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Abstract—In this letter we introduce a simple but effective concept,
Color Channel Transfer (CCT), that is able to substantially improve
the performance of various dehazing techniques. CCT is motivated by
a key observation: in scattering media the information from at least
one color channel presents high attenuation. To compensate for the
loss of information in one color channel, CCT employs a color-transfer
strategy and operates in a color opponent space that helps to compensate
automatically the chromatic loss. The reference is computed by combining
the details and saliency of the initial image with uniform gray image
that assures a balanced chromatic distribution. The extensive qualitative
and quantitative experiments demonstrate the utility of CCT as a pre-
processing step for various dehazing problems such as day-time dehazing,
night-time dehazing and underwater image dehazing.

Index Terms—color transfer, dehazing, underwater, image enhance-
ment

I. I NTRODUCTION

Due to the scattering and absorption the propagated light is
significantly attenuated in hazy and underwater media and as a result
the recorded images are characterized by poor contrast, low illumi-
nation, color shifting and noise. While the absorption substantially
reduces the light energy, the scattering changes the directions of the
propagated light, making distant objects to have a hazy appearance.

Restoring the visibility of such images is an ill-posed problem.
The optical model of Koschmieder [1] (similar to the simplified
underwater optical model [2]) requires estimating two unknowns:
the airlight (backscattering in underwater) and the transmission map
(related to the depth of the scene). Single image dehazing is a well
studied topic in image processing with many solutions introduced
in the last decade [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13]. For day-time hazy scenes, He et al. [6] introduce the Dark
Channel Prior (DCP), a simple but effective solution to estimate
the transmission map. This prior has been at the source of many
dehazing and underwater restoration techniques. Night-time hazy
scenes add the problem of artificial illumination, which tends to
introduce additionally glowing artifacts. To address this issue, several
dedicated dehazing methods [14], [15], [16], [17], [18], [19] have
been introduced recently. Pei and Lee [14] adopt a color transfer
strategy in addition to DCP to estimate haze thickness and airlight [6].
Li et al. [16] also employs the DCP to estimate the transmission map
but extend the optical model to incorporate the atmospheric point
spread function for modeling the glowing effect. More recently, Ren
et al. [20] extends the fusion-based approach of Ancuti et al. [8] by
constructing and end-to-end trainable neural network that consists of
an encoder that captures the context of the derived input images and
a decoder that estimates the contribution of each input to the final
result.

In parallel, underwater image restoration [21], [22], [23], [24],
[25], [26], [27], [28], [29] followed the trend introduced by outdoor
dehazing methods. Chiang and Chen [21] uses the DCP to segment
the foreground and the background regions in underwater. Drews-Jr
et al. [23] introduce Underwater Dark Channel Prior (UDCP), an
underwater specific prior directly derived from DCP.
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Fig. 1. First column shows three examples of challenging images with one
color channel highly attenuated (2nd column). Employing the well known
DCP [6] and Meng et al. [30] but also Shades of Gray color constancy
method [31] does not solve the problem (3rd column). However, applying
our operator (CCT) as a pre-processing step to the same techniques, results
in competitive results. Please refer to Figure 2 for additional comparative
results.

Analyzing a large dataset of night-time hazy and underwater
images (+2000) we observed that one of the color channels is often
highly attenuated. The loss of information is mostly due to selective
attenuation and scattering (Rayleigh). This can be easily noticed in
underwater scenes where the larger wavelength are absorbed first
making the red components to disappear at only few meters deep.

To mitigate the limitations of existing dehazing methods in front
of such strong attenuation of one channel, this letter introduces a
novel concept namedColor Channel Transfer(CCT). Our operator
builds on color-transfer [32], an operation that changes the dominant
illumination of a target image by transferring the selected color
characteristics of a source reference image. To compensate for the
loss of information in one color channel, CCT operates in the
opponent color space, and derives the reference image directly from
the input image, using a saliency and a detail map to adjust opponent
color variations in the component affected by the strongly attenuated
channel. CCT operator extends the recent work of Ancuti et al. [26],
that compensates for the red channel attenuated in underwater scenes.
In contrast to [26] that depends on manual parameter adjustment,
CCT is the first work that demonstrates a general automatic solution
for various dehazing applications.

In our extensive qualitative and quantitative experiments, CCT
operator has shown high robustness and demonstrates its utility as a
pre-processing step for various local and global dehazing techniques
in applications such as day-time dehazing, night-time dehazing and
underwater image restoration (see Fig. 1). Our study reveals that
appropriates color compensation considerably improves the existing
dehazing techniques.
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Fig. 2. Global and local airlight/backscattering estimation techniques fail in many cases to restore the visibility of hazy scenes. Applied as a pre-processing
step (here shown only for DCP [6]) our CCT operator appears to considerably enhance the visibility for various hazy scenes but also for challenging extreme
illumination scenes (bottom row).

II. COLOR CHANNEL TRANSFERAPPROACH

A. Motivation: Color Channel Attenuation

We built our approach on the following observation: images taken
in extreme conditions (e.g. underwater, night-time haze and artificial
illumination) contain highly attenuated information in at least one
color channel. To consolidate this observation from a statistical point
of view, we gathered a large database of images (+2000 images) taken
in such adversarial conditions that most conventional, typically DCP-
based, dehazing approaches fail in enhancing them. Fig. 3 presents
the statistics of the most attenuated channel for those images.

From a physical perspective, the loss of information for such
images is mostly due to selective attenuation, scattering (Rayleigh),
or lack of color band in artificial illumination. The scattering and
attenuation phenomena depend on the optical characteristics of the
medium. For instance, in underwater, it is well known that the
radiations with lower frequency (larger wavelength) are absorbed first,
which means that the red components disappear after 5-6 m, orange
after 7-8 m, yellow after 10-15 m, and green around 21 m. At deeper
depth, the underwater scenes have a blue (green-blue) appearance.
Similarly, atmospheric scattering influences the visible spectrum as
a function of the wavelength. Shorter wavelengths (associated with
blue color) are more scattered than longer wavelengths (associated
with red color). A well-known consequence of the atmospheric
scattering is the blue color of the sky. Regarding illumination, the
light chromaticism/spectrum has a great uncontrollable impact over
the entire scene (due to multiplication effect).

To deal with this problem, we propose a novel operation named
Color Channel Transfer (CCT) that aims at transferring information
from significant channels towards attenuated ones. Our operator
builds on the color-transfer paradigm [32], which is a well-known
operation that changes the dominant illumination of a target image
by transferring the selected color characteristics of a source refer-
ence image. Our operator is specific in that it derives the source
reference image directly from the initial image, and can be used
as a general pre-processing step for challenging applications such
as image dehazing and underwater image enhancement. It is indeed
well-known that the strong color attenuation, inherent to severe ob-
servation conditions, cannot be solved by traditional color constancy
solutions (e.g MaxRGB, Gray-world, Gray edge, Shades of Gray).
Interestingly, our work demonstrates that those same traditional color
constancy solutions become able to generate pleasing results when
CCT is applied as a pre-processing step. In other words, CCT is

shown to considerably improve the color appearance of the results
when it is employed as a pre-processing step for several well-known
image dehazing techniques.
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Fig. 3. Right: the distribution of the attenuated color channels over our
collected +2000 images. Left: three examples of images with their most
attenuated color channel (shown in the second column).

B. Optical Model for Image Dehazing

The image dehazing and underwater image enhancement tech-
niques rely on the simplified optical model of Koschmieders [1]
that is very similar with the simplified McGlamery [2] (underwater)
image formation model. The simplified underwater optical model is
expressed as:

I(x) = J(x)e−ηd(x) +B∞(1− e−ηd(x))

= J(x)t(x) +B∞(1− t(x))
(1)

whereI(x) represents the radiance of the scene (input hazy image),
J(x) is the radiance of the scene (that needs to be recovered) at each
image coordinatex, d(x) is the distance between the sensor and
the scene, andη is the attenuation coefficient. The exponential term
e−ηd(x) is called transmissiont(x) andB∞ is a color vector known
as theback-scattered lightin underwater, orairlight in day time or
night-time dehazing (and marked asA∞). To solve the optical model
and recover the radiance of the scene,J(x), two unknowns have to
be estimated: the transmissiont(x), which is related to the depth map
of the underwater scene, and the back-scattered lightB∞ or airlight
(A∞), which might be local, i.e. depend on x, in presence of artificial
illumination.
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Fig. 4. The color channel transfer (CCT) operation takes as reference a
combination (see text) of the details layer and the saliency information from
the original image (see Fig. 5, Fig. 6 and Fig. 7 for CCT + conventional
dehazing method).

It is worth noting that, since the attenuation is achromatic, the
model defined by Eq.1 fails to capture the attenuation of colors (e.g.
in underwater environment). In the next section, we explain how the
images can be pre-processed to compensate for a color-dependent
attenuation, thereby facilitating the algorithms to be effective for
considered applications (e.g. day-time, night-time and underwater).

C. Color Channel Transfer Approach

As already mentioned, our algorithm extends the concept of red
channel attenuation compensation [26] for underwater images. [26]
relies on the color-opponent concept, and the attenuated red channel
is partially recovered from the opponent green channel information.
Following a similar principle, our work introduces a general solution
to automatically reduce all types of attenuation. We employ the color
transfer paradigm [32]. The goal of image transfer is to borrow the
characteristics of the reference image and to manipulate the input
values in order to transfer these characteristics. One of the most
important utility of the color transfer has been to enhance photo-
consistency [32], [33], [34], [35].
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Fig. 5. Night-time image dehazing. The results of DCP applied on the images
pre-processed by our CCT operator are comparable and even better than the
results yielded by the local dehazing techniques of Ancuti et al. [17] and
Berman et al. [36].

Here, the color transfer is implemented to align the global mean
value and the standard deviation of the reference and source images.
In practice, the transfer is implemented in opponent color space, so
as to transfer information between pairs of opponent colors (blue-
yellow or red-green) when aligning the global features of source and
reference images.

We tested the validity of our implementation for the CIE L∗a∗b∗
color space, but also for the lαβcolor space developed by Ruderman
et al. [37] which is employed in the original manuscript of Reinhard
et al. [32]. We observed that employing the CIE L∗a∗b∗ color space
yields more natural outputs.

The color transfer works in three simple steps. First, it subtracts
the mean value of the initial image. Second, it rescales the image
based on the ratio between input and reference standard deviations.
Finally, it adds the new mean of the reference image. Mathematically,
color transfer can be expressed in the CIE L∗a∗b∗ color space as:

IL∗(x) =
[

IL∗(x)− ĪL∗

]

.σL∗

r /σL∗

s + ĪrL∗

Ia∗(x) =
[

Ia∗(x)− Īa∗
]

.σa∗
r /σa∗

s + Īra∗

Ib∗(x) =
[

Ib∗(x)− Īb∗
]

.σb∗
r /σb∗

s + Īrb∗

(2)

where ĪL∗ , Īa∗,Īb∗ are the mean values for each channel L∗,a∗,b∗
of the source image, respectivelȳIrL∗

, Īra∗ and Īrb∗ represents the
mean values for each channel L∗,a∗,b∗ of the reference image. The
parametersσL∗

r , σa∗
r and σb∗

r are the standard deviation of the
reference image, andσL∗

s ,σa∗
s andσb∗

s are the standard deviation of
source. This formulation is similarly implemented in the lαβ color
space of Ruderman et al. [37].

The advantage of formulating the color transfer in an opponent
color space is that the color loss can be compensated automatically,
without requiring to estimate the chromatic loss direction. This is
possible because, in the color-opponent spaces, red-green and blue-
yellow chromatic information are mixed, while in RGB color space
each channel is independent. Modifying the mean value of opponent
colors with a suitable reference image induces a transfer between the
color channels sharing the opponent axes. In other words, regularizing
through transfer- the red-green (blue-yellow) opponent color helps in
compensating a strong attenuation of either red or green (blue).

During transfer, both the mean and variance are modified. When
working in the RGB space, in this case it would mainly amplify noise
when the channel is fully attenuated. In contrast, when working in the
opponent color space, bringing back the mean towards zero transfers
colors between the two opponent colors of a channel, and aligning
the standard deviation adjust their intensity.

The main challenge of this algorithm is to build a reference
that effectively remove the unwanted color cast, and in turn tends
to compensate the attenuated color channel. As suggested in the
literature [32], the color cast can be partially removed using a simple
gray reference. However, this solution tends to result in images with
dull colors. It also appears to fail in completely removing unwanted
color casts due to attenuation, and might even introduce undesired
color casts in scenes captured without color channel attenuation. As a
result we cannot simply consider as a reference image only the mean
value (0.5). Hence, in this work we propose to adapt the reference
image so that it includes the color variations induced by the salient
regions and the details of the original input.

We propose a different reference to solve this problem. Our
referenceR(x) image (computed in RGB) is automatically computed
by the expression:

R(x) = G(x) +D(x) + S(x)I(x) (3)

where G(x) is a uniform gray image (50%),D(x) is the details
layer of the original input andS(x) is the saliency of the input
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Fig. 6. Underwater image dehazing. CCT ensures a robust compensation of the lost information and improves considerably the visibility when applied as a
pre-processing step for both global [6], [38] and local [39], [17] back-scattering estimation approaches. Moreover, CCT also improves the recent technique
of Ancuti et al. [26].
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Fig. 7. Day-time image dehazing. We employ four specialized single image dehazing techniques [6], [30], [40], [36] on the original hazy images of the
O-Haze [41] dataset and also on the same images that have been pre-processed with CCT. We observe that CCT helps to improve the visibility for all the
considered techniques. Quantitative results over the entire O-Haze dataset are summarized in Table I.

He et al. CCT+ He et al. Meng et al. CCT+ Meng et al. Fattal CCT+Fattal Berman et al. CCT+Berman
CIEde00 20.745 13.985 16.968 15.636 19.854 17.754 17.088 17.388
PSNR 6.586 18.031 17.443 17.541 15.639 15.701 16.61 16.725

TABLE I
Quantitative evaluation of day-time dehazing. We processed all 45 images from the O-Haze [41] dataset. This table presents the average values of the
PSNR and CIEde00 indexes, over the entire O-Haze dataset. As can be observed, applying CCT, as a pre-processing step for the specialized dehazing

methods of He et al. (DCP) [6], Meng et al. [30], Fattal [40] and Berman et al. [36] yields better results in terms of color and structure.

imageI(x). Employing input imageI is related to the grey world
assumption since in the opponent color space, for natural images, the
mean value for luminance is close to 0.5, and the one for opponent
color channels is relatively close to zero. To compute the salience map
S(x) of the input imageI(x) we employ the effective technique of
Achanta et al. [42]. Adding the product between saliency and initial
image introduces a bias towards dominant colors, thereby helping
in recovering initial colors. The details layerD(x) is obtained by
subtracting from the image the Gaussian blurred version from the
input image. Injecting detailsD (which is a priori zero mean, and thus
only impacts the standard deviation) helps in adapting the reference
standard deviation to the scene one.

III. E XPERIMENTAL RESULTS AND DISCUSSION

This section demonstrates the utility of our new operator (CCT) in
the context of several dehazing applications. More exactly, we present
comparative results for applications such as day-time and night-time
image dehazing and underwater image enhancement.

To validate our operator for the night-time dehazing, we considered
130+ images of the night-time dehazing dataset introduced by Li et
al. [16] (see Fig. 1, Fig. 2 and Fig. 5 and also the supplementary
material). Since for night-time dehazing there is no specialized
quality metric, we build our assessment based on qualitative visual
comparisons. As can be seen, the results of DCP [6] applied on
the images pre-processed by CCT operator are comparable and even
better than the results yielded by the local dehazing techniques of
Ancuti et al. [17] and Berman et al. [36]. In Fig. 5 it can be
noticed that local airlight estimation solutions are not able to solve
the problem of channel attenuation (see for instance the specialized
night-time dehazing methods of Li et al. [16] and Zhang et al. [15]
that generate undesired color appearance).

In Fig. 6 we present several comparative results for underwater
image dehazing. As can be seen, CCT ensures a robust compensation
of the missing color and therefore it improves considerably the
visibility when applied as a pre-processing step for both global [6],
[38] and local [39], [17] back-scattering estimation approaches.
Additionally, CCT also improves the recent technique of Ancuti et
al. [26].

Moreover, we apply CCT on the recent outdoor image dehazing
dataset O-Haze [41] (used in the first dehazing challenge- NTIRE
2018 [43]), which contains 45 real hazy and haze-free ground-
truth images. We employ four specialized single image dehazing
techniques [6], [30], [40], [36] on the original hazy images and
also on the images that have been pre-processed with CCT. Figure 7
demonstrates qualitatively the improved enhancement when CCT is
employed. In Table I we summarize the overall quantitative results
over the entire O-Haze dataset. Using the ground-truth images we
compute PSNR and CIEDE2000 [44] indexes.

IV. CONCLUSIONS

We introduce a new operator (CCT) that is based on a statistic
observation of various hazy scenes. Our extensive validation shows
the utility of CCT as a pre-processing step for various dehazing
problems such as day-time dehazing, night-time dehazing and un-
derwater image dehazing. Despite of its simplicity both in principle
and implementation, our operator CCT is quite effective and generic.
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