vaddr % VM_PAGE SIZE)) ;
assert (! (write &&
!(region—>flags & VR _WRITABLE))) ;

/* get the phys block in the VM.
Phys block is the data structure to
handle the page in the VMsx/

ph = physblock get(region, offset);

assert (ph);

/* Do the allocation of US1 or
x US2 framesxx*/
allocate_ mem 4 hardening(vmp,
region, ph, what);
return (OK) ;
}

int do memconf(message #m){

endpoint _t ep = m—>m _source;
struct vmproc *vmp;

296
297
298
299
300
301
302
303
304
305
306

oA W N e

~

10

A.3. Listings

257

int p;

if (vim_isokendpt(ep, &p) != OK)
panic("do_pagefaults: endpoint
wrong: %d", ep);

vmp = &vmproc|p];
free_pram mem blocks(vmp) ;
return (OK) ;

A.3.6 USO change handler (USOh)

Listing A.6: USO change handler (USOh)

#include "kermnel/kernel.h"
#include "kernel/vm.h"

#include <machine/vm.h>

i|#include <minix/type.h>

#include <minix/syslib.h>
#include <minix/cpufeature.h>
#include <string.h>

#include <assert.h>

#include <signal .h>

#include <stdlib .h>

#include <machine/vm.h>

#include "arch proto.h"

#include "htype.h"
#include "hproto.h"
#include "rcounter.h"
#include "mca.h"
#include "../../clock.h"

i|#ifdef USE APIC

#include "apic.h"
#ifdef USE WATCHDOG
#include "kernel/watchdog.h"

0| #endif

#endif

2l static int update ws usl us2 data pmb(struct proc

*rp,

62

65

67

79
80

81

258 Annex

|}

struct pram_mem block #pmb) ;
int update ws_ usl us2 data_ vaddr(struct proc x*rp,
vir _bytes vaddr){
int pde, pte;
pde = I386_VM_PDE(vaddr); pte = I386_VM_PTE(vaddr);
int rl, r2;
struct pram_mem block *pmb =
look up pte(rp, pde, pte);
if (pmb && (pmb—>us0!=MAP NONE) &&
(pmb—>us1!=MAP NONE) &&
(pmb—>us2!=MAP NONE)) {
if (cpy frames(pmb—>us0, pmb—>usl)!=0K) {
panic ("update _ws_usl us2 data:Copy "
"first _phys to pram failed\n");
return (EFAULT) ;

if (cpy_frames(pmb—>us0, pmb—>us2)!=0K){
panic ("update ws usl us2 data:Copy "
"second phys to pram failed\n");
return (EFAULT) ;

pmb—>flags |= IWS MOD KERNEL;

}
return (OK) ;

}

static int update ws usl us2 data pmb(struct proc xrp,

struct pram mem block *pmb) {
if (!pmb) return (OK);
int rl, r2;
if ((pmb—>us0!=MAP NONE) && (pmb—>usl!=MAP NONE) &&
(pmb—>us2!=MAP NONE)) {
if (cpy frames(pmb—>us0, pmb—>usl)!=0K) {
panic ("update _ws_usl us2 data_ pmb:Copy "
"first phys to pram failed\n");
return (EFAULT) ;
if (cpy_frames(pmb—>us0, pmb—>us2)!=0K){
panic("update ws usl us2 data pmb:Copy "
"second phys to pram failed\n");
return (EFAULT) ;
}
}
return (OK) ;

int update all ws usl us2 data(struct proc xrp){
if (rp—>p_ lusl us2 size <= 0)
return (OK) ;

A.3. Listings

259

int r;
struct pram_ mem block spmb = rp—>p lusl us2;
while (pmb) {
if ((r=update_ws_usl us2 data pmb(rp, pmb))!=0K)
return(r);
pmb = pmb—>next pmb;
}

return (OK) ;

}

2| int update range ws_ usl_ us2 data(struct proc xrp,

vir _bytes offset ,
int n_pages covered){
int pde = I386_VM_PDE(offset);
int pte = I386_ VM_PTE(offset);
vir _bytes page base =
pde x I386_VM_ PT ENTRIES x 1386 PAGE _SIZE
+ pte * 1386_PAGE_SIZE;
int 1 = 03
for(i = 0; i < n_pages covered; i+t){
if (update _ws usl us2 data_ vaddr(rp,
page base + 1%4%1024)!=0K)
return (EFAULT) ;

}
return (OK) ;

A.3.7 System call handler (SCH)

Listing A.7: System call handler (SCH)

#include "kernel/kernel.h"
#include "kernel/vm.h"

#include <machine/vm.h>

j|#include <minix/type.h>

#include <minix/syslib.h>
#include <minix/cpufeature.h>
finclude <string.h>

#include <assert.h>

finclude <signal .h>

#include <stdlib.h>

5|#include <machine/vm.h>

19

N

45

65

260

Annex

#include "arch proto.h"

#include "htype.h"
#include "hproto.h"
#include "rcounter.h"

s|#include "mca.h"

4|#include "../../clock.h"

j|#ifdef USE_ APIC

#include "apic.h"
#ifdef USE WATCHDOG
#include "kernel/watchdog.h"
#Hendif
#endif
static struct hardening mem event *get hme(void);
static int free hardening mem event
(struct proc xrp, int id);

/
* get hme *
* * /
/
/ Return the first avalaible hme in
* hardening mem _events.

xx If the table is full a panic is triggered
% otherwise the found hme is returnedtable x/
static struct hardening mem event xget hme(void){
int hme_ offset = 0;
/% start from the first hme x/
struct hardening mem event xhme =
BEG_HARDENING MEM EVENTS ADDR;
/xx1f the first block is free return its*x/
if (hme—>flags & HME SLOT FREE) {
/*xReset the data in the block
 and return the blocksxx/
hme—>flags &="HME SLOT FREE;
hme—>next _hme = NULL;
hme—>addr base = MAP NONE;
hme—>nbytes = 0;
return hme;
}
do{
/**% Otherwise go through the lusl us2 and
* search the first available
#%x% bloc *xx/
hme offset++;
hme-++;
}while (! (hme—>flags & HME SLOT FREE) &&
hme < END HARDENING MEM EVENTS ADDR) ;

/**The end of the lusl us2 is reached panic *x/

A.3. Listings 261

67 if (hme offset>= HARDENING MEM EVENTS)

68 panic ("ALERT BLOCK LIST EVENTS "

69 "IS FULL STOP STOP %d\n", hme offset);
70

71 /*% The bloc is found, reset the content

72 x of the bloc and return itxx/

73| hme—>flags &="HME SLOT FREE;

74 hme—>next hme = NULL;

75 hme—>addr_base = MAP_NONE;

76 hme—>nbytes = 0;

77 return hme;

78| }

79

sol int add hme event(struct proc *rp,

81 vir _bytes offset, vir bytes size){
82

83 int pde = I386_VM_PDE(offset);

84 int pte = I386_ VM _PTE(offset);

85 vir _bytes page base =

86 pde * I386_ VM _PT ENTRIES * 1386 PAGE_SIZE
87 + pte * 1386 PAGE_ SIZE;
88 int n_pages_ covered =

89 (size + (offset — page base) — 1)/(4%1024) + 1;

90 struct hardening mem event * hme;

91 if (!(hme = look up hme(rp, offset))){

92 /% ask for a mew pmb block in the free listx/
93 hme = get hme () ;

94 struct hardening mem event xnext_ hme;

95 /* be sure that we got a good blockx/

96 assert (hme) ;

97 hme—>addr_ base = offset;

98 hme—>nbytes = size;

99 /+ Insert the block on the process’s linked listx/
100 hme—>npages = n_pages covered;

101 if (!rp—>p nb hardening mem events)

102 rp—>p_hardening mem events = hme;

103 else{

104 next hme = rp—>p hardening mem events;
105 while (next hme—>next hme)

106 next _hme = next hme—>next hme;

107 next hme—>next hme = hme;

108 next hme—>next hme—>next hme = NULL;
109 }

110 hme—>id = rp—>p_ nb_ hardening mem events;

111 return(++rp—>p nb_ hardening mem events);
112 }

113 if (hme—>npages < n_pages covered){

114 hme—>addr base = offset;

115 hme—>nbytes = size;

262 Annex

116 hme—>npages = n_pages covered;
117 }
118 return (rp—>p_nb_hardening mem _events) ;

19| }

121
122/ int handle hme events(struct proc =rp){

123 if (rp—>p_nb_hardening mem events <= 0)

124 return (OK) ;

125 struct hardening mem event xhme =

126 rp—>p_hardening mem events;

127 while (hme) {

128 if (update range ws_ usl us2 data(rp,

129 hme—>addr _base, hme—>npages)!=0K)
130 return (EFAULT) ;

131 hme = hme—>next hme;

132

133 return (OK) ;
134] }

/

136| /% *
137(* free _hardening mem events *

138| * */
130| void free hardening mem events(struct proc xrp){

140 if (rp—>p_nb_hardening mem events <= 0)

141 return;

142 struct hardening mem event xhme =

143 rp—>p_hardening mem events;

144 int lsize = rp—>p_ nb_ hardening mem events;

145 while (hme) {

146 if (free_hardening mem event(rp,

147 hme—>id)!=——1size)

148 panic ("Freeing hme with "

149 "error %d\n", lsize);

150/ hme = hme—>next hme;

151 }

152 assert (rp—>p_nb_hardening mem events =— 0);

153 assert (rp—>p_hardening mem events = NULL) ;

154] }
155

156

3

5
158 * free _hardening mem event *

159 —— x /

60| static int free hardening mem event(struct proc *rp,
161 int id){

162 if (rp—>p_nb_hardening mem events <= 0)

163 return (0);

164 struct hardening mem event xhme =

A.3. Listings 263

165 rp—>p_hardening mem events;
166 struct hardening mem event sprev_hme = NULL;
167 struct hardening mem event *next hme = NULL;

168 while (hme){
169 if (hme—id = id){

170 hme—>flags = HME_ SLOT_ FREE;

171 hme—>id = 0;

172 hme—>addr base = 0;

173 hme—>nbytes = 0;

174 hme—>npages = 0;

175 rp—>p_nb_hardening mem _events——;

176 if (prev_hme)

177 prev__hme—>next hme = hme—>next hme;
178 else

179 rp—>p _ hardening mem events =

180 hme—>next hme;

181 break;

182 }

183 prev_hme = hme;

184 next hme = hme—>next_ hme;

185 hme = hme—>next hme;

186}

187 return (rp—>p_nb_hardening mem events);

188 }

189

190

191 /% ok
192| % look up hme *

193] * * /

194 struct hardening mem event *

195 look _up hme(struct proc *rp, vir_ bytes offset){
196 if (rp—>p_nb_hardening mem events <= 0)

197 return (NULL) ;

198 int pte = I386_VM_PTE(offset);

199 int pde = I386_VM_PDE(offset);

200 struct hardening mem event xhme =

201 rp—>p_hardening _mem events;

202 int _ pte, _ pde;

203 while (hme){

204 __pte = I386_VM_PTE(hme—>addr base);
205 ~_pde = 1386 VM_PDE(hme—>addr base) ;
206 if ((__pte—pte)&&(pde—pde))

207 return (hme) ;

208 hme = hme—>next hme;

209 }

210 return (NULL) ;

211 }

S &

3

NN NN NN
% B

N

264

Annex

A.3.8 USO change handler (USOh)

Listing A.8: Shared Memory Handler (SMH)

#include "kernel/kernel.h"
#include "kernel/vm.h"

#include <machine/vm.h>

i|#include <minix/type.h>

#include <minix/syslib.h>
#include <minix/cpufeature.h>
#include <string.h>

#include <assert .h>

#include <signal.h>

#include <stdlib .h>

#include <machine/vm.h>

#include "arch proto.h"

#include "htype.h"
tinclude "hproto.h"
tinclude "rcounter.h"
#include "mca.h"
#include "../../clock.h"

|#ifdef USE_APIC

#include "apic.h"
+tifdef USE WATCHDOG
#include "kernel/watchdog.h"
#endif
#Hendif
static int free hsr(struct proc xrp, int id);
static struct hardening shared proc *get hsp(void);
static struct hardening shared region xget hsr(void);
static struct hardening shared region * look up_ hsr(
struct proc xrp, vir bytes offset,
vir _bytes length, int r id);
static struct hardening shared proc * look up_ hsp(
struct proc x*rp,
struct hardening shared region xhsr);
static struct hardening shared proc
xlook up unique hsp(struct proc *rp);
static struct hardening shared region
% look up unique hsr(int r id);
static int add_all hsr s(

P RN BT BN SR |
Y Ol R W N &

Y
[

7
78
79
80
81
82
83
84
85
86
87
89
90
91
92
93

94

A.3. Listings

265

struct hardening shared region % hsr);
static int add_all _hsp s(
struct hardening shared proc * hsp);
static int free hsp from hsr(
struct proc *rp,
struct hardening shared regionxhsr);
static int free hsr from all hsr s(
struct hardening shared region xphsr);
static int free hsp from all hsp s(
struct proc *rp);
static struct hardening shared region
x look up hsr vaddr(struct proc x*rp,
vir _bytes vaddr, vir_ bytes size);

void enable hme event in procs(struct proc xrp,
vir _bytes vaddr, vir_ bytes size){
if (rp—p_nb_hardening shared regions <= 0)
return;
struct hardening shared region xhsr =
look _up hsr vaddr(rp, vaddr,size);
struct hardening shared proc sxhsp = hsr—>r hsp;
while (hsp){
add _hme event(rp, vaddr, size);
hsp = hsp—>next hsp;

static struct hardening shared region xget hsr(void){
int hsr_offset = 0;
/+ start from the first hsr x/
struct hardening shared region xhsr =
BEG_ HARDENING SHARED REGIONS ADDR;
/«xIf the first block is free return itxx/
if (hsr—flags & HSR SLOT FREE) ({
/**xReset the data in the block
* and return the blockxx*/
hsr—>flags &="HSR SLOT_ FREE;
hsr—>next hsr = NULL;
hsr—>vaddr = 0;
hsr—>length = 0;
hsr—r hsp = NULL;
return hsr;
}
do{
/*%% Otherwise go through the lusl us2
* and search the first available

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

17|/

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

266 Annex

*x%x bloc #xx/
hsr offset++;
hsr++;
}while (! (hsr—>flags & HSR_SLOT FREE) &&
hsr < END HARDENING SHARED REGIONS ADDR) ;

/*xThe end of the lusl us2 is reached panic *x/
if (hsr _offset >= HARDENING SHARED REGIONS)
panic ("ALERT HARDENING SHARED REGIONS IS"
" FULL STOP STOP %d\n", hsr_offset);

/*+The bloc is found, reset the content of
* the bloc and return itx*x/
hsr—>flags &="HSR_SLOT FREE;
hsr—>next hsr = NULL;
hsr—vaddr = 0;
hsr—>length = 0;
hsr—r hsp = NULL;
return hsr;

}

static struct hardening shared proc sget hsp(void){
int hsp offset = 0;
/* start from the first hsp %/
struct hardening shared proc xhsp =
BEG HARDENING SHARED PROCS ADDR;
/*xIf the first block is free return it=x*/
if (hsp—>flags & HSP_SLOT FREE) {
/*+*Reset the data in the block and
* return the blocksxx/
hsp—>flags &="HSP SLOT FREE;
hsp—>next hsp = NULL;
hsp—>hsp_endpoint = 0;
return hsp;
}
do{
/%% Otherwise go through the lusl us2
* and search the first available
%% bloc *xx/
hsp offset++;
hsp++;
}while (! (hsp—>flags & HSP_SLOT FREE) &&
hsp < END HARDENING SHARED PROCS ADDR) ;

/**The end of the lusl us2 is reached panic *x/

144
145
146
147
148
149
150
151
152
153
154

155

156 /

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

,
175| /

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

191

192| /

A.3. Listings

267

if (hsp offset>= HARDENING SHARED PROCS)
panic ("ALERT HARDENING SHARED REGIONS "
"IS FULL STOP STOP %d\n", hsp offset);

/*+The bloc is found, reset the content
of the bloc and return itxx/
hsp—>flags &="HSP_ SLOT FREE;
hsp—>next hsp = NULL;
hsp—>hsp endpoint = 0;
return hsp;

}

*; %

* look up hsr

* * /

static struct hardening shared region * look up hsr(
struct proc xrp, vir_ bytes offset,
vir _bytes length, int r id){
if (rp—p_nb_ hardening shared regions <= 0)
return (NULL) ;
struct hardening shared region xhsr =
rp—>p _ hardening shared regions;
while (hsr){
if ((hsr—vaddr = offset)&&
(length = hsr—>length) && (hsr—>r id = r_id))
return (hsr);
hsr = hsr—>next hsr;
}

return (NULL) ;

* look up hsp *

static struct hardening shared proc % look up hsp(
struct proc *rp,
struct hardening shared region shsr){
if (hsr—>n_ hsp <= 0)
return (NULL) ;
struct hardening shared proc +*hsp = hsr—>r hsp;
while (hsp){
if (hsp—hsp endpoint = rp—>p_endpoint)
return (hsp);
hsp = hsp—>next hsp;
}

return (NULL) ;

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

208

209| /

210
211

212
213
214
215
216
217
218
219
220
221

222
223
224
225
226
227
228
229
230
231

232
233
234
235
236
237
238
239
240

241

268 Annex

* look up unique hsp *

static struct hardening shared proc * look up unique hsp(
struct proc xrp){
if (n_hsps <= 0)
return (NULL) ;
struct hardening shared proc +hsp = all hsp_s;
while (hsp) {
if (hsp—hsp endpoint = rp—>p endpoint)
return (hsp);
hsp = hsp—>next hsp;
}

return (NULL) ;

* look up unique hsr x

static struct hardening shared region x
look up unique hsr(int r_id){
if (n_hsrs <= 0)
return (NULL) ;
struct hardening shared region +hsr = all hsr_s;
while (hsr){
if (hsr—r id = r_id)
return (hsr);
hsr = hsr—>next hsr;

return (NULL) ;
}

int add hsr(struct proc *rp, vir bytes offset ,
vir _bytes size, int r_id){
struct hardening shared_region * hsr;
if (!(hsr = look _up_ hsr(rp, offset ,size, r_id))){
if (!(hsr = look up_ unique_ hsr(r_id))){
#if H_DEBUG
printf("not found\n");

#endif
hsr = get hsr();
hsr—>vaddr = offset;
hsr—>length = size;
hsr—r id =r_id;

hsr—id = rp—>p_nb_ hardening shared regions;
add _all _hsr_s(hsr);

}

struct hardening shared region *next hsr;

assert (hsr); /+ be sure that we got a good blocksx/

B W

[]

NONON NN NN NN N
[|

B S BEEN BN BN BN BN

N}
®©

£
281
282
283
284
285
286
287
288
289

290

A.3. Listings

269

if (!rp—>p_nb_ hardening shared regions)
rp—>p _hardening shared regions = hsr;

else{
next hsr = rp—>p hardening shared regions;
while (next hsr—>next hsr)
next hsr = next_ hsr—>next_hsr;
next hsr—>next hsr = hsr;

next hsr—>next_ hsr—>next_hsr = NULL;

}
add _hsp(rp, hsr);
return(++rp—>p nb_ hardening shared regions);

}

return (rp—>p_nb_hardening shared regions);

int add_hsp(struct proc x*rp,

}

struct hardening shared region shsr){

struct hardening shared proc * hsp;
if (!(hsp = look up_ hsp(rp, hsr))){
if (!(hsp=look up unique hsp(rp))){
hsp = get _hsp();
hsp—>hsp endpoint = rp—>p endpoint;
hsp—>id = hsr—>n_hsp;
add_all hsp s(hsp);
}
struct hardening shared proc *next hsp;
/* be sure that we got a good blockx/
assert (hsp);
if (!hsr—>n_hsp) hsr—>r hsp = hsp;
else{
next hsp = hsr—>r hsp;
while (next hsp—>next hsp)
next hsp = next hsp—>next hsp;
next hsp—>next hsp = hsp;
next hsp—>next hsp—>next hsp = NULL;
}
return(++hsr—>n_hsp);

}

return (hsr—>n_hsp);

static int add_all hsr s(

struct hardening shared region * hsr){
if (all _hsr s=—NULL){

all_hsr_s = hsr;

return (n_hsrs++);

291

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

339

270

Annex

struct hardening shared region * next hsr;
next hsr = all hsr_s;
while (next hsr—>next hsr)

next hsr = next hsr—>next hsr;
next hsr—>next hsr = hsr;
next hsr—>next hsr—>next_ hsr = NULL;
return (n_hsrs++);

}

static int add_all hsp s(

struct hardening shared proc * hsp){
if (all _hsp s=NULL){

all _hsp s = hsp;

return (n_hsps++);
}
struct hardening shared proc * next hsp;
next hsp = all_hsp_s;
while (next hsp—>next hsp)

next hsp = next hsp—>next hsp;
next hsp—>next hsp = hsp;
next hsp—>next hsp—>next hsp = NULL;
return (n_hsps++);

}

void display all _hsp s(void){
struct hardening shared proc * hsp = all_hsp_s;
while (hsp){
printf ("##### Process in all _hsp s #### %d %d %d\n"
hsp—>id, hsp—>flags , hsp—>hsp endpoint);
hsp = hsp—>next hsp;

}

}
void display all hsr s(void){
struct hardening_ shared_region * hsr = all_ hsr_s;
while (hsr){
printf ("#### HARDENING SHARED REGIONS"

"o d 0x%lx 0x%lx\n"
hsr—>id , hsr—>vaddr, hsr—>length);
hsr = hsr—>next hsr;

static int free hsr(struct proc *rp, int id){
struct hardening shared_region xhsr =
rp—>p_hardening shared regions;
struct hardening shared region xprev_hsr = NULL,

A.3. Listings 271

340 *next hsr = NULL;

341 while (hsr){

342 if (hsr—id = id){

343 free_hsp from hsr(rp, hsr);
344 if (hsr—>r_ hsp = NULL){

345 hsr—>flags = HSR_SLOT FREE;
346 hsr—id = 0;

347 hsr—>vaddr = 0;

348 hsr—>length = 0;

349 free_hsr from all hsr s(hsr);

350 }

351 rp—>p_nb _ hardening shared regions——;
352 if (prev__hsr)

353 prev__hsr—>next hsr = hsr—>next_hsr;
354 else

355 rp—>p _ hardening shared regions =
356 hsr—>next_hsr;
357 break;

358 }

359 prev_hsr = hsr;

360 next hsr = hsr—>next hsr;

361 hsr = hsr—>next hsr;

362| }

363 return (rp—>p_nb_hardening shared regions);
364 }
365
366| static int free hsp from hsr(struct proc xrp,

367 struct hardening shared regionxhsr){
368 struct hardening shared proc shsp = hsr—>r hsp;

369 struct hardening shared proc *prev_hsp = NULL,

370 *next hsp = NULL;

371 while (hsp){

372 if (hsp—>hsp endpoint = rp—>p_ endpoint){
373 hsr—>n_hsp——;

374 if (prev_hsp)

375 prev__hsp—>next hsp = hsp—>next hsp;
376 else

377 hsr—>r hsp = hsp—>next hsp;

378 break;

379 }

380 prev_hsp = hsp;

381 next hsp = hsp—>next hsp;

382 hsp = hsp—>next_ hsp;

383 }

384 return (hsr—>n_hsp);

385 }

386

387| static int free hsr from all hsr s(
388 struct hardening shared region sphsr){

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
122
423
124
125
426
427
128
429
130
131
432
433
134
435
436
137

272 Annex

struct hardening shared region xhsr = all hsr_s;
struct hardening shared_region *prev_hsr = NULL,
*next hsr = NULL;

while (hsr){
if (hsr—r id = phsr—>r id){
n_hsrs——;
if (prev__hsr)
prev__hsr—>next hsr = hsr—>next_hsr;
else
all _hsr_ s = hsr—>next hsr;
break ;
}
prev__hsr = hsr;
next hsr = hsr—>next hsr;

hsr = hsr—>next_hsr;
}
return (n_hsrs);

}

static int free hsp from all hsp s(struct proc *rp){
struct hardening shared proc xhsp = all hsp s;
struct hardening shared proc *prev_hsp = NULL,
*next hsp = NULL;
while (hsp){
if (hsp—hsp endpoint = rp—>p_endpoint){
n_hsps——;
hsp—>hsp endpoint = 0;
hsp—>flags = HSP_SLOT FREE;
hsp—id = 0;
if (prev_hsp)
prev__hsp—>next hsp = hsp—>next hsp;
else
all _hsp s = hsp—>next hsp;
break;
}
prev_hsp = hsp;
next hsp = hsp—>next hsp;
hsp = hsp—>next hsp;
}
return (n_hsps);

}

/ * - - %k
/

* free hsrs *

ES * /

void free hsrs(struct proc *rp){
if (rp—>p_nb hardening shared regions <= 0)
return;
struct hardening shared_ region xhsr =

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

485

186

A.3. Listings 273

rp—>p_hardening shared_ regions;

int lsize = rp—>p_nb_hardening shared_regions;
while (hsr){
if (free_hsr(rp, hsr—id)l=——1lsize)
printf("Freeing hsr with error %d\n", lsize);

hsr = hsr—>next hsr;
}
assert (rp—p_nb_hardening shared regions — 0);
assert (rp—>p_ hardening shared regions = NULL);
free_hsp from all hsp s(rp);

}

void handle hsr events(struct proc xrp){
if (rp—p_nb _ hardening shared regions <= 0)
return;
struct hardening shared region xhsr =
rp—>p _hardening shared regions;
while (hsr){
printf ("#### HARDENING SHARED REGIONS ##+
" %d 0x%lx 0x%lx\n",
hsr—>id , hsr—>vaddr, hsr—>length);
printf ("#### REGIONS SHARED WITH ####n") ;
struct hardening shared proc shsp = hsr—>r hsp;
while (hsp){
printf ("#### Process sharing region"
" T Td Ted\n"
hsp—>id, hsp—>flags , hsp—>hsp endpoint);
hsp = hsp—>next_ hsp;

}
hsr = hsr—>next hsr;
}
}

int look up page in_ hsr(struct proc xrp,
vir _bytes vaddr){
if (rp—p_nb hardening shared regions <= 0)
return (VM_VADDR NOT FOUND) ;
if (!(rp—p _hflags & PROC_SHARING MEM))
return (PROC_NOT SHARING) ;
struct hardening shared region xhsr =
rp—>p_hardening shared regions;
while (hsr){
if ((hsr—>vaddr <= vaddr) &&
(vaddr <= hsr—>vaddr + hsr—>length)){
return (OK) ;
}

hsr = hsr—>next hsr;

}
return (VM_VADDR NOT FOUND) ;

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

274

Annex

static struct hardening shared region =
look up hsr vaddr(struct proc *rp,

vir _bytes vaddr, vir bytes size){

if (rp—>p_nb_ hardening shared regions <= 0)
return (NULL) ;
struct hardening shared region xhsr =

rp—>p_hardening shared_ regions;

while (hsr){
if ((hsr—>vaddr <= (vaddr + size)) &&

((vaddr 4 size) <= hsr—>vaddr + hsr—>length))

return (hsr);
hsr = hsr—>next_hsr;

}

return (NULL) ;

A.3.9 Hardening exception Handler

Listing A.9: Hardening exception Handler

#include
#include

#include
‘include
finclude
include
nclude
‘include
#include

s|#include

#include

#include
#include
‘include

#include

"kernel/kernel .h"
"kernel /vm.h"

<machine /vm.h>

<minix /type.h>
<minix/syslib .h>
<minix /cpufeature.h>
<string.h>

<assert .h>

<signal .h>

<stdlib .h>

<machine /vm.h>

"arch proto.h"

"htype.h"
"hproto.h"
"rcounter.h"
"mca.h"
"../../clock.h"

26
27
28

©

29
3(C

o

32
33

35
36
37
38
39
40
41
42
43
44
45

N
B D 0D = O © ® 9 O

[=N IS BN, B B BN S TS, B, B B |
= O © 00 9 O u

<)
¥

63
64
65
66
67
68
69
70
71
72
73

74

A.3. Listings 275

#ifdef USE_ APIC

#include "apic.h"

#ifdef USE WATCHDOG
#include "kernel/watchdog.h"

#endif

#endif

/x *
* hardening exception handler *

b= x/

void hardening exception handler (
struct exception frame * frame){
/*
% running process should be the current
%+ hardenning process
* the running process should not be the VM
% the hardening should be enable
* This function check if the nature of the
x exception. The exception is
* handled by hardening exception handler in
* three case
* — NMI, so the exception is come from
* the retirmen counter
* — MCA/MCE the exception is come from
* the MCA/MCE module
* — A pagefault occur
* In all others cases the PE is stopped
* /
#if INJECT FAULT
restore _cr_reg();
#endif
/#xThis function should be called
* when hardening is enablexx/
assert (h_enable);
/+*get the running processs*/
struct proc xp = get cpulocal var(proc_ ptr);
/*+The running process should
* be a hardened processxx/
assert (h_proc_nr = p—>p nr);
assert (h_proc_nr != VM PROC NR) ;
h stop pe = H_YES;
switch (frame—>vector){
case DIVIDE VECTOR :
break;
case DEBUG_ VECTOR :
ssh () ;
break;
case NMI_VECIOR :

if (_handle_ins_counter_over ()!=0K) ;

87

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

276

Annex

case

case

case

case

case

case

case

case

case

case

case

h stop pe = H NO;

break;

BREAKPOINT VECTOR:
break;
OVERFLOW_VECTOR:
break;
BOUNDS_VECTOR:
break;

INVAL OP_VECTOR:
break;

COPROC_NOT VECTOR:
break;

DOUBLE _FAULT VECTIOR:
break ;
COPROC_SEG_VECTOR
break;

INVAL_TSS VECTOR:
break;

SEG_NOT VECTOR
break;

STACK FAULT VECTOR:
break;

PROTECTION VECTOR
break;

PAGE FAULT VECTOR

/x+xreset the hardening dataxx/
/%% ADD COMMENT : TODO s/
h normal pf = 0;
h rw = 0;
/**read the virtual address

xwhere the page fault occurredsx/
reg_t pagefaultcr2 = read cr2();
/*%x Check the nature of the pagefault:

% if it is caused by hardening

#%x check r = OK else

* check r = H HANDLED PFxsx/

int check r =

check vaddr 2(p,
(u32 _t *)p—>p_ seg.p_ cr3,
pagefaultcr2 , &h rw);

/*x*xset hardening data to

* inform the kernelxx/
/#xx TODO CHANGE THE COMPARISON s /
if (check r=—0K)

h stop pe = H NO;
else
h normal pf = NORMAL PF;

break;

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

10

16
17
18
19
20
21
22
23
24

A.3. Listings

277

case COPROC_ERR VECTOR:
break;
case ALIGNMENT CHECK_ VECTOR:
break;
case MACHINE CHECK_ VECTOR:
if (mca mce handler ()=—O0K)
h stop pe = H NO;
break ;
case SIMD_ EXCEPTION_ VECTOR:
break;
default
panic ("Unkown exception vector in"
"hardening exception handler");
break ;

}

return;

A.3.10 Retirement counter

Listing A.10: Retirement counter

#include "kernel/kernel.h"
#include "kernel/watchdog.h"
#include "arch proto.h"
#include "glo.h"

#include <minix/minlib.h>

i|#include <minix/u64.h>

#include "apic.h"
#include "apic _asm.h"
#include "rcounter.h"
#include "hproto.h"

#include "htype.h"
#define PMC_IRQ 230
static uint32_t low, high;
/«xinterrupt handler hook intel arch insn_counter intx/
static irq_hook t pic_intel arch insn_ counter hook;
int register intel arch insn counter int handler(
const irq_ handler t handler){
/* Using PIC, Initialize the PMC interrupt hook. x/
pic_intel arch insn counter hook.proc_nr e = NONE;

278 Annex

25| pic_intel arch insn_counter hook.irq = PMC_IRQ;

26| put_irq handler(&pic intel arch insn counter hook,
27 PMC IRQ, handler);

28] return (OK) ;

20| }

31| int intel arch insn_counter int handler () {
32 ia32 msr_read (INTEL _MSR PERFMON CRT1, &high, &low);
33 ia32 msr read (INTEL PERF GLOBAL STATUS, &high, &low);

34 if (low & INTEL OVF PMC0) {
35 ia32 msr_write (INTEL PERF GLOBAL OVF CTRL, 0, 2);
36 lapic_write (LAPIC_LVTPCR, PMC IRQ) ;

37 }
38 return (OK) ;

12| void intel arch insn_counter init(void){

13 u32 t val = 0;

44| ia32 msr_write (INTEL MSR PERFMON CRT1, 0, 0);
45 /«Int , OS, USR, Instruction retiredx/

6| val =1 << 20 | 1 << 16 | 0xc0;

47| ia32 msr write (INTEL MSR PERFMON SELI, 0, val);
48 ia32 msr_ write (INTEL MSR PERFMON SELI, 0,

9| val | INTEL_MSR PERFMON SEL1 ENABLE) ;

50| /% unmask the performance counter interrupt.

51 + Enable NMIx/

52 lapic _write (LAPIC_LVTPCR, APIC ICR_DM NMI) ;

53] }

55| void intel arch insn_counter reinit(void){

56 /*Pour activer le NMIx/

571 lapic _write (LAPIC_LVTPCR, APIC ICR DM NMI) ;
58| ia32 _msr_write (INTEL MSR_PERFMON CRT1, 0, 0);
50] }

61| void intel fixed insn_counter init(void){

62| u32_t val = 0;

63| ia32 msr write (INTEL FIXED CTRO, 0, 0);

61 val =1 << 3 | 1 << 1;

65| ia32 msr_ write (INTEL MSR FIXED CTR_CTIRL, 0, val);
66 /% unmask the performance counter interrupt.

67 * Enable NMI */

68 lapic _write (LAPIC_LVTPCR, APIC ICR_ DM NMI) ;

69| }

S B
W O

void intel fixed insn counter reset(void){
ia32 msr_ write (INTEL MSR FIXED CTR CIRL, 0, 0);
ia32 msr_write (INTEL FIXED CTRO, 0, 0);

[IS N

w0~

S B BN BEEN N |

80

90

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

122

A.3. Listings 279

}

i| void intel arch insn_ counter reset(void){

ia32 msr_write (INTEL MSR PERFMON SEL1, 0, 0);
ia32 msr_write (INTEL _MSR PERFMON CRT1,0, 0);

void intel fixed insn_counter enable(void){

u32_t val = 0;

val = 1 << 3 | 1 << 1;

ia32 msr_ write (INTEL MSR FIXED CTR _CTIRL, 0, val);
}

void intel arch insn_counter enable(void){
u32_t val = 0;
val = 1 << 20 | 1 << 16 | 0xcO0;
ia32 msr write (INTEL MSR PERFMON SEL1, 0, val);
ia32 msr_write (INTEL MSR_PERFMON_ SELI, 0,
val | INTEL MSR_PERFMON SEL1 ENABLE) ;
}

void reset counter (void){
/*%OFF the retirement counter when the
% running process is not a PExx/

#if USE_FIX_CTR

intel fixed insn_counter reset();
else
intel arch insn_ counter reset();
H#endif

}

void enable counter (void){
/**%ON the retirement counter when the running
% process is a PExx/
#if USE_FIX CTR
intel fixed insn_counter enable();
intel arch insn_counter enable();
#endif

}

void intel fixed insn_ counter reinit(void)

{
/+*Pour activer le NMIx/
lapic_write (LAPIC_LVIPCR, APIC_ICR_DM_NMI);
ia32 msr_ write (INTEL FIXED CTRO, 0, 0);

}

123

12

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170

171

280

Annex

void read ins_ 64(u64d_tx t){

u32 t lo, hi;
#if USE _FIX CTR

ia32 msr_read (INTEL FIXED CTRO, &hi, &lo);
#Helse

ia32 msr_read (INTEL MSR PERFMON CRT1, &hi, &lo);
#endif

xt = make64 (lo, hi);
}

void update ins ctr switch (){
/*% Read the retirement counter value and update
*+ the global variable

*% ins_ctr_ switch %/
u64 t ins;
u64 t x* _ ins_ctr_ switch =

get cpulocal var ptr(ins_ ctr_ switch);
read ins_ 64(&ins);
* ins_ctr_switch = ins;

void set remain ins counter value(struct proc *p){
intel arch insn_counter reinit();
if (p—>p_start count ins){
#if USE_FIX CTR
ia32 msr_write (INTEL FIXED CTRO,
ex64hi(p—>p remaining ins),
ex64lo (p—>p_ remaining ins));
#else
ia32 msr_write (INTEL MSR PERFMON CRT1,
ex64hi(p—>p remaining ins),
ex64lo (p—>p_remaining ins));
H#endif
make zero64(p—>p remaining ins);

}
else{
#if USE_FIX CTR
ia32 msr_write (INTEL FIXED CTRO, Oxff,
INS_ THRESHOLD-ex641lo (INS_2 EXEC)+1);
#else
ia32 msr_ write (INTEL MSR PERFMON CRT1, Oxffff ,
INS_ THRESHOLD-ex 6410 (INS_2 EXEC)+1);
#endif
p—>p_start count ins = 1;

A.3. Listings

281

update ins ctr_ switch ();

}

void set remain_ins counter value O(struct proc xp){
/+% Before starting one of the executions of the PE,
* this function

** initializes the retirement counter to
% (Overflow value — Maximum number of

% instruction of the PE) %%/

u64 t ins;

#if USE FIX CTR
ia32 msr_write (INTEL FIXED CTR0, INS THRESHOLD,
INS_ THRESHOLD-ex6410 (INS_2 EXEC)+1);

#else

ia32 msr_ write (INTEL MSR PERFMON CRT1, INS THRESHOLD,
INS THRESHOLD-ex641o (INS 2 EXEC)+1);
#endif
p—>p_start count ins — 1;
read ins_ 64(&ins);
p—>p_ins_last = ins;
update ins ctr_ switch ();
get _remain ins_counter value 0(p);

}

void set remain ins counter value 1(struct proc *p){
/+% Before resuming the PE after an interrupt or
% exception, this
xx function updates the retirement counter to the value
% saved in p remaining inssx/
#if 1
#if USE_FIX CTR
ia32 msr_write (INTEL FIXED CTRO,
ex64hi(p—>p remaining ins),
ex64lo (p—>p_remaining ins));
ia32 msr_ write (INTEL MSR PERFMON CRT1,
ex64hi(p—>p_ remaining ins),
ex64lo (p—>p_ remaining ins));
H#endif

make zero64(p—>p remaining ins);

update ins ctr_ switch ();
#endif

}

void get remain ins counter value(struct proc xp){
/+% The PE is stopped read the value of the

251

282

Annex

** retriement counter
x% Store that value in _ ins ctr switch and
**% p remaining ins
xx 2 storages to keep track of the remaining
x*x instructions of the PE xx/

u64_t ins;

u64 t x _ ins_ctr_ switch =

get _cpulocal var ptr(ins_ctr_ switch);
read ins_64(&ins);

* ins_ctr_ switch = ins;
p—>p_remaining ins =ins;
p—>p _ ins last = p—>p remaining ins;

}

void get_ remain_ins_counter value O(struct proc xp){
/+*x The PE is stopped read the value of
* the retriement counter
*x Store that value in _ ins ctr switch
* and p_ remaining ins
x*% 2 storages to keep track of the remaining
% instructions of the PE xx/
u64_t ins;
u64 t x* _ ins_ ctr_ switch =
get cpulocal var ptr(ins ctr switch);
read ins_ 64(&ins);
* ins_ ctr_switch = ins;
p—>p_remaining ins —ins;

int irh(void){
/x% Handle the NMI:

xx — Clear the overflow flag
#*x — Reinit the NMI

xx — Make tke PE not runnable
x0k [

struct proc % p = get cpulocal var(proc_ptr);

ia32 msr read (INTEL PERF GLOBAL STATUS, &high, &low);
#if USE_FIX_CTR

if (high & INTEL_OVF FIXED CTRO){

2| #else

if (low & INTEL_OVF PMCD) {

1| #endif

/+*xthe counter overflowed try to clear
register’s flagssx*/

7|#if USE_FIX_CTR

ia32 msr_ write (INTEL PERF GLOBAL OVF CTRL,
INTEL,_ OVF_FIXED CTRO, 0);

S N =

IS AN BN BN BN BN BN BN BN |
R ® B

0N N N NN NN NN NN
0]

16

A.3. Listings 283

intel fixed insn_counter reinit ();
#else
ia32 msr_write (INTEL PERF GLOBAL OVF CIRL, 0,
INTEL,_ OVF_PMC0) ;
intel arch insn_counter reinit();
#endif

if (h_step—FIRST RUN)

first _run_ins = p—>p_ins_last;
if (h_step==SECOND_ RUN)
secnd _run_ins = p—>p _ins_last;

origin syscall = PE END IN NMI;
return (OK) ;
}
return (EFAULT) ;
}

void reset ins params(struct proc *p){
make zero64(p—>p_ins_last);
make zero64(p—>p remaining ins);
if (h_step=FIRST RUN)
p—p _ins_first = 0;
else
p—p_ins secnd = O0;

A.3.11 Machine check architecture

Listing A.11: Machine check architecture

/++% Here the MCA/MCE is implemented

*k ok Author: Emery Kouassi Assogba
*ok ok Email: assogba.emery@gmail.com

*k % Phone: 0022995222073
* ok ok 22/01/2019 1lnssxx/

#include "kernel/kernel.h"
#include "kernel/vm.h"

#include <machine/vm.h>

#include <minix/type.h>
#include <minix/syslib.h>
#include <minix/cpufeature.h>
#include <string.h>

#include <assert.h>

#include <signal.h>

#include <stdlib .h>

284 Annex

19
21|#include <machine /vm.h>
#include "arch proto.h"

finclude "mca.h"
26|#include "htype.h"

20| static int nbanks;

static int MAX BANKS NUMBER;

32| int enables all mca_ features(void){

33 int status = N_OK;

34 u32 _t low, high;

35| ia32 msr read (IA32 MCG_CAP, &high, &low);
36 if (low & MOG CIL P){

37 nbanks = get n_banks(low);

38 MAX BANKS NUMBER = nbanks — 1;

39 ia32 msr_ read(IA32 MCG_CTL, &high, &low);

10 ia32 msr_write (IA32_ MCG_CTL, ALL 1s, ALL 1s);
41 ia32 msr read(IA32 MCG_CTL, &high, &low);

42 return (OK) ;

3}

44 return (status);

47
18| void enable loggin ofall errors(void){

19 int i, t = 0;

50 if (cpu_info [CONFIG MAX CPUS].family =— 0x6 &&

51 cpu_info [CONFIG MAX CPUS|.model < 0x1A)

52 t = 1;

53 for (i=t; i< nbanks ;i++){

54 ia32 msr_ write (IA32 MCO CTL+4xi, ALL 1s, ALL 1s);

55 }
56] }

ss| void clears all errors(void){

59 int i;
60 for (i=0;i<nbanks;i++){
61 ia32 msr_write (IA32_ MCO_ STATUS+4xi, 0, 0);

2}

63| }

4
5| void enable machine check exception(void){

66| u32 t crd = read crd4() | CR4 MCE;
67| write crd(crd);

R BTN

© W

© N N N N N N

16

o)

A.3. Listings 285

int mca_mce handler(void){
int i;
u32_t low, high;
ia32 msr_read (IA32_MCG_STATUS,&high ,&low) ;
if (low & MCIP){ /x ##### GOT MCA EXCEPTION #+#4 /
/*PE can continue error was correctedsx/
if (low & RIPV)
return (OK) ;

return (EFAULT) ;

A.3.12 Single stepping handler

Listing A.12: Single stepping handler

#include "kernel/kernel.h"
#include "kernel /vm.h"

#include <machine/vm.h>

i|#include <minix/type.h>

#include <minix/syslib.h>
#include <minix/cpufeature.h>
#include <string.h>

#include <assert.h>

#include <signal.h>

#include <stdlib.h>

#include <machine/vim.h>

#include "arch proto.h"

#include "htype.h"
#include "hproto.h"
finclude "rcounter.h"

#include "mca.h"
#include "../../clock.h"

| #ifdef USE_APIC

7|#include "apic.h"

tifdef USE WATCHDOG
“include "kernel/watchdog.h"
#endif

286 Annex

31|#endif

33 int ssh(struct proc x*p){
34 if ('h_ss_mode)

35 return (OK) ;

36 origin syscall = PE END IN NMI,;
37 p—p_reg.psw &= “TRACEBIT;

38 save context(p);

39 if (h_step=—FIRST STEPPING)

10 first _run_ins++;

11 else

42 secnd _run_ins++;

13 if ((secnd run_ins!= first run_ ins) &&lcmp reg(p)){
14 h stop_pe = H NO;

45 p—p_ misc_flags |= MF STEP;

16 h unstable state = H STEPPING;
47 p—p_reg.psw &= “TRACEBIT;

48 return (EFAULT) ;

19 }

50 else{

51 p—p_ misc_flags &= "MF STEP;
52 h unstable state = H STEPPING;
53 p—p_reg.psw &= “TRACEBIT;

54 if (h_step=FIRST STEPPING)

55 h step=SECOND_RUN;

56 return (OK) ;

57 }

60| void ssh _init (struct proc xp){
61 p—>p_nb_ss++;

62| h_ss_mode = 1;

63 if (secnd run ins < first run_ ins){
64 p—>p misc flags |= MF STEP;

65 h unstable state = H STEPPING;
66 return;

67| }

68

if (secnd run_ ins > first run_ins){
vm_reset _pram(p, (u32_t *)p—>p_ seg.p_cr3,
CPY_RAM_FIRST STEPPING) ;
restore for stepping first run(p);
p—>p_misc_flags |= MF_STEP;
h unstable state = H STEPPING;
h_step — FIRST STEPPING;

return;

UlAR W N = O

[P

P s A T~ BN BN BN S B BN |

—

A.3. Listings 287

A.3.13 Hardening software and the micro-kernel

Listing A.13: Hardening software and the micro-kernel

/ x %

1

2| * do_fork *

0 "
4int do_fork(struct proc % caller , message * m_ptr)
|4

/x Handle sys fork ().
* m_lIsys krn sys fork.endpt has forked.
gl * The child is m Isys krn sys fork.slot.

~

9| x/
0|#1f defined (1386)

11 char =old fpu_ save area p;

12|#endif

13 /* child process pointer =/

14 register struct proc *rpc;

15 /% parent process pointer x/

16 struct proc *rpp;

17 int gen;

18 int p_proc;

19 int namelen;

20 static int hcount = 0;

21

22 if (!isokendpt (

23 m_ptr—m _lsys krn_sys fork.endpt, &p_ proc))
24 return EINVAL;

26| rpp = proc_addr(p_proc);
27| rpc = proc_addr(m_ptr—>m _lIsys krn sys fork.slot);
28 if (isemptyp(rpp) || ! isemptyp(rpc)) return (EINVAL);

30| assert (!(rpp—>p misc flags & MF DELIVERMSG)) ;

32 /* needs to be receiving so we

33 * know where the message buffer is x/
34 if (!RTS_ISSET(rpp, RTS RECEIVING)) {
35 printf("kernel: fork not done synchronously?\n");
36 return EINVAL;

37|}

38

39 /* make sure that the FPU context

40 x is saved in parent before copy x*/
1 save fpu(rpp);

42 /x Copy parent ’'proc’ struct to child.
43 * And reinitialize some fields. %/

44| gen = ENDPOINT G(rpc—>p endpoint);
45| #1f defined (_ 1386)

P RN BT BN SR |
Y Ol R W N &

83
84
85
86
87
89
90
91
92
93

94

288

old fpu save area p = rpc—>p_ seg.fpu_state;
#endif

/% copy ’'proc

XTPC = *IpP;
#if defined (__i386_)

rpc—>p _ seg.fpu state = old fpu save area p;

" struct x/

if (proc_used fpu(rpp))
memcpy (rpc—>p _seg.fpu_state,
rpp—>p_seg.fpu_state, FPU XFP SIZE);
#Hendif
/* increase generation x/
if(++gen >= ENDPOINT MAX GENERATION)
/+ generation number wraparound x/
gen = 1;
/* this was obliterated by copy x*/
rpc—>p_nr = m_ptr—>m_Isys krn_ sys fork.slot;
/* new endpoint of slot x/
rpc—p_ endpoint = ENDPOINT(gen, rpc—>p_ nr);
/* child sees pid = 0 to know it is child x*/
rpc—>p_reg.retreg = 0;
/* set all the accounting times to 0 =/
rpc—>p_user time = 0;
rpc—>p_sys_time = 0;
rpc—>p_misc_flags &=
“(MF_VIRT TIMER | MF PROF TIMER
| MF_SC TRACE | MF SPROF SEEN | MF STEP);
/* disable , clear the process—virtual timers x*/
rpc—>p_virt_left = 0;
rpc—>p _ prof left = 0;
/+ Mark process name as being a forked copy */
namelen = strlen (rpc—>p name);

9|#define FORKSTR "xEF"

if (namelen+strlen (FORKSTR) < sizeof (rpc—>p name))
strcat (rpc—p_ name, FORKSTR) ;

/+* the child process is not

x runnable until it’s scheduled. x/
RTS _SET(rpc, RIS NO QUANTUM) ;

reset proc_accounting(rpc);

rpc—>p_cpu_time left = 0;
rpc—>p_cycles = 0;
rpc—>p _kcall cycles = 0;
rpc—>p _kipc_ cycles = 0;

rpc—>p _tick cycles = 0;
cpuavg init(&rpc—>p cpuavg);

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

143

A.3. Listings 289

x If the parent is a privileged process,

* take away the privileges from the

% child process and inhibit it from running

* by setting the NO_ PRIV flag.

* The caller should explicitly set the

x+ new privileges before executing.

%/

f (priv(rpp)—>s_flags & SYS PROC) {
rpc—>p_priv = priv_addr (USER_PRIV_ID);
rpc—>p _rts_flags |= RIS _NO_PRIV;

}

/+* Calculate endpoint identifier ,
¥ so caller knows what it is. x/
m_ptr—m _krn Isys sys fork.endpt = rpc—>p endpoint;
m_ptr—>m_krn_lIsys sys fork.msgaddr =

rpp—>p delivermsg vir;

/* Don’t schedule process in VM mode

x until it has a new pagetable. x/

if (m ptr—m lsys krn sys fork.flags & PFF_ VMINHIBIT){
RTS_SET(rpc, RTS VMINHIBIT) ;

}

/ %
* Only one in group should have
* RTS_SIGNALED, child doesn’t inherit tracing.
RTS UNSET(rpc, (RTS_ SIGNALED |

RTS SIG_PENDING | RIS P _STOP));
(void) sigemptyset(&rpc—>p pending);

#if defined (__1386_)
rpc—>p_seg.p_cr3 = 0;
rpc—>p_seg.p_cr3_v = NULL;

#elif defined(_ _arm)
rpc—>p_seg.p_ ttbr = 0;
rpc—>p_seg.p_ ttbr v = NULL;

#endif

/xxx Add by EKAxx/
rpc—>p_setcow = 0;
rpc—>p _hflags = 0;
if (hprocs _in use <= H NPROCS TO_ START H)
hprocs in_ use++;

if (hprocs _in_use > 800){
rpc—>p _setcow = 1;
}

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

290

Annex

if(h_can_start hardening){
rpc—>p hflags |= PROC TO HARD;
hc proc nr[(hcount++)%10] = rpc—>p nr;
}
rpc—>p _first step workingset id = 0;
rpc—>p_ working set = NULL;
rpc—>p_hardening mem events = NULL;
rpc—>p_nb_hardening_mem _events = 0;
rpc—>p _hardening shared regions = NULL;
rpc—>p_nb_ hardening shared regions = 0;
if (rpp—>p_hflags & PROC TO HARD){
#if H DEBUG
display _mem (rpp);
#endif
free _pram mem blocks(rpp, 0);

/x% End Add by EKAxx/
return OK;
}

#endif /% USE FORK x/

The kernel call implemented in this file:
m_type: SYS EXEC
The parameters for this kernel call
m_lIsys krn sys exec.endpt
(process that did exec call)
m_Isys krn sys exec.stack
(new stack pointer)
m_lsys_krn_sys exec.name
(pointer to program name)
m_lIsys krn sys exec.ip
(new instruction pointer)
m_Isys krn sys exec.ps_str
* (struct ps_ strings x)
>(<//'
#include "kernel/system.h"

are :

¥ OK K X K X K X X ¥ X ¥ X

#include
#include
#include
#include

<string .h>

<minix /endpoint .h>

"kernel /arch/i386 /hproto.h"
"kernel /arch/i386 /htype.h"

#if USE EXEC

J— %
* do _exec *

* ny

int do_exec(struct proc * caller , message x m_ptr)

A.3. Listings 291

193] {

194| /* Handle sys exec(). A process has done
195 % a successful EXEC. Patch it up. */

196 register struct proc *rp;

197 int proc_nr;

1908| char name[PROC_NAME LEN];

199

200 if (!isokendpt (

201 m_ptr—>m_lsys_krn_sys_exec.endpt, &proc_nr))
202 return EINVAL;

203

204 rp = proc_addr(proc_nr);

205
206 if (rp—p_misc_flags & MF DELIVERMSG) {
207| rp—>p_misc_flags &= "MF DELIVERMSG;
208}

209

210
211 /x+ Add by EKA: free the PE working set list sxx/
212 if (rp—p _hflags & PROC_TO HARD){

213 free_pram_ mem blocks (rp ,FROM EXEC) ;

214

215 /+xEnd Add by EKAxx/

216
217

218 /* Save command name for debugging,

219 ps(1l) output, etc. */

220 if (data_copy(caller —>p_ endpoint,

221 m_ptr—>m_Isys_krn_ sys exec.name,

222/ KERNEL, (vir bytes) name,
223 (phys bytes) sizeof (name) — 1) != OK)

224 strncpy (name, "<unset>", PROC_NAME IEN) ;

225

226| name|sizeof (name)—1] = "\0’;

227

228 /* Set process state. x/

229 arch proc_init(rp,

230 (u32_t) m ptr—>m _lIsys krn sys exec.ip,

231 (u32 t) m ptr—>m lIsys krn sys exec.stack,

232 (u32_t) m ptr—m Isys krn sys exec.ps_ str, name);
233

234 /% No reply to EXEC call x/
235 RTS_UNSET(rp, RTS_RECEIVING) ;

236
237 /% Mark fpu_ regs contents as not significant, so fpu
238 % will be initialized , when it’s used next time. x/
239 rp—p_misc_flags &= "MF_ FPU_ INITIALIZED;

240 /#* force reloading FPU if the

241 % current process is the owner x*/

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

292

Annex

release fpu(rp);
return (OK) ;
}
#endif /% USE_EXEC x/
/x The kernel call implemented in this file:

* m_ type: SYS CLEAR

*

* The parameters for this kernel call are:
* m_lsys krn sys clear.endpt

* (endpoint of process to clean up)

*/

The kernel call implemented in this file:
m_type: SYS CLEAR

The parameters for this kernel call are:
m_lsys _krn sys_clear.endpt
(endpoint of process to clean up)

/

* K ¥ X ¥ ¥ ¥

#include "kernel/system.h"

#include <minix/endpoint.h>
#include "kernel/arch/i386/hproto.h"
#include "kernel/arch/i386 /htype.h"

#if USE_CLEAR

/x *

* do clear *

: /
int do_clear(struct proc * caller , message * m_ptr)
{
/

Handle sys clear. Only the PM can request
other process slots to be cleared

when a process has exited.

The routine to clean up a process table
slot cancels outstanding timers,

possibly removes the process from the message
queues , and resets certain

process table fields to the default values.
/

struct proc xrc;

int exit_p;

int i;

*OX K X X X X ¥ K

if (!isokendpt (
m_ptr—>m_1lsys krn sys clear.endpt, &exit p)) {
/* get exiting process x/

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

322
323
324

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

A.3. Listings

293

return EINVAL;
}

rc = proc_addr(exit_p); /* clean up x/
release address space(rc);

/% Don’t clear if already cleared. x/
if (isemptyp(rc)) return OK;

/* Check the table with IRQ hooks
* to see if hooks should be released. x*/
for (i=0; i < NR_IRQ HOOKS; i++) {
if (rc—>p_ endpoint = irq hooks[i]|.proc_nr e)
/* remove interrupt handler x/
rm_irq handler(&irq hooks[i]);
/* mark hook as free x/
irq _hooks[i].proc_nr e = NONE;
}
}

/+* Remove the process’ ability
* to send and receive messages */
clear _endpoint(rc);

/% Turn off any alarm timers at the clock. =/

reset kernel timer(&priv(rc)—>s alarm timer);

/x Add by EKA: free the PE working set list x/
free_pram_ mem blocks(rc, 1);
handle hsr events(rc);
free hsrs(rc);

/*+End Add by EKAxx/

/% Make sure that the exiting process is no
* longer scheduled ,

* and mark slot as FREE. Also mark saved fpu
* contents as not significant.

x /

RTS SETFLAGS(rc, RTS SLOT FREE);

/% release FPU x/

release fpu(rc);

rc—>p _ misc_flags &= "MF_FPU_INITIALIZED;

/% Release the process table slot.

x If this is a system process, also

release its privilege structure. Further
cleanup is not needed at

this point. All important fields are
reinitialized when the

slots are assigned to another, new process.

S S I SR

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

357

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

294

Annex

if (priv(rc)—>s_ flags & SYS PROC)
priv(rc)—>s_proc_nr = NONE;
return OKj;

}

#endif /+ USE CLEAR x/

int do_ipc(reg_t rl, reg t r2, reg t r3)
{
/* get pointer to caller x/
struct proc *const caller ptr =
get cpulocal var(proc_ptr);
int call _nr = (int) rl;
/xxx Add by EKA sxx/

if (h_unstable state =— H_UNSTABLE) {
return (OK) ;
}

caller ptr—>p_ setcow = 1;
/x%x End add by EKA sxxx/

assert (!RTS_ISSET(caller ptr, RTS SLOT FREE));

/* bill kernel time to this process. x/
kbill _ipc = caller ptr;

If this process is subject to system
call tracing, handle that first. x*/
if (caller_ptr—p_ misc_flags &
(MF SC TRACE | MF SC DEFER)) {
/* Are we tracing this process, and
is it the first sys call entry? =/
if ((caller ptr—p misc flags &
(MF_SC TRACE | MF SC DEFER)) — MF SC TRACE){
/* We must notify the tracer before
%+ processing the actual

* system call. If we don’t, the tracer
* could not obtain the
* input message. Postpone
* the entire system call.
caller ptr—p misc_flags &= "MF_SC TRACE;
assert (!

(caller ptr—>p misc flags & MF SC DEFER)) ;
caller ptr—>p misc flags |= MF SC DEFER;
caller _ptr—>p_defer.rl = rl;
caller ptr—>p defer.r2 = r2;
caller ptr—p defer.r3 = r3;

389
390
391
392
393
394
395
396
397
398
399
400
401

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

432
433
434
435
436
437

A.3. Listings 295

/% Signal the "enter system call" event.

Block the process. */
cause_sig(proc_nr(caller ptr), SIGTRAP);
/% Preserve the return register’s value. %/
return caller ptr—p_ reg.retreg;

}

/* If the MF_SC DEFER flag is set,
x the syscall is now being resumed. x/

caller ptr—p misc_flags &= "MF_SC_DEFER;

assert (
!(caller ptr—>p misc flags & MF SC ACTIVE)) ;

/* Set a flag to allow reliable tracing of

leaving the system call. x/
caller ptr—>p misc_ flags |= MF_SC_ACTIVE;
}

if (caller _ptr—>p misc_flags & MF DELIVERMSG)
panic("sys call: MF DELIVERMSG on for %s / %d\n",
caller ptr—>p name, caller ptr—>p endpoint);

}

/
/

x Now check if the call is known and try to perform
* the request. The only

* system calls that exist in MINIX are sending and
¥ receiving messages.

* — SENDREC: combines SEND and RECEIVE in a single
% system call

* — SEND: sender blocks until its message has
* been delivered

* — RECEIVE: receiver blocks until an acceptable
*

%

*

message has arrived
— NOTIFY: asynchronous call; deliver
notification or mark pending
* — SENDA: list of asynchronous send requests
*/

switch (call _nr) {

case SENDREC:

case SEND:

case RECEIVE:

case NOTIFY:

case SENDNB:

{

/* Process accounting for scheduling x/
caller _ptr—>p_accounting.ipc_sync++;

return do_sync_ipc(caller ptr, call nr,

438
439
440

482
483

296

Annex

(endpoint_t) r2,
(message *) 13);

case SENDA:
{

/%
/
x Get and check the size of the argument

* in bytes as it is a

* table
*/
size t msg size = (size t) r2;

/% Process accounting for scheduling =/
caller ptr—>p accounting.ipc_async++;

/* Limit size to something reasonable.
* An arbitrary choice is 16
times the number of process table
* entries.
*/
if (msg size > 16%(NR_TASKS + NR PROCS))
return EDOM;
return mini senda(caller ptr,
(asynmsg t *) r3, msg size);
}
case MINIX KERNINFO:
{ ; ;
/* It might not be initialized yet. x/
if (!minix kerninfo wuser) {
return EBADCALL;
}

arch set secondary ipc return(caller ptr,
minix kerninfo user);
return OK;

}
default:
return EBADCALL; /+ illegal system call x/

/ *

% this function checks the basic syscall parameters

* and if accepted it
% dispatches its handling to the right handler
*/

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534

535

A.3. Listings

297

void kernel call(message *m _user, struct proc % caller)

{
int result = OK;
message msg;

caller —p delivermsg vir = (vir_ bytes) m user;

if (h_unstable state =— H_UNSTABLE) {
printf ("ALERT ALERT FROM KERNEL CALL "
et Amn "
"The system is in unstable state"
" The guilty is %d\n", h proc_nr);
return (OK) ;
;
/ *
* the 1dt and cr3 of the caller process is loaded
* because it just’ve trapped
* into the kernel or was already set in
* switch to wuser() before we resume
x execution of an interrupted kernel call
*
f

/
/
/

(copy msg from user(m user, &msg) — 0) {
msg.m_source = caller —>p endpoint;
result = kernel call dispatch(caller , &msg);

i

else {
printf ("WARNING wrong user pointer "
"0x%08x from process %s / %d\n",
m_user, caller —>p name,
caller —>p endpoint);
cause_sig(proc_nr(caller), SIGSEGV);

return;

}

/% remember who invoked the kcall so we
% can bill it its time x*/

kbill _kcall = caller;

kernel call finish(caller , &msg, result);

/a< ,, =3
* hpick proc *
* %/
static struct proc % hpick proc(void){

/« This function is called when a new process

* should be chosen to run

536
537
538
539
540
541

298 Annex

% In hardened MINIX3, if this function is called
* while a hardened PE was

x running (h_enable is true).

x* 1 — The VM will be returned if the hardened

* process does a page fault and

* the pagefault flags is set.

% 2— The hardened process will be chosen it

* is is runnable

* 2—1— If the hardened process doesn’t

* have enough quantum,

* The PE is reset

* 2—2— If the hardened process was stopped
* by retirement counter,

* The flags is reset

* 3— In all others cases a panic is triggered

*/

register struct proc xhp = proc_addr(h_ proc_nr);

if (h_enable){
register struct proc xhp = proc_addr(h_proc_nr);
/* hardening is enable, only VM or
*+ KERNEL could run
* allow for a VM to run for an instant
* because of the page faultx/
if (h_step = VM_RUN) {
if ((hp—p rts_ flags & RTS PAGEFAULT)) {
if (! proc_is_runnable(proc_addr (VM PROC NR)))
panic("hardening page fault but "
"VM is not runnable\n");
/++Choose the VM to handle
* the page faultxx/
else
return proc_addr (VM PROC NR) ;
}
else{
/*xThe hardening process is
runnable choose its*x/
if (proc_is runnable (hp)){
assert ((h_step back = FIRST RUN) ||
(h_step back = SECOND_ RUN)) ;
h step = h_step back;
h step back = 0;
if (priv(hp)—>s flags & BILLABLE)
get cpulocal var(bill ptr) = hp;
return hp;
}

else
panic ("Hardened process is not"
" runnable after page fault"

585
586
587
588
589
590
591

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

622
623
624
625
626
627
628
629
630
631
632
633

A.3. Listings

" handled 1\n");
}

else {

/%% The hardening process is not runnable
%% because it ends its quantum.

xx We choose to give him quantumssx/

if (RTS_ISSET (hp, RIS NO QUANTUM)) {

/*% abort pexx/
abort _pe(hp);
return (NULL) ;

if (hp—>p rts_ flags & RIS INS COUNTER) {
RTS UNSET(hp,RTS INS COUNTER) ;
if (proc_is_runnable(hp)){
if (priv(hp)—>s_flags & BILLABLE)
get cpulocal var(bill ptr) = hp;
return (hp);

/%% We UNSET RTS INS COUNTER but the
* process is not runnable
x% panic, should never happen xx/
else
panic ("Hardened process is not
"runnable during hardening
"enable 3");

n

n

}
if (proc_is runnable(hp)) {
if (priv(hp)—>s flags & BILLABLE)
get cpulocal var(bill _ptr) = hp;
return (hp);
}

else
panic ("Hardened process is not"
" runnable during hardening
"enable 4");

}
}
return (NULL) ;

/«Fin modificationsx/

}

static struct proc x pick proc(void)
{
/x Decide who to run now. A new process is

* selected and returned.

* When a billable process is selected , record it

300 Annex

634 * in ’bill ptr’, so that the

635/ * clock task can tell who to bill for system time.
636|

637| * This function always uses the run queues

638 * of the local cpu!

639 */

640 register struct proc *rp;/# process to run x/
641 struct proc **rdy head;

642 int q; /% iterate over queues x/

643

644 /+ Check each of the scheduling queues for

645 * ready processes. The number of

646 x queues is defined in proc.h, and priorities
647 * are set in the task table.

648 *+ If there are no processes ready to run, return NULL.
649 */

650

651

652 /*xCan we resume the PE7xx/

653 if ((rp = hpick proc())) return(rp);

654

655/ rdy head = get cpulocal var(run_q_ head);

656 for (gq=0; q < NR_SCHED QUEUES; q++) {

657 if (!(rp = rdy_ head[q])) {

658 TRACE(VF _PICKPROC,

659 printf("cpu %d queue %d empty\n", cpuid, q););
660 continue;

661 }

662| assert (proc_is runnable(rp));

663 if (priv(rp)—>s_ flags & BILLABLE)

664 get cpulocal var(bill _ptr) =

665 rp; /* bill for system time x/
666|#if H DEBUG

667 if (0 && h_can_start hardening)

668 print rdyqueue () ;

669|#endif

670 return rp;

671 }
672 return NULL;

673] }

674
675| /* %
676| * switch to user *

D I — oy
678| void switch to wuser(void)

679] {

680 /* This function is called an

681 * instant before proc ptr is

682 * to be scheduled again.

683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714

A.3. Listings

301

*/
struct proc * p;
#itdef CONFIG SMP

int tlb_must_ refresh = 0;
#endif
p = get cpulocal var(proc_ptr);
/%
% if the current process is still runnable
x check the misc flags and let
% it run unless it becomes not runnable in
* the meantime
*/
if (proc_is_runnable(p))
goto check misc flags;
/*
* if a process becomes not runnable while
*+ handling the misc flags , we
x+ need to pick a new one here and start from
x scratch. Also if the
% current process wasn’t runnable, we pick
* a new one here

*/
not runnable pick new:
if (proc_is_ preempted(p)) {
p—p _rts_flags &= "RIS PREEMPTED;
if (proc_is_ runnable(p)) {
if (p—p_cpu_time left)
enqueue head (p);
else
enqueue (p) ;

/%

x if we have no process to run, set IDLE as
* the current process for

% time accounting and put the cpu in an idle
x state. After the next

* timer interrupt the execution resumes here
* and we can pick another

% process. If there is still nothing runnable

* we "schedule" IDLE again
/

while (1(p — pick_proc())) {
idle ();

}

/* update the global variable x/

aos W N

o N O

SRS PN BN BN N B S B RN RN |

302 Annex

get cpulocal var(proc_ptr) = p;

Zifdef CONFIG SMP
if (p—>p_misc_flags & MF FLUSH TLB &&
get cpulocal var(ptproc) =— p)
tlb must refresh = 1;
#Hendif
switch address space(p);

check misc_ flags:

assert (p);
assert (proc_is_runnable(p));
while (p—>p misc flags &
(MF_KCALL RESUME | MF DELIVERMSG |
MF SC_DEFER |
MF SC TRACE | MF SC ACTIVE)) {

assert (proc_is_runnable(p));

if (p—p_misc_flags & MF KCALL RESUME) ({
kernel call resume(p);

}

else
if (p—p_ misc_ flags & MF DELIVERMSG) {
TRACE(VF SCHEDULING,
printf("delivering to %s / %d\n",
p—>p_name, p—>p_endpoint););
delivermsg(p);

else if (p—>p_ misc flags & MF SC DEFER) {
/* Perform the system call that
* we deferred earlier. =/

assert (!(p—p_misc flags & MF SC_ACTIVE)) ;
arch _do _syscall(p);

/+ If the process is stopped for signal

* delivery , and

x not blocked sending a message after

* the system call
* inform PM.
if ((p—>p_misc_flags & MF_SIG_DELAY)

&& 'RTS ISSET(p, RTS SENDING))

sig _delay done(p);

}
else if (p—p_ misc_flags & MF SC TRACE){

/*x Trigger a system call leave event

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829

A.3. Listings

303

x if this was a
x system call. We must do this after
x processing the
x+ other flags above, both for
x tracing correctness and
* to be able to use ’'break’.
*/
if (!(p—>p_misc_flags & MF_SC ACTIVE))
break;
p—p_misc_flags &=
“(MF_SC TRACE | MF_SC_ACTIVE) ;

/* Signal the "leave system call" event.
*+ Block the process.
*/
cause_sig(proc_nr(p), SIGTRAP);
}
else if (p—>p_misc_flags & MF_SC_ACTIVE) {
/* If MF SC_ACTIVE was set, remove it now:
* we're leaving the system call.
*/
p—p_misc_flags &= "MF _SC_ACTIVE;
break;
}
/ *
* the selected process might not be
* runnable anymore. We have
#* to checkit and schedule another one
* /
if (!proc_is_runnable(p))
goto not runnable pick new;
}
/*
x check the quantum left before it runs again.
* We must do it only here
% as we are sure that a possible out—of—quantum
* message to the
* scheduler will not collide
*+ with the regular ipc
*/
if (!p—p_cpu_time left)
proc_no_time(p);
/ *
x After handling the misc flags the selected
* process might not be
* runnable anymore. We have to checkit and
* schedule another one
*/
if (!proc_is_runnable(p))

830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850

304 Annex

goto not runnable pick new;

TRACE(VF SCHEDULING,
printf("cpu %d starting %s / %d "
"pc 0x%08x\n",
cpuid, p—>p name,p—>p endpoint, p—>p reg.pc););
#if DEBUG TRACE
p—>p _schedules++;
#endif

p = arch finish switch to_user();
assert (p—>p_ cpu_time left);

context stop(proc_addr (KERNEL)) ;

/* If the process isn’t the owner of FPU,
enable the FPU exception x*/
if (get cpulocal var(fpu owner) != p)
enable fpu exception () ;
else
disable fpu exception();

/* If MEF_CONTEXT SET is set, don’t
* clobber process state within
* the kernel. The next kernel entry
* is OK again though.

p—/>p_misc_f1ags &= "MF_CONTEXT SET;

#if defined (__i386_)
assert (p—p_seg.p_cr3 I= 0);
#elif defined(am)
assert (p—p_seg.p ttbr != 0);
#endif
#ifdef CONFIG_SMP
if (p—>p_misc_ flags & MF FLUSH TLB) {

if (tlb_must refresh)
refresh tlb();
p—p_ misc_flags &= "MF FLUSH TLB;
}
#endif
restart _local timer ();
/+% Add by EKA
x* The system is in an unstable stable.
xx We already check what goes
%% wrong in the micro—kernel and in the CPU.

*x It’s now time to

879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927

A.3. Listings

305

#*% run the PE again sxx/
if (h_unstable state =— H_UNSTABLE) {
/*% Just to know where we aresxx/
/%% set the unstable state to in correctionxx/
h unstable state = H_ INCORRECTION;
/*xget the ptr on the PE processxx/
p = proc_addr(h_proc_nr);
/*xlaunch the PE xx/
run_proc_2(p);

}

/*xEnd add by EKAxx/

/*
x restore user context () carries out the
% actual mode switch from kernel
% to userspace. This function does not return
x/
restore user context(p);

NOT REACHABLE;

/x >k
* exception *
_—-- x /

void exception handler(int is_nested,

struct exception frame * frame)

{

/* An exception or unexpected
x interrupt has occurred. x/
register struct ex_ s xep;
struct proc *saved proc;

/* Save proc_ptr, because it may be
x changed by debug statements. x/
saved proc = get cpulocal var(proc_ptr);

ep = &ex_data[frame—>vector |;

/* spurious NMI on some machines x/
if (frame—>vector =— 2) {
return;

}

/
/
/

handle special cases for nested
problems as they might be tricky or filter
them out quickly if the traps are not nested

* ¥ ¥ ¥ ¥

/

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975

976

306 Annex

if (is_nested) {

i
/ *

%+ if a problem occured while copying a

* message from userspace because

x+ of a wrong pointer supplied by userland ,

*+ handle it the only way we

* can handle it

*/
if (((voidx)frame—>eip >= (void#)copy msg to user &&

(void x)frame—>eip <=
(void*) _copy msg to_ user_ end) ||
((voidx)frame—>eip >=
(void %) copy _msg from user &&
(void*)frame—>eip <=
(void*) copy msg from user end)) {
switch (frame—>vector) {
/* these error are expected x/
case PAGE FAULT VECTOR:
case PROTECTION VECTOR:
frame—>eip =
(reg_t) _ user copy_ msg pointer failure;
return;
default:
panic ("Copy involving a user"
" pointer failed unexpectedly!");

}

}

/* Pass any error resulting from
*+ restoring FPU state, as a FPU
* exception to the process.
* /
if (((voidx)frame—>eip >= (void=x)fxrstor &&
(void x)frame—>eip <= (voidx) fxrstor end) ||
((void#)frame—>eip >= (voidx)frstor &&
(void x*)frame—>eip <= (voidx) frstor end)) {
frame—>eip = (reg t) _ frstor failure;
return;

if (frame—>vector = DEBUG_VECTOR &&

(saved proc—>p reg.psw & TRACEBIT) &&
(saved proc—>p seg.p kern trap style —
KTS NONE)) {

/% Getting a debug trap in the kernel
* is legitimate

% if a traced process entered the kernel
% using sysenter

% or syscall; the trap flag is not

977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017

A.3. Listings

307

% cleared then.

*

* It triggers on the first kernel entry
* so the trap

* style is still KIS NONE.

* /
frame—>eflags &= “TRACEBIT;
return;

/+* If control passes, this case is not
xrecognized as legitimate

* and we panic later on after all.

*/

if (frame—>vector = PAGE FAULT VECIOR) ({
pagefault (saved proc, frame, is nested);
return;

}

/x If an exception occurs while running a

* process , the is nested variable

* will be zero. Exceptions in interrupt
* handlers or system traps will make

* is_mnested non—zero.

* /

if (is_nested = 0 && ! iskernelp (saved proc)) {

cause_sig(proc_nr(saved proc), ep—>signum);
return;

}

/% Exception in system code. This
* 1s not supposed to happen. x/
inkernel disaster (saved proc, frame, ep, is nested);

panic("return from inkernel disaster");

A.3.14 Hardening software and the VM

Listing A.14: Hardening software and the VM

/ x >k

* map _subfree *

10

16

308 Annex

static int map_ subfree(struct vir region x*region,
vir _bytes start, vir bytes len)
{

struct phys region x*pr;
vir bytes end = start+len;
vir _bytes voffset;
#if SANITYCHECKS
SLABSANE(region) ;
for(voffset = 0; voffset < phys slot(region—>length);
voffset += VM PAGE SIZE) {
struct phys region xothers;
struct phys block *pb;
if (!(pr = physblock get(region, voffset)))
continue;
pb = pr—>ph;
for (others = pb—>firstregion; others;
others = others—>next ph list) {
assert (others—ph = pb);
}
}
#Hendif
for (voffset = start; voffset < end;
voffset+=VM_PAGE SIZE) {
if (!(pr = physblock get(region, voffset)))
continue;
assert (pr—>offset >= start);
assert (pr—>offset < end);
pb_unreferenced (region, pr, 1);
SLABFREE(pr) ;

/* Added by EKA to release the corresponding part
% in usl us2 list=x/
struct vmproc xvmp = region—>parent ;
if (vimp &&
(vmp—>vm _hflags & VM PROC TO HARD) &&
(vimp—>vm _endpoint != NONE) &&

(vimp—>vm __endpoint != VM PROC NR))
)

if (free_region pmbs(vmp, start, len)!=O0K)
panic ("free region pmbs in vm");
/+* End added by EKAx/
return OKj;
}
* pt writemap *

/% path: scr/minix/servers/vin/pagetable.cx/
int pt_ writemap(struct vmproc * vmp,

A.3. Listings 309

52 pt_t xpt,

53 vir _bytes v,

54 phys bytes physaddr,
55 size _t bytes,

56 u32 t flags,

57 u32 t writemapflags){

58| /* Write mapping into page table. Allocate a new

59| * page table if necessary. x/

60| /+ Page directory and table entries

61| * for this virtual address. x/

62 int p, pages;

63 int verify = 0;

64 int ret = OK;

65

66| #ifdef CONFIG SMP

67 int vminhibit clear = 0;

68 /* FIXME
* don’t do it everytime, stop the process
x only on the first change and
* resume the execution on the last change.

72 * Do in a wrapper of this
*
*
i

73 function

75 if (vmp && vmp—>vm endpoint != NONE &&
76 vmp—>vm _endpoint != VM PROC NR &&
77 !'(vmp—>vm _flags & VMF_EXITING)) {
78 sys_vmctl (vmp—>vm endpoint ,

79 VMCTL_VMINHIBIT SET, 0);
80 vminhibit _clear = 1;

81 }

s2| #endif

83 if (writemapflags & WMF_VERIFY)

84 verify = 1;

85 assert (! (bytes % VM_PAGE_SIZE)) ;

86 assert (!(flags & ~(PTF_ALLFLAGS)));

87 pages = bytes / VM PAGE SIZE;

88 /*xAdded by EKA: To be sent to kernelx/
89 vir _bytes vi = v;

90 phys bytes physaddri = physaddr;

91 /* End added by EKAx/

92 /* MAP NONE means to clear the mapping.

It doesn’t matter
what’s actually written into the
PTE if PRESENT

93 *
*
*
96 % isn’t on, so we can just write
*
*/
a

94
95
97 MAP _NONE into it.

/
/

98
99 ssert (physaddr = MAP NONE | |
100 (flags & ARCH VM _PTE PRESENT)) ;

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

149

310 Annex

assert (physaddr != MAP NONE || !flags);
/* First make sure all the necessary

*+ page tables are allocated ,

x+ before we start writing in any of

* them, because it’s a pain

* to undo our work properly.

ny

r

et = pt_ptalloc_in_ range(pt, v,
v + VM _PAGE SIZExpages, flags, verify);
if (ret != OK) {
printf("VM: writemap:"
" pt_ptalloc_in_ range failed\n");
goto resume exit;
} |
/* Now write in them. x/
for(p = 0; p < pages; p++) {
u32 t entry;
int pde = ARCH VM PDE(v);
int pte = ARCH VM PTE(v);
assert (! (v % VM_PAGE_SIZE)) ;
assert (pte >= 0 && pte < ARCH VM PT ENTRIES) ;
assert (pde >= 0 && pde < ARCH VM DIR ENTRIES) ;
/* Page table has to be there. x/
assert (pt—>pt_dir[pde|] & ARCH VM PDE PRESENT) ;
/* We do not expect it to be a bigpage. x/
assert (! (pt—>pt_dir[pde| & ARCH VM BIGPAGE)) ;
/x Make sure page directory
x entry for this page table
% is marked present and page
* table entry is available.
*’,
a

/

/

ssert (pt—pt_pt[pde]);

if (writemapflags & (WMF_ WRITEFLAGSONLY |WMF FREE)) {
4if defined(_ i386_)
physaddr =
pt—>pt_pt[pde]|[pte] & ARCH VM ADDR MASK;
#elif defined(_arm)
physaddr =
pt—>pt_pt[pde]|[pte] & ARM VM PTE MASK;
#endif

}

if (writemapflags & WMF _FREE) {

free_ mem (ABS2CLICK (physaddr), 1);
}

/* Entry we will write. x/
#if defined (__i386_)

A.3. Listings 311

150 entry = (physaddr & ARCH VM ADDR MASK) | flags;
151|#elif defined(_ _am_)

152 entry = (physaddr & ARM VM PIE MASK) | flags;
153| #endif

154 if(verify) {

155 u32_t maskedentry;

156 maskedentry = pt—>pt_pt|[pde]|[pte];

157|#1f defined (__i386_)

158 maskedentry &= 7(1386_VM_ACC|I386_VM_DIRTY) ;
150| #endif

160 /* Verify pagetable entry. x/

161|#if defined (1386)

162 if (entry & ARCH VM PIE RW) {

163 /+ If we expect a writable page,
164 * allow a readonly page. x/
165 maskedentry |= ARCH VM PTE RW;

166}
167|#elif defined(_arm)

168 if (!(entry & ARCH VM PIE RO)) {

169 /+x If we expect a writable page,
170 + allow a readonly page. x/
171 maskedentry &= TARCH VM _PIE RO;

172 }

173 maskedentry &= ~(ARM_ VM PIE WB|ARM VM PIE WT) ;
174| #endif

175 if (maskedentry != entry) {

176 printf("pt writemap: mismatch: ");

177|#1f defined (_ _i386_)

178 if ((entry & ARCH VM ADDR MASK) !=

179 (maskedentry & ARCH VM ADDR MASK)) {
1s0|#elif defined(_arm)

181 if ((entry & ARM VM _PTE MASK) =

182 (maskedentry & ARM VM PTE MASK)) {
183| #endif

184 printf("pt writemap: physaddr"

185 " mismatch (0x%lx, 0x%lx); ",
186 (long)entry, (long)maskedentry);

187 } else printf("phys ok; ");

188 printf (" flags: found %s; ",

189 ptestr (pt—pt_ pt[pde]|[pte]));

190 printf (" masked %s; ",

191 ptestr (maskedentry));

192 printf (" expected %s\n", ptestr(entry));
193 printf("found 0x%x, wanted 0x%x\n",

194 pt—pt_pt[pde][pte], entry);

195 ret = EFAULT;

196 goto resume_exit;

197

198 } else {

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

227

228| /

229
230
231

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

247

312 Annex

/+ Write pagetable entry. x/
pt—pt_pt[pde][pte] = entry;

physaddr += VM_PAGE SIZE;
v += VM_PAGE _SIZE;
}

resume __exit:
#ifdef CONFIG_SMP
if (vminhibit clear) {
assert (vimp && vmp—>vm _endpoint != NONE &&
vmp—>vm _endpoint != VM PROC NR &&
!(vmp—>vm _flags & VMF EXITING)) ;
sys__vmectl (vmp—>vm _endpoint
VMCTL _VMINHIBIT CLEAR, 0);
}
#Hendif
/% Added by EKAx/
if ((flags & ARCH VM PTE RW) && vmp &&
(vmp—>vm _hflags & VM PROC TO HARD) &&
(vmp—>vm __endpoint != NONE) &&
(vmp—>vm _endpoint != VM PROC NR))
if (tell kernel for wusl us2(vmp, vi,
physaddri, bytes)!=0K)
panic ("pt_writemap: tell kernel for"
" usl us2 failed\n");
/+End added by EKAx/
return ret;
}

% =3
* do_fork *

int do_fork(message xmsg)
{
int r, proc, childproc;
struct vmproc *vmp, *vinc;
pt_t origpt;
vir _bytes msgaddr;

SANITYCHECK (SCL_FUNCTIONS) ;

if (vin _isokendpt (msg—VMF ENDPOINT, &proc) != OK){

printf("VM: bogus endpoint VM FORK %d\n",
msg—>VMF ENDPOINT) ;

SANITYCHECK (SCL_ FUNCTIONS) ;

return EINVAL;

}

childproc = msg—VMF SLOTNO;

NONON N
J 09 3 3
AW N =

NN |
o

g3

3
o

NONN NN
3

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

296

A.3. Listings

313

if (childproc < 0 || childproc >= NR PROCS) {

printf ("VM: bogus slotno VM FORK %d\n",
msg—>VMF_SLOTNO) ;

SANITYCHECK (SCL_FUNCTIONS) ;

return EINVAL;

}

vmmp = &vmproc | proc |; /* parent */
vmc = &vmproc[childproc]; /* child x/
assert (vinc—>vm_slot = childproc);

/% The child is basically a copy of the parent.

origpt = vmc—>vm_pt;

*VINC = *vIp;

vmc—>vm _slot = childproc;

region init(&vme—>vm regions avl);

/* In case someone tries to use it. x/
vmc—>vm __endpoint = NONE;

vmc—>vm_pt = origpt;

#if VMSTATS
vmc—>vm _bytecopies = 0;
#endif

if (pt_new(&vmec—>vm pt) != OK) {
return ENOMEM;
}

SANITYCHECK (SCL_DETAIL) ;

if (map proc_copy(vmc, vmp) != OK) {

printf ("VM: fork: map proc_ copy failed\n");
pt free(&vmec—>vm pt);

return (ENOMEM) ;

/% Only inherit these flags. x/
vmc—>vm_flags &= VMF INUSE;

/+ Deal with ACLs. x/
acl fork (vme);

/% Tell kernel about the (now successful) FORK.

if ((r=sys_fork (vmp—>vm endpoint, childproc,
&vme—>vm _endpoint, PFF_VMINHIBIT,

&msgaddr)) != OK) {

panic("do fork can’t sys fork: %d", r);

% ’//

297
298
299
300
301

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

342
343
344

345

314 Annex

}

if ((r=pt_bind(&vmc—>vm pt, vmc)) != OK)
panic("fork can’t pt bind: %d", r);

/x%x Added by EKA sxx/
if (hardening enabled)
vmc—>vm_hflags |= VM PROC TO HARD;
if (vmp—>vm _hflags & VM _PROC TO HARD){
free_pram_mem _blocks(vmp) ;
}
/%% End Added by EKA sxxx/

/% Inform caller of new child endpoint. =/

{
vir _bytes vir;
/* making these messages writable
* is an optimisation
* and its return value needn’t be checked.
vir = msgaddr;
if (handle memory once(vmc, vir,
sizeof (message), 1) != OK)
panic("do_fork: handle memory"
" for child failed\n");
vir = msgaddr;
if (handle _memory once(vmp, vir,
sizeof (message), 1) != OK)
panic("do_fork: handle memory"
" for parent failed\n");

}
msg—>VMF_CHILD ENDPOINT = vmc—>vm _endpoint;

SANITYCHECK (SCL_ FUNCTIONS) ;
return OK;

void init _vm(void)

{

int s, 1i;
static struct memory mem chunks|[NR MEMS];
struct boot image xip;
extern void _ minix _init(void);
multiboot module t s*mod;
vir _bytes kern_dyn, kern_static;
struct pram_ mem block *pmb;

#if SANITYCHECKS

incheck = nocheck = 0;

#endif

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

A.3.

Listings

315

/
/ *

if
}

// *

Retrieve various crucial boot parameters */
(OK != (s=sys_ getkinfo(&kernel boot info))) {
panic("couldn’t get bootinfo: %d", s);

Turn file mmap on? x/

enable filemap=1; /* yes by default x/
env_parse("filemap", "d", 0,

,
/*

&enable filemap, 0, 1);

Sanity check =/

assert (kernel boot info.mmap size > 0);
assert (kernel boot info.mods with kernel > 0);

/ *

Get chunks of available memory. %/

get _mem chunks(mem _chunks);

/ *

Set table to 0. This invalidates
x all slots (clear VMF INUSE). x/

memset (vmproc, 0, sizeof (vmproc));

fo

/
/ *

/*Added by EKAx/
int hardening enabled = 0;
/+*End added by EKAx/

r(i = 0; i < ELEMENTS(vmproc); i++) {
vmproc[i].vm_slot = i;
/+*Added by EKAx/
vmproc|[i].vm hflags = 0;
vmproc|[i].vm lusl us2 size = 0;

vmproc[i].vm lusl us2 = NULL;
/*End added by EKAx/

/*xAdded by EKAx/
/+*xInitialize the hardening copy—on—write
* data structure tablexx/
for (pmb = BEG PRAM MEM BLOCK ADDR;
pmb < END PRAM MEM BLOCK ADDR; pmb++){
pmb—>flags = PRAM_SLOT FREE;
pmb—>vaddr = O0;
pmb—>us0 = 0;
pmb—usl = 0;
pmb—>us2 = 0;

}
/+*End added by EKAx/

Initialize ACL data structures. x/

acl init();

395
396
397
398
399
400
401

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

432
433
434
435
436
437
438
439
440
441
442
443

316 Annex

/* region management initialization. x/
map region init () ;

/+x Initialize tables to all physical memory. x/
mem __init (mem chunks) ;

/% Architecture—dependent initialization. x/
init proc (VM _PROC NR) ;
pt_init () ;

/% Acquire kernel ipc vectors
*+ that weren’t available
* before VM had determined kernel mappings
* /
__minix_init () ;

/% The kernel’s freelist does not
include boot—time modules; let
* the allocator know that the total memory is bigger.
*
for (mod = &kernel boot info.module list[0];
mod < &kernel boot info.module list
[kernel boot info.mods with kernel —1]; mod++) {
phys bytes len = mod—>mod end—mod—>mod start+1;
len = roundup(len, VM PAGE SIZE) ;
mem_add_total pages(len/VM_PAGE SIZE) ;

kern dyn =

kernel boot info.kernel allocated bytes dynamic;
kern static =

kernel boot_info.kernel allocated bytes;
kern static =

roundup (kern static, VM_PAGE SIZE);

mem _add_total pages(

(kern _dyn + kern static)/VM_PAGE SIZE) ;
/* Give these processes their

* own page table. x/

for (ip = &kernel boot_ info.boot procs[0];

ip <
&kernel boot info.boot procs|[NR_BOOT PROCS];
ip++) {
struct vmproc *vmp;
if (ip—>proc_nr < 0) continue;
assert (ip—>start addr);
/* VM has already been set up by the
* kernel and pt_init ().
* Any other boot process is already
* in memory and is set up

444
145
446
447
148
449
450
151
452
453
154
455
456
457
458
159
160
461
162
463
464
165
466
467
168
469
470
171

IS IS
S R I RS

o

g W N

SR

~

180
481
182
183
484
185
186
487
188
189
490
191

192

A.3. Listings

317

* here.
if (ip—>proc_nr = VM PROC NR) continue;
vmp = init_ proc(ip—>proc_nr);

exec _bootproc(vmp, ip);

/+* Free the file blob x/

assert (! (ip—>start addr % VM_PAGE SIZE)) ;

ip—>len = roundup(ip—>len, VM_PAGE SIZE) ;

free_ mem (ABS2CLICK (ip—>start addr),
ABS2CLICK (ip—>len)) ;

}

/+x Set up table of calls. x/
#define CALLMAP(code, func) { int _cmij; \
_ cmi=CALINUMBER(code) ; \
assert (_cmi >= 0); \
assert (_cmi < NR_VM_CALLS) ; \
vm_calls[cmi].vmec func = (func); \
vm _calls| cmi|.vmc_name = #code; \

/+* Set call table to 0. This invalidates
x all calls (clear

* vmc_func) .

memset (vim_calls, 0, sizeof(vm calls));

/* Basic VM calls. x/
CALLMAP(VM_MMAP, do_mmap) ;
CALLMAP(VM.__MUNMAP, do munmap) ;
CALLMAP(VM_MAP PHYS, do_map phys);
CALLMAP(VM_UNMAP PHYS, do_munmap) ;

/% Calls from PM. x/
CALIMAP(VM_EXIT, do_exit);
CALLMAP(VM FORK, do_fork);
CALLMAP(VM BRK, do_brk);
CALIMAP(VM_WILLEXIT, do willexit);

CALLMAP(VM_PROCCIL, do_ procctl notrans);

/% Calls from VFS. x/
CALLMAP(VM_VFS REPLY, do_vfs reply);
CALIMAP(VM_VFS MMAP, do_vfs mmap) ;

/% Calls from RS x*/
CALIMAP(VM_RS SET PRIV, do_rs_set priv);
CALLMAP(VM_RS PREPARE, do_ rs_prepare);
CALLMAP(VM_RS UPDATE, do_rs_update);

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

522

318

Annex

CALLMAP(VM RS MEMCIL, do rs memctl);

/+ Generic calls. =/

(VM_REMAP, do remap) ;
(VM_REMAP RO, do_remap);
(VM_GETPHYS, do get phys);
(VM_SHM UNMAP, do munmap) ;
(VM_GETREF, do_get refcount);
(VM_INFO, do_info);

/* Cache blocks. x/
CALLMAP (VM MAPCACHEPAGE, do_ mapcache) ;
CALLMAP(VM_SETCACHEPAGE, do _setcache);
(VM_FORGETCACHEPAGE, do _forgetcache);
(VM_CLEARCACHE, do _clearcache);

.

/% getrusage */

CALLMAP(VM_GETRUSAGE, do getrusage);

/* Mark VM instances. x/
num_vm _instances = 1;
vmproc [VM_PROC NR].vm _flags |= VMF_ VM INSTANCE;

/x Let SEF know about VM mmapped regions. x/
s = sef llvm _add_special mem region(
(void*)VM_OWN_HEAPBASE,
VM OWN MMAPTORVM OWN HEAPBASE, "%VIMAP ALL") ;
if(s < 0) {
printf("VM: st add special mmapped region
"failed %d\n", s);

*k ~k
* main *
S S — *

int main(void)
{
message msg;
int result, who e, rcv_sts;
int caller slot;

/+ Initialize system so that all

% processes are runnable the first time. x/
if (is_first time()) {

init_vm () ;

__vm_init_fresh=1;

}

A.3. Listings

319

/* SEF local startup. */
sef local startup();
__vm_init_fresh=0;

SANITYCHECK (SCL_TOP) ;

/+* This is VM’s main loop. x*/

while (TRUE) {

int r, c;

int type;

int transid = 0; /% VFS transid if any x/

SANITYCHECK (SCL_TOP) ;
if (missing spares > 0) {
/+* mem alloc code wants to be called
alloc_cycle();

if ((r=sef receive status(ANY, &msg,
&rcv_sts)) != OK)
panic("sef receive status()"

" error: %d", r);

if (is_ipc_notify(rev_sts)) {
/# Unexpected ipc_ mnotify (). */
printf ("VM: ignoring ipc notify ()
"from %d\n", msg.m _source);

n

continue;

}

who e = msg.m _source;

if (vim_isokendpt(who_ e, &caller slot) != OK)
panic("invalid caller %d", who e);

/+* We depend on this being false for
%+ the initialized value. %/
assert (!IS_VFS FS TRANSID(transid));

type = msg.m _type;
¢ = CALINUMBER(type) ;
/* Out of range or restricted
x calls return this. x/
result = ENOSYS;

transid = TRNS GET ID(msg.m_type) ;
/x% Added by EKAxx/

/+*xThat is a hardening page fault.
The kernel inform the VM

591

592
593
594
595
596
597
598
599
600
601

602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638

639

320

Annex

xx VM called the handler do_ hpagefault xx/
if ((msg.m_type =— VM_HRIPAGEFAULT) | |
(msg.m_type = VM_HR2PAGEFAULT)) {
do_hpagefaults(&msg) ;
continue;

}

if ((msg.m_type =— VM _TELL VM H ENABIE) ||
(msg.m_type = VM_TELL VM _H DISABLE
(msg.m_type = VM_TELL VM H ENABLE
(msg.m_type =— VM_TELL VM _H DISAB
do hardening(&msg) ;
continue;

}

/*% End added by EKAxx/

if ((msg.m_source = VFS_PROC NR) &&
IS_VFS FS TRANSID(transid)) {
/x If it’s a request from VFS,
* it might have a transaction id. x/
msg.m_type = TRNS DEL ID(msg.m _type);

/+ Calls that use the transid x/
result = do_procctl(&msg, transid);
} else if(msg.m type = RS INIT &&
msg.m_source =— RS PROC NR) {
result = do_sef init request(&msg);
if (result != OK)
panic("do _sef init request failed!\n");
result = SUSPEND; /%« do not reply to RS x/
} else if (msg.m_ type =— VM _PAGEFAULT) {
if (!IPC_STATUS FLAGS TEST(rcv_sts,
IPC_FLG_MSG FROM KERNEL)) {
printf ("VM: process %d faked "
"VM_ PAGEFAULT message!\n",
msg.m _source) ;
}
do pagefaults(&msg) ;
% do not reply to this call, the caller
* is unblocked by
* a sys_vmectl() call in do pagefaults
x if success. VM panics
* otherwise
continue;
} else if(c < 0 || !'vm calls[c].vmec_ func) {
/% out of range or missing callnr x*/

640
641

642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

682
683
684
685
686
687

688

A.3. Listings 321

} else {

if (acl_check(&vmproc|caller slot], c¢)
I= OK) {

printf ("VM: unauthorized %s by %d\n",
vm_calls[c].vmc_name, who e);

} else {
SANITYCHECK (SCL_ FUNCTIONS) ;
result = vm_calls[c].vmec_func(&msg) ;
SANITYCHECK (SCL_ FUNCTIONS) ;

}
}

/% Send reply message, unless the
* return code is SUSPEND,

% which is a pseudo—result suppressing
% the reply message.

if(result != SUSPEND) {
msg.m_type = result;

assert (/IS VFS FS TRANSID(transid));

if ((r=ipc_send(who_ e, &msg)) != OK) {
printf ("VM: couldn’t send %d"
" to %d (err %d)\n",
msg.m_type, who e, r);
panic("ipc_send () error");
}
}

}
return (OK) ;

void clear proc(struct vmproc #vmp)

{

/#xx Added by EKA sxx/
if (vmp—>vm _hflags & VM _PROC TO HARD)
free_pram_mem blocks (vmp) ;
/*xx End Added by EKA sxx/
region init(&vmp—>vm regions avl);
acl clear (vmp);
/* Clear INUSE, so slot is free. x/
vmp—>vm _flags = 0;
#if VMSTATS
vmp—>vm _bytecopies = 0;
#endif
vmp—>vm_region_top = 0;
reset _vm_rusage (vmp) ;

689

690

L N N

O = e R e e e e e
S © ® N O Uk W~ O © 0N

(ST

AR W W W W W W oW W W W NNNNNNN D
5 O 0 0 90 ke LR RO O© ® I 0 3

322

Annex

A.3.15 Hardening software utility

Listing A.15: Hardening software utility

* lin lin cmp *

static int lin_lin_cmp(struct proc ssrcproc,
vir _bytes srclinaddr,
struct proc xdstproc,
vir _bytes dstlinaddr,
vir _bytes bytes)

u32 _t addr;
proc_nr_t procslot;
int i, r = OK;
assert (get cpulocal var(ptproc));
assert (get cpulocal var(proc_ptr));
assert (read cr3() =
get cpulocal var(ptproc)—>p seg.p_ cr3);
procslot = get cpulocal var(ptproc)—>p nr;
assert (procslot >= 0 &
procslot < I386 VM _ DIR ENTRIES) ;

if (srcproc)
assert (!RTS_ISSET(srcproc, RTS SLOT FREE));
if (dstproc)
assert (!RTS_ISSET(dstproc, RTS SLOT FREE));
assert (!RTS_ISSET(get cpulocal var(ptproc),
RTS SLOT FREE));
assert (get cpulocal var(ptproc)—>p seg.p cr3 v);
if (srcproc)
assert (!RTS ISSET(srcproc, RTS VMINHIBIT)) ;
if (dstproc)
assert (!RTS_ISSET(dstproc, RTS_VMINHIBIT)) ;

while (bytes > 0) {

phys bytes srcptr, dstptr;

vir _bytes chunk = bytes;

int changed = 0;

/* Set up 4MB ranges. x/

srcptr = createpde(srcproc, srclinaddr,
&chunk, 0, &changed);

dstptr = createpde(dstproc, dstlinaddr,
&chunk, 1, &changed);

65

83

85
86
87
88
89

90

A.3. Listings

323

if (changed)

reload cr3();

/+* Compare pages. x*/

if (phys _cmp(srcptr, dstptr, chunk)) {
r = EFAULT;

}

/% Update counter and addresses for
* next iteration , if any. x*/

bytes —— chunk;

srclinaddr += chunk;

dstlinaddr += chunk;

if (sreproc)
assert (!RTS _ISSET(srcproc, RIS SLOT FREE));
if (dstproc)
assert (!RTS ISSET(dstproc, RTS SLOT FREE));
assert (!RTS _ISSET(get cpulocal var(ptproc),
RTS SLOT FREE));
assert (get cpulocal var(ptproc)—>p seg.p_cr3_ v);

return r;

/,"* .. -
/% phys cmp *
//'/x .. sk
x PUBLIC int phys cmp(phys bytes source,

* phys bytes destination ,

* phys bytes bytecount);

* Cmp a block of data from anywhere to anywhere
% in physical memory.
/ % es edi esi eip src dst len x/

Y (phys_cmp)
push %ebp

mov %esp , %ebp

cld
push %esi
push %edi

mov 8(%ebp), %esi
mov 12(%ebp), %edi
mov 16(%ebp), %ecx

cld

324 Annex

91
92 repe cmpsb

93| jne not_equal
94| mov $0, %eax
95 jmp exit

96
97| not _equal:

os| mov $1, %eax /x 0 means: no fault =/
99
10| exit :

101 pop %edi
102| pop %esi
103| pop %ebp
104 ret

105
16| int cpy_frames(u32 t src, u32 t dst){
107 if (lin_lin _copy(NULL, src, NULL, dst,

108 1386 PAGE_SIZE)!=0K) {
109 return EFAULT;

110 }

111 return (OK) ;

2] }

113

114 /* This function is used to modified the data at addr
15| * We used it to modified the value

116 * of the page table entries

17| % add at 30/12/2014

18| */

119 int phys set32(phys_ bytes addr, u32 t *v)

120 {

121 int r;

122 if ((r=lin_lin copy (proc_addr (SYSTEM), (vir_ bytes) v,
123| NULL, addr , sizeof(u32 t))) != OK) {

124 return(r);

125

126 return (OK) ;
127 }

A.3.16 USER Space library for hardening

Listing A.16: USER Space library for hardening

1| /*START USER SPACE LIBx*/
2| /*USER SPACE COMMANDs /

3| /* path: src/minix/tests/
1| * hardening: src/minix/tests/hardening.c

5/ % This program can be call to enable or disable
6| hardening

A.3. Listings 325

A system cal is made from the user process to the PM
servers.

The PM server makes a kernel call to the micro—kernel
The micro—kernel enable the hardening at micro—kernel
level

The micro—kernel sends message to the VM

The VM enable the hardening at VM level

USAGE:
15 — hardening <1> to enable hardening for all
16 new process (fork)
17 — hardening <2> to disable hardening for all

new process (fork)
— hardening <4> <pid> to enable hardening for
process reprented by pid

-
'S
¥ K X X ¥ X X X X X X X X ¥ X

21 — hardening <8> <pid> to disable hardening for
22| % process reprented by pid

23| %/

24| /% created by Emery Assogba x/

25| /* assogba.emery@gmail.com

™)
(=
*

06—Fevr—2019 12:45:04 x/

28| /* Copyright (C) 2019 by Emery Assogba.
29| * All rights reserved. x/

30| /* Used by permission. x/

#include <unistd.h>

32| #include <stdlib .h>

33|#include "hardening.h"

34|#include <string.h>

35| static void usage(char xprog name);

36| int main(int arge, char xargv][]){

37 int r = OK;

w

38 if (arge <2){

39 usage (argv [0]) ;

40 return(r);

41

42 int type = atoi(argv[1l]);

43 int pid;

44 switch (type){

45 case HTASK EN HARDENING AIL F:

46 if ((r = hardening (HTASK EN HARDENING ALL F,
47 PID NONE, NULL, 0))!=0K)

48 printf("Enable hardening for all new"

49 " procs failed %d\n", r);

50 break ;

51 case HTASK DIS HARDENING ALL F:

52 if ((r = hardening (HTASK DIS HARDENING ALL F,
53 PID NONE, NULL, 0))!=0K)

54 printf("Disable hardening for all new "
55 "procs failed %d\n", r);

326 Annex

56 break;

57 case HTASK EN HARDENING PID:

58 if (arge!=3){

59 usage (argv [0]) ;

60 return(r);

61 }

62 pid = atoi(argv[2]);

63 if ((r=hardening (HTASK EN HARDENING PID,
64 pid, NULL, 0))!=0K)

65 printf("Enable hardening for %d"

66 " procs failed %d\n", pid, r);
67 break;

68 case HTASK DIS HARDENING PID:

69 pid = atoi(argv[2]);

70 if (arge!=3){

71 usage (argv [0]) ;

~
o

return(r);

}

74 if ((r=hardening (HTASK DIS HARDENING PID,
75 pid, NULL, 0))!=0K)

76 printf("Disable hardening for %d"

77 " procs failed %d\n", pid, r);
78 break;

79 default:

80 usage (argv|[0]) ;

81 break;

82 }

83 return (r);

85| static void usage(char *prog name){

86 printf ("USAGE %s <reqtype> [pid]| [name|\n",

87 prog name) ;

88 printf("%s <1> : to enable hardening for all"

89 " new process \n", prog name);

90 printf("%s <2> : to disable hardening for all"

91 " new process \n'", prog name);

92 printf("%s <4> <pid> to enable hardening"

93 " for process reprented by pid \n", prog name);
94 printf("%s <8> <pid> to disable hardening "

95 n

96 }
97| /*hardening lib: path:

98| * src/minix/mib/libc /sys/hardening.cx*/
oo|#include <lib .h>

100|#include <unistd .h>

01| int hardening(int type, pid_t pid,

102| char sname, int namelen){

for process reprented by pid \n", prog name);

103 message m;
14| switch (type){

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

127

128(/

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

147

A.3. Listings 327

case HTASK EN HARDENING AIL F:
m.HTASK TYPE = HTASK EN HARDENING AIL F;
m.HTASK P_ENDPT = pid;
break;

case HTASK DIS HARDENING ALL F:
m.HTASK TYPE = HTASK DIS HARDENING ALL F;
m.HTASK P_ENDPT = pid;
break;
case HTASK EN HARDENING PID:
m.HTASK TYPE = HTASK EN HARDENING PID;
m.HTASK P _ENDPT = pid;
break;
case HTASK DIS HARDENING PID:
m.HTASK TYPE = HTASK DIS HARDENING PID;

m.HTASK P_ENDPT = pid;
break;
default :
return(—1);
}
return (_syscall (PM_PROC NR,PM_ HARDENING &m)) ;
}
/*PM PART OF USER SPACE LIB=*/
* do_ hardening *

/% do_hardening:
x path src/minix/servers/pm/misc.cx*/
int do_ hardening(void){

char xpname;
switch (m_in.HTASK TYPE){
case HTASK EN HARDENING AIL F:
sys _hardening (PM_PROC NR,
HTASK EN HARDENING AIL F , 0, NULL,0) ;
break;

case HTASK DIS HARDENING AILL F:
sys_hardening (PM PROC NR,
HTASK DIS HARDENING ALL F , 0, NULL,0) ;
break;
case HTASK EN HARDENING PID:
sys_hardening (PM_PROC NR,
HTASK_EN_HARDENING PID,
m_in.HTASK P ENDPT, NULL,0) ;
break;
case HTASK DIS HARDENING PID:
sys hardening (PM_PROC NR,
HTASK DIS HARDENING PID,

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

328

Annex

m_in.HTASK P_ENDPT, NULL,0) ;

break;

return (OK) ;
}
/*sys hardening.c path:
* src/minix/lib/libsys/sys hardening.cx*/
#include "syslib.h"
#include <string.h>
int sys hardening(proc_endpt, htask type,
htask pendt, htask pname, namelen)
endpoint t proc_endpt; /x process endpoint x*/
int htask type; /x type of task x/
endpoint _t htask pendt; /% process to hard =/
char xhtask pname; /% process to hard x/
int namelen;
{
message m;
m.HTASK ENDPT = proc__endpt;
m.HTASK P_ENDPT = htask pendt;
if (htask pname!=NULL)
m.HTASK PNAME = (vir bytes)htask pname;
else
m.HTASK PNAME = 0OL;
m.HTASK TYPE = htask type;
return(_kernel call(SYS _HARDENING, &m));
}
/*KERNEL PART OF USER SPACE LIBx/
/* The kernel call implement in this file
* m_type : SYS HARDENING
The parameters for this kernel call are:
— HTASK_ENDPT
— HTASK TYPE
— HTASK _EN HARDENING AILL F :

— HTASK DIS HARDENING ALL F :

— HTASK_EN_HARDENING PID:

HTASK_DIS_HARDENING PID:

— HTASK_PENDPOINT
— HTASK PNAME

¥ OK K X X X X X X X X X ¥ %

/
/
/

#include "kernel/system.h"

#include "kernel/arch/i386/include/arch proto.h"

#include "kernel/arch/i386/hproto.h"
#include "kernel/arch/i386 /htype.h"

Enable hardening for new forked process
Disable hardening for new forked process
Enable hardening for given pid process

Disable hardening for given pid process

203
204
205
206
207
208
209

210

235
236
237
238
239
240
241

242
243
244
245
246
247
248
249
250

251

A.3. Listings

329

#include <assert .h>

/

* do hardening *

/
* * /

int do_ hardening(struct proc * caller ,
message * m_ptr) {
proc_nr_t proc_nr, proc_nr_e, hproc_nr, hproc nr e;
struct proc xp, xhp;
message hm;
int err;
proc_nr_e= (proc_nr_ t) m_ptr—HTASK ENDPT;
if (!isokendpt(proc_nr e, &proc nr))
return (EINVAL) ;
p = proc_addr(proc_nr);
switch (m_ptr—HTASK TYPE){
case HTASK EN HARDENING AILL F:
h can_start hardening = ENABLE HARDENING;
hm.m source = p—>p endpoint;
hm.m_ type = VM TELL VM _H ENABLE;
if ((err = mini send(p, VM PROC NR,
&hm, FROM KERNEL))) {
panic ("WARNING: enable hardening:"
" mini_send returned %d\n", err);
}

break;

case HTASK DIS HARDENING ALL F:
h can start hardening = DISABLE HARDENING;
hm.m _ source = p—>p _ endpoint;
hm.m_type = VM_TELL VM H DISABLE;
if ((err = mini send(p, VM PROC NR,

&hm, FROM KERNEL))) {

panic ("WARNING: disable hardening:"

" mini_send returned %d\n", err);

}

break;
case HTASK EN HARDENING PID:
hproc_nr e= (proc_nr t) m ptr—HTASK P ENDPT;
if (!isokendpt (hproc nr e, &hproc nr))
return (EINVAL) ;
hp = proc_addr (hproc_nr);
hp—>p hflags |= PROC_TO HARD;
hm.m source = hp—>p endpoint;
hm.m_ type = VM _TELL VM H ENABLE P;
if ((err = mini_send(hp, VM PROC NR,
&hm, FROM KERNEL))) {
panic ("WARNING: enable hardening:"
" mini send returned %d\n", err);
}

break;

283
284
285
286
287
288
289
290
291
292
293
294
295
296

297

208 }

299

330

Annex

case HTASK DIS HARDENING PID:
hproc_nr e= (proc_nr t) m ptr—HTASK P ENDPT;
if (!isokendpt (hproc nr e, &hproc nr))
return (EINVAL) ;
hp = proc_addr(hproc nr);
hp—p _hflags &= "PROC_TO_ HARD;
hm.m _ source = hp—>p endpoint;
hm.m_type = VM_TELL VM _H DISABLE P;
if ((err = mini_send(hp, VM_PROC NR,
&hm, FROM KERNEL))) {
panic ("WARNING: disable hardening:"
" mini_send returned %d\n", err);
}

break ;

}
return (OK) ;

/*VM PART OF USER SPACE LIBx/

[*

*

do_hardening *

*

void do_hardening(message #m)

{

endpoint _t ep = m—>m _source;
int reqtype = m—>m_type;
struct vmproc *vmp;

int p;
if (vin_isokendpt(ep, &p) != OK)
panic("do hardening: endpoint wrong: %d", ep);

vmp = &vmproc|p];
assert ((vmp—>vm _flags & VMF _ INUSE)) ;
switch (reqtype){
case VM TELL VM H ENABLE:
hardening enabled = ENABLE HARDENING;
break;

case VM_TELL VM _H DISABLE:
hardening enabled = DISABLE HARDENING;
break;

case VM_TELL VM H ENABLE P:
vmp—>vm_hflags |= VM _PROC TO HARD;
break;

case VM_TELL VM H DISABLE P:
vmp—>vm _hflags &= "VM_PROC TO HARD;
break;

}

END USER SPACE LIBx*/

[Adv16]

[AGY3]

[AGM*17]

[AGV96]

[AKOS]

[AL16]

[AL19]

[Amol5|

[Ass19]

Bibliography

Advanced Micro Devices, Inc. BIOS and kernel develop-
ers guide (BKDG) for AMD family 16h models 30h-3fh
processors. (52740), 2016.

A. Arora and M. Gouda. Closure and convergence: A
foundation of fault-tolerant computing. IEFE Transac-
tions on Software Engineering, pages 1015-1027, 1993.

Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo
Alvisi, Rama Kotla, and Jean-Philippe Martin. Revisit-
ing fast practical byzantine fault tolerance. arXiv preprint
arXw:1712.01367, 2017.

Anish Arora, Mohamed Gouda, and George Varghese.
Constraint satisfaction as a basis for designing nonmask-
ing fault-tolerance. Journal of High Speed Networks,
5(3):293-306, 1996.

A. Arora and S.S. Kulkarni. Designing masking fault-
tolerance via nonmasking fault-tolerance. Software Engi-
neering, IEEE Transactions on, 24(6):435-450, 1998.

Emery Kouassi Assogba and Marc Lobelle. Can MINIX Be
"Tuned" in Order to Satisfy Hard Real-time Constraints
without Losing Its Soul?, February 2016.

Emery K Assogba and Marc Lobelle. Hardening appli-
cation programs by the operating system on cots pro-
cessors: what protection to sed can be expected and at
what performance cost. In 2017 17th Furopean Conference
on Radiation and Its Effects on Components and Systems
(RADECS), pages 1-6. IEEE, 2019.

Mohammed Amoon. A framework for providing a hy-
brid fault tolerance in cloud computing. In 2015 Science
and Information Conference (SAI), pages 844-849. IEEE,
2015.

Emery K. Assogba. Hardened minix3.2.1.
https://github.com/akemery /HardenedMinix3.2.1, 2019.

332

Bibliography

[BBK10]

[BBN*07]

[Bel05)

[BGW93]

[BKRF02)

[BLS|

[BMD*17]

[BMS07]

Alessandro Barenghi, Luca Breveglieri, Israel Koren, Ger-
ardo Pelosi, and Francesco Regazzoni. Countermeasures
against fault attacks on software implemented aes: effec-
tiveness and cost. In Proceedings of the 5th Workshop on
Embedded Systems Security, page 7. ACM, 2010.

Michael Bajura, Younes Boulghassoul, Riaz Naseer,
Sandeepan DasGupta, Arthur F Witulski, Jeff Sondeen,
Scott D Stansberry, Jeffrey Draper, Lloyd W Massen-
gill, John N Damoulakis, et al. Models and algorith-
mic limits for an ECC-based approach to hardening sub-
100-nm SRAMSs. Nuclear Science, IEEE Transactions on,
54(4):935-945, 2007.

Fabrice Bellard. Qemu, a fast and portable dynamic
translator. In USENIX Annual Technical Conference,
FREENIX Track, volume 41, page 46, 2005.

Amnon Barak, Shai Guday, and Richard G Wheeler. The
MOSIX distributed operating system: load balancing for
UNIX, volume 13. Springer, 1993.

Douglas C Bossen, Alongkorn Kitamorn, Kevin F Re-
ick, and Michael S Floyd. Fault-tolerant design of the
ibm pseries 690 system using power4 processor technology.
IBM Journal of Research and Development, 46(1):77-86,
2002.

Amnon Barak and Oren La’adan. The mosix multi-
computer operating system for high performance cluster
computing. Future Generation Computer Systems, 13(4-
5):361-372, 1998.

Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software grand exposure:{SGX} cache attacks
are practical. In 11th {USENIX} Workshop on Offensive
Technologies ({ WOOT} 17), 2017.

Cristiana Bolchini, Antonio Miele, and Marco D Santam-
brogio. TMR and Partial Dynamic Reconfiguration to
mitigate SEU faults in FPGAs. pages 87-95. IEEE, 2007.

Bibliography 333

[BPPT08]

[But11]

[CC16]

[CDL*16]

[cglell]

[Chu96|

[CNV+00]

[Corl§|

Melanie Berg, C Poivey, D Petrick, D Espinosa, Austin
Lesea, KA LaBel, M Friendlich, H Kim, and Anthony
Phan. Effectiveness of internal versus external SEU scrub-
bing mitigation strategies in a Xilinx FPGA: Design, test,
and analysis. [IEFEE Transactions on Nuclear Science,
55(4):2259-2266, 2008.

Giorgio C Buttazzo. Hard real-time computing systems:
predictable scheduling algorithms and applications, vol-
ume 24. Springer Science & Business Media, 2011.

Yi-Shen Chen and Peng-Sheng Chen. A Software-Based
Redundant Execution Programming Model for Transient
Fault Detection and Correction. In Parallel Processing
Workshops (ICPPW), 2016 45th International Conference
on, pages 66-71. IEEE, 2016.

Ediz Cetin, Oliver Diessel, Tuo Li, Jude A Ambrose,
Thomas Fisk, Sri Parameswaran, and Andrew G Demp-
ster. Overview and Investigation of SEU Detection
and Recovery Approaches for FPGA-Based Heteroge-
neous Systems. In FPGAs and Parallel Architectures for
Aerospace Applications, pages 33—46. Springer, 2016.

Data center group Intel corporation. Intel xeon processor
e7family:reliability,availability,and serviceability. (52740),
2011.

Hsiao-keng Jerry Chu. Zero-copy tcp in solaris. In Proceed-
ings of the 1996 annual conference on USENIX Annual
Technical Conference, pages 21-21. Usenix Association,
1996.

Phillipe Cheynet, Bogdan Nicolescu, Raoul Velazco, Mau-
rizio Rebaudengo, M Sonza Reorda, and Massimo Vi-
olante. Experimentally evaluating an automatic approach
for generating safety-critical software with respect to tran-
sient errors. IEEFE Transactions on Nuclear Science,
47(6):2231-2236, 2000.

Intel Corporation. Mca enhancements in intel xeon pro-
cessors, 2018.

334

Bibliography

[CRKT15]

[CY12]

[Daul6]

[DeL0g]

[Dell8]

[Dev11]

[DGVO04]

[DKD*15]

[Dsb14]

Eduardo Chielle, Gennaro S Rodrigues, Fernanda L Kas-
tensmidt, Sergio Cuenca-Asensi, Lucas A Tambara, Paolo
Rech, and Heather Quinn. S-seta: Selective software-only
error-detection technique using assertions. IEEFE transac-
tions on Nuclear Science, 62(6):3088-3095, 2015.

Sanguhn Cha and Hongil Yoon. Efficient implementation
of single error correction and double error detection code
with check bit pre-computation for memories. JST'S: Jour-
nal of Semiconductor Technology and Science, 12(4):418—
425, 2012.

Nathan D Dautenhahn. Protection in commodity mono-
lithic operating systems. PhD thesis, University of Illinois
at Urbana-Champaign, 2016.

Eric DeLano. Tukwila-a quad-core intel® itanium@®) pro-
cessor. In 2008 IEEE Hot Chips 20 Symposium (HCS),
pages 1-29. IEEE, 2008.

Samuel Francis Delaney. RealPi-A Real Time Operating
System on the Raspberry Pi. PhD thesis, University of
Nevada, Reno, 2018.

Android Developers. What is android, 2011.

Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt.
Contiki-a lightweight and flexible operating system for
tiny networked sensors. In Local Computer Networks,
2004. 29th Annual IEEE International Conference on,
pages 455-462. IEEE, 2004.

Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz,
John Criswell, and Vikram Adve. Nested kernel: An op-
erating system architecture for intra-kernel privilege sep-
aration. In ACM SIGPLAN Notices, volume 50, pages
191-206. ACM, 2015.

Bjorn Débel. Operating system support for redundant mul-
tithreading. PhD thesis, Saechsische Landesbibliothek-
Staats-und Universitaetsbibliothek Dresden, 2014.

Bibliography 335

[DWA*19]

[EH13]

[EMO0]

[FHR10]

[FLB15|

[GDJ*11]

[GIR*92]

Sanjeev Das, Jan Werner, Manos Antonakakis, Michalis
Polychronakis, and Fabian Monrose. Sok: The challenges,
pitfalls, and perils of using hardware performance counters
for security. In Proceedings of 40th IEEE Symposium on
Security and Privacy (SEP’19), 2019.

Kevin Elphinstone and Gernot Heiser. From 13 to seld
what have we learnt in 20 years of 14 microkernels? In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Oper-
ating Systems Principles, pages 133-150. ACM, 2013.

Eric Espie and Zoltan Menyhart. Method of memory er-
ror correction by scrubbing, June 13 2000. US Patent
6,076,183.

Michael Falk, Jiirg Hiisler, and Rolf-Dieter Reiss. Laws of
small numbers: extremes and rare events. Springer Science
& Business Media, 2010.

Charlotte Frenkel, Jean-Didier Legat, and David Bol.
A Partial Reconfiguration-based scheme to mitigate
Multiple-Bit Upsets for FPGAs in low-cost space applica-
tions. In Reconfigurable Communication-centric Systems-
on-Chip (ReCoSoC), 2015 10th International Symposium
on, pages 1-7. IEEE, 2015.

Haryadi S Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro,
Joseph M Hellerstein, Andrea C Arpaci-Dusseau, Remzi H
Arpaci-Dusseau, Koushik Sen, and Dhruba Borthakur.
FATE and DESTINTI: A framework for cloud recovery test-
ing. In Proceedings of NSDI’11: 8th USENIX Symposium
on Networked Systems Design and Implementation, page
239, 2011.

David B Golub, Daniel P Julin, Richard F Rashid,
Richard P Draves, Randall W Dean, Alessandro Forin,
Joseph Barrera, Hideyuki Tokuda, Gerald Malan, and
David Bohman. Microkernel operating system architec-
ture and mach. In In Proceedings of the USENIX Work-
shop on Micro-Kernels and Other Kernel Architectures,
pages 11-30, 1992.

336

Bibliography

|[GKT13a

[GKT13b)

[GRRV03]

[Guill]

[GWJL18]

[HA09)]

[HAM*+18|

[HAR15|

Cristiano Giuffrida, Anton Kuijsten, and Andrew S
Tanenbaum. EDFI: A dependable fault injection tool for
dependability benchmarking experiments. In Dependable
Computing (PRDC), 2013 IEEE 19th Pacific Rim Inter-
national Symposium on, pages 31-40. IEEE, 2013.

Cristiano Giuffrida, Anton Kuijsten, and Andrew S
Tanenbaum. Safe and automatic live update for operating
systems. ACM SIGARCH Computer Architecture News,
41(1):279-292, 2013.

Olga Goloubeva, Maurizio Rebaudengo, M Sonza Reorda,
and Massimo Violante. Soft-error detection using con-
trol flow assertions. In Defect and Fault Tolerance in
VLSI Systems, 2003. Proceedings. 18th IEEE Interna-
tional Symposium on, pages 581-588. IEEE, 2003.

Part Guide. Intel® 64 and ia-32 architectures software
developeraAZs manual. Volume 3B: System programming
Guide, Part, 2, 2011.

Thomas Given-Wilson, Nisrine Jafri, and Axel Legay. The
state of fault injection vulnerability detection. In Interna-
tional Conference on Verification and Evaluation of Com-
puter and Communication Systems, pages 3—21. Springer,
2018.

Sharon P Hall and Eric Anderson. Operating systems
for mobile computing. Journal of Computing Sciences in
Colleges, 25(2):64-71, 20009.

Mohd Hakim Abdul Hamid, Nur Azman Abu, Siti Nu-
rul Mahfuzah Mohamad, Ariff Idris, Zahriladha Zakaria,
and Zuraidah Sulaiman. Data analytics algorithm bench-
mark on distributed systems. In AIP Conference Proceed-
ings, volume 2016, page 020002. AIP Publishing, 2018.

G Hubert, L Artola, and D Regis. Impact of scaling on the
soft error sensitivity of bulk, FDSOI and FinFET tech-
nologies due to atmospheric radiation. Integration, the
VLSI journal, 50:39-47, 2015.

Bibliography 337

[HBG*09]

[Heill]

[Her10]

[HH16]

[Hil92]

[HP11]

[HQSDO0]

[Int16]

[Int64]

[JKH* 16|

Jorrit N Herder, Herbert Bos, Ben Gras, Philip Hom-
burg, and Andrew S Tanenbaum. Fault isolation for de-
vice drivers. In 2009 IEEE/IFIP International Conference
on Dependable Systems & Networks, pages 33-42. IEEE,
2009.

Tino Heijmen. Soft errors from space to ground: His-
torical overview, empirical evidence, and future trends.
In Soft Errors in Modern Electronic Systems, pages 1-25.
Springer, 2011.

Jorrit N Herder. Building a dependable operating system:
fault tolerance in MINIX 3. 2010.

Hsuan Hsu and Chih-Wen Hsueh. Freertos porting on
x86 platform. In 2016 International Computer Symposium
(ICS), pages 120-123. IEEE, 2016.

Dan Hildebrand. An architectural overview of qnx. In
USENIX Workshop on Microkernels and Other Kernel Ar-
chitectures, pages 113-126, 1992.

John L. Hennessy and David A Patterson. Computer ar-
chitecture: a quantitative approach. Elsevier, 2011.

D Heynderickx, B Quaghebeur, E Speelman, and EJ Daly.
ESA’s SPace ENVironment Information System (SPEN-
VIS): a WWW interface to models of the space environ-
ment and its effects. Proc. AIAA, 371, 2000.

Intel Corporation. Intel 64 and IA-32 architectures soft-
ware developers manual. 2016.

Intel Intel. and TA-32 architectures software developer’s
manual. Volume 3A: System Programming Guide, Part,
1(64), 64.

Qamar Jabeen, Fazlullah Khan, Muhammad Nouman
Hayat, Haroon Khan, Syed Roohullah Jan, and Farman
Ullah. A survey: Embedded systems supporting by differ-
ent operating systems. arXiv preprint arXiv:1610.07899,
2016.

338

Bibliography

[JLT85

[JSDK13]

[KA96]

|[Kan09]

[KEGW96]

[KF82]

[KKO07|

[Kop11]

[KT91]

[Lev09]

E Douglas Jensen, C Douglas Locke, and Hideyuki
Tokuda. A time-driven scheduling model for real-time op-
erating systems. In Rtss, volume 85, pages 112-122, 1985.

Xun Jian, John Sartori, Henry Duwe, and Rakesh Ku-
mar. High performance, energy efficient chipkill correct
memory with multidimensional parity. IEEE Computer
Architecture Letters, 12(2):39-42, 2013.

Sandeep S Kulkarni and Anish Arora. Stepwise design
of tolerances in barrier computations. Technical report,
Citeseer, 1996.

Peter Kankowski. x86 machine code statistics, 2009.

M Frans Kaashoek, Dawson R Engler, Gregory R Ganger,
and Deborah A Wallach. Server operating systems. In
Proceedings of the 7Tth workshop on ACM SIGOPS Fu-
ropean workshop: Systems support for worldwide applica-
tions, pages 141-148. ACM, 1996.

Shigeo Kaneda and Eiji Fujiwara. Single byte error cor-
recting? double byte error detecting codes for memory
systems. IEEE Transactions on Computers, (7):596-602,
1982.

Israel Koren and Mani Krishna. Fault-tolerant systems.
Elsevier/Morgan Kaufmann, 2007.

Hermann Kopetz. Real-time systems: design principles
for distributed embedded applications. Springer Science &
Business Media, 2011.

M Frans Kaashoek and Andrew S Tanenbaum. Group
communication in the amoeba distributed operating sys-
tem. In [1991] Proceedings. 11th International Conference
on Distributed Computing Systems, pages 222-230. IEEE,
1991.

David Levinthal. Performance analysis guide for intel core
i7 processor and intel xeon 5500 processors. Intel Perfor-
mance Analysis Guide, 30:18, 2009.

Bibliography 339

[LKC17]

[LLL*11]

[LML11]

[LNP9O]

[LNPY4]

[LS17]
[LY09]

[MAAB11]

[MAAB12]

Jongwon Lee, Jaejun Ko, and Young-June Choi. Dhrys-
tone million instructions per second—based task offloading
from smartwatch to smartphone. International Journal of
Distributed Sensor Networks, 13(11):1550147717740073,
2017.

Matthias Lange, Steffen Liebergeld, Adam Lackorzynski,
Alexander Warg, and Michael Peter. L.4android: a generic
operating system framework for secure smartphones. In
Proceedings of the 1st ACM workshop on Security and
privacy in smartphones and mobile devices, pages 39-50.
ACM, 2011.

Laurent Lesage, Boris Mejias, and Marc Lobelle. A soft-
ware based approach to eliminate all SEU effects from
mission critical programs. Radiation and Its Effects on
Components and Systems (RADECS), 2011 12th Euro-
pean Conference on, pages 467-472, 2011.

Kai Li, Jeffrey F Naughton, and James S Plank. Real-time,
concurrent checkpoint for parallel programs, volume 25.
ACM, 1990.

Kai Li, Jeffrey F. Naughton, and James S. Plank. Low-
latency, concurrent checkpointing for parallel programs.
IEEE transactions on Parallel and Distributed Systems,
5(8):874-879, 1994.

Mao Lucia and Yuan Spike. Server ras and uefi cper, 2017.

Feida Lin and Weiguo Ye. Operating system battle in
the ecosystem of smartphone industry. In 2009 inter-
national symposium on information engineering and elec-
tronic commerce, pages 617-621. IEEE, 2009.

Hamid Mushtaq, Zaid Al-Ars, and Koen Bertels. Sur-
vey of fault tolerance techniques for shared memory mul-
ticore/multiprocessor systems. In Design and Test Work-
shop (IDT), 2011 IEEE 6th International, pages 12-17.
IEEE, 2011.

Hamid Mushtaq, Zaid Al-Ars, and Koen Bertels. A user-
level library for fault tolerance on shared memory mul-
ticore systems. In Design and Diagnostics of Electronic

340

Bibliography

[MAAB13]

[Mat10]

[MBO5|

[MCV00]

[MJK*18]

[MN12]

[Mul17]

[MVJ11]

[NCO1]

Circuits & Systems (DDECS), 2012 IEEE 15th Interna-
tional Symposium on, pages 266-269. IEEE, 2012.

Hamid Mushtaq, Zaid Al-Ars, and Koen Bertels. Efficient
software-based fault tolerance approach on multicore plat-
forms. In Proceedings of the Conference on Design, Au-
tomation and Test in Furope, pages 921-926. EDA Con-
sortium, 2013.

Thierry Mataigne. Thalés alenia space etca internal doc-
ument. Technical report, 2010.

Riccardo Mariani and Gabriele Boschi. Scrubbing and
partitioning for protection of memory systems. In On-
Line Testing Symposium, 2005. IOLTS 2005. 11th IEEE
International, pages 195-196. IEEE, 2005.

Henrique Madeira, Diamantino Costa, and Marco Vieira.
On the emulation of software faults by software fault in-
jection. In Dependable Systems and Networks, 2000. DSN
2000. Proceedings International Conference on, pages
417-426. IEEE, 2000.

MA MEMON, AK JUMANI, MY KOONDHAR,
M MEMON, and AG MEMON. A technique to differ-
entiate clustered operating systems. Sindh University Re-
search Journal (Science Series), 50(3D):89-94, 2018.

Anil Agrawal Mahesh Natu, Narayan Ranganathan. Au-
tonomic foundation for fault diagnosis. Intel Technology
Journal, 16(2):8-30, 2012.

D Mulnix. Intel® xeon® processor scalable family tech-
nical overview, 2017.

Tipp Moseley, Neil Vachharajani, and William Jalby.
Hardware performance monitoring for the rest of us:
a position and survey. In IFIP International Confer-
ence on Network and Parallel Computing, pages 293-312.
Springer, 2011.

Wee Teck Ng and Peter M Chen. The design and verifi-
cation of the Rio file cache. IEEE Transactions on Com-
puters, 50(4):322-337, 2001.

Bibliography 341

[NCDM13]

[Neel6]

[Ngul7]

[Nic02]

[Nic11]

[NKH12]

[Nor96]

|OKB*16]

[PBR17]

[Pet02]

Roberto Natella, Domenico Cotroneo, Joao A Duraes, and
Henrique S Madeira. On fault representativeness of soft-
ware fault injection. IEEFE Transactions on Software En-
gineering, 39(1):80-96, 2013.

Ralf Neeb. Porting MINIX3 to x86-based Hardware,
February 2016.

Khang T Nguyen. New reliability, availability, and ser-
viceability (ras) features in the intelA§ xeonAd processor
familyAa, 2017.

Bogdan Nicolescu. Détection d’erreurs transitoires sur-
venant dans des architectures digitales par une approche
logicielle: principes et résultats expérimentaur. PhD the-
sis, Institut National Polytechnique de Grenoble-INPG,
2002.

Michael Nicolaidis. Circuit-Level Soft-Error Mitigation. In
Soft Errors in Modern Electronic Systems, pages 203-252.
Springer, 2011.

Masoud Nosrati, Ronak Karimi, and Hojat Allah Hasan-
vand. Mobile computing: principles, devices and operat-
ing systems. World Applied Programming, 2(7):399-408,
2012.

E. Normand. Single event upset at ground level. Nuclear
Science, IEEE Transactions on, 43(6):2742-2750, 1996.

Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia,
Christof Fetzer, and Pascal Felber. Efficient Fault Tol-
erance using Intel MPX and TSX. In Fast Abstract in
the 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 2016.

Roberta Piscitelli, Shivam Bhasin, and Francesco Regaz-
zoni. Fault attacks, injection techniques and tools for sim-
ulation. In Hardware Security and Trust, pages 27-47.
Springer, 2017.

Zachary Nathaniel Joseph Peterson. Data placement for
copy-on-write using virtual contiguity. PhD thesis, Uni-
versity of California, Santa Cruz 2002., 2002.

342

Bibliography

[P1as0]

[Prol1]

[Pul01]

[Qua0o0]

[Rat15]

[RCV+05]

[RDH*01]

[Rot99]

[RRTV9Y]

[RRV11]

DG Platteter. Transparent protection of untestable LSI
microprocessors. In 10th Fault-Tolerant Computing Sym-
posium, pages 345-347, 1980.

Intel Xeon Processor. E7 Family: Reliability. Availability
and Serviceability: Advanced data integrity and resiliency
support for mission-critical deployment, 2011.

L.L. Pullum. Software fault tolerance techniques and im-
plementation. Artech House Publishers, 2001.

Nhon Quach. High availability and reliability in the ita-
nium processor. IEEE Micro, (5):61-69, 2000.

David Ratajczak. Is Linuz a better desktop operating sys-
tem than Microsoft Windows? GRIN Verlag, 2015.

George A Reis, Jonathan Chang, Neil Vachharajani, Ram
Rangan, and David I August. SWIFT: Software imple-
mented fault tolerance. In Proceedings of the international
symposium on Code generation and optimization, pages
243-254. IEEE Computer Society, 2005.

David D Redell, Yogen K Dalal, Thomas R Horsley,
Hugh C Lauer, William C Lynch, Paul R McJones, Hal G
Murray, and Stephen C Purcell. Pilot: An operating sys-
tem for a personal computer. In Classic operating systems,
pages 433-459. Springer, 2001.

Eric Rotenberg. AR-SMT: A microarchitectural approach
to fault tolerance in microprocessors. In Fault-Tolerant
Computing, 1999. Digest of Papers. Twenty-Ninth Annual
International Symposium on, pages 84-91. IEEE, 1999.

Maurizio Rebaudengo, Matteo Sonza Reorda, Marco
Torchiano, and Massimo Violante. Soft-error detection
through software fault-tolerance techniques. In Defect and
Fault Tolerance in VLSI Systems, 1999. DFT’99. Interna-
tional Symposium on, pages 210-218. IEEE, 1999.

Maurizio Rebaudengo, Matteo Sonza Reorda, and Mas-
simo Violante. Software-Level Soft-Error mitigation tech-
niques. In Soft Errors in Modern Electronic Systems,
pages 253-285. Springer, 2011.

Bibliography 343

[SBD*17]

[SDB*15]

[SGG18]

[SHD*15|

[SHT10]

[Sibg4]

[SPROO]

[Spr02a]

[Spr02b]

Thiago Santini, Christoph Borchert, Christian Diet-
rich, Horst Schirmeier, Martin Hoffmann, Olaf Spinczyk,
Daniel Lohmann, Flavio Rech Wagner, and Paolo Rech.
Effectiveness of software-based hardening for radiation-
induced soft errors in real-time operating systems. In In-
ternational Conference on Architecture of Computing Sys-
tems, pages 3—15. Springer, 2017.

Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard,
Kurt B Ferreira, Jon Stearley, John Shalf, and Sudhanva
Gurumurthi. Memory errors in modern systems: The
good, the bad, and the ugly. ACM SIGPLAN Notices,
50(4):297-310, 2015.

Abraham Silberschatz, Greg Gagne, and Peter B Galvin.
Operating system concepts. Wiley, 2018.

Horst Schirmeier, Martin Hoffmann, Christian Dietrich,
Michael Lenz, Daniel Lohmann, and Olaf Spinczyk. Fail*:
An open and versatile fault-injection framework for the
assessment of software-implemented hardware fault toler-
ance. In 2015 11th European Dependable Computing Con-
ference (EDCC), pages 245-255. IEEE, 2015.

Bjorn P Swift, Tomas Hardy, and Andrew Tanenbaum.
Individual Programming Assignment User Mode Schedul-
ing in MINIX 3. 2010.

Edgar H Sibley. Dhrystone: A synthetic systems. Com-
munications of the ACM, 27(10), 1984.

Karthik Sundaramoorthy, Zach Purser, and Eric Roten-
berg. Slipstream processors: improving both performance
and fault tolerance. ACM SIGPLAN Notices, 35(11):257—
268, 2000.

Brinkley Sprunt. The basics of performance-monitoring
hardware. IEEE Micro, 22(4):64-71, 2002.

Brinkley Sprunt. Pentium 4 performance-monitoring fea-
tures. leee Micro, (4):72-82, 2002.

344

Bibliography

[SPW11]

[SZF16]

[Tan16|

[THBO6|

[TRA1S]
[TVRVS*90]

[TVVBI18]

[TW87]

[vB9g|

[VFRO7]

[WABMOA4]

Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich
Weber. Dram errors in the wild: a large-scale field study.
Communications of the ACM, 54(2):100-107, 2011.

Jinhao Sun, Fang Zou, and Shangchun Fan. A token-ring-
like real-time response algorithm of modbus/tcp message
based on pc/os-ii. AEU-International Journal of Electron-
ics and Communications, 70(2):179-185, 2016.

Andrew S Tanenbaum. Lessons learned from 30 years of
MINIX. Communications of the ACM, 59(3):70-78, 2016.

Andrew S Tanenbaum, Jorrit N Herder, and Herbert Bos.
Can we make operating systems reliable and secure? Com-
puter, 39(5):44-51, 2006.

TRAD. Omere software. 2018.

Andrew S Tanenbaum, Robbert Van Renesse, Hans
Van Staveren, Gregory J Sharp, and Sape J Mullender.
Experiences with the amoeba distributed operating sys-
tem. Communications of the ACM, 33(12):46-63, 1990.

Rodrigo Travessini, Paulo RC Villa, Fabian L. Vargas, and
Eduardo Augusto Bezerra. Processor core profiling for seu
effect analysis. In 2018 IEEE 19th Latin-American Test
Symposium (LATS), pages 1-6. IEEE, 2018.

Andrew S Tanenbaum and Albert S Woodhull. Operating
systems: design and implementation, volume 2. Prentice-
Hall Englewood Cliffs, NJ, 1987.

Ladislaus von Bortkiewicz. Das Gesetz der kleinen Zahlen
The law of small numbers, volume 1. Leipzig, Germany:
B.G. Teubner, 1898.

Raoul Velazco, Pascal Fouillat, and Ricardo Reis. Ra-
diation effects on embedded systems. Springer Science &
Business Media, 2007.

Alan G White, Jaison R Abel, Ernst R Berndt, and
Cory W Monroe. Hedonic price indexes for personal com-
puter operating systems and productivity suites. Technical
report, National Bureau of Economic Research, 2004.

Bibliography 345

[Weig4]

[Whi03]

[WVB+15]

[YGS08]

[Yor02]

[ZJHOY]

[ZLJA12]

Reinhold P Weicker. Dhrystone: a synthetic systems
programming benchmark. Communications of the ACM,
27(10):1013-1030, 1984.

James A Whittaker. How to break software. Addison-
Wesley, 2003.

Imran Wali, Arnaud Virazel, Alberto Bosio, Luigi Dilillo,
and Patrick Girard. An effective hybrid fault-tolerant ar-
chitecture for pipelined cores. In 2015 20th IEEE Euro-
pean Test Symposium (ETS), pages 1-6. IEEE, 2015.

Jing Yu, Maria Jestis Garzaran, and Marc Snir. Effi-
cient software checking for fault tolerance. In Parallel and
Distributed Processing, 2008. IPDPS 2008. IEEE Inter-
national Symposium on, pages 1-5. IEEE, 2008.

Richard York. Benchmarking in context: Dhrystone.
ARM, March, 2002.

Dmitrijs Zaparanuks, Milan Jovic, and Matthias
Hauswirth. Accuracy of performance counter measure-
ments. In 2009 IEEE International Symposium on Per-
formance Analysis of Systems and Software, pages 23-32.
TEEE, 2009.

Yun Zhang, Jae W Lee, Nick P Johnson, and David I
August. DAFT: decoupled acyclic fault tolerance. Inter-
national Journal of Parallel Programming, 40(1):118-140,
2012.

