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Abstract: Due to the advances in medical research in the past decades, cancer
is not necessarily a fatal disease anymore. For specific cancer types, one can
now reasonably expect a fraction of long-term survivors to show-up in cancer
clinical trials. The presence of short-and long-term survivors may lead to a
violation of the proportional hazards assumption and therefore jeopardize the
use of of the popular Cox model. Furthermore, in such a situation the pro-
portion of ”cured” patients becomes a crucial component of the assessment of
patients benefit, and being able to distinguish a curative from a life-prolonging
e↵ect conveys important additional information in the evaluation of a new
treatment. To address these issues, specific ”cure models” have been proposed
in the statistical literature. In this chapter we introduce the two main fami-
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lies of such models: mixture cure models and promotion time cure models. We
elaborate on how and when to use them, and discuss that in practice, it is
not only a matter of whether or not there are cured patients in the data, but
that, as in classical survival analysis, the appropriate model to be used should
be carefully chosen, based on the main features of the data and with a strong
emphasis on the PH assumption. C. Legrand and A. Bertrand 1

1.1 Introduction

Over the last decades, it has become more and more common in cancer clinical
trials to observe patients experiencing long-term relapse-free survival, and cure
has become a reality for both patients and clinicians [32]. It is indeed nowadays
widely accepted that for a number of cancer types, such as early-stage breast
cancer [43], colon cancer [44], or childhood acute lymphocytic leukaemia [5]
among others, treatment can lead to cure for a fraction of the patients.

Therefore, for these types of cancer, the primary goal of cancer therapy
can not only be prolongation of survival but should shift towards cure. [32]
pointed out that this is especially true for cancers occurring in children, as
in this case a curative treatment will yield many years of healthy life, while a
life-prolonging treatment will only o↵er a limited benefit before relapse takes
the child’s life. However, it may also be crucial for adult patients to express
the benefit of new therapies not only in terms of delaying death but also in
terms of cure, as this can free the patients from cancer-associated su↵erings,
which could sometimes be more unbearable to patients than death itself [32].
In that new paradigm, the proportion of cured patients (often referred to as
the cure rate) is an important measure of long-term survival benefit.

A common feature of time-to-event data in clinical trials is right censoring,
meaning that, at the time of analyzing the trial results, some of the patients
have not (yet) experienced the event of interest. Right censoring unfortunately
prevents us from distinguishing the cured patients from the patients who will
experience the event of interest after the censoring time. Furthermore, a very
common assumption is that censored subjects will follow the same survival
pattern after withdrawal as non-censored subjects. This leads to the implicit
assumption that, if the follow-up was long enough, one would observe the
event of interest for all patients, which is obviously not the case in clinical
trials of curable diseases.

The most commonly used statistical methods for the analysis of clini-
cal trials with a time-to-event type of endpoint are most certainly the (non-
parametric) logrank test [34] and the (semi-parametric) Cox proportional haz-
ards (PH) model [16]. Although the latter is widely used, it is well known that
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it relies on the proportional hazards assumption, i.e. while the absolute un-
derlying hazard may vary over time, the hazard ratio (HR) between the two
treatment groups remains constant. Although this PH assumption is not nec-
essary for the computation of the logrank statistic, it is well known that it is
required to achieve maximal power of the test and that it is also central to
the interpretation of the results [36]. Indeed, if one can assume that the HR
between the two treatment groups remains constant, then this single constant
can adequately be used to summarize the di↵erence between the two survival
curves over time. If the PH assumption is not met, using the semi-parametric
Cox PH model, and to some extent the logrank test, may lead to both mislead-
ing and uninterpretable conclusions, and in particular if the censoring rate is
high [36]. Therefore, while these ”classical” survival methods are usually ap-
propriate in clinical settings where we expect few patients to be cured and
where the primary goal is to identify treatment allowing to prolong the du-
ration of remission [46], they have been challenged over the last years by the
apparition of new treatments having di↵erent mechanisms of action on the oc-
currence of recurrences. Indeed, testing of therapies associated with a delayed
treatment e↵ect or a rebound e↵ect will obviously lead to non-proportional
hazards situations. But this is also the case of new therapies having a curative
e↵ect a↵ecting the proportion of cured patients, with or without a↵ecting the
timing of occurrence of recurrences for the other patients. In this latter setting,
the study sample will consist of a mixture of ”cured” and ”uncured” (also often
called ”susceptible”) patients, the latter experiencing disease recurrence after
some time following inclusion in the trial. Note that if the primary endpoint
is overall survival (OS) or progression-free survival (PFS), as is often the case
in oncology trials, it is clear that no patient can be cured from death; one will
then be speaking of long-term survivors and it is convenient to think of these
long-term survivors as (statistically) cured [35, 59, 26]. Such an heterogeneous
population of short and long-terms survivors may lead to the PH assumption
of the Cox model to be violated. While extensions of the conventional Cox
PH model have been proposed to deal with the issue of non proportionality
(e.g. inclusion of time-varying covariate e↵ects [49])), these methods do not
adequately allow one to distinguish between the curative and life-prolonging
e↵ects of a new treatment [36, 59].

Nearly 70 years ago, Boag was the first statistician to draw attention to the
presence of cure in the analysis of cancer-related survival data by proposing
in a seminal paper a parametric cure model allowing to estimate the cure rate
as one of its parameters, and assuming a log-normal model for the failure time
among the uncured patients [6]. Few years later, Berkson and Gage proposed a
similar model, but considering an exponential model for the uncured patients
[4]. These models were then popularized by Farewell [17, 18] who proposed in
1977 to model the cure rate as a dependent variable in a logistic regression.
Since then, cure models have been a popular component of the statistical
literature. While the advances of statistical research on cure models are closely
linked to the progress made in the treatment of cancer [35], these models have
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also been studied in the context of other medical applications, as well as, more
broadly, in other fields (such as psychology, sociology or demography). In all
these contexts, interest lies in the impact of one (or more) factor not only on
delaying, but also on eradicating the event of interest for a non-negligible part
of the population.

Besides medical evidence, a straightforward way to identify whether a par-
ticular dataset includes a subset of cured or long-term survivor patients is to
inspect the Kaplan-Meier estimate of the survival curve. If a long and stable
plateau with heavy censoring is observed in the tail, this can be considered as
empirical evidence of a cure fraction [59, 47]. Cure models can then be con-
sidered as a useful alternative to the standard Cox PH models to explicitly
describe the heterogeneity within the patient population, and particularly if
the PH assumption is violated.

Two main families of cure regression models have been proposed: mixture
cure models and promotion time cure models. Mixture cure models follow the
lines of the Boag model [6]. They explicitly model the survival function of
the population as a mixture of two types of patients: those who are cured and
those who are not. Typically, they are composed of two sub-models: a first one
for the probability of being (un-)cured, typically modeled via a logistic regres-
sion, and a second one which is a survival model for the patients who are not
cured, commonly a parametric Weibull or a semi-parametric Cox PH model.
As we will briefly review in Section 1.2, many variations of the mixture cure
models have been proposed in the statistical literature. A major advantage
of these models is the possibility to disentangle the e↵ects of covariates, and
in particular of the treatment, on the probability of cure and on the failure
time of the uncured patients, resulting in a more accurate picture of the clin-
ical benefit than with a standard Cox analysis. Promotion time cure models,
also referred to as non-mixture cure models, are based on a totally di↵erent
approach and have been originally proposed to model the biological evolution
of carcinogenic cells [56, 57]. They are also sometimes called bounded cumula-
tive hazard models and we will show that some specific promotion time cure
models can be thought of as a Cox PH model that allows a cure fraction. A
number of promotion time cure models have been proposed in the statistical
literature; see Section 1.3 for a short overview. As we will discuss later, the
interpretation of covariates is di↵erent with the promotion time cure models
and the mixture cure models. We will also demonstrate in Section 1.4 that de-
pending on the type of data and on the questions to be answered, a promotion
time cure model or a mixture cure model may be more appropriate.

While cure models are well known in the field of statistics and have been
quite extensively studied in the statistical field for at least the past 20 years,
they have not reached the same popularity in a more clinical setting. Cure has
now become a reality for both the patients and the clinicians in some types
of cancer; however, despite the fact that cure models can therefore be an in-
teresting way to characterize and study patients survival, they are still an a
underused statistical tool in the context of oncology trials. This may be due
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to the extreme popularity of the Cox PH model, to the lack of implementation
of cure models in standard software, and probably also to a lack of knowledge
about these models in this setting. The purpose of this chapter is therefore to
introduce the main ideas regarding the use of cure models for survival data
analysis in the framework of oncology clinical trials. For a larger-scale and
more technical overview of these models, we refer the reader to [40] and [1]
and the references therein.

In this chapter, we focus on right-censored data, unless otherwise speci-
fied. We will denote by T the time to the event of interest, with F (t) and
S(t) = P (T > t) = 1 � F (t) the associated distribution and survival func-
tions, respectively. Let C be the right-censoring time, with distribution func-
tion G(t). We therefore observe T̃ = min(T,C) and the censoring indicator
� = I(T  C). In Sections 1.2 and 1.3, we give some more details about
the two main families of cure models. The motivation on when to use these
models, as well as issues related to the choice of the model, are discussed
and illustrated with simulations results in Section 1.4. One freely available
real database is analyzed in Section 1.5, which allow us to discuss further the
interpretation of cure models.

1.2 Mixture cure models

1.2.1 Model and properties

The idea behind mixture cure models is to explicitly take into account the fact
that the population is a mixture of two groups of patients: the cured patients,
who will never experience the event of interest, and the uncured (susceptible)
ones. If we denote by Y the cure indicator, with Y = 1 corresponding to a
susceptible patient and Y = 0 otherwise, we can define the probability of
being uncured (or susceptible) as ⇡ = P (Y = 1). Assuming that, for cured
patients, the survival function is Sc(t) = P (T > t | Y = 0) = 1 for all t (i.e., a
degenerate survival function), it is natural to define the mixture cure model
by the following unconditional survival function of T :

Spop(t) = P (T > t) = (1� ⇡) + ⇡Su(t), (1.1)

where the subscript pop indicates that the survival function relates to the
whole population and Su(t) = P (T > t | Y = 1) is the survival function of
the susceptible patients, which is proper (i.e., limt!1 Su(t) = 0).

The mixture cure model therefore appears as a combination of two sub-
models, one for the probability of cure (often referred to as the incidence
model) and one for the survival of the uncured patients (the latency model).
Each of these sub-models can be allowed to depend on (potentially di↵erent)
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covariates, and the mixture cure model hence allows one to disentangle the
e↵ect of covariates on the incidence and on the latency. Given a first set of
covariates X, and a second set of covariates Z, which might be identical to
X, or partially or completely di↵erent from X, the mixture cure model (1)
then writes the population survival function as

Spop(t | X,Z) = (1� ⇡(X)) + ⇡(X)Su(t | Z). (1.2)

With such a mixture cure model, the covariates, and in particular the
treatment indicator, are therefore allowed to have dissimilar e↵ects on the
probability of cure and on the timing of events for the susceptible individu-
als. This obviously carries additional information about the type of treatment
e↵ect compared to a standard Cox PH model. Furthermore, the sets of co-
variates X and Z may be di↵erent, which is in line with the intuition that
medical and patient related factors associated with short- or long-term e↵ects
are not necessarily the same.

Most of the time, the impact of covariates on the incidence is modeled
via a logistic regression model, as originally proposed by [17]. The vector of
covariates X and the corresponding vector of parameters � then contain an
intercept, and the logistic incidence model for the probability of being uncured
can be written

⇡(X) =
exp(XT�)

1 + exp(XT�)
. (1.3)

Few alternatives to the logistic regression have been proposed and without
real implementation in practice. Existing ideas consist in considering a more
flexible modeling of the incidence, for example using splines [54] or a single-
index structure [2].

On the other hand, various ways to model the latency have been considered
and applied in the literature. We may distinguish the parametric and the
non- (or semi-) parametric mixture cure models. In the former, the survival
times of uncured patients follow a parametric model, while the latter leaves
the baseline survival function of the uncured patients unspecified. Fully non-
parametric latency models have also been proposed but are not in use in the
medical literature (see for example [48] for the case of no covariate and [37]
for the case with covariates).

Several parametric models have been considered for the latency (a review
can be found in [1]), the most popular being probably the Weibull [18] PH
model with

Su(t | Z) = exp
⇣

�� exp(ZT�)t⇢
⌘

, (1.4)

with � the vector of parameters corresponding to Z, � > 0 the shape parame-
ter and ⇢ > 0 the scale parameter (⇢ = 1 in the case of an exponential model,
[19]). The hazard function corresponding to this survival function is then

�u(t | Z) = �⇢ exp(ZT�)t⇢�1. (1.5)
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The Weibull model is fairly flexible and is often considered to provide a good
description of survival times in biomedical applications. However, the assump-
tion of a monotone baseline hazard function may also be problematic. The
main advantage of these fully parametric cure models, as we will see in Sec-
tion 1.2.4, lays in the simplicity of the estimation procedure. Also, it may
be useful to rely on parametric models if we are interested in modeling the
survival time in the investigated treatment arms, and not only the relative
di↵erence between two survival curves [36].

Such parametric models may not be robust to the violation of the distri-
butional assumption for the survival times of the uncured patients. If we still
want to rely on a parametric estimation procedure, a possibility is to consider
a very flexible parametric form for the baseline hazard function, such as a
piecewise constant baseline hazard or the use of splines [14]. However, semi-
parametric alternatives, in which the baseline hazard of the latency model
is left totally unspecified, have gained popularity in the statistical literature,
despite the fact that obtaining semi-parametric estimators and their standard
errors can be computationally challenging.

A common alternative to parametric models is indeed to consider a semi-
parametric Cox PH model for the latency. This model has been introduced by
[25] and has then been extensively studied in the literature [48, 38, 47, 30, 14].
Such an approach has the advantage of leaving the baseline hazard function
�uo(·) of the uncured patients unspecified,

�u(t | Z) = �uo(t) exp(Z
T�),

with the corresponding survival function

Su(t | Z) = Su0(t)
exp(ZT�). (1.6)

A very important feature of the (semi-)parametric logistic/PH mixture
cure model is that the PH assumption is made at the level of the uncured pa-
tients, but not at the level of the population. This appears clearly on Figure
1.1 which displays examples of population survival functions from parametric
logistic/Weibull PH mixture cure models including a binary variable (repre-
senting for example the treatment group). On each plot, the solid line repre-
sents the recurrence free survival (RFS) in the control group, with a cure rate
of 40%. The dotted line represents the RFS achieved with an experimental
treatment (a) which only has a long-term e↵ect, by increasing the proportion
of cure (incidence) but with no impact on delaying recurrences amongst the
uncured patients (latency); (b) which only has a short-term e↵ect, by delaying
recurrences amongst the uncured patients but with no impact on the propor-
tion of cure; (c) which has both a short- and a long-term e↵ect, a↵ecting both
the proportion of cure and the time of recurrences for the uncured patients.
As we can see, a curative treatment acting only on the proportion of cure
still leads to a PH situation for the population, with the two curves attaining
their plateaus by ”running parallel to each other” [46]. On the other hand,
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FIGURE 1.1
Survival functions from logistic/Weibull PH models for two treatment groups.
The control treatment (solid line) leads to 40% cure; while the experimental
treatment (dotted line) has (a) a long-term e↵ect, i.e. an impact on the proba-
bility of cure (incidence); (b) a short-term e↵ect, i.e., an impact on the latency;
(c) both a short- and long-term e↵ect.

the other two situations clearly lead to a violation of the PH assumption for
the population.

As in classical survival analysis, the Accelerated Failure Time (AFT) and
the PH models often confront each other in cure analysis. In the logistic/AFT
mixture cure model, the survival times Tu of the uncured patients are modeled
as

log(Tu) = ZT� + �✏, (1.7)

with � > 0 a scale parameter and ✏ an error term whose density function f✏
can be specified in a parametric way or left unspecified, leading to respectively
parametric [58, 39, 45] or semi-parametric [28, 62] logistic/AFT models. These
models do not make any PH assumption, neither at the level of the uncured
patients (except when a Weibull distribution is assumed for ✏) nor at the
population level. They are however rarely used in the medical literature.

1.2.2 Interpretation

A major advantage of mixture cure models is the fact that each set of pa-
rameters can be interpreted separately. As mentioned earlier, the e↵ect of
the covariates on both components of the model (incidence and latency) can
therefore be clearly disentangled. By quantifying separately the e↵ect of the
treatment on the probability of being a long-term survivor and on the event
times for those who are not, this model allows one to distinguish a curative
from a life-prolonging treatment e↵ect.

Furthermore, the commonly used logistic/(semi-)parametric PH model
leads to odds and hazard ratios (OR and HR) whose interpretation is well
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known. In the logistic regression incidence sub-model, the parameters �, rep-
resenting the impact of the covariates X on the probability to be uncured
⇡(X), are interpreted as usual. Parameter values above 0 are associated with
covariates which increase the risk to be uncured (and therefore decrease the
risk to be cured) when their value increases, with the reverse for parameter
values below 0. The quantity 1�⇡(X) can be interpreted as the cure rate for
patients with covariate value X.

The parameters � associated with the covariates Z in the latency model
represent the impact of the covariates on the time to event for uncured patients
and are interpreted according to the model used. With a (semi-)parametric
PH model, a positive value is associated to a covariate which increases the
hazard of events (and therefore accelerates the events) when its value increases;
with the reverse for values below 0. In an AFT model, the covariates act
multiplicatively on the time; a positive coe�cient indicates a longer time-to-
event when the value of the covariate increases.

1.2.3 Identifiability

A general and informal rule that holds for all cure models requires the follow-
up of the study to be su�ciently long: the estimated survival function should
exhibit a long plateau containing many censored observations [1]. More for-
mally, the maximum possible event time should be smaller than the maximum
possible censoring time.

In a semi-parametric mixture cure model, the latency component Su(·) (or
part of it) is left unspecified and estimated non-parametrically. In this case,
some additional information is required for identifiability. In [47] and [48], the
survival function (or the baseline survival function) is constrained to reach
0 at the largest observed event time. This zero-tail constraint seems natural
in contexts in which a cure model is justified, i.e., when cured subjects are
known to exist and the follow-up is su�ciently long after the largest event
time [48].

1.2.4 Model estimation

The estimation of mixture cure models is classically based on the maximiza-
tion of the likelihood function. Assume we have i.i.d. data (T̃i, �i,Xi,Zi), i =
1, ..., n, where n is the number of patients, with T̃i = min(Ti, Ci) the observed
time and �i = I(Ti  Ci) the censoring indicator. We have to keep in mind
that the cure status is only observed for uncensored observations (who are ob-
viously uncured), not for the censored ones. As in standard survival analysis,
the likelihood function is based on the contributions of two types of obser-
vations: the uncensored ones (� = 1), all corresponding to uncured patients
(occurring with probability ⇡(X)), and the censored ones (� = 1), correspond-
ing either to cured patients (with probability 1�⇡(X)) or to uncured patients
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(with probability ⇡(X)). The likelihood function is then defined as

LMCM =
Qn

i=1

h

⇡(Xi)fu(T̃i | Z)
i�i

⇥
Qn

i=1

h

1� ⇡(Xi) + ⇡(Xi)Su(T̃i | Z)
i

1��i
(1.8)

with fu(T̃i | Z) = �(d/dt)Su(T̃i | Z).
For fully parametric mixture cure models, the parameters can be esti-

mated by maximizing the likelihood function (1.8) via numerical techniques,
such as the Newton-Raphson algorithm. Asymptotic standard errors can be
obtained by inverting the Fisher information matrix of second order deriva-
tives of log(LMCM ). Some adaptations of this likelihood maximization have
been proposed for more flexible parametric models; see for example [58] who
propose a two-step maximization in the case of a logistic/AFT model with an
error distribution from the extended family of generalized gamma.

As mentioned earlier, the semi-parametric logistic/Cox PH mixture cure
model does not satisfy the PH assumption at the population level and the
partial likelihood approach developed by [16] cannot be applied to estimate
this model. Indeed, since the survival function of the uncured patients is con-
ditional on the cure status, one can not eliminate S

0

(t|Y = 1) in the Cox
PH mixture cure model likelihood without losing information about � [15].
Several estimation procedures have been presented in the literature. Given
that the cure status is a latent variable, [38] and [47] have proposed to rely
on the Expectation-Maximization (EM) algorithm. An interesting feature of
this approach is that the complete-data likelihood, obtained from the explicit
contributions of the uncensored observations (� = 1, Y = 1), censored and
uncured observations (� = 0, Y = 1) and censored and cured observations
(� = 0, Y = 0), can be factorized into two elements. Each element depends
only on the parameters of one of the two parts of the model. This obviously
simplifies the maximization in the M-step, as it can be performed separately
for each set of parameters � and �. [15] advises to use non-parametric boot-
strap to obtain the standard errors of the estimated parameters. Other pro-
posed estimation approaches include methods based on a marginal likelihood,
obtained by integrating out the likelihood function (1.8) over the distinct event
times (Ỹ

(j), j = 1, ..., r) using Monte-Carlo approximation [25]. A penalized
likelihood approach, approximating the baseline conditional hazard by a linear
combination of cubic normalized B-splines, has been introduced by [14].

The estimation procedures proposed until now for the semi-parametric
logistic/AFT model are all based on the EM algorithm and follow the same
ideas as for the semi-parametric logistic/Cox PH mixture cure model, except
for the latency estimation in the M-step, which is then based on extensions of
the methods proposed for the classical semi-parametric AFT models.

We refer to [1] for a more detailed review of these estimation methods as
well as a discussion on the estimation methods for non-parametric mixture
cure models.
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1.2.5 Model implementation

The main R package for the estimation of mixture cure models is the smcure
package developed by [11] which allows one to fit a wide range of semi-
parametric mixture cure models. Available models for the incidence include
the logistic regression model but also other generalized linear models with
various link functions, such as the probit. Both semi-parametric PH and AFT
models can be fitted for the latency part. The estimation procedure is based
on the EM algorithm as developed by [38] and [47] for the PH case and by
[62] for the AFT case. The variance of the estimated parameters is obtained
via bootstrap.

A freely available SAS macro, called PSPMCM, has been developed for the
parametric and semi-parametric logistic/PH mixture cure model by [15].
The maximization of the likelihood function is performed using the Newton-
Raphson procedure (as implemented in PROC NLMIXED) when the latency is
modeled via a parametric model (exponential, Weibull, lognormal or log-
logistic) and through an EM algorithm for the semi-parametric case. Standard
errors of the estimators are obtained either by inverting the observed Fisher
information matrix at the last iteration or via non-parametric bootstrap.

1.3 Promotion time cure models

1.3.1 Model and properties

In promotion time cure models, the existence of a cure fraction is taken into
account by directly choosing an improper form for the survival function of
the whole population, instead of separately modeling the survival of cured
and uncured patients. This corresponds to considering that cured patients
have an infinite survival time. Given a vector of covariates X, these models,
introduced by [56] and [57], have the form

Spop(t|X) = exp {�✓(X)F (t)} , (1.9)

where F (·) is the (proper) cumulative distribution function (cdf) of some
nonnegative random variable such that F (0) = 0 and ✓(X) is a known link
function with an intercept. The baseline cdf F (·) can either be modeled para-
metrically, yielding parametric promotion time cure models (as is done, among
others, by [12]), or left unspecified, which leads to semi-parametric promotion
time cure models (see, for example, [51]). The cumulative hazard function of
this model is ✓(X)F (t), which is bounded: for this reason, promotion time
cure models are also sometimes called bounded cumulative hazard models.

In model (1.9), the cure probability is

lim
t!1

Spop(t|X) = exp {�✓(X)} . (1.10)
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The hazard function corresponding to the survival function (1.9) is

hpop(t|X) = ✓(X)f(t),

where f(t) = dF (t)/dt is the baseline density function. Contrary to the mix-
ture cure model considered in the previous section, the promotion time cure
model possesses the proportional hazards property:

hpop(t|Xi)

hpop(t|Xj)
=

✓(Xi)

✓(Xj)

and is therefore sometimes referred to as the proportional hazards cure model.
An example of survival functions from a promotion time cure model are

displayed and discussed later in Section 1.3.3.

1.3.2 Link with other models

The semi-parametric promotion time cure model with an exponential link
function can actually be seen as a generalization of the Cox PH model [42]. If
we assume the link function ✓(X) = exp(�

0

+XT�) with intercept �
0

, then
Equation (1.9) becomes

Spop(t|X) = exp
n

� exp(�
0

+XT�)F (t)
o

= exp
n

� exp(XT�) exp(�
0

)F (t)
o

= exp
n

� exp(XT�)H(t)
o

,

i.e., a PH model in which H(t) = exp(�
0

)F (t) is a bounded cumulative hazard
function, taking values in [0, exp(�

0

)]. In the Cox PH model, the cumulative
hazard function is not bounded [16]. However, since, in practice, the estimator
of the cumulative hazard function of a Cox PH model is bounded, we have the
following links between the estimates obtained from a promotion time cure
model with exponential link, b�

0,PT , b�PT and bFPT (t), and the estimates from

a Cox PH model estimated by maximizing the profile likelihood, b�PH and
bHPH(t):

b�PT = b�PH

exp(b�
0,PT ) = bHPH(T

(n))

exp(b�
0,PT ) bFPT (t) = bHPH(t),

where T
(n) is the largest event time.

This means that, when the exponential link function is used, the estimates
of the regression coe�cients of a semi-parametric promotion time cure model
can, in practice, be obtained from fitting a standard Cox PH model. This
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explains that, as long as the PH assumption is met, the Cox model also pro-
vides reliable results even in the presence of a non-negligible cure fraction. In
that situation, however, the parameters should be interpreted in the context of
a promotion time cure model, i.e., taking into account that cure is a possibility.

Although model (1.9) is not equivalent to a mixture cure model, it is pos-
sible to re-express the population survival function with a mixture expression
as

{1� p(X)}+ p(X)Su(t|X) (1.11)

where p(X) is the probability of being susceptible, and Su(·|X) is the condi-
tional survival function of the uncured patients. We have already seen that in
the promotion time model, the cure probability is given by

1� p(X) = exp {�✓(X)} , (1.12)

and one can show that the conditional survival of the susceptible subjects is
[12]

Su(t|X) =
exp {�✓(X)F (t)}� exp {�✓(X)}

1� exp {�✓(X)} . (1.13)

However, we clearly see from equations (1.12) and (1.13) that, in this formu-
lation of the promotion time cure model as a mixture cure model, both the
incidence and the latency depend on the same set of covariates X, whereas
this is not necessarily the case in a mixture cure model. Moreover, these co-
variates appear at more than one place in the conditional survival function
(1.13) which is never the case in the classical versions of the mixture cure
model.

1.3.3 Interpretation

As mentioned previously, in the promotion time cure model, the covariates X
a↵ect both the probability of being cured and the survival of uncured patients.
This is best understood by considering the seminal biological interpretation
of this model, which was developed with the idea of modeling cancer relapse
[12]. Assume that, after an initial treatment, individual i has Ni carcinogenic
cells that are left active, i.e., cells which could metastasize. Ni is then an
unobservable latent variable assumed to follow a Poisson(✓(Xi)) distribution.
The cured individuals are those for whom Ni = 0. The kth carcinogenic cell
(k = 1, . . . , Ni) takes a time Wik (called the promotion time) to produce a
detectable tumor mass. Conditionally on Ni, the variables Wik, k = 1, . . . , Ni

are mutually independent, independent of Ni and have a common cdf F (t).
The time until the relapse of the cancer, which is the observed event time, is
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FIGURE 1.2
Representation of the e↵ect of the value of ✓ on the cure probability and on the
conditional survival function. (a) Cure probability as a function of the value of
✓; (b) Conditional survival function for di↵erent values of ✓, corresponding to
cure probabilities of 0.20 (when ✓ = 1.61), 0.40 (when ✓ = 0.92), 0.60 (when
✓ = 0.51) and 0.80 (when ✓ = 0.22).

then Ti = min(W
1

, . . . ,WNi), which has survival function:

S(t|X) = P (N = 0|X) +
1
X

j=1

P (T
1

> t, . . . , Tj > t|N = j,X)P (N = j|X)

= exp {�✓(X)}+
1
X

j=1

{1� F (t)}j ✓(X)j exp {�✓(X)}
j!

= exp {�✓(X)}+ exp [{1� F (t)} ✓(X)� ✓(X)]� exp {�✓(X)}
= exp {�✓(X)F (t)} ,

which corresponds to Equation (1.9). The covariates X have an impact on
the number of cells which can metastasize: as a consequence, these covariates
directly influence the cure probability, but also the conditional survival of the
uncured patients.

The relation between ✓(X) and the cure probability is illustrated in Figure
1.2(a), while Figure 1.2(b) displays the relation between ✓(X) and the condi-
tional survival of the uncured patients. The resulting e↵ect on the population
survival function is represented in Figure 1.3.

The parameters of a promotion time cure model can hence be interpreted
based on the biological interpretation of the model. A covariate whose increase
yields an increase in ✓(X) actually increases the mean number of cells which
can metastasize; larger values of this covariate are hence associated with a
lower cure probability and a lower survival (at all times) for the uncured
patients. Conversely, if an increase in a covariate lowers the value of ✓(X),
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FIGURE 1.3
Survival function for di↵erent values of ✓, corresponding to cure probabilities
of 0.20 (when ✓ = 1.61), 0.40 (when ✓ = 0.92), 0.60 (when ✓ = 0.51) and 0.80
(when ✓ = 0.22).

then larger values of this covariate are associated with a higher cure probability
and a better survival (at all times) for the uncured patients.

In the (common) particular case where ✓(X) is assumed to be exp(�
0

+
XT�), then a one-unit increase in a continuous covariate X

1

is associated
with a multiplication of the mean number of cells that can metastasize by a
factor exp(�

1

). For a binary covariate X
2

(1 = treatment versus 0 = control),
the mean of N is exp(�

2

) times larger in the treatment group than in the
control group.

The biological interpretation thus allows one to easily understand the dif-
ferent components appearing in Equation (1.9) and the covariate e↵ect. How-
ever, promotion time cure models can also be used in contexts where such
a biological interpretation does not hold. For example, [7] explain that, in
a fertility progression study where the transition to second or third birth is
analyzed, arguments in favor of the conception of another child can be seen
as the latent cells. The time needed for these arguments to be convincing is
then the observed time.

Although Equation (1.13) makes it clear that the model parameters are
not easily interpreted in terms of the covariate e↵ect on the conditional sur-
vival of the susceptible patients, such an interpretation can always (although
not directly) be recovered. One example is given in Figure 1.4, in the case
of a model with a binary covariate. Figure 1.4(a) contains the representation
of the value of the ratio of the cure probabilities, 1 � p(1) and 1 � p(0), as
a function of the coe�cient of the covariate. As can be expected from our
previous discussion, a negative coe�cient for X corresponds to a higher cure
rate in the treatment group than in the control group, while the situation is
reversed when the coe�cient is positive. The curve is decreasing: the larger
the coe�cient, the smaller the cure probability in the treatment group (com-
pared to the control group). The interpretation of the treatment e↵ect on the
conditional survival function of the susceptible patients can be found in Fig-
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FIGURE 1.4
Representation of the e↵ect of a binary covariate in the promotion time cure
model Spop(t|X) = exp(� exp(0.2+�X)F (t)) with F (·) the cdf of a truncated
exponential distribution of mean 6, truncated at 20. (a) E↵ect of the binary
covariate on the ratio of cure probabilities, as a function of �. (b) E↵ect of
the binary covariate on the ratio of survival functions, for di↵erent values of
�.

ure 1.4(b). Here again, a negative coe�cient for X implies a more favorable
situation for the treatment group, compared to the control group: the survival
function for the uncured patients of the treatment group is higher, at all times,
than the curve of the uncured patients of the control group.

1.3.4 Identifiability

The general principles regarding identifiability in cure models discussed in
Section 1.2.3 still hold. In the semi-parametric promotion time cure model,
the cdf F (·) is left unspecified and estimated non-parametrically. As was the
case in the mixture cure model, identifiability requires additional information.
The conditions required for the semi-parametric version of Model (1.9) with
✓(X) = ⌘(�

0

+ XT�) to be identifiable in the regression parameters and
in F can be found in [41], who focus on right-censored data. In addition to
classical conditions about the covariates and the function ⌘(·), [41] explain
that we need a threshold ⌧ , called the cure threshold, such that all censored
individuals with a censoring time larger than this threshold are treated as
known to be cured, i.e., Ti = Ci = T̃i = 1. However, the estimation methods
for this model mentioned in Section 1.3.5 force the estimated baseline cdf to
be 1 beyond the largest observed failure time. This amounts to considering
that no event can occur after this time: the cure threshold is then determined
to be this largest event time. This restriction is the equivalent of the zero-tail
constraint imposed in the mixture cure model, explained in Section 1.2.3.
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1.3.5 Model estimation

Promotion time cure models have been studied mainly (but not only) in the
Bayesian literature, because the posterior distribution of the regression param-
eters is often proper when using non-informative improper priors, an attractive
property in a Bayesian setting [60]. Most of the Bayesian methods proposed
rely on Markov Chain Monte Carlo (MCMC) methods to approximate the
posterior distribution of the parameter of interest, see for example [12] in a
parametric case and [23, 53] in a semi-parametric setting. A Bayesian approach
including a smoothing parameter to control the degree of parametricity in the
right tail of the baseline survival distribution F (t) can be found in [22].

Several frequentist estimation procedures have been proposed for the semi-
parametric version of Model (1.10) applied to right-censored data, among
which the maximization of a profile likelihood [51, 41] and the maximization
of the full likelihood through a profiling approach [61] or a backfitting approach
[31].

The full log-likelihood of Model (1.9) is

`PTM =
n
X

i=1

�iI
n

�F (T̃i)✓(Xi) + logF{T̃i}+ log ✓(Xi)
o

+ (1� �i)I(T̃i < 1)
n

�F (T̃i)✓(Xi)
o

� I(T̃i = 1)✓(Xi),

where F{T̃i} is the jump size of the step function F at T̃i.
Note that, in the specific case where ✓(X) = exp(�

0

+XT�) is used, the
parameters can be estimated by maximizing the profile likelihood, as in a
classical Cox PH model (see Section 1.3.2).

1.3.6 Model implementation

Two R packages (available on the CRAN website) contain estimation pro-
cedures for the semi-parametric promotion time cure model: miCoPTCM, for
right-censored data (implementing the method of [31]), and intercure, for
interval-censored data (implementing the profile likelihood approach of [29]).
The coxph function of package survival, implementing the maximization of
the profile likelihood, can be used to estimate the version of the promotion
time cure model which is equivalent to a classical PH model.

In Stata, the cureregr command fits parametric cure models, the stpm2
[3] command enables the estimation of flexible parametric cure models, and
the strsnmix [26] command fits parametric non-mixture cure models.

1.3.7 Extensions

A common and important extension of Model (1.9) consists in making the
baseline cdf depend on covariates:

Spop(t|X,Z) = exp {�✓(X)F (t|Z)} , (1.14)
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as considered, for example, by [52]. Contrary to the covariates appearing in
the classical model (1.9), these new covariates Z a↵ect the time needed by a
metastatic cell to produce a detectable tumor mass, but not the mean number
of such cells. As a results, these covariates influence the short-term survival,
but not the cure rate. Including two sets of covariates hence allows one to
distinguish between the e↵ect on the cure rate (long-term e↵ect), and the
e↵ect on the survival (short-term e↵ect). However, these models do not possess
the PH property, and some restrictions on the covariates may be required for
identifiability (see [8] for an identifiability result in one such model).

Other possible extensions of the promotion time cure model (1.9) directly
motivated through the biological interpretation of this model have also been
proposed. See for example [61] who relax the assumption of mutual indepen-
dence between the promotion times Zik via the introduction of a subject-
specific frailty term; [13] and [20], who consider other types of distribution for
the number N of cells that can metastasize and a number r > 1 of cells to
be promoted to have an event; and [50] who, in addition, suggest to include
covariates a↵ecting the mean number of cells, N , as well as the distribution
of the promotion time of each cell.

Finally, it is interesting to note that general classes of cure models have
been developed, which encompass both mixture and promotion time cure mod-
els as special cases. For example, [60] propose a new class of cure models
through a Box-Cox transformation of the survival function of the population,
with as special cases the mixture cure models and the promotion time cure
models with covariates in the baseline cdf.

1.4 When to use a cure model

Two main questions usually come up when speaking about cure models. First,
when should we use a cure model to analyze our data or, put slightly di↵er-
ently, what are the consequences of not taking the cure fraction into account?
Second, if we actually are in a situation where a cure model is appropriate,
should we rather use a mixture cure model or a promotion time model? To
discuss these questions, we present here a short simulation study investigating
the consequences of misspecifying the model to be used for estimation, such
as assuming a classical Cox PH model when there is actually a cure fraction in
the sample, or assuming a mixture cure model when the data actually follow
a promotion time cure model.

1.4.1 Presentation of the simulations

In this simulation study, we consider six di↵erent settings based on the way
the data were generated. For each setting, 500 datasets, each containing 500
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patients, were simulated. These patients are first randomly allocated to one
of the treatment arms according to a binary covariate X ⇠ Bern(0.5) (X = 1
for treatment versus X = 0 for control). Their time to event is then generated
according either to a parametric PH model (no cure), a logistic/parametric PH
mixture cure model or a promotion time cure model as described below. We
consider right censoring with censoring times following a truncated Weibull
distribution whose parameters were chosen to achieve the desired level of
censoring.

Settings 1 and 2: The times to events are generated from a parametric PH
model with an exponential baseline hazard (shape parameter set to 6).
The regression parameter for the treatment indicator was set to �1, cor-
responding to a HR of 0.37 in favor of the treatment group. For these data,
there are therefore no cured patients. We consider both a setting with a
(relatively) high censoring rate (Setting 1) and a setting with a (relatively)
low censoring rate (Setting 2).

Setting 3: The times to events are generated from a parametric promotion
time cure model with exponential link and exponential baseline cdf (shape
parameter set to 6, distribution truncated at 20). The regression parame-
ters are set to 0.2 for the intercept and �0.5 for the treatment e↵ect.

Settings 4, 5 and 6: The times to events are generated from a logis-
tic/parametric PH mixture cure model with a (truncated) exponential
baseline cumulative hazard function in the latency (shape parameter of 4
for the three settings and truncation limit of respectively 50, 20 and 50).
These three settings di↵er by the inclusion of the covariate e↵ect either
in both the incidence and latency parts (Setting 4: parameter values of
1 and �1 for the intercept and the treatment e↵ect in the incidence and
parameter value of �1 for the treatment e↵ect in latency), in the inci-
dence part only (Setting 5: parameter values of 1 and �1 for the intercept
and the treatment e↵ect in the incidence and parameter value of 0 for the
treatment e↵ect in latency), or in the latency part only (Setting 6: param-
eter values of 0.5 and 0 for the intercept and the treatment e↵ect in the
incidence and parameter value of �1 for the treatment e↵ect in latency).
These settings therefore correspond to a treatment being both curative
and life-prolonging (setting 4), only curative (setting 5) with no e↵ect on
the time of events amongst the uncured, or only life-prolonging (setting
6) while ultimately not impacting the long-term outcome of the patients.

The average censoring and cure rates per treatment arm and overall are
presented in Table 1.1; Setting 6 is the only one leading to the same proportion
of cure in both treatment arms. Figure 1.5 represents, for each setting, the
theoretical survival curves by treatment group at the level of the population
(obtained without considering censoring) as well as these KM estimated sur-
vival curves for one random dataset of each setting (accounting for censoring).
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As expected, the PH assumption is met in settings 1, 2, and 3 but one could
also consider that setting 5 meets this assumption since both curves are first
parallel and then reach their plateaus at the same time. The presence of a
plateau (and therefore of a cure fraction) is clear from the estimated survival
curves from settings 3 to 6. Setting 2 obviously shows no plateau in the es-
timated survival curves; however, setting 1 may be confusing. It is therefore
important to keep in mind that it is the combination of a su�ciently long
follow-up, a long plateau and a su�cient number of censored observations in
the plateau that can be considered as an indication of the presence of a cure
fraction.

TABLE 1.1
Simulation settings characteristics

Average censoring rate Average cure rate
Overall X = 0 X = 1 Overall X = 0 X = 1

Setting 1 0.53 0.39 0.67
Setting 2 0.27 0.15 0.39
Setting 3 0.57 0.50 0.64 0.38 0.29 0.48
Setting 4 0.54 0.40 0.69 0.38 0.27 0.50
Setting 5 0.56 0.48 0.64 0.38 0.27 0.50
Setting 6 0.54 0.48 0.60 0.38 0.38 0.38

For each setting, all datasets were analysed using a semi-parametric
Cox PH model (CM, fitted with the coxph function of the R package
survival), a semi-parametric promotion time cure model (PTM, fitted with
the PTCMestimBF function of the R package miCoPTCM), and a semi-parametric
logistic/Cox PH mixture cure model (MCM, fitted with the smcure function
of the R package smcure). All models included the treatment covariate, which
was included in both parts of the MCM.

1.4.2 Simulations results

The results regarding the estimation of the treatment e↵ect in the various
settings are presented in Table 1.2; standard errors (s.e.) of the estimated co-
e�cients of the mixture cure model have been estimated using bootstrap with
500 replications. While the estimated coe�cients obtained from di↵erent mod-
els can not be compared together (except for the CM and the PTM) as they
do not represent the same quantity, one can compare the estimated cure frac-
tions. They are presented in Table 1.3 and are estimated by exp{� exp(XT �̂)}
in the PTM and 1 � ⇡̂(X) in the MCM. The overall cure rate is estimated,
for each dataset, by the average of the estimated individual cure probabilities.
Another possibility to compare the fit of the PTM and the MCM in each set-
ting is to consider the estimated conditional survival function of the uncured
subjects given by (1.13) for the PTM and by (1.6) for the MCM.

The consequences of a model misspecification can vary largely, depending
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FIGURE 1.5
Survival functions in the simulation settings. Left panel: Theoretical survival
functions for each simulation setting. Right panel: Estimated survival func-
tions for a random dataset for each setting. The solid line represents the
control group (X = 0) while the dotted line represents the treatment group
(X = 1).
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TABLE 1.2
Simulation results - Estimation of the coe�cients. Note: Emp. S.E.: empirical
standard error; Est. S.E.: estimated standard error; Prop. RH

0

: proportion
of cases in which the hypothesis H

0

: � = 0 was rejected. Empirical standard
errors were computed by taking the standard deviation of the estimated values
over all replications.

Cox Promotion time Mixture cure
model model model

�
1

�
0

�
1

�
0

�
1

�
1

Set. 1 True value -1.000
Average -1.009 1.287 -1.009 3.846 -2.699 -0.692

Emp. S.E. 0.142 0.314 0.142 1.709 1.725 0.225
Est. S.E. 0.140 0.190 0.139 0.454 0.552 0.198

Prop. RH
0

1.000 1.000 1.000 1.000 0.971 0.779
Set. 2 True value -1.000

Average -1.004 1.999 -1.004 13.504 -9.822 -0.926
Emp. S.E. 0.113 0.218 0.113 6.936 7.118 0.124
Est. S.E. 0.112 0.166 0.111 3.427 3.442 0.125

Prop. RH
0

1.000 1.000 1.000 0.752 0.721 1.000
Set. 3 True value 0.200 -0.500

Average -0.501 0.192 -0.501 0.890 -0.779 -0.154
Emp. S.E. 0.136 0.118 0.136 0.236 0.299 0.203
Est. S.E. 0.139 0.110 0.139 0.199 0.302 0.193

Prop. RH
0

0.960 0.408 0.960 0.998 0.745 0.133
Set. 4 True value 1.000 -1.000 -1.000

Average -1.048 0.475 -1.048 1.019 -0.983 -1.000
Emp. S.E. 0.131 0.131 0.131 0.184 0.295 0.228
Est. S.E. 0.142 0.122 0.140 0.157 0.292 0.207

Prop. RH
0

1.000 0.990 1.000 1.000 0.947 0.057
Set. 5 True value 1.000 -1.000 0.000

Average -0.540 0.225 -0.540 1.055 -1.035 0.010
Emp. S.E. 0.132 0.106 0.132 0.246 0.303 0.192
Est. S.E. 0.138 0.106 0.138 0.213 0.301 0.188

Prop. RH
0

0.988 0.564 0.988 1.000 0.947 0.057
Set. 6 True value 0.500 0.000 -1.000

Average -0.504 0.221 -0.504 0.525 -0.001 -0.999
Emp. S.E. 0.132 0.122 0.132 0.165 0.304 0.194
Est. S.E. 0.134 0.115 0.133 0.127 0.290 0.190

Prop. RH
0

0.954 0.500 0.954 0.963 0.083 1.000
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TABLE 1.3
Simulation results - Estimation of the cure rate. Note: Emp. S.E.: empirical
standard error.

Promotion time Mixture cure
model model

Overall Control Treatment Overall Control Treatment
Set. 1 True value 0 0 0 0 0 0

Average 0.155 0.038 0.273 0.150 0.043 0.258
Emp. S.E. 0.140 0.030 0.103 0.132 0.038 0.102

Set. 2 True value 0 0 0 0 0 0
Average 0.038 0.001 0.074 0.029 0.003 0.055

Emp. S.E. 0.046 0.002 0.040 0.041 0.006 0.044
Set. 3 True value 0.380 0.295 0.477 0.380 0.295 0.477

Average 0.389 0.298 0.480 0.383 0.293 0.473
Emp. S.E. 0.100 0.042 0.041 0.101 0.048 0.048

Set. 4 True value 0.380 0.269 0.500 0.380 0.269 0.500
Average 0.385 0.202 0.568 0.379 0.267 0.491

Emp. S.E. 0.187 0.041 0.042 0.123 0.035 0.062
Set. 5 True value 0.380 0.269 0.500 0.380 0.269 0.500

Average 0.384 0.286 0.481 0.378 0.261 0.495
Emp. S.E. 0.105 0.038 0.040 0.125 0.046 0.045

Set. 6 True value 0.380 0.378 0.378 0.380 0.378 0.378
Average 0.379 0.288 0.470 0.373 0.373 0.374

Emp. S.E. 0.101 0.043 0.043 0.051 0.038 0.061



26 Krantz Template

on the true model underlying the data, and on the focus of the estimation:
cure probability, conditional survival function, treatment e↵ect size and sig-
nificance. Due to the link between the Cox PH model and the semi-parametric
promotion time cure model with exponential link function (discussed in Sec-
tion 1.3.2), the results obtained when using these models are clearly very
similar. The only di↵erence is that, since the promotion time cure model as-
sumes a cure fraction in the data, the treatment coe�cient is interpreted in
terms of both its short- and long-term e↵ects.

When there is actually no cure fraction in the data (Settings 1 and 2), the
treatment e↵ect is well recovered by the PTM and quite well by the MCM
when the censoring is not too high. The estimated coe�cients in the inci-
dence part of the MCM are largely biased and accompanied by a very large
s.e., showing, as expected, an instability in the estimation of this part of the
model. The ability of the models to acknowledge the absence of cure (by esti-
mating a very low cure rate and by appropriately estimating the conditional
survival of the uncured patients (data not shown)) is highly dependent on
the amount of censoring, as can be seen by comparing the results obtained
in Settings 1 and 2. This phenomenon is to be understood in the light of the
zero-tail constraint, which is used for identifiability purposes and which treats
all censored observations after the last event time as belonging to the cure
group: this leads to a positive bias in the estimation of the cure probability,
and a negative bias in the estimation of the survival function of the uncured
patients.

When there is actually a fraction of cure patients, we have to distinguish
situations were the PH assumption may be considered to hold. This is the
case when data are generated from a PTM (Setting 3) or from a MCM with
a treatment a↵ecting only the incidence (Setting 5, in which the conditional
survival functions for both groups level o↵ at the same time point). In that
case, it is interesting to note that, although we can not formally compare their
coe�cients, the PTM and the MCM seem to recover the treatment e↵ect.
However, the PTM does not allow us to disentangle the short- and the long-
term e↵ects. When the data are generated from a PTM and fitted with a
MCM, the true joint treatment e↵ect on both the cure probability and the
conditional survival function of the PTM is split into both parts of the model
(the average of both estimated coe�cients, b�

1

and b�
1

, is incidentally close to
the true, unique coe�cient). As a result, the significant e↵ect was sometimes
recovered for the incidence part, but rarely for the latency. The estimation
of the cure rate in each arm as well as of the conditional survival curve for
the uncured is nearly unbiased with both the PTM and the MCM. Figure 1.6
displays the results obtained when fitting a MCM on PH data generated by
a PTM (Setting 3) and vice-versa (Setting 5).

The situation is however di↵erent when data have been generated from a
MCM and one can not assume PH anymore, as is the case in Settings 4 and 6.
Although, in our simulation setting, the PTM seems to recover some part of
treatment e↵ect, the estimated cure rate is biased downwards in the control
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FIGURE 1.6
Estimated conditional survival functions for the PTM data estimated with a
MCM (top panel) and for the MCM data estimated with a PTM (bottom
panel), for the control arm (left panel) and the treatment arm (right panel).
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FIGURE 1.7
Estimated conditional survival functions for the MCM data (setting 4) esti-
mated with a PTM (top panel) and with a MCM (bottom panel), for the
control arm (left panel) and the treatment arm (right panel).

arm and upward in the treatment arm. As shown in the top of Figure 1.7,
this leads to an overestimation of the conditional survival in the control group
and an underestimation in the treatment group. In the control arm, the PTM
assigns too few patients to the cure group and hence estimates a too high
survival for the uncured; the opposite holds in the treatment group (too many
patients to the cure group and a too low survival for the uncured). These
biases are due to the model misspecification; only one coe�cient is estimated,
which tries to summarize both e↵ects (on the incidence and the latency). As
a result, none of the two e↵ects is correctly estimated. As expected, there is
no such problems when estimating these data with the appropriate model, see
bottom of Figure 1.7.
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1.4.3 Discussion of the results and recommendations

Cure models are still rarely used in cancer clinical trials, despite the fact that
there are nowadays several cancer types for which we can expect a fraction of
the population to be cured. One argument against the use of the cure models is
that as long as the PH assumption is met, the Cox PH model provides reliable
estimates of the treatment e↵ect [36]. Indeed, our simulations show that if the
cure fraction is ignored and a Cox PH model is fitted, the treatment coe�cient
is perfectly recovered in size and significance in cases where we have PH. This
is indeed true and actually not surprising, given the mathematical link between
the Cox PH model and the semi-parametric promotion time cure model [42].
In the specific context of our simulations, when the PH assumption does not
hold, the Cox PH model also allows one to recover a significant treatment
e↵ect, whose estimated value appears to be close to the average of both true
coe�cients. However, using the promotion time cure model instead of the Cox
PH model has the advantage of making it clear that the coe�cient associated
with the treatment should be interpreted both in terms of short- and long-term
e↵ects.

One may argue that, unless the disease is always fatal, the proportion
of patients being cured should be considered as an important component of
the survival benefit, rather than just considering the HR or median time to
failure [32]. If the PH assumption is met, both the Cox PH model and the
promotion time cure model can actually be used to obtain an estimate of the
cure fraction, which is clearly a useful piece of information in the evaluation of
curative treatment. However, one has to be careful that this proportion may
be overestimated by the promotion time cure model if there is actually no
cure fraction and if the censoring is high. So, like many other authors (see for
example [47]), we recommend not using such models when there is no evidence
of cure.

Furthermore, the Cox PH and the promotion time models should not be
used whenever the PH assumption is not met. If the reason of this non-
proportionality is the presence of a cure fraction, which can be assessed from
the presence of a long plateau including a su�cient number of censored obser-
vations, then the mixture cure model is a flexible alternative to be considered.
Both parametric and semi-parametric versions are easily accessible in R and
SAS, and both Cox PH and AFT models can be considered in the latency part.
The (semi-)parametric logistic/Cox PH model provides parameter estimates
which have an easy interpretation and can be translated into ORs or RRs for
the probability of cure and in HRs for the event-times amongst the uncured,
providing a clear view on the short- and long-term e↵ects of the treatment.

The statement that ”as long as one can assume that not all patients will
experience the event of interest, a cure model should be preferred” needs to be
nuanced. First, assuming that there is a cure fraction is not enough; we must
have evidence of it, through su�cient follow-up, in order for a cure model
to perform well. Second, even when there is such evidence from the data,
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if we still have PH and if we are not particularly interested in splitting the
curative e↵ect from an event-delaying e↵ect, nor to emphasize the presence
of a cure fraction, then the classical Cox PH model can indeed still be used.
However, whenever there exists a fraction of cured or long-term survivors,
additional information (or, even, more correct information, in case of non-PH)
can be gained from using an appropriate cure model analysis compared with a
standard Cox analysis. Unfortunately, there are up to now no clear criteria on
what is evidence of a cure fraction and no widely available statistical way to
test whether there is ”a su�ciently long plateau containing enough censored
observations”. Some attempts to develop statistical tests on the presence of
cure have been proposed [27, 33, 9, 63, 21] but they have not been implemented
in available software. As a consequence, one has mainly to rely on a visual
inspection of the tail of the KM estimated survival curves.

A key ingredient in clinical trials is the design phase, and in particular the
sample size calculation. All standard procedures for sample size calculation
with time-to-event endpoints actually rely on the PH assumption and can
therefore not be used if we expect the presence of a cure fraction that could
put this assumption in jeopardy. A sample size formula for the logistic/PH
mixture cure model has been proposed by [55] and later implemented in the
R package NPHMC [10]. This formula can be used to compute the required
sample size for testing di↵erences in the short- and/or long-term outcome of
the patients, and can account for various accrual patterns. Furthermore, the
NPHMC package allows one to choose for the latency part of the model between
a parametric PH model (exponential or Weibull) or a Cox semi-parametric PH
model. Numerical examples and simulations results are presented and show
that ignoring the cure rate can lead to either underpowered or overpowered
studies [55].

1.5 Melanoma clinical trial

The ECOG phase III clinical trial e1684 was set up to evaluate the e↵ect
on relapse free survival (RFS) of high dose interferon alpha-2b (IFN) versus
placebo (PBO) as postoperative adjuvant therapy. A total of n = 285 patients
were randomized to either IFN (n = 145) or PBO (n = 140). Two additional
covariates are included in the freely available database: gender (39.8% female)
and age (centered to the mean). The main analysis of this trial, as it appears
in the original publication of the trial results, does not take cure into account
[24]. However, there is clear evidence, both from a medical point of view and by
inspecting the estimated survival curves in each treatment group (see Figure
1.8, left panel), of a presence of a cure fraction. These data have already been
extensively used to illustrate publications on cure models, see for example
[15, 55, 22].



Cure models in cancer clinical trials - C. Legrand and A. Bertrand 31

The dataset is freely available in the R package smcure and can be loaded
in R using the following command:

library(smcure)
data(e1684)

The estimated KM survival curve for RFS shows a plateau starting at
around 6 years, with however an event still occurring at around 8 years in the
control group. Both estimated survival curves run in parallel and reach their
plateau at about the same time; in line with Section 1.4, we will consider that
the results from both the PTM and the MCM can be trusted.

A classical semi-parametric Cox PH model (CM) can be fitted on these
data with the R package survival, as follows:

library(survival)
cox <- coxph(Surv(FAILTIME,FAILCENS==1)~TRT+AGE+SEX,e1684)
summary(cox)

A semi-parametric promotion time model (PTM) with exponential link
function can be fitted with the R package miCoPTCM:

library(miCoPTCM)
vc <- matrix(nrow=4,ncol=4,0)
ptcm <- PTCMestimBF(formula=Surv(e1684$FAILTIME,e1684$FAILCENS)

~TRT+SEX+AGE,data=e1684,varCov=vc,
init=runif(4))

summary(ptcm)

Finally, a semi-parametric logistic/Cox PH mixture cure model (MCM)
can be estimated with the R package smcure:

mcm <- smcure(Surv(FAILTIME,FAILCENS)~TRT+SEX+AGE,
cureform=~TRT+SEX+AGE,data=e1684,model="ph",
nboot=500)

printsmcure(mcm)

Results (obtained with the three models) for the treatment e↵ect, adjusted
for gender and sex, are displayed in Table 1.4.

As expected, the results obtained with CM and PTM are similar, with the
interpretation of the � coe�cients being linked to both short- and long-term
e↵ects. To interpret these results, we have to keep in mind that IFN is coded
1 while PBO is coded 0. The treatment e↵ect, adjusted for gender and age, is
�0.365 for the PTM model, indicating an advantage for patients treated with
IFN (p < 0.05). The MCM model allows us to disentangle the e↵ect of IFN on
the occurrence and on the timing of the event. The OR for the probability to be
uncured, adjusted for gender and age, is exp(�0.588) = 0.556 corresponding
to a lower risk of being uncured in the IFN group, and thus a higher risk to
be cured in this group. Regarding the latency part of the model, the HR for
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the uncured patients is exp(�0.154) = 0.857 in favor of the IFN group too.
It appears from these results that IFN indeed has a beneficial e↵ect on the
RFS of the patients but that this e↵ect is mainly a long-term one, acting on
the probability to be cured. The fact that this OR is not significant might
be explained by the fact that twice the number of parameters have to be
estimated in the MCM compared to the PTM. For a male (xmale = 0) with
average age (xage = 0), the estimated cure fraction can be recovered from the
PTM as

PBO arm : exp(� exp(0.412)) = 0.221

IFN arm : exp(� exp(0.412� 0.365)) = 0.351

and about the same values can be retrieved from the MCM:

PBO arm : 1� exp(1.365)

1 + exp(1.365)
= 0.203

IFN arm : 1� exp(1.365� 0.588)

1 + exp(1.365� 0.588)
= 0.315

The estimated population RFS curves by treatment arm from the PTM and
the MCM for male patients with average age are displayed on the right panel
of Figure 1.8. Curves obtained from both models are very similar and we
find back at the tails of these curves the results given above about cure rate
estimation.



Cure models in cancer clinical trials - C. Legrand and A. Bertrand 33

TABLE 1.4
Melanoma data: results from semi-parametric Cox PH model (CM), semi-
parametric logistic/Cox PH model (MCM), and semi-parametric promotion
time cure model (PTM) for treatment (0: control and 1: treatment) adjusted
for age (0: male and 1: female) and gender (centered to the mean). Note: S.E.:
standard error.

CM MCM PTM
Incidence Latency

Intercept Estimate 1.365 0.412
S.E. 0.322 0.139
P-value 0.000 0.003

Treatment Estimate -0.360 -0.588 -0.154 -0.365
S.E. 0.144 0.349 0.169 0.154
P-value 0.012 0.092 0.363 0.017

Age Estimate 0.005 0.020 -0.008 0.005
S.E. 0.005 0.016 0.006 0.005
P-value 0.357 0.205 0.212 0.358

Gender Estimate -0.018 -0.087 0.099 -0.018
S.E. 0.147 0.328 0.172 0.159
P-value 0.903 0.791 0.564 0.909

FIGURE 1.8
Melanoma data. Left panel: Kaplan-Meier estimated population RFS curves
(the solid line represents the IFM arm and the dotted line the PBO arm). Right
panel: Model-based estimated population RFS for male patients of average age
as obtained from the PTM model (gray solid lines) and from the MCM (black
dotted lines).
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