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Communicated by Ravi Savarirayan

1 | BACKGROUND

Primary microcephaly (PM) refers to a group of autosomal recessive
or dominant disorders characterized by a reduction in brain growth

starting in utero, intellectual disability (ID) of variable severity, and

Abstract

Autosomal recessive microcephaly or microcephaly primary hereditary (MCPH) is a genetically
heterogeneous neurodevelopmental disorder characterized by a reduction in brain volume, indi-
rectly measured by an occipitofrontal circumference (OFC) 2 standard deviations or more below
the age- and sex-matched mean (—2SD) at birth and —3SD after 6 months, and leading to intel-
lectual disability of variable severity. The abnormal spindle-like microcephaly gene (ASPM), the
human ortholog of the Drosophila melanogaster “abnormal spindle” gene (asp), encodes ASPM, a
protein localized at the centrosome of apical neuroprogenitor cells and involved in spindle pole
positioning during neurogenesis. Loss-of-function mutations in ASPM cause MCPH5, which affects
the majority of all MCPH patients worldwide. Here, we report 47 unpublished patients from 39
families carrying 28 new ASPM mutations, and conduct an exhaustive review of the molecular, clin-
ical, neuroradiological, and neuropsychological features of the 282 families previously reported
(with 161 distinct ASPM mutations). Furthermore, we show that ASPM-related microcephaly is
not systematically associated with intellectual deficiency and discuss the association between the
structural brain defects (strong reduction in cortical volume and surface area) that modify the cor-

tical map of these patients and their cognitive abilities.

KEYWORDS
ASPM, brain development, brain imaging, centrosome, intellectual disability, MCPH, primary

microcephaly

PM with nearly-normal brain cytoarchitecture, originally called “micro-
cephalia vera.” Nowadays, MCPH also includes PM with cortical mal-
formations. Clinically, MCPH is defined by an occipitofrontal circum-
ference (OFC) thatis 2 standard deviations (SD) or more below the age-

and sex-matched mean at birth, and 3 SD or more below the mean after

the absence of extra-CNS malformations (Kaindl et al., 2010; Thorn-
ton & Woods, 2009). The worldwide incidence of PM varies from

1:30,000 to 1:250,000 live births, depending on the geographic origin

6 months of age. MCPH might be detected from the 2nd trimester of
pregnancy by ultrasound scan (Woods & Parker, 2013).
MCPH is genetically heterogeneous: an MCPH phenotype has been

and mode of ascertainment (Komai, Kishimoto, & Ozaki, 1955; Morris

et al., 2016; Van Den Bosch, 1959). Microcephaly primary hereditary

associated with mutations in at least 18 genes, MCPH1-18. Among
them, ASPM (MCPH5 locus) is the most frequently mutated gene

(MCPH) refers to a subtype of PM in which patients display an isolated
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FIGURE 1 Location of the known and novel mutations identified in the human ASPM gene and corresponding domains in the protein. The muta-
tions reported previously are shown on the upper arch. Mutations identified in the present study but already known are indicated by #. Novel
mutations from the present study are indicated directly on exons. Various symbols represent missense, nonsense, splice, and frameshift mutations
as indicated. Allelic frequency (AF) is indicated if >2%. Abbreviations: AF, allelic frequency; ASH, ASPM,SPD-2,Hydin; CH, calponin homology

reported (Verloes, Drunat, Gressens, & Passemard, 2013). Mutations
in the remaining 17 genes cause less than 40% of the reported diag-
nosis. Many MCPH families have not been ascribed to any of the
known genes, suggesting that additional MCPH genes are still to be
discovered.

The abnormal spindle-like microcephaly gene (ASPM; MIM#
605481) is the human ortholog of the Drosophila melanogaster “abnor-
mal spindle” gene (asp) and maps at the 1g31.3 locus (Bond et al., 2002;
Jamieson, Fryns, Jacobs, Matthijs, & Abramowicz, 2000; Pattison
et al.,, 2000). Four isoforms have been described for the ASPM gene
(Kouprina et al., 2005). The full-length ASPM gene contains 28 exons
and encodes a 3477 amino-acid protein localized to the spindle pole
during metaphase and to the midbody during cytokinesis (Higgins
et al., 2010; Kouprina et al., 2005; Paramasivam, Chang, & LoTurco,
2007). ASPM plays a crucial role in the division of neural progenitor
cells by keeping them cycling, promoting symmetric proliferative
divisions at the expense of asymmetric neurogenic divisions (Fish,
Kosodo, Enard, Paabo, & Huttner, 2006). Different mouse models in
which Aspm is knocked out reproduce the microcephaly observed in
humans and show a reduction in cortical surface area (Capecchi &
Pozner, 2015; Pulvers et al., 2010). The mechanisms underlying Aspm
microcephaly in mice are an increase in cell cycle duration in neural
progenitors, many of which exit the cell cycle, thereby leading to the
premature exhaustion of the neural progenitor pool, and a subsequent
increase in the production of neurons of the lower cortical layers
along with a reduction in upper layer neuron production (Capecchi &
Pozner, 2015). Whether these mechanisms also explain microcephaly

in humans is still unknown.

The ASPM protein (Figure 1 contains an amino-terminal ASH
(ASPM, SPD-2, Hydin) domain with a putative microtubule-binding
function, found in proteins associated with cilia, flagella, the cen-
trosome, and the Golgi complex (Schou, Morthorst, Christensen, &
Pedersen, 2014), an actin binding domain comprising two calponin
homology (CH) domains that bind one actin monomer in the filament
(Stradal, Kranewitter, Winder, & Gimona, 1998), a series of repeated
calmodulin-binding 1Q domains, an Armadillo-like domain, and a
carboxy-terminal region of unknown significance. Although ASPM
is highly conserved across species, the variability of its calmodulin-
binding 1Q repeats is of particular interest. The human protein displays
81 calmodulin-binding IQ repeats at positions 12,73 to 3,234, whereas
there are 61 calmodulin-binding IQ repeats in mice and 24 calmodulin-
binding 1Q repeats in Drosophila (Bond et al., 2002; Kouprina et al.,
2005; Kouprina et al., 2004). Although still a topic of debate, it has
been proposed that the expansion of the cerebral cortex depends on
the number of calmodulin-binding 1Q repeats (Bond & Woods, 2006;
Bond et al., 2002; Kouprina et al., 2005; Kouprina et al., 2004; Ponting
& Jackson, 2005).

In vitro experiments have shown that the N-terminal portion of
ASPM, encoded by the first seven exons, is sufficient to induce ASPM
localization to the spindle pole during metaphase, whereas the C-
terminal domain, encoded by the last three exons, is required for its
localization to the midbody during cytokinesis (Kouprina et al., 2005;
Paramasivam et al., 2007).

Although a large number of patients with ASPM mutations have
been reported (Abdel-Hamid et al., 2016b; Ahmad et al., 2016;
Akbariazar et al., 2013; Al-Gazali & Ali, 2010; Ariani et al., 2013; Bond
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et al., 2002; Bond et al., 2003; Darvish et al., 2010; Desir, Abramowicz,
& Tunca, 2006; Desir, Cassart, David, Van Bogaert, & Abramowicz,
2008; Gul et al., 2006; Gul et al., 2007; Halsall, Nicholas, Thornton,
Martin, & Geoffrey Woods, 2010; Hashmi et al., 2016; Hu et al., 2014;
Kousar et al., 2010; Kumar, Blanton, Babu, Markandaya, & Girimaji,
2004; Muhammad et al., 2009; Nakamura et al., 2015; Nicholas et al.,
2009; Papari et al., 2013; Passemard et al., 2009b; Pichon, Vankerck-
hove, Bourrouillou, Duprez, & Abramowicz, 2004; Rump et al., 2016;
Saadi et al., 2009; Sajid Hussain et al., 2013; Shen et al., 2005; Tan et al.,
2014; Wang, Khan, Han, & Zhang, 2017), their developmental pheno-
type has been documented only in a minority of cases. However, ID
(Passemard et al., 2009a) and epilepsy (Shen et al., 2005) are the most
frequently reported clinical findings in patients with ASPM mutations.

In the present review, we report 47 new patients (39 families),
followed within the EuroMicro network, and present an exhaustive
overview of all individuals with ASPM mutations described in the liter-
ature since the gene was identified, along with their molecular, clinical,
radiological, and neuropsychological features. In particular, this review
reveals that microcephaly linked to ASPM is not always associated
with ID.

2 | MUTATIONS

2.1 | Reported mutations

From the original discovery of ASPM mutations (Bond et al., 2002) to
July 2017, 161 mutations have been reported. Reports were collected
using the PubMed library. The terms “ASPM,” “MCPH5,” “MCPH,”

» o«

“autosomal recessive microcephaly,” “microcephaly primary heredi-
tary,” and “microcephalic dwarfism” were used as key words. No
intragenic copy number variations have been reported in Decipher;
only large rearrangements encompassing more than the ASPM gene
have been reported. The 161 ASPM mutations have been identified
in 638 affected individuals belonging to 282 families. All the muta-
tions are depicted in Figure 1 and summarized in Supp. Table S1.
These mutations are spread all along the coding sequence and include
147 exonic variations, 12 intronic variations, and two large dele-
tions encompassing several exons/introns. Exonic variations (n = 147)
include73 nucleotide substitutions (leading to 69 nonsense mutations,
two putative splicing mutations, and two missense mutations),65 dele-
tions of one to few nucleotides (leading to 61 frameshift mutations
and four nonsense mutations), and nine duplications or insertions of
one nucleotide (leading to frameshift mutations). Intronic variations
(n = 12) include 10 nucleotide substitutions and two deletions of one
nucleotide (all predicted to interfere with correct splicing). Frameshift
and splice-site mutations are predicted to result in unstable RNA that
would be degraded by nonsense-mediated RNA decay or in truncated
protein synthesis. However, few experiments have been carried out
to verify this hypothesis except for two mutations located in exon 24
(c.9754del; pArg3252Glufs*10) and in intron 25 (c.9984+1G > T; pre-
dicting the removal of the intron 25 splice donor site) (Higgins et al.,
2010; Kouprina et al., 2005). In the first case, Western blot analy-

sis has revealed the presence of a truncated protein. In the second

case, although the size and localization of ASPM were not affected,
only weak expression of the protein was detected at the spindle pole.
Among the 161 mutations described so far, three mutations recur
frequently. The ¢.3978G > A mutation (allele frequency = 18%) has
been specifically reported in Turkish and Pakistani families (60 fam-
ilies). The ¢.9557C > G mutation has been reported exclusively in
Pakistan (seven families). Both mutations suggest a founder effect. In
contrast, the third mutation (c.7782_7783del), which represents 4%
of all alleles, is reported in families of different geographic origins
(Europe, Africa, and Asia) and is also found in the present study with
ahigh allele frequency (17%). It may therefore correspond to a hotspot

mutation.

2.2 | Unreported mutations, methods of
identification, cohort

Molecular analysis was performed within our “EuroMicro” European
Network (including five partners in France, Belgium, Germany, Switzer-
land, and the UK), between 2007 and 2017, using samples from
patients referred for typical MCPH, PM with cortical malformation or
microcephalic primordial dwarfism. The unique inclusion criterion was
an OFC lower than 2 SD below the age- and sex-matched mean at birth
and lower than 3 SD below the mean after 6 months of age, irrespec-
tive of the patient's stature. Exclusion criteria were: (1) a context of
anoxia-ischemia at birth, (2) a diagnosis of infectious or toxic fetopathy,
or (3) major associated malformations suggestive of syndromic micro-
cephaly.

Mutation analysis was performed on DNA extracted from periph-
eral blood leucocytes using standard procedures. The coding sequence
+25 base pairs of intron/exon boundaries of the ASPM gene were
screened for variants either by Sanger sequencing or next-generation
sequencing.

In total, we genotyped 47 patients from 39 unrelated families.
Fifteen index cases were born to consanguineous parents. Genotyp-
ing identified 18 published and 28 unpublished variants (Table 1 and
Figure 1. The new variants included 17 frameshift mutations, nine
nonsense mutations, and two splicing mutations, all likely resulting
in truncated protein products. Using Alamut Software (Interactive
Biosoftware, Rouen, France), the pathogenicity of the identified vari-
ants was predicted to result in a loss of ASPM function in all cases,
even though functional tests are needed to definitively determine
their real consequences. Likewise, the presence of additional vari-
ants in the genome cannot be ruled out. The molecular data are
shown in Table 1 and Figure 1 All mutations have been declared in
the Leiden Open Variation Database (databases.lovd.nl/shared/genes/
ASPM).

2.3 | Epidemiology and phenotype

2.3.1 | Epidemiology

A total of 685 patients have been reported so far: (47 from the present
study + 638 in the literature) from 321 (39 + 282) families. Among
those whose sex has been described, 229 (28 + 201) are males and 182

(19 + 163) are females (sex ratio M/F = 1.3). Most families come from
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TABLE 1 Novel ASPM mutations identified in our cohort, according to HGVS nomenclature recommendations and using the sequence
NM_018136.4 as a reference

DNAHGVS Protein HGVS
Location nomenclature nomenclature
Exon 3 ¢.1850_1853del pThré617Lysfs*30
Exon 4 c.1932del p.Phe645Serfs*23
Exon 4 ¢.1943_1944insC p.lle649Asnfs*3
Exon 9 c2638G>T p.Glu880*
Intron 10 c.2936+2T>C p.?
Exon 13 c.3185_3189%del p.Asn1062Argfs*28
Exon 13 ¢.3269dup p.Asp1091*
Intron 15 c.3741+3A> G p.?
Exon 18 c.4250_4251del pTyr1417*
Exon 18 c4732C>T p.Argl578*
Exon 18 c.4806T > G p.Tyr1602*
Exon 18 c.4992_4996dup p.Argl667Ilefs*12
Exon 18 ¢c.5590_5591del p.Leu1864Serfs*2
Exon 18 c.5886_5887del p.Leu1963Glufs*9
Exon 18 c.5940del pTyr1981llefs*13
Exon 18 c.6513dup pVal2172Serfs*7
Exon 18 c.6568C>T p.GIn2190*
Exon 18 c.6658C>T p.GIn2220*
Exon 18 c.6919C>T p.GIn2307*
Exon 18 €.6920_6921del p.GIn2307Leufs*10
Exon 18 c.7744del p.lle2582Serfs*34
Exon 18 c7753G>T p.Glu2585*
Exon 18 c.8599delinsAT p.GIn2867llefs*5
Exon 18 ¢.8700_8702delinsCC p.Lys2900Asnfs*38
Exon 18 c.8702del p.His2901Leufs*37
Exon 20 €.9069_9075del p.His3023GInfs*2
Exon 23 c.9446_9447del p.Arg3149Metfs*17
Exon 28 c.10369del p.Glu3457Lysfs*13

aFamily number in our series (n = number of siblings).

Protein effect Families® Origin
Frameshift 1 Moroccan
Frameshift 2 Belgian
Frameshift 3 Moroccan
Nonsense 4 French
Splicing 5 French
Frameshift 6 Moroccan
Nonsense 7 Congolese
Splicing 8 African
Nonsense 9 European
Nonsense 10 French
Nonsense 11 Spanish
Frameshift 12(n=2) Egyptian
Frameshift 9 European
Frameshift 13 Cameroonian
Frameshift 14 (n=2) Moroccan
Frameshift 15 Turkish

16 Turkish
Nonsense 4 French

17 (h=2) French
Nonsense 18 Tunisian
Nonsense 17 (n=2) French
Frameshift 19 French
Frameshift 20 Italian
Nonsense 5 French
Frameshift 21 French
Frameshift 22 Moroccan
Frameshift 23(n=2) Egyptian

24(n=3) Moroccan
Frameshift 13 French
Frameshift 21 French
Frameshift 8 African

Patients carrying compound heterozygous mutations are listed twice, once per mutation.

the Asian subcontinent and middle-east: Pakistan (167 families), Saudi
Arabia (18), Egypt (2 + 16),and Iran (13); 47 (16 + 31) families are from
Europe, and three from the Americas (Figure 2).

2.3.2 | Growth

Although affected patients are described as “microcephalic,” accu-
rate growth parameters (especially OFC) are poorly documented in
the literature (reported in less than 3% of patients at birth and
only for 26% of patients during childhood). Auxological data for the
present study and those reported in the literature are summarized in
Figure 3 and include OFC, height, and weight at birth and after

6 years of age. For our European series, SD was calculated according

to Sempé (1979). For cases published previously, we used the SD val-
ues provided by the authors. When only absolute values were avail-
able, we used WHO Child Growth Standards and WHO Reference
2007.

Microcephaly related to ASPM mutations has exceptionally been
reported during pregnancy in two families (Desir et al., 2008; Hu
et al., 2014). In the present study, microcephaly was detected dur-
ing the third trimester of pregnancy in 23 cases (Table 2 and from
the second trimester in two cases. However, the impact of these
early forms on intellectual prognosis is variable (see details for
patients # 8, 9, 13, 20, and 30 in Table 2 and the paragraph on

“cognition”).
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FIGURE 2 Geographical distribution of families with ASPM mutations. The indicated number corresponds to the number of families per country

or region. Total number of families = 321 (11 families of unknown origin)
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Two features characterize the growth of ASPM-mutated patients:
the reduction of OFC growth kinetics with age and preserved growth

in height from birth, as shown in Figure 3.

2.3.3 | Development and clinical features

Walking without support is acquired around 20 months of age (+11
months, range 10-66 months; data available for n = 32/42 in the
present study and for n = 20/605 in the literature—children aged

18 months or more). 59% walked prior to or at 18 months of age.

Available data related to verbal skills are scarce and heterogeneous
in the literature, yet language acquisition seems to be delayed. 17%
of patients from the present study were able to make full sentences
at 3 years of age (data available for n = 30/37—children aged 3 years
or more). Behavioral disorders, such as hyperkinesia, impulsiveness
and aggressiveness, were observed in 16 patients from the present
study and 17 from the literature. Neurological examination may
show pyramidal syndrome or even spasticity (n = 4 in the present

study and n = 7 in the literature). Ataxia and tremors have not been
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FIGURE 4 Intellectual abilities of patients with ASPM mutations. A:

Full-scale 1Q of ASPM-mutated patients in the literature and in the
present study. Unpaired T-test *P < 0.05). B: Developmental quotient
of ASPM-mutated patients. FSIQ, full-scale intellectual quotient; DQ,
developmental quotient

reported. Seizures have been reported in 47 patients (10/47, i.e.,
21% in the present study and n = 37 in the literature). They appeared
during childhood (not before 6 months of age), and were usually
sensitive to antiepileptic drugs. Some patients show hypo- and/or
hyperpigmented spots (six patients: #3, #25, #27, #30, #32.1, and
#32.2). Malformations are rare and do not present a recurrent pattern:
scoliosis (two families: patients #32.1, #32.2, and #37), middle ear
hypoplasia (one patient: #19), preaxial polydactyly (one patient:
(Ahmad et al., 2016)), unilateral cystic kidney (one patient: (Passemard
et al., 2009b)), tricuspid insufficiency (one family: (Ariani et al., 2013))].
Deafness (one patient (Darvish et al., 2010), Guillain-Barré syndrome
(one patient (Passemard et al., 2009b)), and nystagmus (patient #24.3)
have been reported or noticed in the present study. Fatal issues have
been reported three times in the literature: one patient died after
acute myeloid leukemia (Al-Gazali & Ali, 2010) and two children (3
and 9 years old) died without any reported explanation (Abdel-Hamid
et al., 2016a; Hashmi et al., 2016). The co-occurrence of two unrelated
genetic diseases has been shown in three patients: one with a deletion
of the STS gene (Abdel-Hamid et al., 2016a), one with oculocutaneous
albinism (Abdel-Hamid et al., 2016a), and one with familial retinitis

pigmentosa due to CLN3 mutations (patient #21).

2.3.4 | Cognition

A major prognostic factor to take into account in microcephaly is,
naturally, intellectual ability. Although ID, from mild to severe, has
been systematically reported in patients with ASPM mutations neu-
ropsychological assessment was performed in only 35/628 patients
in the literature (i.e., only 5.6%; Figure 4. Among these 35 patients,
a full-scale intellectual quotient (FSIQ) was available for only 24
patients. The mean FSIQ was 54 + 8 (range 40-71). Despite their ID,
we have previously shown that long-term memory in these patients is

spared, suggesting that they are able to learn (Passemard et al., 2016).

WILEY

The remaining 11 were assessed by various motor and language skill
assessments, which allowed the developmental quotient (DQ) to be
estimated, with a mean value of 46 + 23 (range 30-104).

In the present study, among 36 children aged of 3 years or more
at the last examination, psychological evaluation was not possible
for 11 children living outside Europe. Among the remaining families
(25 patients), the parents of 14 children agreed to a neuropsycholog-
ical assessment and their children cooperated. Wechsler tests were
first proposed to all patients. These tests are universally accepted tools
(translated into many languages) that allow for comparisons between
patients from different countries. Six patients were unable to take the
Wechsler tests. Therefore, neuropsychologists proposed DQ assess-
ment, using specific tests (Stanford Binet, Borel-Maisonny, Bayley) that
are not always internationally available, and only relevant in popula-
tions sharing the same language. The mean DQ was 58 + 15 (range 34-
95; Figure 4B and Table 2, similar to scores seen in the literature.

Eight patients were able to perform the different subtests of the
Wechsler scales. As shown in Figure 4 and Table 2 the mean FSIQ was
64 + 10 (range 50-82). As compared with the 24 FSIQ values reported
in the literature, the FSIQ of patients in the present study was signif-
icantly higher (Figure 4A; P < 0.05, un-paired T-test). The “age” fac-
tor could explain such a difference. Indeed, our patients are younger
(average = 6.6 years) than those described in the literature (aver-
age = 11.3 years). These patients may face problems with maintain-
ing their cognitive abilities with time, as tasks become more and more
difficult, or may reach the upper limit of their abilities earlier, during
childhood or adolescence. The precocity of diagnosis and of appropri-
ate rehabilitation, whose effectiveness also depends on the age factor,
would also influence intellectual prognosis. Surprisingly, for four out of
five children who underwent detailed neuropsychological assessment
(patients #2, 8, 13, and 34; Table 2, at least one subtest, verbal compre-
hension and/or nonverbal performance, was in the normal range, sug-
gesting learning disabilities rather than ID. For three patients (patients
# 2, 8, and 34), a difference of 20 points or more between scores was
highlighted, leading to a diagnosis of dyspraxia. Furthermore, one child
(patient #13; 5.5 years) obtained scores within the normal range or the
low average on all subtests and the FSIQ, thus excluding ID (Table 2 and
Figure 4. To our knowledge, this is the first report of ASPM-mutated
patients with normal intelligence.

2.3.5 | Brain magnetic resonance imaging

Brain magnetic resonance imaging was performed in 39 out of 47
patients from the present study (83%) and has been reported in 50 out
of 638 patients (8%) in the literature. The most frequent anomalies
were: gyral simplification in 71 out of 89 cases (67% of the present
study and 90% of those examined in the literature), corpus callosum
abnormalities (shape, size, etc.) in 38 out of 89 cases (31% of the
present study and 52% in the literature), and middle to moderate
cerebellar and/or pontine hypoplasia in 26 out of 89 cases (15% of
the present study [including obvious vermis and cerebellar atrophy
in patient #21, who developed a late onset ceroid lipofuscinosis,
typically known to induce such atrophy] and 40% in the literature).

Such neuroradiological features are often undiscriminating in terms
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Coronal T1

Axial T1 Coronal T2

FIGURE 5 Typical and atypical neuroradiological features of ASPM-related primary microcephaly. A: Patient #26 (3 years). B: Patient #8 (3.7
years). C: Patient #23.1 (4.3 years). D: Age-matched control (4 years). From left to right: Sagittal T1-/coronal T1-/axial T1-/coronal T2-weighted
images. Drastic reductions in the volume of both hemispheres affecting the white matter and cerebral cortex and gyral simplification are the main
features of ASPM-related primary microcephaly (A, B, and C) as compared with age-matched controls. A contrario, the volume of the cerebellum
is preserved, as shown in the coronal view. Unilateral or bilateral polymicrogyria may be associated with ASPM-related primary microcephaly, as

shown in C (white arrows)

of diagnosis (Figure 5, since they are not specific either to MCPH
or to a specific type of MCPH. Some atypical features have also
been described: polymicrogyria in three cases (patient #23.1 with
extensive bilateral posterior polymicrogyria and (Marchal et al., 2011;
Passemard et al., 2009b)), and syringomyelia (patient #17.1). Con-
ventional imaging is thus not informative enough to orient diagnosis
or to predict prognosis, except if it shows migration disorders asso-
ciated with microcephaly, such as polymicrogyria, that may increase
the risk of epilepsy. The reduction of brain volume in humans pro-
vides evidence for early neuronal and glial defects. The existence of
polymicrogyria shows that migration disorders are associated with

proliferation defects in ASPM microcephaly.

2.4 | Genotype-phenotype correlation

The vast majority of ASPM mutations are nonsense or frameshift muta-
tions, predictive of the synthesis of a truncated protein. No 1Q is avail-
able for patients carrying the two missense mutations (Ahmad et al.,
2016; Darvish et al., 2010; Gul et al., 2006; Kraemer 2016). Most ASPM
mutations are private. Moreover, intra-familial variability is frequent.
In our opinion, the available data are still too scarce to make any cor-
relations, underlining the need for better characterization of this rare
disease.

3 | FUTURE PROSPECTS

Maijor efforts have been made for the molecular diagnosis of MCPH,
and the implementation of NGS in clinical diagnosis has identified
ASPM mutations as the principal cause of MCPH worldwide. Although
the vast majority of ASPM mutations likely result in the loss of function
of the protein product, systematic functional studies are still required
to prove the pathogenicity of the variants, and not only refine our
knowledge of the roles of this protein but determine whether all muta-
tions have the same consequences or whether some have differen-
tial impacts on the cell. The high number of patients reported is also
countered by the drastic lack of fine clinical descriptions, neurocog-
nitive investigations, and large-scale studies correlating anomalies of
brain morphology with neurodevelopmental, cognitive, and behavioral
characteristics. Hence, we have only limited knowledge regarding the
real intellectual abilities and their natural history in these patients, or
their functional cortical organization and cortical maps. To obtain new
insights into ASPM-specific brain defects, two different approaches to
cortical structure should be considered: structural brain imaging and
the neuropathological study of post mortem cases. Indeed, we have
shown that the 50% average reduction in brain volume is caused by a
major reduction of cortical gray and white matter volumes that are in

contrast to the relative preservation of the volume of the brainstem
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and cerebellum (Passemard et al., 2016). This massive reduction in cor-
tical volume and cortical surface preferentially affects the neocortex
and spares the hippocampus and mesiotemporal cortices, involved in
long-term memory tasks, concordant with the preserved mnesic func-
tions of these patients (Passemard et al., 2016). The autonomy and
social insertion of these patients as adults as well as genetic counsel-
ing for their families would benefit from improved knowledge of the
structural and cognitive characteristics of the brain.

Many biological questions remain regarding the mechanisms under-
lying ASPM-microcephaly in humans. Mouse models have confirmed
that the Aspm gene plays a major role in cortical expansion, promot-
ingthe symmetric proliferative divisions of neural progenitors. It is now
crucial to better understand the consequences of ASPM mutations, not
only in terms of neuronal production in affected patients, but also in
terms of the specification/differentiation of these neurons, their con-
nectivity and obviously their function. Improving synaptic plasticity in
these patients to enhance their cognitive abilities is a future scientific

challenge.
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