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Abstract—In this letter we introduce a simple but effective concept, Night-fime haze Blue Channel Meng et al. CCT+Meng et al.

Color Channel Transfer (CCT), that is able to substantially improve
the performance of various dehazing techniques. CCT is motivated by
a key observation: in scattering media the information from at least
one color channel presents high attenuation. To compensate for the
loss of information in one color channel, CCT employs a color-transfer Underwater Red Channel peP CCT+DCP
strategy and operates in a color opponent space that helps to compensate
automatically the chromatic loss. The reference is computed by combining 3
the details and saliency of the initial image with uniform gray image [
that assures a balanced chromatic distribution. The extensive qualitative
and quantitative experiments demonstrate the utility of CCT as a pre-
processing step for various dehazing problems such as day-time dehazing, Extreme illumination
night-time dehazing and underwater image dehazing. i

Green Channel

Index Terms—color transfer, dehazing, underwater, image enhance-
ment

Fig. 1. First column shows three examples of challenging images with one
|. INTRODUCTION color channel highly attenuated (2nd column). Employing the well known

: : ; P [6] and Meng et al.[[3D] but also Shades of Gray color constancy
Due o the scaftering and absorption the propagated light ij{%hod [[31] does not solve the problem (3rd column). However, applying

significantly attenuated in hazy and underwater media and as a regyitoperator (CCT) as a pre-processing step to the same techniques, results
the recorded images are characterized by poor contrast, low illunm-competitive results. Please refer to Figilie 2 for additional comparative
nation, color shifting and noise. While the absorption substantialtgsults.
reduces the light energy, the scattering changes the directions of the
propagated light, making distant objects to have a hazy appearance.

Restoring the visibility of such images is an ill-posed problem.
The optical model of Koschmiedel][1] (similar to the 3|mpln‘|edAnalyzing a large dataset of nighttime hazy and underwater

underwater optical model[2]) requires estimating two unknown?rﬁages (+2000) we observed that one of the color channels is often

the airlight (backscattering in underwqter) a_nd the transm|ss_|on 5 hly attenuated. The loss of information is mostly due to selective
(related to the depth of the scene). Single image dehazing is a w - . . . ; B )
enuation and scattering (Rayleigh). This can be easily noticed in

. L - ! : : a
studied topic in image processing with many solutions IntrOduceunderwa’ter scenes where the larger wavelength are absorbed first
rrpaking the red components to disappear at only few meters deep.

in the last decade [3]/ 4]/ 15],[16],17],C18],[19],[120],[111],[T22],
[13]. For day-time hazy scenes, He et all [6] introduce the Dal
Channel Prior (DCP), a simple but effective solution to estimate 1o mjtigate the limitations of existing dehazing methods in front
the transmission map. This prior has been at the source of mafysych strong attenuation of one channel, this letter introduces a
dehazing and underwater restoration techniques. Night-time hagye| concept name@olor Channel Transfe{CCT). Our operator
scenes add the problem of artificial illumination, which tends tgiids on color-transfef [32], an operation that changes the dominant
introduce additionally glowing artifacts. To address this issue, sevefi@imination of a target image by transferring the selected color
dedicated dehazing methods [14]. [15]. [16]. /[17].][18.1[19] havgnharacteristics of a source reference image. To compensate for the
been introduced recently. Pei and Léel[14] adopt a color transfgks of information in one color channel, CCT operates in the
strategy in addition to DCP to estimate haze thickness and.airi.mght [Bbponent color space, and derives the reference image directly from
Li et al. [1€] also employs the DCI'D to estimate the transmlsspn M&R: input image, using a saliency and a detail map to adjust opponent
but extend the optical model to incorporate the atmospheric pof|or variations in the component affected by the strongly attenuated
spread function for modeling the glowing effect. More recently, Reghannel. cCT operator extends the recent work of Ancuti efal. [26],
et al. [20] extends the fusion-based approach of Ancuti et Bl. [8] Biat compensates for the red channel attenuated in underwater scenes.
constructing and end-to-end trainable neural network that consists@fzontrast to [[25] that depends on manual parameter adjustment,

an encoder that captures the context of the derived input images @€l is the first work that demonstrates a general automatic solution
a decoder that estimates the contribution of each input to the fig} various dehazing applications.

result.

In parallel, underwater image restoratidn 1[21],1[22].1[23].1[24], In our extensive qualitative and quantitative experiments, CCT
[25], [28], [27], |28], [29] followed the trend introduced by outdooroperator has shown high robustness and demonstrates its utility as a
dehazing methods. Chiang and Chenl [21] uses the DCP to segnmstprocessing step for various local and global dehazing techniques
the foreground and the background regions in underwater. Drewsrlrapplications such as day-time dehazing, night-time dehazing and
et al. [23] introduce Underwater Dark Channel Prior (UDCP), annderwater image restoration (see Hif. 1). Our study reveals that
underwater specific prior directly derived from DCP. appropriates color compensation considerably improves the existing

dehazing techniques.
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Fig. 2. Global and local airlight/backscattering estimation techniques fail in many cases to restore the visibility of hazy scenes. Applied as a pre-processing
step (here shown only for DCP][6]) our CCT operator appears to considerably enhance the visibility for various hazy scenes but also for challenging extreme
illumination scenes (bottom row).

Grey Edge

Il. COLOR CHANNEL TRANSFERAPPROACH shown to considerably improve the color appearance of the results
when it is employed as a pre-processing step for several well-known

. . . image dehazing techniques.
We built our approach on the following observation: images taken

in extreme conditions (e.g. underwater, night-time haze and artificiakignt-ime naze Blue Channel

illumination) contain highly attenuated information in at least on
color channel. To consolidate this observation from a statistical po
of view, we gathered a large database of images (+2000 images) t

in such adversarial conditions that most conventional, typically DCP.... ™" S o
based, dehazing approaches fail in enhancing them[Jig. 3 prese
the statistics of the most attenuated channel for those images.

From a physical perspective, the loss of information for SUCIyeme ilumination  Green Channel

images is mostly due to selective attenuation, scattering (Raylei
or lack of color band in artificial illumination. The scattering an
attenuation phenomena depend on the optical characteristics of

medium. For instance, in underwater, it is well known that the
radiations with lower frequency (larger wavelength) are absorbed firslg. 3. Right: the distribution of the attenuated color channels over our
which means that the red components disappear after 5-6 m, orangeected +2000 images. Left: three examples of images with their most
after 7-8 m, yellow after 10-15 m, and green around 21 m. At deepiifenuated color channel (shown in the second column).

depth, the underwater scenes have a blue (green-blue) appearance.

Similarly, atmospheric scattering influences the visible spectrum as

a function of the wavelength. Shorter wavelengths (associated wih Optical Model for Image Dehazing

blue color) are more scattered than longer wavelengths (associate_ghe image dehazing and underwater image enhancement tech
with red color). A well-known consequence of the atmospheric imag zing u W Imag

scattering is the blue color of the sky. Regarding illumination, th lques rely on the simplified optical model of Koschmiedds [1]

light chromaticism/spectrum has a great uncontrollable impact 0\} f"lt IS ;/ery Sj['.m”ar V\:j'thl t:‘_ﬁ sm_1pI|f||$_d ndG(‘anmer'E[I[Z] (tl_mdlerwac\jtelr)_
the entire scene (due to multiplication effect). image formation model. The simplified underwater optical model is

To deal with this problem, we propose a novel operation namggpressed as:

Color Channel Transfer (CCT) that aims at transferring information I(z) = J(z)e ") 4 Boo(1 — e ™)
from significant channels towards attenuated ones. Our operator _

builds on the color-transfer paradigm [32], which is a well-known = J@)(@) + Boo (1 ~ ()
operation that changes the dominant illumination of a target imagéderel(z) represents the radiance of the scene (input hazy image),
by transferring the selected color characteristics of a source reféfx) is the radiance of the scene (that needs to be recovered) at each
ence image. Our operator is specific in that it derives the sourceage coordinater, d(z) is the distance between the sensor and
reference image directly from the initial image, and can be us#te scene, ang is the attenuation coefficient. The exponential term
as a general pre-processing step for challenging applications suchi®® is called transmissiof(z:) and B.. is a color vector known

as image dehazing and underwater image enhancement. It is indeedheback-scattered lighin underwater, omirlight in day time or
well-known that the strong color attenuation, inherent to severe ahight-time dehazing (and marked 4s.). To solve the optical model
servation conditions, cannot be solved by traditional color constanagd recover the radiance of the scedgg), two unknowns have to
solutions (e.g MaxRGB, Gray-world, Gray edge, Shades of Graye estimated: the transmissitix), which is related to the depth map
Interestingly, our work demonstrates that those same traditional cotifrthe underwater scene, and the back-scattered Bghtor airlight
constancy solutions become able to generate pleasing results whég ), which might be local, i.e. depend on X, in presence of artificial
CCT is applied as a pre-processing step. In other words, CCTillsmination.

A. Motivation: Color Channel Attenuation
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Initial image Details layer

Here, the color transfer is implemented to align the global mean
value and the standard deviation of the reference and source images.
In practice, the transfer is implemented in opponent color space, so
as to transfer information between pairs of opponent colors (blue-
yellow or red-green) when aligning the global features of source and
reference images.

We tested the validity of our implementation for the ClEakbs
color space, but also for the lagblor space developed by Ruderman
et al. [37] which is employed in the original manuscript of Reinhard
et al. [32]. We observed that employing the Clkasb* color space
yields more natural outputs.

The color transfer works in three simple steps. First, it subtracts
the mean value of the initial image. Second, it rescales the image
based on the ratio between input and reference standard deviations.
Fig. 4. The color channel transfer (CCT) operation takes as reference Rinally, it adds the new mean of the reference image. Mathematically,

combination (see text) of the details layer and the saliency information frogy)|or transfer can be expressed in the ClEakb+ color space as:
the original image (see Fidl5, Fidl 6 and Figl 7 for CCT + conventionan P P '

Saliency map CCT result

dehazing method). In(z) = [Ip(2) — Ip.] .oF*Jol* +If.
I (z) = [[a*(m) - fa*] o ot + 1, 2)
It is worth noting that, since the attenuation is achromatic, the Ipi(2) = [Iou(z) — Tou] 00" Jol" + I}

model defined by Ell1 fails to capture the attenuation of colors (e.g. - o
in underwater environment). In the next section, we explain how tN§'er€ L« . lax.ly. are the me_an_\T/aIugTs for ea_Eh channelaksb+

images can be pre-processed to compensate for a color-depengbif® Source image, respectively., /.. and I;, represents the
attenuation, thereby facilitating the algorithms to be effective fgP€an values for each channel, b b+ of the reference image. The

Lx* a* b* P
considered applications (e.g. day-time, night-time and underwate arameterso,”, o;” and o,” are the standard deviation of the

feference image, and”*,0%* ands®* are the standard deviation of
source. This formulation is similarly implemented in theSl color
C. Color Channel Transfer Approach space of Ruderman et al, [37].

As already mentioned, our algorithm extends the concept of redThe advantage of formulating the color transfer in an opponent
channel attenuation compensatibn|[26] for underwater images. [Z&Jor space is that the color loss can be compensated automatically,
relies on the color-opponent concept, and the attenuated red chanyighout requiring to estimate the chromatic loss direction. This is
is partially recovered from the opponent green channel informatiopessible because, in the color-opponent spaces, red-green and blue-
Following a similar principle, our work introduces a general solutiopellow chromatic information are mixed, while in RGB color space
to automatically reduce all types of attenuation. We employ the coleach channel is independent. Modifying the mean value of opponent
transfer paradign [32]. The goal of image transfer is to borrow the®lors with a suitable reference image induces a transfer between the
characteristics of the reference image and to manipulate the ingator channels sharing the opponent axes. In other words, regularizing
values in order to transfer these characteristics. One of the m#¥ough transfer- the red-green (blue-yellow) opponent color helps in
important utility of the color transfer has been to enhance photeompensating a strong attenuation of either red or green (blue).
consistency([32],133][[34]/135]. During transfer, both the mean and variance are modified. When
working in the RGB space, in this case it would mainly amplify noise
when the channel is fully attenuated. In contrast, when working in the
opponent color space, bringing back the mean towards zero transfers
e ' colors between the two opponent colors of a channel, and aligning
the standard deviation adjust their intensity.

The main challenge of this algorithm is to build a reference
CCT + DCP that effectively remove the unwanted color cast, and in turn tends
to compensate the attenuated color channel. As suggested in the
literature [32], the color cast can be partially removed using a simple
gray reference. However, this solution tends to result in images with
dull colors. It also appears to fail in completely removing unwanted
color casts due to attenuation, and might even introduce undesired
color casts in scenes captured without color channel attenuation. As a
result we cannot simply consider as a reference image only the mean
value (0.5). Hence, in this work we propose to adapt the reference
image so that it includes the color variations induced by the salient
regions and the details of the original input.

We propose a different reference to solve this problem. Our
referenceR(z) image (computed in RGB) is automatically computed
by the expression:

Night time haze

Meng et al.

Zhang et al.

Meng et al. Berman et al. Ancuti et al.

Li et al. He et al. (DCP)

Fig. 5. Night-time image dehazing. The results of DCP applied on the images R(z) = G(z) + D(z) + S(z)I(x) 3)
pre-processed by our CCT operator are comparable and even better than the ] ] . ) )
results yielded by the local dehazing techniques of Ancuti etCal. [17] awthere G(x) is a uniform gray image (50%)D(z) is the details

Berman et al.[[36]. layer of the original input andS(z) is the saliency of the input
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Underwater He et al. (DCP) CCT + DCP Drews-Jr et al. Berman et al. CCT+ Berman Ancuti et al. CCT+ Ancuti Ancuti [: CCT+ Ancuti [26] ccr
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Fig. 6. Underwater image dehazing. CCT ensures a robust compensation of the lost information and improves considerably the visibility when applied as a
pre-processing step for both globall [6].[38] and local [39]. [17] back-scattering estimation approaches. Moreover, CCT also improves the recent technique
of Ancuti et al. [26].

CCT + Fattal Berman et al. CCT+ Berman et al. Ground truth

Day-time haze CCT + DCP Meng et al. CCT + Meng et al.

Fig. 7. Day-time image dehazing. We employ four specialized single image dehazing techniduies[[6], [30], [40], [36] on the original hazy images of the
O-Haze [41] dataset and also on the same images that have been pre-processed with CCT. We observe that CCT helps to improve the visibility for all the
considered techniques. Quantitative results over the entire O-Haze dataset are summarized [th Table 1.

He et al. (DCP)

He etal. | CCT+ He etal. | Meng et al. | CCT+ Meng et al. | Fattal | CCT+Fattal | Berman et al. | CCT+Berman
CIEde00 | 20.745 13.985 16.968 15.636 19.854 17.754 17.088 17.388
PSNR 6.586 18.031 17.443 17.541 15.639 15.701 16.61 16.725
TABLE T

Quantitative evaluation of day-time dehazing. We processed all 45 images from the O-Hdz€ [41] dataset. This table presents the average values of the
PSNR and CIEde00 indexes, over the entire O-Haze dataset. As can be observed, applying CCT, as a pre-processing step for the specialized dehazing
methods of He et al. (DCP)[6], Meng et al._[30], Fattal [40] and Berman et A[1[36] yields better results in terms of color and structure.

image I(x). Employing input image/ is related to the grey world In Fig.[8 we present several comparative results for underwater
assumption since in the opponent color space, for natural images, ithage dehazing. As can be seen, CCT ensures a robust compensation
mean value for luminance is close to 0.5, and the one for opponefitthe missing color and therefore it improves considerably the
color channels is relatively close to zero. To compute the salience magibility when applied as a pre-processing step for both gldbal [6],
S(z) of the input imagel (z) we employ the effective technique of [38] and local [39], [17] back-scattering estimation approaches.
Achanta et al.[[42]. Adding the product between saliency and initidldditionally, CCT also improves the recent technique of Ancuti et
image introduces a bias towards dominant colors, thereby helpialg [26].

in recovering initial colors. The details laydp(z) is obtained by =~ Moreover, we apply CCT on the recent outdoor image dehazing
subtracting from the image the Gaussian blurred version from thataset O-Haze [41] (used in the first dehazing challenge- NTIRE
input image. Injecting detail® (which is a priori zero mean, and thus2018 [43]), which contains 45 real hazy and haze-free ground-
only impacts the standard deviation) helps in adapting the referenngth images. We employ four specialized single image dehazing
standard deviation to the scene one. techniques [16], [130], [140],[136] on the original hazy images and
also on the images that have been pre-processed with CCT. Eigure 7
demonstrates qualitatively the improved enhancement when CCT is
employed. In Tabléll we summarize the overall quantitative results

This section demonstrates the utility of our new operator (CCT) fVer the entire O-Haze dataset. Using the ground-truth images we
the context of several dehazing applications. More exactly, we pres8AfPute PSNR and CIEDE2000 [44] indexes.
comparative results for applications such as day-time and night-time
image dehazing and underwater image enhancement.

To validate our operator for the night-time dehazing, we considered
130+ images of the night-time dehazing dataset introduced by Li etWe introduce a new operator (CCT) that is based on a statistic
al. [16] (see Fig[l, Figl]2 and Fif] 5 and also the supplementappservation of various hazy scenes. Our extensive validation shows
material). Since for night-time dehazing there is no specializétle utility of CCT as a pre-processing step for various dehazing
quality metric, we build our assessment based on qualitative visggibblems such as day-time dehazing, night-time dehazing and un-
comparisons. As can be seen, the results of DGP [6] applied derwater image dehazing. Despite of its simplicity both in principle
the images pre-processed by CCT operator are comparable and evehimplementation, our operator CCT is quite effective and generic.
better than the results yielded by the local dehazing techniques ofAcknowledgments: This work was supported by research grant GNaC2018
Ancuti et al. [17] and Berman et all_[B6]. In Fif] 5 it can be ARUT, no. 1361-01.02.2019, financed by Politehnica University of Timisoara.
noticed that local airlight estimation solutions are not able to solvdos, it was supported by 2020 European Union Research and Innovation
the problem of channel attenuation (see for instance the specializ&glizon 2020 under the grant agreement Marie Sklodowska-Curie No 712949
night-time dehazing methods of Li et &dl. [16] and Zhang et[all [LRTECNIOspring PLUS), as well as the Agency for the Competitiveness of the
that generate undesired color appearance). Company of the Generalitat de Catalunya - ACCIO: TECSPR17-1-0054.

II1. EXPERIMENTAL RESULTS AND DISCUSSION

IV. CONCLUSIONS
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