
The Balanced Minimum Evolution Problem

Daniele Catanzaro∗ Martine Labbé� Raffaele Pesenti†
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Abstract

A phylogeny is an unrooted binary tree that represents the evolutionary relationships of a set of n
species. Phylogenies find applications in several scientific areas ranging from medical research, to drug
discovery, to epidemiology, to systematics, and to population dynamics. In such applications the avail-
able information is usually restricted to the leaves of a phylogeny and is represented by molecular data
extracted from the analyzed species, such as DNA, RNA, amino acid or codon fragments. On the con-
trary, the information about the phylogeny itself is generally missing and is determined by solving an
optimization problem, called the Phylogeny Estimation Problem (PEP), whose versions depend on the
criterion used to select a phylogeny from among plausible alternatives. In this article we investigate
a recent version of the PEP, called the Balanced Minimum Evolution Problem (BMEP). We present a
mixed integer linear programming model1 to solve exactly instances of the BMEP and develop branching
rules and families of valid inequalities to further strengthen the model. Our results give perspective on
the mathematics of the BMEP and suggest new directions on the development of future efficient exact
approaches to solution of the problem.

Keywords: network design, combinatorial optimization, lagrangian relaxation, computational biology,
balanced minimum evolution, combinatorial inequalities, Kraft equality, Huffman coding.

1 Introduction

Molecular phylogenetics studies the hierarchical evolutionary relationships among species, or taxa, by means
of molecular data such as DNA, RNA, amino acid or codon sequences. These relationships are usually
described through a weighted tree, called a phylogeny (see Figure 1), whose leaves represent the observed
taxa, internal vertices the intermediate ancestors, edges the estimated evolutionary relationships, and edge
weights measures of the similarity between pairs of taxa (Catanzaro, 2009).

Phylogenies provide a fundamental information in analysis of many fine-scale genetic data, for this reason
their use has become more and more frequent, and sometimes indispensable, in a multitude of research fields
such as medical research, drug discovery, epidemiology, or population dynamics (Pachter and Sturmfels, 2007).
For example, the use of molecular phylogenetics was of considerable assistance to predict the evolution of
human influenza A (Bush et al., 1999), to understand the relationships between the virulence and the genetic
evolution of HIV (Ross and Rodrigo, 2002; Ou et al., 1992), to identify emerging viruses as SARS (Marra et al.,
2003), to recreate and investigate ancestral proteins (Chang and Donoghue, 2000), to design neuropeptides
causing smooth muscle contraction (Bader et al., 2001), or to relate geographic patterns to macroevolutionary
processes (Harvey et al., 1996).

The internal vertices of a phylogeny represent speciation events occurred throughout the evolution of the
observed taxa and are usually constrained to have degree three. The degree constraint has not necessarily
a biological foundation but it proves helpful when formalizing the evolutionary process of the analyzed taxa
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Figure 1: An example of a phylogeny of five taxa (A, B, C, D, E) and three internal vertices (1, 2, 3).

(see Catanzaro, 2010, p. 10). In fact, it does not introduce oversimplifications, as any m-ary tree can be
transformed into a phylogeny by adding “dummy” vertices and edges, e.g., see Figure 2. On the other hand,
the degree constraint helps in quantifying a-priori the number of edges and internal vertices of phylogeny
T ((2n − 3) and (n − 2), respectively), otherwise hard to determine. As a drawback, the degree constraint
implies that the overall number of possible phylogenies for a set of n taxa is (2n− 5)!!, being n!! the double
factorial of n (Catanzaro, 2010). This fact entails the use of an estimation criterion to select a phylogeny
from among plausible alternatives.

Different estimation criteria have been proposed in the literature on phylogenetics (see Catanzaro, 2010).
Each criterion adopts its own set of hypotheses whose ability to describe the evolutionary process of taxa
determines the gap between the real and the true phylogeny, i.e., the gap between the phylogeny that describes
the real evolutionary process occurred in nature and the phylogeny that one would obtain, under the given
the set of hypotheses, if all molecular data from taxa were available (Catanzaro, 2009). The criteria can
usually be quantified and expressed in terms of objective functions, giving rise to families of optimization
problems whose general paradigm can be stated as follows:

Problem. – The Phylogenetic Estimation Problem (PEP)

optimize f(T )
s.t. g(Γ, T ) = 0

T ∈ T

where T is the set of (2n− 5)!! phylogenies of Γ, f : T → R a function modeling the selected criterion, and
g : Γ × T → R a function correlating the set Γ to a phylogeny T . The phylogeny T ∗ that optimizes f and
satisfies g is referred to as optimal, and if T ∗ approaches the true phylogeny as the amount of molecular
data extracted from taxa increases, the corresponding criterion is said to be statistically consistent (Gascuel,
2005). The statistical consistency is an important property in molecular phylogenetics because it measures
the ability of a criterion to recover the true (and hopefully the real) phylogeny of the analyzed taxa.

In this article we investigate a recent version of the PEP, firstly introduced by Pauplin (2000) and called
the Balanced Minimum Evolution Problem (BMEP). Specifically, given a set Γ of n taxa, consider a n × n
symmetric distance matrix D, whose generic entry dij , i, j ∈ Γ, represents a measure of dissimilarity between
the corresponding pair of molecular data (Catanzaro, 2009). Then, the BMEP consists of finding a phylogeny
T that minimizes the following length function

L(T ) =
∑
i∈Γ

∑
j∈Γ\{i}

dij2−τij , (1)

where the topological distance τij represents the number of edges belonging to the path from taxon i to taxon
j in T (Catanzaro, 2009).

The optimal solution T ∗ to the BMEP is known to be statistically consistent (see Desper and Gascuel,
2004), for this reason at least solving exactly the BMEP is highly desirable. Unfortunately, the NP-hardness
of the BMEP limits the size of the instances analyzable to the optimum (Fiorini and Joret, 2010). At present,
instances of the BMEP containing more than 16 taxa constitute a hard computational challenge. To the best
of our knowledge, the only attempts aiming at solving exactly instances of the BMEP are restricted to the
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Figure 2: The 4-ary tree (on the left) can be transformed into a phylogeny by adding a dummy vertex and
a dummy edge (dashed, on the right).

use of implicit enumeration algorithms such as those recently proposed by Pardi (2009). Specifically, from
the combinatorial interpretation of the length function proposed by Semple and Steel (2004), Pardi derived
a number of lower bounds for the problem that combined with ingenious speed-up techniques led to an exact
algorithm able to tackle instances of the BMEP containing up to 20 taxa.

In this article we present an alternative and competitive exact approach to solution of the BMEP based
on mixed integer linear programming. Specifically, we investigate the properties of the topological distances
in order to provide a valid polynomial size formulation for the problem. Moreover, we develop families
of strengthening valid inequalities, branching rules, and lower bounds to improve the performances of the
formulation. Our results give perspective on the mathematics of the BMEP and suggest new directions on
the development of future efficient exact approaches to solve this problem.

2 Notations and Properties of the Topological Distances

We investigate here some properties of the topological distances that will turn out useful to describe a possible
valid formulation for the BMEP. Before that, we introduce some preliminary definitions that will prove useful
throughout the paper.

Similarly to Parker and Ram (1996), by a sequence, we mean an ordered collection of nonnegative real
values such as x = [x1, x2, . . . , xm], xj ∈ R0+ . Repetition of values in the sequence is permitted: the values
xj need not be distinct. The length of this sequence is m and for simplicity we also refer to the set of such
sequences with the vector notation Rm

0+ .
Given a phylogeny T of Γ and a taxon i ∈ Γ, we denote Γi as the set Γ\{i}, V as the set of (n−2) internal

vertices, and we define path-length sequence τi = [τij : j ∈ Γi] as the sequence of the topological distances
relative to the (n − 1) paths from taxon i to each taxon j ∈ Γi in T . Moreover, we define τ = [τi : i ∈ Γ]
as path-length sequence collection of the topological distances in T . For example, considered the phylogeny
showed in Figure 1, the path-length sequence from taxon ‘A’ is τA = [2, 3, 4, 4] and the path-length sequence
collection is τ = [τA, τB , τC , τD, τE ] = [[2, 3, 4, 4], [2, 3, 4, 4], [3, 3, 3, 3], [4, 4, 3, 2], [4, 4, 3, 2]].

We denote T as the set of all possible phylogenies for Γ, Θ as the set of path-length sequence collections
τ associated to the phylogenies in T , and, for each taxon i ∈ Γ, Θi as the set of all path-length sequences τi

associated to the phylogenies in T . Given a phylogeny T of Γ and a taxon i ∈ Γ, we denote di as the distance
vector {dij : j ∈ Γi} and î as the only vertex adjacent to i in T . For example, considered the phylogeny
showed in Figure 1, if i =‘A’ then î = 1. We assume that Γ is ordered and we use the notation i < j, for
some i and j ∈ Γ, to mean that taxon i precedes taxon j in Γ. Moreover, we write j = i + 1 to mean that j
immediately follows i in Γ.

We introduce now the main properties that characterize the topological distances of the phylogenies in
T . Since phylogenies are non-oriented graphs, the simplest property can be stated as follows:

τij = τji (2)

for all i, j ∈ Γ, i < j. We refer to equation (2) as the symmetry equality.
A nontrivial property on the topological distances can be derived by from the analogies between phyloge-

nies and Huffman trees (see Parker and Ram, 1996). Specifically, Huffman trees are rooted binary trees used
in coding theory to represent symbols belonging to an alphabet Γ̂. The leaves of a Huffman tree correspond to
the symbols in Γ̂, and the whole tree is usually described by means of path-length sequences ρ = [ρj : j ∈ Γ̂]
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from the root to each symbol j ∈ Γ̂. Hence, given a phylogeny T of Γ and a taxon i ∈ Γ, if we disregard the
edge (i, î) in T , the remaining tree can be seen as a Huffman tree rooted in î and coding the symbols in Γi.
Thus, the following proposition holds:

Proposition 1. (Kraft equality, Parker and Ram (1996)) Let Γ be a set of n taxa, and let i ∈ Γ. A sequence
of integers τi = [τij : j ∈ Γi] is a path-length sequence of a phylogeny T ∈ T if and only if the entries of τi

satisfy the following condition: ∑
j∈Γi

2−τij =
1
2
. (3)

A direct consequence of the Kraft equality is that the BMEP is polynomially solvable if dij = d, d ∈ R0+ , for
all i, j ∈ Γ. In fact, in this case, the Kraft equality implies that all phylogenies in T have the same length
L(T ) =

∑
i∈Γ

∑
j∈Γ\{i} dij/2τij = d

∑
i∈Γ

∑
j∈Γ\{i} 1/2τij = dn/2. Hence, any phylogeny in T is an optimal

solution to the BMEP.

Proposition 2. Let Γ be a set of n taxa. Then, for all the T ∈ T , the following equality holds:∑
i∈Γ

∑
j∈Γi

τij2−τij = (2n− 3). (4)

Proof. From Pauplin (2000), we know that, for any phylogeny T with edgeset E(T ) and for any set of edge
weights {we : e ∈ E}, the following condition holds:

∑
e∈E we =

∑
i∈Γ

∑
j∈Γi

δij2−τij , where δij is equal to
the sum of the weights we along the path from taxon i to taxon j, for all i ∈ Γ and j ∈ Γi. When setting
we = 1, for all e ∈ E(T ), we obtain δij = τij and the statement follows.

We refer to equation (4) as the third equality.

Proposition 3. (Triangular inequalities) Let Γ be a set of n taxa. Then, for all the T ∈ T , the following
inequalities hold:

τik + τkj ≥ τij + 2, ∀i, j, k ∈ Γ (5)

Proof. Let P (i, j) the set of edges of a phylogeny T defining the path from taxon i to taxon j. As T is a tree,
the following equality holds P (i, j) = (P (i, k)∪P (k, j))\(P (i, k)∩P (k, j)) (see Catanzaro et al., 2009). Then,
since P (i, k) ∩ P (k, j) ⊇ {k, k̂}, it holds that τij = |P (i, j)| = |(P (i, k)| + |P (k, j)| − 2|(P (i, k) ∩ P (k, j))| =
τik + τkj − 2|(P (i, k) ∩ P (k, j))| ≤ τik + τkj − 2.

With an abuse of notation, let us extend the definition of a path-length sequence collection also to the internal
vertices of a phylogeny T ∈ T . Then, the following property holds:

Proposition 4. (Four-point condition, Buneman (1974)) Let Γ be a set of n taxa, and let i, j, q, t ∈ Γ∪ V ,
i 6= j 6= q 6= t. Then, any phylogeny T ∈ T contains no triangle and satisfies the following condition:

τij + τqt ≤ max{τiq + τjt, τit + τjq}. (6)

Equation (6) derives from a restriction of a more general property relative to additive matrices described
in Buneman (1974). Proposition 1 completely characterizes the path-length sequences that belongs to Θi,
i.e., it states that the integrity of the topological distances τij and the Kraft equality (3) are necessary and
sufficient conditions for a sequence τi to belong to Θi. Similarly, it is easily seen that conditions (3) and (6)
completely characterize the path-length sequence collections that belong to Θ.

An interesting question is whether the restriction of the four-point condition to Γ instead of Γ∪V , together
with conditions (2), (3), and (4) suffice to completely characterize the path-length sequence collections in Θ.
At present we known that these conditions are necessary and independent even when we restrict our attention
to integral sequences. For example, given five taxa, a sequence collection τ whose path-length sequences are
τi = [3, 3, 3, 3], for all i ∈ Γ, satisfies (2), (3), and (6), but not (4). Hence, τ cannot be associated to any
phylogeny T of 5 taxa. We have also experienced that conditions (2), (3), (4), and (6) are sufficient to
guarantee that a sequence collection τ belongs to Θ whenever |Γ| ≤ 15. This fact led us to suspect that these
conditions could also be in general sufficient, however we do not have a formal proof of this conjecture so far.
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3 A MIP Formulation for the BMEP

The fundamental properties of the topological distances discussed in the previous section suggest as possible
approach to solution of the BMEP the use of mathematical programming. In this section we shall develop
a possible polynomial size mixed integer linear programming model for the BMEP. Moreover, we shall also
present a number of valid inequalities to further strengthen such a model.

Consider the following binary decision variables

xk
ij =

{
1 if τij = k
0 otherwise ∀i, j ∈ Γ ∪ V, i 6= j, ∀k ∈ L,

where L = {1, 2, 3, . . . , (n− 1)}. Similarly, consider the following set of binary decision variables introduced
to linearize the max function in (6):

yijqt =
{

1 if τit + τjq ≥ τiq + τjt

0 otherwise ∀ i, j, q, t ∈ Γ ∪ V, i 6= j 6= q 6= t.

Then, we can formulate the BMEP in terms of the following mixed integer programming model:

Formulation 1. Path-Length-4 point (PL4)

min z =
X
i∈Γ

X
j∈Γi

dij

0@ X
k∈L\{1}

2−kxk
ij

1A (7a)

s.t.
X
k∈L

xk
ij = 1 ∀ i 6= j ∈ Γ ∪ V (7b)

xk
ji = xk

ij ∀ i < j ∈ Γ ∪ V, k ∈ L (7c)X
j∈Γi

X
k∈L\{1}

2−kxk
ij =

1

2
∀ i ∈ Γ (7d)

X
k∈L\{1}

k2−k
X
i∈Γ

X
j∈Γi

xk
ij = (2n− 3) (7e)

X
k∈L

k(xk
ij + xk

qt) ≤
X
k∈L

k(xk
iq + xk

jt) + (2n− 2)yijqt ∀ i 6= j 6= q 6= t ∈ Γ ∪ V (7f)

X
k∈L

k(xk
ij + xk

qt) ≤
X
k∈L

k(xk
it + xk

jq) + (2n− 2)(1− yijqt) ∀ i 6= j 6= q 6= t ∈ Γ ∪ V (7g)

x1
ij = 0 ∀ i 6= j ∈ Γ (7h)X

i,j∈Γ∪V,i6=j

x1
ij = (2n− 3) (7i)

X
j∈V

x1
ij = 1 ∀ i ∈ Γ (7j)

X
j∈Γ∪V,i6=j

x1
ij = 3 ∀ i ∈ V (7k)

x1
ij + x1

il + x1
lj ≤ 2 ∀ i 6= j 6= l ∈ V (7l)

xk
ij + 1 ≥ x

(k−1)
il + x1

lj ∀ i 6= j ∈ Γ, l ∈ V, k ∈ L \ {1, n− 1} (7m)

xk
ij + x

(k−2)
ij + 1 ≥ x

(k−1)
il + x1

lj ∀ i 6= j 6= l ∈ Γ ∪ V, k ∈ L \ {1, 2, n− 1} (7n)

xk
ij ∈ {0, 1} ∀ i, j ∈ Γ ∪ V, k ∈ L (7o)

yijqt ∈ {0, 1} ∀ i 6= j 6= q 6= t ∈ Γ ∪ V. (7p)

Constraints (7b) impose that variables τij assume exactly one value in L. Constraints (7c) impose the
symmetry equalities (2). Constraints (7d) impose the Kraft equalities (3). Constraint (7d) imposes the
third equality (4). Constraints (7f) and (7g) impose the four-point inequalities (6). Constraints (7h)-(7n)
describe the structure of a phylogeny. Specifically, constraint (7h) imposes that no edge exists between taxa
in Γ. Constraint (7i) imposes that exactly (2n − 3) edges be present in a phylogeny. Constraints (7j) and
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Figure 3: An example of the most imbalanced phylogeny for n = 8.

(7k) impose the degree constraint on vertices of a phylogeny. Constraints (7l) prevent triangles. Finally,
constraints (7m) and (7n) link edge variables (xk

ij , k = 1) to path variables (xk
ij , k ≥ 2).

Interestingly, alternative exponential size formulations for the BMEP can be obtained either by removing
the four-point inequalities and imposing the standard anti-cycle constraints or by using a column generation
approach similar to the one proposed by Fischetti et al. (2002) for the minimum routing cost tree. However,
preliminary tests showed that these formulations perform worse than PL4, for this reason we do not describe
them in this article.

3.1 Strengthening Valid Inequalities

By exploiting the integrality of variables xk
ij a number of valid inequalities can be developed to strengthen

PL4.

Proposition 5. The inequality∑
j∈Γi

x
(n−1)
ij ≤ 2

∑
j∈Γi

xk
ij ∀ i ∈ Γ, k ∈ L \ {1, (n− 1)} (8)

is valid for PL4.

Proof. For a fixed phylogeny T ∈ T and taxon i ∈ Γ, either there exist exactly two paths in T from taxon i

having length (n− 1) or none. When
∑

j∈Γi
x

(n−1)
ij = 0, the inequality (8) reduces to

∑
j∈Γi

xk
ij ≥ 0 which is

trivially valid. When
∑

j∈Γ:j 6=i x
(n−1)
ij = 2, the inequality (8) reduces to

∑
j∈Γi

xk
ij ≥ 1 which is valid again

as the presence of at least one path of length (n− 1) implies the presence of a path of length (n− 2), (n− 3),
and so on.

Definition 1. Given a set Γ of n taxa and a taxon i ∈ Γ, a phylogeny T ∈ T is said a most imbalanced
phylogeny with respect to i if T includes two paths from i having length (n− 1).

As an example, Figure 3 shows the most imbalanced phylogeny for n = 8.

Proposition 6. The inequality ∑
i∈Γ

∑
j∈Γi

x
(n−1)
ij ≤ 8, (9)

n ≥ 4, is valid for PL4.
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Proof. It is easy to see that inequality (9) is trivially valid for PL4 as any imbalanced phylogeny of four or
more taxa presents exactly eight paths having length (n − 1) and any other phylogeny present no paths of
length (n− 1).

Proposition 7. The inequality

x2
ij − 1 ≤ xk

iq − xk
jq ≤ 1− x2

ij , ∀ i, j, q ∈ Γ, ∀ k ∈ L \ {1}, (10)

is valid for PL4.

Proof. When x2
ij = 0 inequalities (10) are trivially valid for PL4. When x2

ij = 1, taxa i and j are adjacent to
the same internal vertex, hence τiq = τjq for all q ∈ Γi ∩ Γj , thus (10) is again valid.

Proposition 8. The inequality
m+l−2∑

k = max{2, |m− l|}

xk
iq + 1 ≥ xm

ij + xl
jq, ∀ i, j, q ∈ Γ, ∀ m, l ∈ L \ {1} (11)

is valid for PL4.

Proof. By (7b), the left-hand-side of (11) can assume only values 1 or 2. When the left-hand-side of (11) is
equal to 2, (11) is trivially valid for PL4. When the left-hand-side of (11) is equal to 1, τiq is either greater
than m + l − 2 or less then |m − l|. Then, by the triangular inequalities, at most one between xm

ij and xl
jq

can be equal 1, thus (11) is again valid for PL4.

Proposition 9. Let q ∈ N, q ≥ 2. Then, if n > 2q−1 + 1, the following inequality∑
j∈Γi

q∑
k=2

2q−kxk
ij ≤ 2q−1 − 1 ∀i ∈ Γ (12)

is valid for PL4.

Proof. Multiplying the Kraft equality by 2q we obtain that∑
j∈Γi

q∑
k=2

2q−kxk
ij = 2q−1 −

∑
j∈Γi

n−1∑
k=q+1

2q−kxk
ij ≤ 2q−1.

Note that in any feasible solution either
∑

j∈Γi

∑q
k=2 2q−kxk

ij = 0 or
∑

j∈Γi

∑q
k=2 2q−kxk

ij 6= 0. In the former
case (12) is valid for PL4. In the latter case, if n > 2q−1+1, it holds that

∑
j∈Γi

∑n−1
k=q+1 2q−kxk

ij > 0 otherwise
we would have a contradiction of (3). Hence, as the coefficients of

∑
j∈Γi

∑q
k=2 2q−kxk

ij are integers and 2q−1

is integer we have that
∑

j∈Γi

∑q
k=2 2q−kxk

ij ≤ 2q−1 − 1 and (12) holds valid again.

Proposition 10. Fixed a taxon i ∈ Γ, the following inequalities are valid for PL4:

1.
∑

k∈L(k − 1)xk
ij ≥ 1, for all j ∈ Γi and n ≥ 6;

2.
∑

k∈L(k − 1)xk
ij1

+
∑

h∈L(h− 1)xh
ij2
≥ 3, for all j1, j2 ∈ Γi, j1 6= j2, and n ≥ 7;

3.
∑

j∈Γi

∑
k∈L(k − 1)xk

ij ≤
n(n−1)

2 ;

4.
∑

j∈Γi

∑
k∈L(k − 1)xk

ij ≥ 2c(r + 1) + (n− 1− 2c)r, for all r ≥ 1, 0 < c < 2r, and n = 2r + c + 1;

5.
∑h−1

h=1 Fh−1

∑
k∈L(k−1)xk

ijh
≥ Fn+3−3, n ≥ 4, where Fh is the h-th element of the Fibonacci sequence,

with the convention that F0 = 1, and jh indicates the h-th taxon in Γi according any arbitrary sorting
of taxa in Γi.

Proof. The statement can be easily derived from Propositions 3.4, 3.5 and Theorem 3.8 of Maurras et al.
(2010). Specifically, the two propositions and the theorem describe some facets of the convex hull of Huffman
trees in terms of the path-lengths from the root of the tree to the leaves. We recall that, given a phylogeny T
of Γ and a taxon i ∈ Γ, if we disregard edge (i, î) in T , the remaining tree can be seen as a Huffman tree rooted
in î and coding the remaining (n− 1) taxa in Γi. Hence, by definition of variables xk

ij and constraint (7b), it
is easy to see that the length of the path from î to each taxon j ∈ Γi, expressed in terms of variables xk

ij , is
equal to

∑
k∈L(k − 1)xk

ij . Note that the factor (k − 1) is due to the fact that edge (i, î) is disregarded.
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Figure 4: An example of imbalancing exchange between path-length sequences τ0
i = [2,4,4, 4, 5, 6,6] (phy-

logeny on the left) and τ1
i = [2,3, 4, 5, 6,7,7] (phylogeny on the right).

3.2 Advanced Strengthening Valid Inequalities

By exploiting the analogies between phylogenies and Huffman trees (see Parker and Ram, 1996), a further
set of strengthening valid inequalities for PL4 can be derived from the propositions presented in this section
by replacing τij with

∑
k∈L kxk

ij and 2−τij with
∑

k∈L 2−kxk
ij . Before proceeding, we introduce the following

operators on sequences which will prove useful throughout this section:

1. ascending sort, in symbols −→x = [x put in ascending order];

2. descending sort, in symbols ←−x = [x put in descending order].

Moreover, given a set Γ of n taxa and a taxon i ∈ Γ, we denote γi = [2, 3, 4, . . . , (n−3), (n−2), (n−1), (n−1)]
as the most imbalanced path-length sequence. It is easy to see that if T is a most imbalanced tree with respect
to i then γi = −→τ i. For some T ∈ T and taxon i ∈ Γ, consider the path-length sequence τi. Assume that −→τ i is
such that its k-th and (k+1)-th entries, k < n−2, are equal, i.e., −→τ i = [. . . , p, p, . . . , q], with p ≤ q < (n−1).

Definition 2. An imbalancing exchange on τi is the operation that returns the sequence

τ1
ij =


−→τ ij j = 1, . . . , k − 1
p− 1 j = k
−→τ i(j+1) j = k + 1, . . . , (n− 3)
q + 1 j = (n− 2), (n− 1).

Figure 4 shows an example of imbalancing exchange.

Proposition 11. (Parker and Ram, 1996) Consider a phylogeny T ∈ T and a taxon i ∈ Γ. Either −→τ i is
equal to γi or −→τ i has at least two identical entries, say the k-th and the (k+1)-th ones, different from (n−1).
In the latter case, there exists τ1

i associated to a phylogeny T 1 ∈ T such that τ1
i is obtained from τi by means

of an imbalancing exchange.

The repeated application of previous proposition generates a finite sequence of imbalancing exchanges leading
from τi to γi.

Consider a taxon i ∈ Γ, a path-length sequence τi, and an associated weight vector v = {vj : j ∈ Γi}.
Let τ1

i be a path-length sequence obtained through an imbalancing exchange on τi. Then, we associate the
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following weight vector v1 = {v1
j : j ∈ Γi} to τ1

i :

v1
j =


←−v j j = 1, . . . , k
←−v j+1 j = k + 1, . . . , (n− 2)
←−v k+1 j = (n− 1).

The following proposition holds:

Proposition 12. Given a taxon i ∈ Γ and a weight vector v = {vj : j ∈ Γi}, the following inequality holds
for all path-length sequences τi ∈ Θi: ∑

j∈Γi

vj2−τij ≤
∑
j∈Γi

←−vj2−γij (13)

where γij is the j-th element of the most imbalanced path-length sequence γi = [2, 3, 4, . . . , (n−3), (n−2), (n−
1), (n− 1)].

Proof. Consider any path-length sequence τ0
i ∈ Θi and note that the following condition holds:∑

j∈Γi

vj2−τij ≤
∑
j∈Γi

←−v 0
j2
−−→τ 0

ij . (14)

If −→τ 0
i = γi then the statement trivially holds. If −→τ 0

i 6= γi, consider a path-length sequence τ1
i obtained from

τ0
i through a imbalancing exchange. Then, it holds that∑

j∈Γi

←−v 0
j2
−−→τ 0

ij ≤
∑
j∈Γi

v1
j 2−

−→τ 1
ij ≤

∑
j∈Γi

←−v 1
j2
−−→τ 1

ij =
∑
j∈Γi

←−v 0
j2
−−→τ 1

ij . (15)

In fact, the first inequality in (15) holds as∑
j∈Γi

←−v 0
j2
−−→τ 0

ij −
∑
j∈Γi

v1
j 2−

−→τ 1
ij =

= (2−p←−v 0
k + 2−p←−v 0

k+1 + 2−q←−v 0
n−1)− (2−(p−1)←−v 0

k + 2−(q+1)(←−v 0
k+1 +←−v 0

n−1)) =

= 2−p←−v 0
k+1 − (2−(p−1) − 2−p)←−v 0

k + (2−q − 2−(q+1))←−v 0
k+1 − 2−(q+1)←−v 0

n−1 =

= 2−p (←−v 0
k+1 −←−v 0

k︸ ︷︷ ︸
≤0

) + 2−(q+1) (←−v 0
n−1 −←−v 0

k+1)︸ ︷︷ ︸
≤0

≤ 0.

Similarly, the last equality in (15) holds as v0 and v1 include the same entries, possibly only in a different
order. Now, if −→τ 1

i = γi the statement is proved. Otherwise, redefine τ0
i = −→τ 1

i and v0 = ←−v 1 and iterate
the above argumentation until −→τ 1

i = γi. Note that, due to Proposition 11, the number of such iterations is
finite.

For any S ⊂ Γi, let vS be the incidence vector of S. Then, an immediate consequence of Proposition 12 is
that the following inequalities hold:∑

j∈Γi
vS

j 2−τij ≤
∑|S|

k=1 2−(k+1) = 2−1 − 2−(|S|+1)∑
j∈Γi
−vS

j 2−τij ≤ −(2−(n−1) +
∑|S|−1

k=1 2(−n+k)) = −2(−n+|S|)

i.e., 2(−n+|S|) ≤
∑

j∈Γi
vS

j 2−τij ≤ 2−1 − 2−(|S|+1). Note that, when S = Γi, Proposition (12) implies the
Kraft equality.

Definition 3. Given a phylogeny T of Γ and a subset S ⊆ Γ, a cycle through S, denoted as CS, is a sequence
of paths between pair of taxa in S that forms a closed walk in which each taxon in S is visited only once, each
used edge is visited twice, and taxa in Γ \ S are not visited.
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As an example, if S = Γ, a possible cycle for the phylogeny shown in Figure 1 is {eA1, e1B , eB1, e13, e3E ,
eE3, e32, e2C , eC2, e2D, eD2, e23, e31, e1A}. The topological length of a cycle CS is equal to the number of
edges defining the closed walk and is denoted by length(CS). We denote C∗

S as a cycle of minimal length and
by length(C∗

S) its length. We understand that CS is identified by the ordered set of pairs of taxa delimiting
the paths composing the the closed walk, e.g., CS = {(i1, i2), (i2, i3), (i3, i1)} defines the closed walk on T
from taxon i1 to taxon i2 to taxon i3 and, finally, back to taxon i1.

For any given S ⊆ Γ, length(C∗
S) is equal to twice the number of edges of the smallest subtree Y of

T having as leaves taxa in S. In turn, Y has at least 2(|S| + 1) − 4 = 2|S| − 2 edges, as it must describe
phylogenies whose leaves are taxa in S. Y is minimal when the phylogeny T presents a bridge edge (j, k) such
that, if we remove edge (j, k) from T , we obtain two rooted binary trees: one rooted in j and whose leaves
are taxa in S, and another rooted in k and whose leaves are taxa in Γ \ S. Hence, length(C∗

Γ) = 2(2n− 3),
for all T ∈ T and, in general, length(C∗

S) ≥ 4(|S| − 1), for S ⊂ Γ and for all T ∈ T . This insight justifies the
following proposition.

Proposition 13. (Cycle inequalities) For all τ ∈ Θ, the following inequality holds∑
(i,j)∈CS

τij ≥ 4(|S| − 1), ∀CS , ∀S ⊂ Γ. (16)

Given a sequence σ determining the existence of an inequality of type (16) that separates σ from Θ is generally
not easy. However, many heuristics for the Traveling Salesman Problem (TSP) (Garey and Johnson, 2003)
can be employed to determine a cycle CS suboptimal for

∑
(i,j)∈CS

τij .

Hereafter, we say that two taxa of a phylogeny T are twins if they share their immediate common ancestor
(e.g., taxa A and B in Figure 1).

Proposition 14. (2-Tree inequality) Given a phylogeny T of Γ, the following inequality holds

2−τik − 2−τjk ≤ 2−2(1− 4 · 2−τij ) (17)

for any three distinct taxa i, j, and k in Γ.

Proof. If it holds that 2−τij = 2−2 then it follows that i and j are twins T , hence τik = τjk and (17) holds
as an equality. Alternatively, if 2−τij ≤ 2−3 then 2−2(1 − 4 · 2−τij ) ≥ 2−3. In this case two situations may
occur: either 2−τik = 2−2 or 2−τik ≤ 2−3. If 2−τik = 2−2 then it follows that i and k are twins in T , hence
2−τjk = 2−τij and (17) holds again as an equality. Differently, if 2−τik ≤ 2−3 then (17) trivially holds.

A possible extension of the 2-Tree inequality can be obtained as follows.

Proposition 15. (3-Tree inequality) Let S be a proper subset of Γ containing three distinct taxa i1, i2, and
i3, and let k be a taxon not in S. Then, given a phylogeny T of Γ, the following inequality holds:

2−τi1k − 2−τi2k − 2−τi3k ≤ 2−1 − 2−τi1i2 − 2−τi2i3 − 2−τi1i3 . (18)

Proof. Note first that in a phylogeny T of at least four taxa the path-lengths relative to taxa in S cannot
be all equal to 2. Moreover, note also that the sum 2−τi1i2 + 2−τi2i3 + 2−τi1i3 in T is either equal to 2−1 or
assumes values less than or equal to 2−2 + 2−3. Specifically, the value 2−1 is obtained only when two taxa
in S are twins and the path-lengths from the twins to the third taxon are equal to 3 (consider e.g., taxa A,
B and E in Figure 1). Alternatively, a value less than or equal to 2−2 + 2−3 is obtained if: (i) two taxa in
S are twins and the path-lengths from the twins to the third taxon are greater than or equal to 4, in which
case we would have 2−τi1i2 + 2−τi2i3 + 2−τi1i3 ≤ 2−2 + 2−4 + 2−4 = 2−2 + 2−3; (ii) no pair of taxa in S are
twins, in which case we would have 2−τi1i2 + 2−τi2i3 + 2−τi1i3 ≤ 2−3 + 2−3 + 2−3 = 2−2 + 2−3. Hence, the
minimum value of the right-hand-side of (18) is 0. If this circumstance occurs as i1 and i2 (or i1 and i3) are
twins, then 2−τi1k = 2−τi2k (or 2−τi1k = 2−τi3k), hence (18) holds since its left-hand-side is negative. If the
right-hand-side of (18) is null as i2 and i3 are twins and 2−τi1i2 = 2−τi1i3 = 2−3, then the path-length from
each taxon k 6∈ S to i2 and i3 contains an edge more than the path-length from k to i1 (consider, e.g., Figure
1 in which i1 = E, i2 = A, i3 = B, and k = D). Hence, we have 2−τi2k = 2−τi3k = 2−12−τi1k and (18) holds
as an equality. When the right-hand-side of (18) is greater than 0, its value is at least equal to 2−3. Then,
if 2−τi1k ≤ 2−3, (18) trivially holds. When the right-hand-side is strictly greater than zero and 2−τi1k = 2−2

then i1 and k are twins, hence 2−τi2k = 2−τi1i2 and 2−τi3k = 2−τi1i3 . As 2−τi2i3 ≤ 2−2, (18) holds again.
Finally, when 2−τi2i3 = 2−2 (18) holds as an equality.
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With analogous argumentations we can prove that the 4-Tree inequality, involving a taxon k not in
S = {i1, i2, i3, i4}, is:

2−τi1k − 2−τi2k − 2−τi3k − 2−τi4k ≤ 2−1 + 2−3 − 2−τi1i2 − 2−τi2i3 − 2−τi3i4 − 2−τi1i4 . (19)

4 Testing the Performances of PL4

In order to evaluate the efficiency of our exact approach to solution of the BMEP we tested the performances
of PL4 on a number of real aligned DNA datasets, namely: “Primates12/898”, a dataset of 12 sequences,
898 characters each from primates mitochondrial DNA; “RbcL55/1314”, a dataset of 55 sequences, 1314
characters each of the rbcL gene; “Rana64 /1976”, a dataset of mitochondrial DNA containing 64 taxa of
1976 characters each from ranoid frogs; “M17/2550”, “M43/2086”, “M18/8128”, “M82/2062”, “M62/3768”,
five datasets of respectively 17 sequences of 2550 characters each from insects, 43 sequences of 2086 characters
each from mammals, 18 sequences of 8128 characters each from cetacea, 82 sequences of 2062 characters each
from fungi, and 62 sequences of 3768 characters each from hyracoidae; finally, “SeedPlant25/19784”, a dataset
of 25 sequences of 19784 characters each from pinoles. From each dataset we have extracted the first 20 taxa
(or all taxa if n < 20) and built the associated n×n distance matrices by using the General Time Reversible
(GTR) model of DNA sequence evolution in which all the gaps were treated as ‘N’. The estimation method
used to obtained GTR distances is described in Catanzaro et al. (2006). Moreover, from each distance matrix
we have extracted the corresponding k-th leading principal submatrices, k ∈ [10, . . . ,max], where max is 12
for Primates12, 17 for M17, 18 for M18, and 20 for the remaining datasets, generating therefore an overall
number of 167 real instances of the BMEP. Datasets and corresponding distance matrices can be found in
the online supplement for codes and data.

We implemented PL4 in ANSI C++ by using Xpress Optimizer libraries v18.10.00. The experiments
run on a Pentium 4, 3.2 GHz, equipped with 2 GByte RAM and operating system Gentoo release 7 (kernel
linux 2.6.17). During the runtime of PL4 we activated the Xpress automatic cuts, the Xpress pre-solving
strategy, and used the Xpress primal heuristic to generate the first upper bound for the problem. Moreover,
we used a branch-and-cut approach to add dynamically the four-point, the cycle, the triangular, and the
r-Tree inequalities. Actually, already for n = 12 the number of inequalities introduced in the formulation
just by the four-point condition approaches about a million, slowing down sensibly the simplex solver. We
assumed one hour as maximum runtime per instance and rescaled the objective function by a factor 2n in
order to reduce possible numerical stability problems.

In order to obtain a measure of the performances of PL4 we considered, as reference, the performances
of a simplified version of Pardi (2009) exact approach to solution of the BMEP running on the same in-
stances. Specifically, Pardi’s approach is based on a stepwise addition strategy (see Felsenstein, 2004), a
peculiar implicit enumeration procedure that can be resumed as follows. For any subset S ⊆ Γ, define a
subphylogeny Y (S) as any phylogeny that involves only taxa in S. Let E(Y (S)) be the edgeset of Y (S).
Moreover, for a given subphylogeny Y (S), taxon i ∈ Γ \ S, and edge (r, s) ∈ E(Y (S)), define a branching as
the operation

Y (S ∪ {i}) = Y (S)⊕(r,s) i = (S ∪ {i}, (E(Y (S)) \ {(r, s)}) ∪ {(r, î), (̂i, s), (̂i, i)})

i.e., as the process that returns the subphylogeny Y (S ∪ {i}) obtained inserting a new edge (̂i, i) on the
edge (r, s) of Y (S). Figure 5 shows an example of branching.

We say that a phylogeny T is generated from Y (S) if T is obtained by recursive branching of Y (S).
Finally, consider the following subroutines:

Head(t, Γ) returning the t-th element of set Γ.

Bound(S, Y (S), T ) computing a lower bound on the length of the shortest phylogeny T̂ that can be generated
from Y (S). If the lower bound is less than the length of the currently optimal phylogeny T the subroutine
returns TRUE, FALSE otherwise.

Search(S, Y (S), T ) recursively branching the subphylogeny Y (S) in search of the shortest phylogeny T̂
that can be generated from Y (S) (see Algorithm 1). Search() interrupts its recursion whenever
Bound(S, Y (S), T ) return FALSE, in which case we say that the phylogenies that can be generated
from Y (S) are pruned. Alternatively, Search() continues the branching process until all the phylogenies
generable from Y (S) are computed.
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Figure 5: An example of branching: Y ({A,B, C, D, E, F}) = Y ({A,B,C, D, E})⊕(E,3) F

Then, the stepwise addition strategy can be outlined as in Algorithm 2. Specifically, the algorithm initially
sets the currently optimal phylogeny T to an empty tree (NULL) and fixes its length to +∞. Subsequently, it
generates the only possible subphylogeny consisting of the first three taxa in Γ and finally calls the subroutine
Search() to find the optimal phylogeny to BMEP. We show in Figure 6 some of the first subtrees explored
by the subroutine Search().

Pardi (2009) investigated a number of possible combinatorial lower bounds for the BMEP and developed
several computational techniques, inspired by Desper and Gascuel (2002), that may significantly speed-up
computations. The implementation of those techniques is out the scope of the article, thus in our experiments
we just considered a simplified version of Pardi’s procedure in which no speed-up techniques was implemented.
As regards to the lower bound for the problem, we used the one proposed in (7.3.7) from Pardi (2009), which
can be stated as follows:

L(T ∗) ≥ L(Y (S)) +
∑
f /∈S

min
i, j ∈ S :

i < j < f

1
2
(dif + dfj − dij) ∀ S ⊆ Γ.

In fact, it is possible to prove that the change induced in the length of a subphylogeny Y (S) by means of a

Search(S, Y (S), T );1

Input : S: a subset of taxa
Y (S): a subphylogeny
T : current optimal phylogeny

Output : A phylogeny T solution of the BMEP
if Bound(S, Y (S), T ) then2

if S = Γ then3

T = Y (S);4

else5

set i = Head(|S|+ 1, Γ);6

for e ∈ E(T (S)) do7

Search(S, Y (S)⊕e i, T );8

return T ;9

Algorithm 1: Subroutine Search().
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Figure 6: An example of some of the first subtrees explored by the implicit enumeration procedure.

branching is the average weight of many terms 1
2 (dif + dfj − dij). Hence, a very simple lower bound for the

BMEP can be obtained by taking the sum of the minima of these terms. The reader interested in the issue
is referred to Pardi (2009) for more details.

The results obtained from the analysis of the considered instances are summarized in Table 1, in which
the instances are sorted and listed in function of their number of taxa. Specifically, Table 1 shows the
numerical results obtained by PL4 and Algorithm 2 using Pardi’s lower bound with respect to the running
time (expressed in seconds) taken to solve a generic instance of the BMEP, the number of branches needed,
and the gap (expressed in percentage) i.e., the difference between the optimal value found and the value of
linear relaxation (or Pardi’s lower bound) at the root node of the search tree, divided by the optimal value.
The symbol > 3600 is used in the columns “Time” to highlight that the run relative to a specific instance
took longer than 1 hour. In this circumstance the values relative to the columns “Branches” and “Gap”
refer to the number of branches performed within 1 hour and the best upper bound found within 1 hour,
respectively.

As general trend, Table 1 shows that PL4 is a tight formulation for the problem, being characterized

Implicit Enumeration Procedure;1

Input : Γ: the set of taxa
Output : A phylogeny T solution of the BMEP
set T = NULL;2

set S = {Head(1, Γ),Head(2, Γ),Head(3, Γ)};3

let Y (S) be the only subphylogeny that can be made with the three taxa in S;4

T = Search(S, Y (S), T );5

return T ;6

Algorithm 2: Implicit enumeration procedure.

13



everywhere by very small number of branches and gap values. However, the running time performances of
PL4 result very poor causing, in many cases, the inability of the formulation to tackle instances containing
more than a dozen of taxa within the limit time. This result may appear in contrast with the trend showed
by the number of branches and gap values. Numerical experiments have shown that the cause of the slowness
of PL4 is due to the simplex execution. Specifically, the simplex execution becomes extremely onerous in
terms of computing time when valid inequalities and other constraints different from the Kraft, the unicity,
and the third equalities are considered. Actually, if from one hand their presence increases the quality of
the root relaxation, from the other hand such an increment is not sufficiently to compensate the overhead
imposed to the simplex algorithm. In order to improve the runtime performances of PL4, in the next section
we shall merge Algorithm 2 with PL4, developing a set of possible branching rules and lower bounds for the
problem.

5 Improving the Performances of PL4

It is worth noting that the runtime taken by Algorithm 2 depends on how many subphylogenies are generated
by the subroutine Search() and on how efficiently this task is performed. In turn, the number of subphylo-
genies generated by the subroutine Search() and the efficiency of the generation process depend on: (i) the
quality of the bound provided within the subroutine Bound(); (ii) the runtime of subroutine Bound(); (iii)
the order in which taxa are extracted from Γ by subroutine Head(); and (iv) the order in which the edges
of each Y (S) are branched. Aspects (i) and (ii) have a major impact on the performances of Algorithm 2,
for this reason in the rest of the section we shall focus mainly on them.

Given a subphylogeny Y (S), a possible strategy for designing a subroutine Bound() having a good trade-
off between the quality of the bound provided and time taken to compute it, consists of determining which
values the topological distances τij may assume in the phylogenies generated from Y (S). To this end, consider
a subset S ⊆ Γ, a subphylogeny Y (S), and two taxa q and t ∈ Y (S). Let σqt be the topological distance
between taxa q and t in Y (S). Then, the following three situations may occur:

1. Taxa i and j ∈ S. In this case
σij ≤ τij ≤ σij + |Γ \ S|. (20)

These inequalities hold as, on each of the remaining |Γ \ S| branchings needed to obtain a complete
phylogeny for Γ, the distance between i and j increases by one only if the branched edge is on the paths
between i and j.

2. Taxa i ∈ S and j ∈ Γ \ S. In this case

2 ≤ τij ≤ max
q∈S
{σiq}+ |Γ \ S|. (21)

Specifically, τij = 2 is achieved when edge (ĵ, j) is inserted on the edge (̂i, i) and the two edges are not
branched any more. Differently, τij = maxq∈S{σiq}+ |Γ \ S| is achieved when (ĵ, j) is inserted on the
edge (q̂∗, q∗), being q∗ = arg maxq∈S{σiq}, and the subsequent branchings are always performed on an
edge belonging to the path between i and j.

3. Taxa i and j ∈ Γ \ S. In this case

2 ≤ τij ≤ max
t,q∈S
{σtq}+ |Γ \ S|. (22)

Specifically, τij = 2 is achieved when edge (ĵ, j) is inserted on the edge (̂i, i) and the two edges are
not branched any more. Differently, τij = maxt,q∈S{σtq} + |Γ \ S| is achieved when: (̂i, i) is inserted
on the edge (t̂∗, t∗); (ĵ, j) is inserted on the edge (q̂∗, q∗), being (t∗, q∗) = arg maxt,q∈S{σtq}; and the
subsequent branchings are always performed on an edge belonging to the path between i and j.

Note that, when S = Γ the above bounds reduce trivially to the equality τij = σij for all i ∈ Γ and j ∈ Γi.
Hence, given a subphylogeny Y (S), S ⊆ Γ, a lower bound on the length L(T̂ ) of the shortest phylogeny
T̂ generated from Y (S) can be obtained by solving the linear relaxation of the following mixed integer
programming problem:

14



PL4+All Strengthening Valid Inequalities Algorithm 2 with Pardi’s lower bound
Dataset Number of taxa Optimum Time (sec.) Branches Gap (%) Time (sec.) Branches Gap (%)

Primates12
10 124.9682159 9.64 9 0.84 0.04 1787 12.80
11 332.8341675 127.65 257 1.19 0.33 13915 13.34
12 802.5893555 155.32 37 1.23 1.27 47596 13.47

M17

10 105.1336746 258.5 851 0.66 0.18 9538 8.91
11 261.2330627 2679.3 3986 0.75 3.42 133890 10.02
12 541.632019 > 3600 n.a. 0.71 8.75 321885 10.63
13 1181.597656 > 3600 n.a. 0.99 60.18 1604601 11.41
14 2408.065674 > 3600 n.a. 1.00 71.56 2326884 11.59
15 4998.294922 > 3600 n.a. 0.99 140.14 4462772 11.86
16 10225.56055 > 3600 n.a. 1.00 473.07 14093125 12.84
17 20788.11133 > 3600 n.a. 1.02 710.4 20537205 13.03

M18

10 190.3310699 130.76 765 0.98 0.94 45897 21.70
11 396.9421692 580.27 823 1.36 5.35 229968 25.94
12 805.9367065 > 3600 n.a. 1.46 7.51 310081 26.41
13 1758.11145 > 3600 n.a. 1.97 243.5 7449682 31.12
14 3599.677734 > 3600 n.a. 2.43 1306.67 36498904 33.03
15 7746.217773 > 3600 n.a. 2.32 > 3600 91389391 35.90
16 16006.95703 > 3600 n.a. 2.64 > 3600 80815699 37.64
17 32589.09766 > 3600 n.a. 3.22 > 3600 75306196 41.28
18 66423.09375 > 3600 n.a. 3.12 > 3600 64292767 42.93

SeedPlant25

10 91.45757294 86.34 457 3.49 0.05 2538 27.84
11 206.2500763 591.76 1327 3.39 0.16 7000 27.92
12 427.815918 457.68 155 3.26 0.3 12064 28.75
13 943.774292 > 3600 n.a. 3.25 2.74 88757 30.54
14 1929.218628 > 3600 n.a. 3.07 3.68 116417 30.49
15 4085.763428 > 3600 n.a. 2.79 8.05 237472 30.19
16 8353.457031 > 3600 n.a. 3.81 117.21 2693382 35.12
17 17314.42969 > 3600 n.a. 4.23 2113.09 39231198 39.02
18 36156.52734 > 3600 n.a. 4.93 > 3600 61292490 41.91
19 75261.32031 > 3600 n.a. 4.85 > 3600 60305931 42.72
20 167026.4375 > 3600 n.a. 8.53 > 3600 43270865 43.98

M43

10 105.0199661 71.65 207 0.73 0.04 2167 8.67
11 209.282196 333.02 631 1.25 0.06 3292 9.14
12 434.3260803 970.82 577 1.01 0.78 31398 10.72
13 895.4237061 > 3600 n.a. 1.24 1.7 64081 11.04
14 1808.969604 > 3600 n.a. 1.27 5.58 189992 11.94
15 3965.234131 > 3600 n.a. 0.99 92.35 2151347 13.37
16 8219.834961 > 3600 n.a. 0.97 213.99 5938295 13.90
17 16798.75977 > 3600 n.a. 1.20 411.07 10708997 14.33
18 35383.16016 > 3600 n.a. 0.88 1580.28 36626921 14.95
19 71769.90625 > 3600 n.a. 0.91 2116.88 47647147 15.02
20 157472.4219 > 3600 n.a. 0.93 > 3600 75184251 15.95

RbcL55

10 152.4825439 436.26 1657 1.21 0.53 26276 13.05
11 328.6446838 771.97 1578 1.11 1.54 67269 13.20
12 685.9721069 > 3600 n.a. 1.44 5.8 226756 14.02
13 1502.870361 > 3600 n.a. 1.71 292.55 8961512 16.74
14 3094.887939 > 3600 n.a. 1.76 2751.94 73837168 19.21
15 6448.258789 > 3600 n.a. 1.91 > 3600 96810253 19.95
16 13455.29297 > 3600 n.a. 1.88 > 3600 87850516 22.05
17 27804.24609 > 3600 n.a. 2.28 > 3600 76687705 25.35
18 56237.69141 > 3600 n.a. 2.32 > 3600 67207122 28.54
19 115898.8203 > 3600 n.a. 3.25 > 3600 62230289 31.11
20 235713.0938 > 3600 n.a. 3.39 > 3600 54387017 34.98

M62

10 163.8762207 21.86 67 0.51 0.03 1476 5.26
11 350.4248047 138.67 263 0.89 0.09 3836 5.56
12 753.8209839 618.25 365 1.37 0.28 8902 5.81
13 1580.764282 2559.54 589 1.51 1.1 35144 6.35
14 3345.563965 > 3600 n.a. 1.61 6.09 168507 6.76
15 7161.077637 > 3600 n.a. 1.76 14.46 374111 6.67
16 14980.69238 > 3600 n.a. 1.70 29 713416 6.67
17 31293.08203 > 3600 n.a. 1.67 163.28 3466812 7.04
18 66187.97656 > 3600 n.a. 1.46 > 3600 58204356 8.54
19 146516.7031 > 3600 n.a. 2.02 > 3600 56001704 8.98
20 298416.5938 > 3600 n.a. 2.00 > 3600 56996243 9.16

Rana64

10 41.22337723 87.45 399 1.36 0.04 2230 7.91
11 87.16202545 818.27 1675 4.19 0.15 6877 9.18
12 183.0419006 1306.58 801 3.76 1.43 54820 12.45
13 382.6997375 > 3600 n.a. 4.39 3.56 131909 14.09
14 773.8104248 > 3600 n.a. 4.68 8.22 285096 15.75
15 1603.119629 > 3600 n.a. 5.58 27.36 652079 17.04
16 3290.744873 > 3600 n.a. 6.98 87.25 2206517 19.29
17 6745.447266 > 3600 n.a. 7.22 109.29 2664998 19.16
18 15435.26758 > 3600 n.a. 4.32 1032.09 19093712 19.3
19 36052.45312 > 3600 n.a. 3.95 > 3600 56570558 17.53
20 81194.32031 > 3600 n.a. 3.76 > 3600 58504444 17.78

M82

10 53.17028427 1052.97 3571 2.97 1.36 52596 22.51
11 106.4434509 > 3600 n.a. 3.01 13.23 462980 29.32
12 225.8356628 > 3600 n.a. 3.14 21.1 717164 28.98
13 543.1273804 > 3600 n.a. 2.52 91.14 2810302 27.39
14 1238.321899 > 3600 n.a. 3.00 1132.56 30609154 29.07
15 2515.808105 > 3600 n.a. 4.15 2555.66 65180385 30.16
16 5098.458984 > 3600 n.a. 3.61 > 3600 82047430 31.94
17 10483.7168 > 3600 n.a. 3.47 > 3600 84456435 36.15
18 21625.17188 > 3600 n.a. 4.72 > 3600 52577113 39.49
19 44545.28125 > 3600 n.a. 6.19 > 3600 68686094 41.64
20 89202.41406 > 3600 n.a. 6.48 > 3600 55217421 43.48

Table 1: Numerical results obtained by PL4 and Pardi’s implicit enumeration procedure (Pardi, 2009) on the
analyzed datasets.
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Formulation 2. Reduced PL4 (RPL4)

min zlin(Y (S)) =
∑
i∈Γ

∑
j∈Γi

dij

 ∑
k∈L(i,j,Y (S))

2−kxk
ij

 (23a)

s.t.
∑

k∈L(i,j,Y (S))

xk
ij = 1 ∀ i 6= j ∈ Γ (23b)

xk
ij = xk

ji ∀ i 6= j ∈ Γ, k ∈ L(i, j, Y (S)) (23c)∑
j∈Γi

∑
k∈L(i,j,Y (S))

2−kxk
ij =

1
2

∀ i ∈ Γ (23d)

∑
k∈L(i,j,Y (S))

k2−k
∑
i∈Γ

∑
j∈Γi

xk
ij = (2n− 3) (23e)

xk
ij ∈ {0, 1} ∀ i, j ∈ Γ, k ∈ L(i, j, Y (S)), (23f)

where L(i, j, Y (S)) are subsets of L such that

L(i, j, Y (S)) =

 {k ∈ L : σij ≤ k ≤ σij + |Γ \ S|} if i and j ∈ S,
{k ∈ L : 2 ≤ k ≤ maxq∈S{σiq}+ |Γ \ S|} if i ∈ S and j ∈ Γ \ S,
{k ∈ L : 2 ≤ k ≤ maxt,q∈S{σtq}+ |Γ \ S|} if both i and j ∈ Γ \ S.

RPL4 derives from PL4 by elimination of all constraints but the first, the symmetry equalities, the Kraft
equalities, and third equality. RPL4 does not include any strengthening valid inequality. Actually, in pre-
liminary numerical experiments we have observed that the inclusion of the strengthening valid inequalities
imposes a computational overload which is not compensated by the increment of the quality of the lower
bound so obtained. However, we stress the fact that the above argumentation may be not valid for large
instances of the BMEP. Actually, in these cases the introduction of strengthening valid inequalities may turn
necessary to obtain bounds that prune a number of phylogenies sufficiently high to maintain computationally
acceptable the runtime of the implicit enumeration procedure.

It is worth noting that solving RLP4 at each node of the branch-and-bound tree may result very time
consuming due to the need of setting appropriately constraints (23f), a task that requires alone a computa-
tional complexity O(n3). A possible strategy to speed-up computations consists of considering the lagrangian
relaxation of RPL4, i.e.,:

Formulation 3. Lagrangian RPL4 (LRPL4)

min zlag(Y (S), µ, λ) =
∑

i<j∈Γ

∑
k∈L(i,j,Y (S))

(2dij − µi − µj − 2kλ)2−kxk
ij + (2n− 3)λ +

∑
i∈Γ

µi

2
(24a)

s.t.
∑

k∈L(i,j,Y (S))

xk
ij = 1 ∀ i < j ∈ Γ (24b)

xk
ij ∈ {0, 1} ∀ i < j ∈ Γ, k ∈ L(i, j, Y (S)) (24c)

where µ = {µi : i ∈ Γ} and λ are the lagrangian multipliers of constraints (23d) and (23e). Formulation 3
is obtained from (23) by relaxing constraints (23d) and (23e) and substituting xk

ij with xk
ji when i > j as

required by constraints (23c). Note that, if we disregard the constant value
∑

i∈Γ
µi

2 +(2n−3)λ, problem (24)
can be decomposed in a set of smaller problems, such as

min zij,lag(Y (S), µ, λ) =
∑

k∈L(i,j,Y (S))

(2dij − µi − µj − 2kλ)2−kxk
ij (25a)

s.t.
∑

k∈L(i,j,Y (S))

xk
ij = 1 (25b)

xk
ij ∈ {0, 1} ∀ k ∈ L(i, j, Y (S)), (25c)

for all i, j ∈ Γ such that i < j. Since the solution to each problem (25) can be obtained analytically,
computing the value z∗lag(Y (S), µ, λ) results much faster than determining the value z∗lin(Y (S)). This insight
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BOUND(S, Y (S), T );1

Input : S: a subset of taxa
Y (S): a subphylogeny
T : current optimal phylogeny

Output : A boolean value
if |S| = 3 then2

if z∗lin(Y (S)) >= L(T ) then3

return FALSE;4

else5

return TRUE;6

else7

if z∗lag(Y (S), µ, λ) >= L(T ) then8

return FALSE;9

else10

if z∗lin(Y (S)) >= L(T ) then11

return FALSE;12

else13

return TRUE;14

Algorithm 3: Subroutine Bound().

suggests an alternative way to implement the subroutine Bound(), which can be outlined as follows. When
|S| = 3 Bound() computes the value z∗lin(Y (S)), optimal solution of RPL4. Subsequently, for all S such that
|S| > 3 Bound() computes the value z∗lag(Y (S)), solution of LRPL4. If z∗lag(Y (S), µ, λ) > L(T̂ ), Bound()
returns FALSE, else, Bound() computes z∗lin(Y (S)) and if z∗lin(Y (S)) > L(T̂ ) FALSE is returned, otherwise
TRUE is returned. The whole procedure is formally described in Algorithm 3.

Subroutine Bound() computes the value z∗lag(Y (S), µ, λ) only if the value z∗lin(Y (S \ {i})) has been
previously computed for some i ∈ S. We stress this point as, to save time, in computing the value z∗lag(Y (S))
subroutine Bound() does not determine, and hence does not use, the optimal dual values for µ = {µi : i ∈ Γ}
and λ. Subroutine Bound() simply sets the elements of µ (respectively λ) equal to the shadow prices of
constraints (23d) (respectively (23e)) obtained from the last time that the value z∗lag(Y (S \ {i})) has been
computed for some i ∈ S. In preliminary experiments we have observed that the values z∗lag(Y (S), µ, λ) and
z∗lin(Y (S)) differ very little, usually less than 1%. For this reason, when z∗lag(Y (S), µ, λ) < L(T̂ ) for more
than 1%, we allow subroutine Bound() to skip once the computation of the value z∗lin(Y (S)) if the value
z∗lin(Y (S \ {i})) has been previously computed for some i ∈ S. The rationale at the core of this choice is
given by the fact that there is little hope that the value z∗lin(Y (S)) be greater than L(T̂ ). In this case, as
we need the shadow prices of constraints (23d) and (23e), subroutine Bound() assumes that such values are
equal to the corresponding values obtained when computing the value z∗lin(Y (S \ {i})).

In the next section we shall present the results obtained by embodying the new subroutine Bound()
inside Algorithm 2.

6 Numerical Results

Tables 2, 3, and 4 summarize the results obtained by all algorithms described in the article when solving
the previously described instances. The algorithms are implemented in ANSI C++ and together with the
analyzed instances can be found in the online supplement for codes and data.

Table 2 summarizes the numerical results with respect to the running time (expressed in seconds) taken
to solve a generic instance of the BMEP. Specifically, Table 2 shows in the third column the running time of
PL4 with all its strengthening valid inequalities; in the fourth column the running time of Algorithm 2 when
using Pardi’s bound; and finally in the fifth and sixth columns the running times of Algorithm 2 when using
Pardi’s bound and Algorithm 3, respectively, under a specific taxa extraction order, i.e., the order in which
taxa are extracted from Γ by subroutine Head(). In fact, as observed in Pardi (2009), the taxa extraction
order can affect the performances of Algorithm 2 in a way that is still not completely clear. In preliminary
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Time (sec.)

PL4+ All Strengthening Alg. 2 + Pardi’s lower Alg. 2 + Pardi’s lower bound Alg. 2 + Alg. 3
Dataset Number of taxa Valid Inequalities bound (No Leaf Order) (Hamiltonian Leaf Order) (Hamiltonian Leaf Order)

Primates12
10 9.64 0.04 0.04 0.12
11 127.65 0.33 0.11 0.25
12 155.32 1.27 0.24 0.38

M17

10 258.50 0.18 0.10 0.12
11 2679.30 3.42 1.88 0.91
12 > 3600 8.75 27.28 1.70
13 > 3600 60.18 64.63 9.57
14 > 3600 71.56 156.98 12.66
15 > 3600 140.14 633.82 26.00
16 > 3600 473.07 245.24 4.65
17 > 3600 710.40 461.33 8.14

M18

10 130.76 0.94 0.59 0.16
11 580.27 5.35 9.30 1.48
12 > 3600 7.51 44.36 4.76
13 > 3600 243.50 137.70 19.71
14 > 3600 1306.67 594.57 75.23
15 > 3600 > 3600 > 3600 196.89
16 > 3600 > 3600 > 3600 215.41
17 > 3600 > 3600 > 3600 589.32
18 > 3600 > 3600 > 3600 816.29

SeedPlant25

10 86.34 0.05 0.03 0.12
11 591.76 0.16 1.06 1.32
12 457.68 0.30 6.16 1.22
13 > 3600 2.74 0.94 2.05
14 > 3600 3.68 298.75 11.76
15 > 3600 8.05 2241.30 33.09
16 > 3600 117.21 > 3600 560.51
17 > 3600 2113.09 > 3600 > 3600
18 > 3600 > 3600 3483.18 779.35
19 > 3600 > 3600 > 3600 2472.23
20 > 3600 > 3600 > 3600 > 3600

M43

10 71.65 0.04 0.31 0.22
11 333.02 0.06 0.89 0.28
12 970.82 0.78 2.59 0.38
13 > 3600 1.70 7.92 0.86
14 > 3600 5.58 25.92 1.31
15 > 3600 92.35 210.49 3.42
16 > 3600 213.99 742.86 186.74
17 > 3600 411.07 1833.17 373.16
18 > 3600 1580.28 > 3600 222.17
19 > 3600 2116.88 > 3600 306.50
20 > 3600 > 3600 > 3600 110.50

RbcL55

10 436.26 0.53 1.73 0.45
11 771.97 1.54 2.37 0.44
12 > 3600 5.80 11.27 7.77
13 > 3600 292.55 42.65 4.93
14 > 3600 2751.94 166.07 13.22
15 > 3600 > 3600 514.02 28.22
16 > 3600 > 3600 > 3600 401.18
17 > 3600 > 3600 > 3600 1119.52
18 > 3600 > 3600 > 3600 3072.78
19 > 3600 > 3600 > 3600 > 3600
20 > 3600 > 3600 > 3600 > 3600

M62

10 21.86 0.03 0.07 0.10
11 138.67 0.09 0.20 0.14
12 618.25 0.28 2.79 4.79
13 2559.54 1.10 2.22 0.38
14 > 3600 6.09 65.49 84.93
15 > 3600 14.46 280.00 8.95
16 > 3600 29.00 473.60 10.26
17 > 3600 163.28 1745.37 30.36
18 > 3600 > 3600 > 3600 > 3600
19 > 3600 > 3600 > 3600 132.07
20 > 3600 > 3600 > 3600 > 3600

Rana64

10 87.45 0.04 0.02 0.11
11 818.27 0.15 0.17 2.15
12 1306.58 1.43 0.14 0.18
13 > 3600 3.56 3.46 3.58
14 > 3600 8.22 7.37 4.47
15 > 3600 27.36 29.55 5.41
16 > 3600 87.25 326.87 13.64
17 > 3600 109.29 3184.38 2760.74
18 > 3600 1032.09 > 3600 1292.51
19 > 3600 > 3600 > 3600 45.09
20 > 3600 > 3600 > 3600 2512.04

M82

10 1052.97 1.36 2.69 1.21
11 > 3600 13.23 21.56 2.28
12 > 3600 21.10 126.09 6.29
13 > 3600 91.14 546.63 12.68
14 > 3600 1132.56 > 3600 145.49
15 > 3600 2555.66 > 3600 536.83
16 > 3600 > 3600 > 3600 956.62
17 > 3600 > 3600 > 3600 3367.62
18 > 3600 > 3600 > 3600 > 3600
19 > 3600 > 3600 > 3600 > 3600
20 > 3600 > 3600 > 3600 > 3600

Table 2: Overview, with respect to the running time, of the numerical results obtained from the analysis of
the considered datasets.
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Branches

PL4+ All Strengthening Alg. 2 + Pardi’s lower Alg. 2 + Pardi’s lower bound Alg. 2 + Alg. 3
Dataset Number of taxa Valid Inequalities bound (No Leaf Order) (Hamiltonian Leaf Order) (Hamiltonian Leaf Order)

Primates12
10 9 1787 2233 522
11 257 13915 4501 781
12 37 47596 8647 1146

M17

10 851 9538 3062 853
11 3986 133890 53549 5161
12 n.a. 321885 656750 9188
13 n.a. 1604601 1469337 47351
14 n.a. 2326884 3182059 54730
15 n.a. 4462772 11653303 98682
16 n.a. 14093125 4786400 14781
17 n.a. 20537205 7943220 23420

M18

10 765 45897 20234 1020
11 823 229968 260789 9565
12 n.a. 310081 1092911 26986
13 n.a. 7449682 3244055 97650
14 n.a. 36498904 12209798 319106
15 n.a. 91389391 67354519 738592
16 n.a. 80815699 57035287 806433
17 n.a. 75306196 54504361 2025672
18 n.a. 64292767 53568165 2214344

SeedPlant25

10 457 2538 1420 792
11 1327 7000 46582 8438
12 155 12064 243425 7035
13 n.a. 88757 33376 10505
14 n.a. 116417 9223929 53272
15 n.a. 237472 60183365 130140
16 n.a. 2693382 86194772 1999243
17 n.a. 39231198 78183397 11536834
18 n.a. 61292490 68820012 2270736
19 n.a. 60305931 62839170 6060338
20 n.a. 43270865 58993984 7791673

M43

10 207 2167 9719 1299
11 631 3292 24775 1639
12 577 31398 66107 1923
13 n.a. 64081 180883 3797
14 n.a. 189992 527059 5222
15 n.a. 2151347 3831367 12448
16 n.a. 5938295 12865319 553470
17 n.a. 10708997 29277538 978552
18 n.a. 36626921 50944050 477234
19 n.a. 47647147 48029558 559416
20 n.a. 75184251 42814507 232440

RbcL55

10 1657 26276 73885 3118
11 1578 67269 87726 2739
12 n.a. 226756 419058 42253
13 n.a. 8961512 1185697 23335
14 n.a. 73837168 4358506 51360
15 n.a. 96810253 12422524 101269
16 n.a. 87850516 65735578 1402870
17 n.a. 76687705 59550075 2971315
18 n.a. 67207122 57206496 6828465
19 n.a. 62230289 44885393 10922539
20 n.a. 54387017 45258284 5944082

M62

10 67 1476 2377 530
11 263 3836 5677 577
12 365 8902 76052 22778
13 589 35144 51677 1446
14 n.a. 168507 1393416 346476
15 n.a. 374111 4787355 32029
16 n.a. 713416 7350931 33092
17 n.a. 3466812 24309519 88322
18 n.a. 58204356 47005536 10089505
19 n.a. 56001704 44077944 313505
20 n.a. 56996243 41807194 7693580

Rana64

10 399 2230 567 383
11 1675 6877 7399 7477
12 801 54820 4855 578
13 n.a. 131909 116150 7858
14 n.a. 285096 217075 8484
15 n.a. 652079 702512 8752
16 n.a. 2206517 6116978 24179
17 n.a. 2664998 77091081 3848622
18 n.a. 19093712 77476337 1496640
19 n.a. 56570558 52425796 60328
20 n.a. 58504444 71502713 3032704

M82

10 3571 52596 83722 9877
11 n.a. 462980 588638 15679
12 n.a. 717164 3036651 38083
13 n.a. 2810302 11424629 66662
14 n.a. 30609154 66271501 720757
15 n.a. 65180385 58637723 2290648
16 n.a. 82047430 56646829 3698560
17 n.a. 84456435 53120128 11953699
18 n.a. 52577113 46559698 10092896
19 n.a. 68686094 43368382 9759937
20 n.a. 55217421 40689604 8106293

Table 3: Overview, with respect to the number of branches performed, of the numerical results obtained from
the analysis of the considered datasets.
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Gap (%)

PL4+All Strengthening Alg. 2 + Pardi’s lower Alg. 2 + Pardi’s lower bound Alg. 2 + Alg. 3
Dataset Number of taxa Valid Inequalities bound (No Leaf Order) (Hamiltonian Leaf Order) (Hamiltonian Leaf Order)

Primates12
10 0.84 12.80 13.43 2.57
11 1.19 13.34 14.30 2.59
12 1.23 13.47 14.27 2.47

M17

10 0.66 8.91 7.52 1.05
11 0.75 10.02 7.88 1.18
12 0.71 10.63 10.64 1.21
13 0.99 11.41 10.41 1.65
14 1.00 11.59 10.39 1.65
15 0.99 11.86 11.19 1.65
16 1.00 12.84 19.38 1.70
17 1.02 13.03 19.16 1.64

M18

10 0.98 21.70 22.74 2.11
11 1.36 25.94 17.20 2.57
12 1.46 26.41 19.43 2.71
13 1.97 31.12 25.79 3.27
14 2.43 33.03 27.82 3.62
15 2.32 35.90 31.33 3.47
16 2.64 37.64 31.28 3.51
17 3.22 41.28 32.38 3.53
18 3.12 42.93 39.98 3.55

SeedPlant25

10 3.49 27.84 42.92 5.51
11 3.39 27.92 33.54 5.10
12 3.26 28.75 34.63 4.87
13 3.25 30.54 41.20 5.30
14 3.07 30.49 39.08 5.06
15 2.79 30.19 38.47 4.66
16 3.81 35.12 42.53 5.76
17 4.23 39.02 44.45 6.21
18 4.93 41.91 44.51 6.92
19 4.85 42.72 45.63 6.97
20 8.53 43.98 49.83 9.11

M43

10 0.73 8.67 9.75 1.29
11 1.25 9.14 9.99 2.39
12 1.01 10.72 12.04 1.79
13 1.24 11.04 12.14 1.74
14 1.27 11.94 13.03 1.75
15 0.99 13.37 14.34 1.53
16 0.97 13.90 15.60 1.51
17 1.20 14.33 16.24 1.82
18 0.88 14.95 16.90 1.44
19 0.91 15.02 17.38 1.43
20 0.93 15.95 20.96 1.48

RbcL55

10 1.21 13.05 11.74 1.79
11 1.11 13.20 11.26 1.61
12 1.44 14.02 14.53 2.20
13 1.71 16.74 13.89 2.33
14 1.76 19.21 15.54 2.27
15 1.91 19.95 15.80 2.46
16 1.88 22.05 23.67 2.50
17 2.28 25.35 21.93 2.94
18 2.32 28.54 22.75 2.90
19 3.25 31.11 29.01 3.67
20 3.39 34.98 26.85 4.63

M62

10 0.51 5.26 4.32 1.07
11 0.89 5.56 5.79 1.50
12 1.37 5.81 4.85 2.06
13 1.51 6.35 6.60 2.21
14 1.61 6.76 6.40 2.35
15 1.76 6.67 7.30 2.64
16 1.70 6.67 7.19 2.54
17 1.67 7.04 7.44 2.50
18 1.46 8.54 8.44 2.52
19 2.02 8.98 12.54 2.19
20 2.00 9.16 9.64 2.81

Rana64

10 1.36 7.91 9.44 5.74
11 4.19 9.18 9.17 4.94
12 3.76 12.45 15.10 4.64
13 4.39 14.09 13.77 5.39
14 4.68 15.75 14.71 5.60
15 5.58 17.04 16.03 6.47
16 6.98 19.29 20.03 7.78
17 7.22 19.16 20.03 8.01
18 4.32 19.30 20.53 5.07
19 3.95 17.53 19.48 4.48
20 3.76 17.78 19.64 4.74

M82

10 2.97 22.51 20.97 4.39
11 3.01 29.32 27.78 4.52
12 3.14 28.98 33.62 4.43
13 2.52 27.39 37.71 3.92
14 3.00 29.07 28.75 4.51
15 4.15 30.16 31.05 6.26
16 3.61 31.94 32.03 5.13
17 3.47 36.15 42.67 4.76
18 4.72 39.49 35.50 5.95
19 6.19 41.64 42.44 6.36
20 6.48 43.48 47.01 8.21

Table 4: Overview, with respect to the number of gap, of the numerical results obtained from the analysis of
the considered datasets.
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experiments we tested different taxa extraction orders, namely: the random; the ascending greedy consisting
of computing the number ci =

∑
j∈Γi

dij , for all i ∈ Γ, and by sorting the vector c = {ci} in ascending
order; the descending greedy, consisting of computing the number ci =

∑
j∈Γi

dij , for all i ∈ Γ, and by sorting
the vector c = {ci} in descending order; and the Hamiltonian Leaf Order provided by the solution of the
shortest hamiltonian circuit on the instance represented by the input distance matrix. In the tables we just
present the Hamiltonian Leaf Order which was the one characterized by better average performances. It is
worth noting that the problem of finding the shortest hamiltonian circuit can be efficiently tackled by using
Concorde (Applegate et al., 2001), a solver for the Traveling Salesman Problem (TSP) (Garey and Johnson,
2003) and other related network optimization problems. Concorde is written in ANSI C and is able to solve
instances of the TSP having thousands cities. In our experiments Concorde took a negligible time (typically
milliseconds) for solving the considered instances for this reason we omitted its running time in the table.

Table 3 summarizes the numerical results with respect to the number of branches needed to solve a specific
instance. As in Section 4, if the corresponding running time was longer than 1 hour, the value denotes the
number of branches performed within 3600 seconds. Finally, Table 4 summarizes the numerical results with
respect to gap shown in percentage terms. We recall that if for a specific instance the corresponding running
time was longer than 1 hour, the best upper bound found within 3600 seconds is used to compute the gap.

As general trend, Tables 2, 3, and 4 show that the combination of Algorithm 2 and Algorithm 3 provides
in average good performances. Specifically, the algorithm results the fastest when analyzing datasets M18
and M82 and predominantly the fastest when analyzing datasets M17, M43, and RbcL55. Moreover, the
algorithm is able to tackle instances that are unsolved by the remaining solution approaches (see e.g., RbcL55
for 18 taxa and M82 for 17 taxa). The performances of the Algorithm 2 with Algorithm 3 decrease when
dealing with instances characterized by small number of taxa (usually, less then a dozen). This phenomenon
is mainly due to the overhead introduced by the runtime generation of RPL4 and tends to disappear when
tackling bigger instances.

The major impact of the leaf order on the solution time becomes evident when considering datasets such as
SeedPlant25, M62, and Rana64, in which the solution time sensibly changes. In our experiments we observed
that the leaf order influences in general all the exact solution approaches based on Algorithm 2, independently
of the type of bound used. However, we observed major influence of the leaf order on Pardi’s lower bound
with respect to Algorithm 3. For example, in Tables 3 and 4 it is possible to see that the number of branches
and the gap values for Pardi’s lower bound may change drastically when tackling the same instance under
different leaf order (see e.g., SeedPlant25 for n = 10, RbcL55 for n = 20, M82 for n = 13).

Finally, it is worth noting that the bound provided by Algorithm 3, in average about 3.61%, is slightly
worse than the one provided by PL4, in average about 2.54%. This fact confirms the major impact that the
properties of the topological distances have on the problem. Our believe is that a further deeper investigation
of those properties could suggest new directions on the development of efficient exact approaches to solution
of this problem.

7 Conclusion

The Balanced Minimum Evolution Problem (BMEP) is a recent version of the Phylogenetic Estimation
Problem (PEP) firstly introduced by Pauplin (2000). Given a set Γ of n taxa and the corresponding matrix D
of evolutionary distances, the BMEP consists of finding a phylogeny for Γ having minimum length (Catanzaro,
2009). The BMEP is based on the minimum evolution criterion of phylogenetic estimation which states that if
the evolutionary distances were unbiased estimates of the true evolutionary distances (i.e., the distances that
one would obtain if all the molecular data from the analyzed taxa were available), then the true phylogeny
would have an expected length shorter than any other possible phylogeny compatible with D. Interestingly,
the minimum evolution criterion does not asses that molecular evolution follows minimum paths, but states,
according to classical evolutionary theory, that a minimum length phylogeny may properly approximate the
real phylogeny of well-conserved molecular data i.e., data whose basic biochemical functions undergone small
change throughout the evolution of the observed taxa (Beyer et al., 1974). Since the selective forces acting on
taxa may not be constant over time, evolution proceeds by small rather than smallest change (Beyer et al.,
1974; Waterman et al., 1977). Thus, a minimum length phylogeny provides a lower bound on the overall
number of mutation events that could have occurred along evolution of the observed taxa.

In this article we presented a possible exact approach to solution of the BMEP based on mathematical
programming. Specifically, we investigated the properties of the topological distances in order to provide a
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valid polynomial size formulation for the problem. Moreover, we developed families of strengthening valid
inequalities, branching rules, and lower bounds aiming at improving the performances of the formulation.
Our results give perspective on the mathematics of the BMEP and suggest new directions on the development
of future efficient exact approaches to solution of this problem.
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