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Abstract 5 

Prediction of bearing capacity of steel pipe piles in rock masses is an 6 

important consideration in civil engineering especially as such prediction 7 

influences the safety of the supported superstructures as well as the pile 8 

integrity in pile driving operations. Provided that the rock mass is described 9 

as a linear elastic and perfectly plastic material obeying the Hoek-Brown 10 

failure criterion, a finite element analysis is performed to investigate the 11 

embedment depth effect on the annular base bearing capacity and the failure 12 

mechanism of typical open-ended pipe piles in sedimentary rock masses. 13 

The pipe pile has smooth walls and rough toe surface. Annular toe resistance 14 

of pipe piles can serve as an estimate of the rock mass resistance to driving 15 

in a fully coring mode which is usually expected for large diameter open-16 

ended pipe piles. Pipe pile results are also extended to circular piles and 17 

embedded strip foundations socketed in rock masses. The analysis is shown 18 

to highlight the influence of the annular geometry of the pipe pile causing an 19 

unsymmetrical failure mechanism with respect to pipe wall center as well as 20 

an inclination of rock mass reaction, which if sufficiently large, may lead to 21 

pile convergence and damage during pile driving operations. The failure 22 

mechanism legitimates the plug tendency to rise up in the pipe and explains 23 

the plug formation. The study demonstrates that in most practical 24 

applications, the bearing capacity of pipe piles approaches a limiting value, 25 

which is less than or at most equal to the end bearing capacity of an 26 

embedded strip foundation of width equal to the pipe wall thickness.  A 27 

comparison has been made with experimental data. It is shown that the FE 28 
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results are relatively in good agreement with test data in terms of rock mass 1 

resistance and the mechanism of rock plug formation. 2 

Keywords: Driven pipe in rock; bearing capacity of pipe pile; pipe pile 3 

plug; pipe pile refusal, rock-socketed pile 4 

 5 

1 Introduction 6 

Pipe piles are an important category of foundations employed offshore 7 

for supporting vital infrastructures such as wind turbines, long-span bridges, 8 

and harbor terminals. They have attracted increasing attention due to their 9 

ease of installation. Assessing the bearing capacity of pipe piles in indurated 10 

formations is necessary to design critical infrastructures such as wind 11 

turbines mostly founded on pipe piles. Despite their use, not much is known 12 

about their base bearing response in indurated formations at different 13 

embedment depths. 14 

In the design of the majority of foundation types in rock, the design 15 

engineer is primarily concerned by the structural strength of the foundation, 16 

which usually dominates the foundation capacity rather than the embedding 17 

medium.  As a result, the bearing response of rock masses has received little 18 

attention. However, thin annular sections of steel pipes can resist high axial 19 

stresses, and thus one cannot assume that the embedding rock mass is able to 20 

offer the required toe resistance in order to ensure superstructure loads are 21 

transferred safely to the ground. Furthermore, to provide lateral stability, 22 

pipe piles have to penetrate rock formations more often, in particular, in 23 

offshore environments. To reach the necessary penetration depth, pile 24 

driving is an economical option. The installation of pipe piles requires 25 

estimating pile toe resistance to evaluate driving stresses and to avoid pile 26 

damage and refusal. This in turn helps to choose the right set of equipment 27 

and pipe dimensions. Thus an accurate prediction of the ultimate bearing 28 

capacity of the pipe piles is important for efficient pipe pile installation and 29 

design. 30 

It is generally agreed that the ultimate bearing capacity of foundations 31 
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increase with depth due to the surplus shearing resistance offered by the rock 1 

mass above the foundation bed level. It is common practice to socket piled 2 

foundations 2-3 shaft diameters into the rock mass to enhance the bearing 3 

capacity [1]. A common criterion to describe behavior of rock masses is the 4 

Hoek-Brown (H-B) failure criterion. Not much literature is available about 5 

the bearing capacity of foundations on rock masses obeying the H-B failure 6 

criterion considering embedment depth. Perhaps, one of the reasons is the 7 

later adoption of the H-B failure criterion for rock masses, which was first 8 

published in 1983 [2] with its latest version in 2002 [3]. Early attempts to 9 

predict the bearing capacity of foundations on rock masses have focused 10 

mostly on surface strip foundations applying traditional upper bound and 11 

lower bound theorems of limit analysis.  12 

Kulhawy and Carter et al. [4] proposed a relationship for the lower 13 

bound to the ultimate bearing capacity of surface strip foundations on rock 14 

masses based on theorems of limit analysis. This lower bound was found by 15 

assuming the simplest stress field that satisfied both the failure criterion and 16 

the equilibrium equations. Later studies reveal that their solution 17 

significantly underestimates the bearing capacity. Merifield et al. [5] 18 

performed numerical upper bound and lower bound theorems of limit 19 

analysis for surface strip foundations by incorporating finite elements. They 20 

adopted a continuous approximation of the H-B failure criterion to account 21 

for the apex discontinuity in the failure envelope. They claimed that the true 22 

bearing capacity values are bracketed to within 2.5% between the lower and 23 

the upper bounds. Saada et al. [6] offered a slightly different approach 24 

according to upper bound theorems of limit analysis and non-linear 25 

optimization for a strip footing on rock masses obeying H-B failure criterion. 26 

The solutions were derived from direct analysis of the kinematically 27 

admissible failure mechanisms. They reformulated the H-B failure criterion 28 

as a nonlinear Mohr-Coulomb criterion with pressure-dependent cohesion 29 

and friction angle. Their results agreed closely with the results from [5]. 30 

Clausen [7] used standard displacement finite element method to determine 31 
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the ultimate bearing capacity of surface circular foundations. He employed 1 

an exact version of the Hoek–Brown criterion without any approximations 2 

for the discontinuities in the failure surface. 3 

Nevertheless, none of the above authors examined the embedment depth 4 

effects. To the author’s knowledge, Serrano et al. [8,9] were first to present 5 

analytical solutions for the ultimate bearing capacity of piles with rough base 6 

and smooth shaft in rock masses obeying H-B failure criterion. Initially, they 7 

published their solutions for the 1998 version and later adopted the 2002 8 

version. They made the following assumptions: (1) Postulated failure 9 

mechanisms are according to Meyerhof [10]. For a pile in weightless rock 10 

with practically no surcharge pressure, 𝑞𝑞0, the failure mechanism extends to 11 

the ground level for shallow embedment and rests local for deep embedment 12 

as illustrated in Fig. 1. Such failure patterns have been long observed in 13 

experiments. (2) Theory of characteristic lines can be employed together 14 

with associated plasticity. The choice of the associated flow rule has long 15 

been used in soil and rock mechanics to make analytical approaches such as 16 

theorems of limit analysis work. (3) Bearing capacity of pile is obtained 17 

from a plane strain problem (embedded strip foundation) employing De Beer 18 

shape factors [11]. Two cases for the average surcharge pressure, 𝑞𝑞0 on the 19 

assumed failure surfaces were considered: a) less than or b) greater than the 20 

uniaxial compressive strength of the intact rock mass 𝜎𝜎𝑐𝑐𝑐𝑐.  21 

Firstly, this paper addresses the annular bearing response of open-ended 22 

pipe piles in an isotropic homogeneous material utilizing finite element (FE) 23 

method. The rock mass is weightless and obeys non-linear Hoek-Brown 24 

failure criterion. The primary focus will be the embedment effects on the 25 

ultimate toe bearing capacity and associated failure modes. The pile-soil 26 

interface is fully rough at the base and smooth along the shaft meaning that 27 

the pipe pile penetrates the rock mass in a fully coring mode. It has been 28 

shown that the tendency of driven open-ended steel pipe pile to penetrate in 29 

an unplugged mode increases as the diameter increases [12]. In addition, the 30 

pipe pile response is compared with piles and embedded strip foundations, 31 
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which are indeed two extreme case of pipe piles. The former has an internal 1 

radius of zero while the latter has an infinite external radius.  2 

Secondly, the numerical results are compared against test data from 3 

static penetration tests and impact-driven instrumented model pipe piles into 4 

natural/synthetic rock masses. Taken together, the results indicate a 5 

relatively accurate prediction of the pipe pile end bearing response as 6 

demonstrated by agreement with test data from model pipe piles. 7 

Furthermore, the results provide some insight on the mechanism of plug 8 

formation. 9 

 10 

2 Problem description 11 

The problem consists of investigating the annular bearing response of 12 

typical embedded pipe piles by employing an axisymmetric model. The 13 

boundary conditions for the axisymmetric pipe pile is depicted in Fig. 2(a) 14 

and the geometry details are provided in Table 1. A rigid pipe pile of 15 

thickness, 𝑡𝑡 (0.05 m) and variable external diameter 𝐷𝐷𝑜𝑜 is embedded at 16 

depth, 𝑑𝑑 in a homogeneous weightless isotropic rock mass whose strength 17 

and elastic properties are described in Section 3 – Constitutive model. Pipe 18 

piles are characterized by the ratio of the external diameter to the pipe 19 

thickness (𝐷𝐷𝑜𝑜/𝑡𝑡), which is often referred to as pipe dimension ratio. After 20 

reviewing catalogues from multiple pile manufacturers, it is found that most 21 

of the available pipe dimensions in the piling industry fall in the range of 22 

18<𝐷𝐷𝑜𝑜 𝑡𝑡⁄ <130. With the lower and upper ranges for onshore and offshore 23 

applications, respectively. Here, two types of pipe piles are selected: 𝐷𝐷𝑜𝑜 𝑡𝑡⁄ = 24 

22 and 38. The former has 𝐷𝐷𝑜𝑜=27.31 and 𝑡𝑡=1.27 cm while the latter has 25 

𝐷𝐷𝑜𝑜  =  182.9 𝑐𝑐𝑐𝑐 and 𝑡𝑡 = 5.1 𝑐𝑐𝑐𝑐 and is projected to be used as foundation 26 

for a jacket structure to support an offshore wind turbine of 10 MW rated 27 

capacity [13]. 28 

Results from these pipe piles are then compared with circular and strip 29 

foundations. The pipe pile will be referred to as a circular pile of radius, 30 

𝑡𝑡 when 𝐷𝐷𝑜𝑜/𝑡𝑡=2 and as a nearly-strip foundation of width, 𝑡𝑡 when 31 
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𝐷𝐷𝑜𝑜/𝑡𝑡=8000. The pipe pile approaches a strip foundation as 𝐷𝐷𝑜𝑜 →  ∞. The 1 

foundation is pre-embedded to depth, 𝑑𝑑 which is varied at 0, 1, 2, 3, 4, 5, 6, 2 

7, 8 times the pipe wall thickness, 𝑡𝑡. Idealizing the pipe as a rigid indenter, a 3 

prescribed downward displacement with a horizontal fixity is applied at the 4 

pipe toe bed level and the resulting average reaction is found. Let 𝑞𝑞 be the 5 

average pressure that the pipe annulus exerts on the rock mass, the ultimate 6 

value of 𝑞𝑞 (referred to as the ultimate annular bearing capacity) will be 7 

denoted as 𝑞𝑞𝑢𝑢.  8 

Theoretically, the ultimate loads are defined when the slope of load-9 

displacement curve drops to zero percent of the initial slope and a load-10 

plateau is reached. Because of the numerical tool (Section 4.1) used in this 11 

paper, it is very time consuming to reach low values of relative slope. It is 12 

assumed that the ultimate annular bearing capacity is signaled when a 13 

settlement equal to 25% of the foundation wall thickness has occurred. As 14 

shown later, at this point the slope of the load-displacement curves fall 15 

below 1% of the initial value for the analyses conducted in this paper unless 16 

stated otherwise. As a result, the computed ultimate loads are sufficiently 17 

accurate for practical purposes. 18 

In order to relate the ultimate toe bearing capacity of the pipe pile to 19 

intrinsic properties of the rock mass, it is practical to resort to a bearing 20 

capacity equation such as: 21 

𝑞𝑞𝑢𝑢 = 𝑁𝑁𝜎𝜎0 𝜎𝜎𝑐𝑐𝑐𝑐 (1) 

where 𝑁𝑁𝜎𝜎0 is a global bearing capacity factor, which accommodates the 22 

effects of rock intrinsic strength as well as embedment and pipe shape while 23 

𝜎𝜎𝑐𝑐𝑐𝑐 is the uniaxial compressive strength of the intact rock. The global bearing 24 

capacity factor does not include the rock mass self-weight effects. For high 25 

quality strong rock masses, the rock weight would have a negligible effect 26 

on the ultimate toe bearing capacity of pipe piles due to their thin wall 27 

thickness [5]. 28 

 29 

3 Constitutive model 30 
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 1 

3.1 Hoek-Brown failure criterion 2 

The rock mass has been modeled as a linearly elastic and perfectly 3 

plastic material obeying the Hoek-Brown (H-B) failure criterion [3], which 4 

is an empirical yield envelope obtained from extensive triaxial tests on a 5 

wide range of rock types. Adopting the sign convention that compressive 6 

stresses are positive, one can write  7 

𝜎𝜎1
𝜎𝜎𝑐𝑐𝑐𝑐

=
𝜎𝜎3
𝜎𝜎𝑐𝑐𝑐𝑐

+ �𝑐𝑐𝑏𝑏
𝜎𝜎3
𝜎𝜎𝑐𝑐𝑐𝑐

+ 𝑠𝑠�
𝑎𝑎
 (2) 

where 𝜎𝜎1 and 𝜎𝜎3 denote the major and minor principal stresses 8 

respectively; 𝜎𝜎𝑐𝑐𝑐𝑐 is the uniaxial compressive strength of the intact rock; 𝑎𝑎, 9 

𝑐𝑐𝑏𝑏 and 𝑠𝑠 are the derived parameters defined according Eqs. (3), (4), and (5). 10 

𝑐𝑐𝑏𝑏 = 𝑐𝑐𝑐𝑐exp �
𝐺𝐺𝐺𝐺𝐺𝐺 − 100
28 − 14𝐷𝐷

� (3) 

𝑠𝑠 = exp �
𝐺𝐺𝐺𝐺𝐺𝐺 − 100

9 − 3𝐷𝐷
� (4) 

𝑎𝑎 =
1
2

+
1
6

 �exp �−
𝐺𝐺𝐺𝐺𝐺𝐺
15

� − exp �−
20
3
�� (5) 

in which 𝐺𝐺𝐺𝐺𝐺𝐺 = geological strength index; 𝑐𝑐𝑐𝑐 = material constant; and 𝐷𝐷 11 

= disturbance factor. 𝐺𝐺𝐺𝐺𝐺𝐺 is a rock quality parameter and depends on the 12 

joint and surface characteristics of the rock mass. It can be evaluated by 13 

visual appearance of the rock mass sample in laboratory or rock mass 14 

outcrop in the field. 15 

The material constant, 𝑐𝑐𝑐𝑐 can be obtained from triaxial test data using 16 

statistical analyses. In the absence of laboratory data, it can be estimated for 17 

different rock types according to empirical charts and tables [14]. The 18 

disturbance factor accounts for stress relaxation and blast damage in the rock 19 

mass. The uniaxial compressive strength (𝜎𝜎𝑐𝑐) of the rock mass can be found 20 

by setting 𝜎𝜎3=0 in Eq. (2). 21 

𝜎𝜎𝑐𝑐 = 𝑠𝑠𝑎𝑎𝜎𝜎𝑐𝑐𝑐𝑐  (6) 

The uniaxial tensile strength (𝜎𝜎𝑡𝑡) can be found by setting 𝜎𝜎1 = 0 in Eq. 22 

(2) and solving the following equation for 𝜎𝜎𝑡𝑡: 23 
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𝜎𝜎𝑡𝑡
𝜎𝜎𝑐𝑐𝑐𝑐

+ �𝑐𝑐𝑏𝑏
𝜎𝜎𝑡𝑡
𝜎𝜎𝑐𝑐𝑐𝑐

+ 𝑠𝑠�
𝑎𝑎

= 0 (7) 

Combining Eqs. (6) and (7), one can derive an equation for mi 1 

𝑐𝑐𝑐𝑐 = �𝑠𝑠
𝜎𝜎𝑐𝑐
𝜎𝜎𝑡𝑡
− �

𝜎𝜎𝑡𝑡
𝜎𝜎𝑐𝑐
�
1−𝑎𝑎
𝑎𝑎
� exp �−

𝐺𝐺𝐺𝐺𝐺𝐺 − 100
28 − 14𝐷𝐷

� (8) 

For intact rock (𝐺𝐺𝐺𝐺𝐺𝐺=100), 𝑐𝑐𝑐𝑐 can be found from intact uniaxial tensile 2 

strength, 𝜎𝜎𝑡𝑡𝑐𝑐  and 𝜎𝜎𝑐𝑐𝑐𝑐 : 3 

𝑐𝑐𝑐𝑐  =
𝜎𝜎𝑐𝑐𝑐𝑐
𝜎𝜎𝑡𝑡𝑐𝑐

−
𝜎𝜎𝑡𝑡𝑐𝑐
𝜎𝜎𝑐𝑐𝑐𝑐

 (9) 

Eq. (9) has important practical applications since it correlates the 4 

𝑐𝑐𝑐𝑐 parameter to intact uniaxial compressive and intact tensile strengths of a 5 

rock mass. 6 

Another useful representation of H-B failure criterion is to express the 7 

instantaneous friction angle (𝜙𝜙𝑐𝑐𝑖𝑖𝑖𝑖𝑡𝑡) as a function of the confining stress (𝜎𝜎3). 8 

This enables one to compare the frictional behavior of the material to that of 9 

a Mohr-Coulomb material with constant friction angle. 𝜙𝜙𝑐𝑐𝑖𝑖𝑖𝑖𝑡𝑡  can be 10 

determined from the slope of the tangent (𝑝𝑝) to the failure envelope in the 11 

principal stress plane by 12 

𝜙𝜙𝑐𝑐𝑖𝑖𝑖𝑖𝑡𝑡(𝜎𝜎3) = 2 �tan−1 �𝑝𝑝(𝜎𝜎3) −
𝜋𝜋
4
� (10) 

where 𝜙𝜙𝑐𝑐𝑖𝑖𝑖𝑖𝑡𝑡(𝜎𝜎3) is in radians. The slope of the tangent (𝑝𝑝) is obtained by 13 

differentiating Eq. (2): 14 

𝑝𝑝(𝜎𝜎3) =
𝜕𝜕𝜎𝜎1
𝜕𝜕𝜎𝜎3

= 1 +
𝑐𝑐𝑏𝑏𝑎𝑎

�𝑐𝑐𝑏𝑏
𝜎𝜎3
𝜎𝜎𝑐𝑐𝑐𝑐

+ 𝑠𝑠�
1−𝑎𝑎 (11) 

Looking at (11), the 𝜙𝜙𝑐𝑐𝑖𝑖𝑖𝑖𝑡𝑡 approaches zero as 𝜎𝜎3 approaches infinity. 15 

Theoretically, this means that that the H-B material changes from a frictional 16 

material to a cohesive material at very high confining stresses. 17 

 18 

3.2 Flow rule 19 

Performing elastoplastic calculation of bearing capacity problems 20 

requires a flow rule so that the increments of plastic strain increments can be 21 

calculated. The Hoek-Brown failure criterion is an empirical yield envelope. 22 



 

FOR REVIEW ONLY 

9 

Therefore, no original plastic potential function was defined. To specify the 1 

flow rule, some authors use associated plasticity, while some others use a 2 

constant dilatancy angle [14]. Some workers investigate the post-failure 3 

properties of rock masses by triaxial tests [15] . In such tests, the test 4 

specimens may undergo nonhomogeneous deformation modes leading to 5 

measurement of the mechanical response of a system rather than the real 6 

constitutive behavior of rock masses [16].  As a result, there is still much 7 

debate on post-failure properties of rock.  8 

In this paper, we adopt the flow rule which is proposed by Carranza-9 

Torres and Fairhurst [17]. This flow rule can capture some important aspects 10 

of rock dilatancy such as its dependency on confining stresses [18,19]. This 11 

flow rule uses a plastic potential function similar to that of Mohr-Coulomb 12 

failure criterion except that the dilatancy angle varies with 𝜎𝜎3. The plastic 13 

potential function writes as 14 

𝐺𝐺13 = 𝐺𝐺1 −
1 + sin𝜓𝜓𝑚𝑚𝑜𝑜𝑏𝑏
1 − sin𝜓𝜓𝑚𝑚𝑜𝑜𝑏𝑏

 𝐺𝐺3 (12) 

where 𝐺𝐺1, and 𝐺𝐺3 are scaled principal stresses, defined as 15 

𝐺𝐺𝑐𝑐 = −
𝜎𝜎𝑐𝑐

𝑐𝑐𝑏𝑏𝜎𝜎𝑐𝑐𝑐𝑐
+

𝑠𝑠
𝑐𝑐𝑏𝑏
2       𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 3 (13) 

and 𝜓𝜓𝑚𝑚𝑜𝑜𝑏𝑏 is the mobilized dilatancy angle, varying with 𝜎𝜎3 from its 16 

input value , 𝜓𝜓𝑚𝑚𝑎𝑎𝑚𝑚 at 𝜎𝜎3=0 ( unconfined dilation angle) down to zero at a 17 

threshold confining pressure 𝜎𝜎3 = 𝜎𝜎𝜓𝜓 as: 18 

𝜓𝜓𝑚𝑚𝑜𝑜𝑏𝑏 = �
𝜓𝜓𝑚𝑚𝑎𝑎𝑚𝑚
𝜎𝜎𝜓𝜓

� �𝜎𝜎𝜓𝜓 − 𝜎𝜎3�, 0 ≤ 𝜎𝜎3 ≤ 𝜎𝜎𝜓𝜓 (14) 

To allow for plastic expansion in the tensile zone, an increased artificial 19 

mobilized dilatancy is used. 20 

𝜓𝜓𝑚𝑚𝑜𝑜𝑏𝑏 = 𝜓𝜓𝑚𝑚𝑎𝑎𝑚𝑚 +
𝜎𝜎3
𝜎𝜎𝑡𝑡

(𝜓𝜓𝑚𝑚𝑎𝑎𝑚𝑚 − 90°),−𝜎𝜎𝑡𝑡 ≤ 𝜎𝜎3 ≤ 0 (15) 

Fig. 3(a) visualizes the evolution of mobilized dilatancy angle (𝜓𝜓𝑚𝑚𝑜𝑜𝑏𝑏) as 21 

a function of 𝜎𝜎3. As can be seen in Eq. (14) and (15), the flow rule has two 22 

input parameters: (1) 𝜓𝜓𝑚𝑚𝑎𝑎𝑚𝑚 and (2) 𝜎𝜎𝜓𝜓. The first parameter is the dilatancy 23 

angle at null confinement (𝜓𝜓𝑚𝑚𝑎𝑎𝑚𝑚), which is assumed to be three fourth of the 24 
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corresponding friction angle. Some authors have assumed 𝜓𝜓𝑚𝑚𝑎𝑎𝑚𝑚 = 𝜙𝜙𝑐𝑐𝑖𝑖𝑖𝑖𝑡𝑡 for 1 

null confinement [20]. Besides, 𝜓𝜓𝑚𝑚𝑎𝑎𝑚𝑚 = 2
3

 𝜙𝜙𝑐𝑐𝑖𝑖𝑖𝑖𝑡𝑡 is also proposed for high 2 

quality rocks [21]. 3 

The second flow rule parameter (𝜎𝜎𝜓𝜓) is determined by the x-intercept of 4 

a tangent line on the instantaneous friction angle curve in Fig. 3(a) starting 5 

from the 𝜓𝜓𝑚𝑚𝑜𝑜𝑏𝑏=3/4 𝜙𝜙𝑐𝑐𝑖𝑖𝑖𝑖𝑡𝑡 at 𝜎𝜎3 = 0. A tangent line is chosen to avoid high 6 

levels of non-normality in the model, which could cause numerical 7 

instabilities. Since the difference between dilatancy angle and friction angle 8 

is mostly less than 20°, it can be expected that bearing capacity values are 9 

close to that calculated by associated plasticity [22]. 10 

The proposed linear mobilized dilatancy angle can be plotted using Eqs. 11 

(14) and (15). Similarly, 𝜙𝜙𝑐𝑐𝑖𝑖𝑖𝑖𝑡𝑡 can be plotted according to Eq. (10). 12 

Knowing the value of 𝜓𝜓𝑚𝑚𝑎𝑎𝑚𝑚=3/4 𝜙𝜙𝑐𝑐𝑖𝑖𝑖𝑖𝑡𝑡 at 𝜎𝜎3 = 0, a set of equations can be 13 

established in order to solve for 𝜎𝜎𝜓𝜓. Fig. 3(b) depicts the variation of the 14 

adapted flow rule parameters versus Hoek-Brown model parameters. 15 

The validity of the adapted flow rule in this paper may arise some 16 

questions. However, it is believed that the current choice of flow rule has no 17 

effect on the conclusions of this paper, which focuses on unplugged base 18 

response of pipe piles. It has been shown that the dilatancy angle does not 19 

play an important role in response of insufficiently constrained problem like 20 

surface footings. The impact of dilatancy aggravates as problem becomes 21 

confined and kinematic restriction increases [23]. The failure mechanism of 22 

an unplugged pipe pile in this study is shown later (Fig. 7) to be similar a 23 

surface footing, hence it can be treated as an insufficiently constrained 24 

problem. 25 

A related point to consider is that the adopted flow rule results is a non-26 

associated flow rule. Theoretically the limit load may not be unique and may 27 

lie within an interval [24]. Hence, load-displacement curves can contain 28 

remarkable spurious perturbations and raggedness in the case of extremely 29 

non-associated problems [22,25–29]. As demonstrated later (Fig. 5), the 30 
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calculated load-displacement curves of this study are in general fairly 1 

smooth without any spurious perturbation, it can be thus judged that the 2 

interval of feasible solutions is so narrow that has no practical significance. 3 

 4 

3.3 Reference material 5 

This paper examines the bearing capacity of pipe piles in a rock mass 6 

with 𝑐𝑐𝑐𝑐 = 1, 5, 7.5 and 10. This range corresponds to most sedimentary rock 7 

masses such as carbonates, clay stones, gypsum and chalk [14] as shown in 8 

Table 2. The rock masses are assumed intact and undisturbed, which is 9 

expected considering the size of typical piles to that of rock masses. As a 10 

result, one can set 𝐺𝐺𝐺𝐺𝐺𝐺=100 and 𝐷𝐷=0. Intact deposits of sedimentary rocks 11 

are often encountered offshore and onshore. Furthermore, it has been 12 

reported that disturbance factor, D has no practical effect on the bearing 13 

capacity of high when GSI =100 [6]. The dilatancy parameters are listed in 14 

Table 3. The Young’s modulus of the rock mass, Erm can be found according 15 

to empirical relationships [30]. To cover the broad spectrum of sedimentary 16 

rocks, a ratio of 𝐸𝐸𝑟𝑟𝑚𝑚 𝜎𝜎𝑐𝑐𝑐𝑐⁄ =1000 and a Poisson’s ratio 𝜈𝜈=0.2 are used. In the 17 

calculations, 𝜎𝜎𝑐𝑐𝑐𝑐 = 7 MPa is used. The choice of Poisson’s ratio has been 18 

made according to the range of typical values for different rock types [31]. 19 

Since ultimate loads are investigated under fully developed failure 20 

mechanisms, the deformation characteristics of the rock mass do not affect 21 

the results. 22 

 23 

4 Numerical procedures 24 

 25 

4.1 Numerical tool 26 

Plaxis 2D 2019 [32] is employed as the FE analysis tool for this 27 

axisymmetric boundary value problem. A small strain finite element analysis 28 

is conducted. The stress integration scheme employs the initial stiffness 29 

method, i.e. an elastic constitutive matrix is used instead of formulating any 30 
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elastoplastic constitutive matrices. This can be computationally expensive 1 

due to higher number of iterations to converge. The initial stiffness method 2 

is preferred here since the elastoplastic constitutive matrices of failure 3 

criteria (e.g. H-B criterion) containing edge and apex discontinuities can 4 

pose certain numerical challenges unless special measures are taken [33–36] 5 

All models were meshed with identical element size and type so that 6 

comparable results could be found. A zone of finer mesh equal to the pipe 7 

pile thickness, 𝑡𝑡 was also created around the embedded pile. Fig. 2(b) depicts 8 

the model domain and mesh for a pipe pile with 𝐷𝐷𝑜𝑜/𝑡𝑡 = 38 embedded at 𝑑𝑑/𝑡𝑡 9 

= 8. Regarding the element types, six-node triangular elements with three 10 

Gauss points are used. Each node has two displacement degrees of freedom. 11 

Typically, the models contain 25000 nodes, and 12000 elements. The 12 

displacement increment is controlled by an automated load stepping 13 

procedure [37]. An elastic interface/joint element was placed beneath the 14 

pipe base in order to calculate the contact shear stresses. The elastic stiffness 15 

was set sufficiently high to avoid any kind of slip or gapping at the interface 16 

and ensure failure would occur in the rock mass. The normal and tangential 17 

stiffness was set to 𝐾𝐾𝑁𝑁=2139 GPa/m; 𝐾𝐾𝑇𝑇=194.4 GPa/m. This was high 18 

enough to keep any elastic displacements of the interface less than 0.5% of 19 

the prescribed displacement. 20 

 21 

4.2 Convergence Analysis 22 

To evaluate how results are affected by discretization errors, a 23 

convergence analysis is conducted using the method proposed by Cook [38] 24 

for finite element analyses. This method was also successfully used for 25 

calculation of bearing capacity of circular footings on a Hoek-Brown 26 

material [7]. In this process, the analysis is conducted with all parameters 27 

being identical except the finite element mesh which is refined in a 28 

consistent manner. The value of the ultimate load, 𝑞𝑞𝑢𝑢, for different 29 

normalized mesh densities are plotted as shown in Fig. 4. The normalized 30 

mesh density is defined as ℎ = 1 �𝑛𝑛𝐷𝐷𝑜𝑜𝐷𝐷⁄  where 𝑛𝑛𝐷𝐷𝑜𝑜𝐷𝐷 is the number of 31 
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degrees of freedom. A quadratic polynomial is fit to the data points with a 1 

high R-Squared value. With the polynomial it is possible to extrapolate to 2 

ℎ=0 in order to obtain the convergence value for the ultimate bearing 3 

capacity as 𝑛𝑛𝐷𝐷𝑜𝑜𝐷𝐷 tends towards infinity (ℎ → 0). The value of the ultimate 4 

load seems to converge as the mesh is refined. 5 

The convergence analysis was conducted for three geometries: 𝐷𝐷𝑜𝑜/𝑡𝑡 = 6 

22, 38, and 8000. For each geometry two embedment depths were 7 

considered, 𝑑𝑑/𝑡𝑡=0 and 𝑑𝑑/𝑡𝑡=7. The results are shown in Fig. 4 for the 8 

reference Hoek-Brown material with 𝑐𝑐𝑐𝑐=10. For the selected mesh in the FE 9 

analysis, the computed ultimate load lies within 4% of the convergence 10 

value. Since the pipe pile at surface (𝑑𝑑/𝑡𝑡=0) with 𝐷𝐷𝑜𝑜/𝑡𝑡=8000 is 11 

approximately a surface strip footing and the pipe pile with Do/t=2 is 12 

circular surface footing, the bearing capacity values can be compared against 13 

some published bearing capacity values of surface circular and strip 14 

foundations, which are obtained using associated plasticity. Table 4 lists the 15 

bearing capacity values. As expected, the calculated bearing capacity values 16 

employing the adapted flow rule of this paper are close with the bearing 17 

capacity values using associated plasticity. 18 

 19 

5 Results 20 

 21 

5.1 Load-settlement curves 22 

Typical normalized load-displacement diagrams of the pipe piles (𝐷𝐷𝑜𝑜/𝑡𝑡 23 

= 22 and 38), circular pile (𝐷𝐷𝑜𝑜/𝑡𝑡=2) and nearly-strip foundation 24 

(𝐷𝐷𝑜𝑜/𝑡𝑡=8000) are illustrated in Fig. 5. Each diagram depicts the normalized 25 

load-displacement curves of the foundations pre-embedded at 𝑑𝑑/𝑡𝑡 = 0, 1, 2, 26 

3, 4, 5, 6, 7, and 8 in the reference Hoek-Brown material with 𝑐𝑐𝑐𝑐 =10. 27 

Recalling that a prescribed displacement equal to 25% of the pipe wall 28 

thickness is applied, one can note that theoretically the ultimate bearing 29 

capacity of the circular pile has not been mobilized beyond some embedment 30 
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depth, 𝑑𝑑/𝑡𝑡>2. The slope of the load-displacement curve does not fall below 1 

5% of the initial slope. The results for the circular pile are provided for sake 2 

of completeness. 3 

 4 

5.2 Failure patterns 5 

Local failure mechanisms occur when a smoothly varying deformation 6 

pattern suddenly changes and that all further deformations are localized in 7 

the shear bands/slip planes/failure surfaces. This process is also referred to 8 

as strain localization. The small-strain finite element formulation is capable 9 

of capturing some important aspects of the failure mechanisms such as the 10 

orientation of the slip planes. However, the thickness of the slip lines are 11 

mesh dependent and are hence not useful [39]. Typical failure patterns of the 12 

pipe piles (𝐷𝐷𝑜𝑜/𝑡𝑡 = 22 and 38), circular pile (𝐷𝐷𝑜𝑜/𝑡𝑡=2) and nearly-strip 13 

foundation (𝐷𝐷𝑜𝑜/𝑡𝑡=8000) embedded in the reference H-B material with 14 

𝑐𝑐𝑐𝑐=7.5 are illustrated in Fig. 6 by plotting for the last calculation step, the 15 

incremental deviatoric strain, 𝜀𝜀𝑞𝑞 defined as: 16 

𝜖𝜖𝑞𝑞 = �2
3 ��𝜖𝜖𝑚𝑚𝑚𝑚 −

𝜖𝜖𝑣𝑣
3 �

2
+ �𝜖𝜖𝑦𝑦𝑦𝑦 −

𝜖𝜖𝑣𝑣
3 �

2
+ �𝜖𝜖𝑧𝑧𝑧𝑧 −

𝜖𝜖𝑣𝑣
3 �

2
+

1
2 𝛾𝛾𝑚𝑚𝑦𝑦

2 � (16) 

where 𝜀𝜀𝑚𝑚𝑚𝑚, 𝜀𝜀𝑦𝑦𝑦𝑦, 𝜀𝜀𝑧𝑧𝑧𝑧, 𝛾𝛾𝑚𝑚𝑦𝑦, are the Cartesian components of the strain 17 

increment and 𝜀𝜀𝑣𝑣  = 𝜀𝜀𝑚𝑚𝑚𝑚+𝜀𝜀𝑦𝑦𝑦𝑦+𝜀𝜀𝑧𝑧𝑧𝑧 is the volumetric strain increment. For sake 18 

of clarity, only the failure patterns at normalized embedment depth, 𝑑𝑑/𝑡𝑡 = 0, 19 

2, 4, and 8 are shown. 20 

In addition to being unsymmetrical with respect to pipe wall center, the 21 

failure mechanism of the pipe piles (𝐷𝐷𝑜𝑜/𝑡𝑡 = 22 and 38) extend to the ground 22 

level at shallow embedment (𝑑𝑑/𝑡𝑡 ≤ 4).  As embedment increases further, 23 

the failure mechanism becomes local and concentrated at the interior of the 24 

pipe pile. Intense bands of shearing deformation characterize the failure 25 

mechanisms for all the pipe pile dimensions. From the failure patterns, one 26 

can conclude that the true ultimate bearing capacity is mobilized when the 27 

failure mechanism extends to the surface. Fig. 7 demonstrates the effect of 28 
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the Hoek-Brown parameter 𝑐𝑐𝑐𝑐 on the failure mechanisms. Decreasing 𝑐𝑐𝑐𝑐 1 

results in failure patterns that are confined to the proximity of pipe wall. 2 

 3 

5.3 Bearing capacity factor 4 

Global bearing capacity factor, 𝑁𝑁𝜎𝜎0 versus normalized embedment 5 

depth, 𝑑𝑑/𝑡𝑡 of the pipe piles (𝐷𝐷𝑜𝑜/𝑡𝑡 = 22 and 38), circular pile (𝐷𝐷𝑜𝑜/𝑡𝑡=2) and 6 

nearly-strip foundation (𝐷𝐷𝑜𝑜/𝑡𝑡=8000) are plotted in Fig. 8. For each value of 7 

the H-B parameter mi, the analytical solution of 𝑁𝑁𝜎𝜎0 – 𝑑𝑑/𝑡𝑡 by Serrano et al. 8 

[9] for circular piles and strip foundations are plotted as well. A very low 9 

surcharge pressure, 𝑞𝑞0 =  1.4 × 10−5 𝜎𝜎𝑐𝑐𝑐𝑐  is assumed since their analytical 10 

solution is not applicable for null surcharge (Fig. 1). 11 

 12 

5.4 Depth factor 13 

In order to better observe the variation of bearing capacity with respect 14 

to embedment depth for a given foundation with 𝐷𝐷𝑜𝑜/𝑡𝑡, a depth factor can be 15 

defined by normalizing the bearing capacity factor (𝑁𝑁𝜎𝜎0) at depth, 𝑑𝑑 against 16 

the surface bearing capacity factor (𝑁𝑁𝜎𝜎0,𝑆𝑆) as 17 

𝑑𝑑𝜎𝜎0 =
𝑁𝑁𝜎𝜎0
𝑁𝑁𝜎𝜎0,𝑆𝑆

 (17) 

This depth factor has been plotted against embedment depth in Fig. 9. 18 

 19 

6 Discussion 20 

 21 

6.1 Bearing capacity enhancement and mechanism of plug formation 22 

As it can be seen in Fig. 8 that the bearing capacity of the foundation 23 

types with dimension ratio, 𝐷𝐷𝑜𝑜/𝑡𝑡 = 2, 22, 38, and 8000 increases with 24 

embedment depth. The bearing capacity factor increases at a relatively sharp 25 

rate up to a depth of 𝑑𝑑/𝑡𝑡=1-2 as it can be seen in depth factor diagrams (Fig. 26 

9). This justifies the existing practice in the industry to socket piles for a 27 

length of one to two pile diameters into the rock mass. 28 
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Moreover, the diagrams of the bearing capacity factor (Fig. 8) indicate 1 

that the bearing capacity of the pipe piles (𝐷𝐷𝑓𝑓/𝑡𝑡 = 22, and 38) at shallow 2 

embedment (𝑑𝑑 𝑡𝑡⁄ <2-4) is slightly higher than that of strip foundation. This is 3 

because of the confinement introduced by the tubular pipe geometry, which 4 

makes the pipe pile behave similar to that of a circular foundation. 5 

Nevertheless, the pipe piles have a lower bearing capacity than that of the 6 

strip foundation for deep embedment (𝑑𝑑 𝑡𝑡⁄ >2-4). This may reflect the fact 7 

that the failure surface below the pile wall intersects the axis of symmetry 8 

about the toe depth, thus, not allowing shear stresses to be transferred to 9 

portions of the plug above the pile toe level. 10 

In general, for the pipe piles (𝐷𝐷𝑜𝑜/𝑡𝑡 = 22 and 38) an apparently limit 11 

ultimate bearing capacity, 𝑞𝑞𝑢𝑢𝑢𝑢𝑐𝑐𝑚𝑚 is approached at some depth, hereafter 12 

referred to as critical embedment depth 𝑑𝑑𝑐𝑐𝑟𝑟𝑐𝑐𝑡𝑡. This critical depth is, in fact, 13 

the transition depth from shallow embedment to deep embedment.  14 

For embedment depth 𝑑𝑑 >  𝑑𝑑𝑐𝑐𝑟𝑟𝑐𝑐𝑡𝑡, the failure surface of the pile wall 15 

remains in a horizontal zone about the toe level and do not allow the failure 16 

surface to extend to the ground level. Therefore, the rock mass inside the 17 

pipe stops to contribute to the total rock mass resistance as it becomes 18 

kinematically able to pop up inside the pipe as a monolithic rock plug. At 19 

this moment, the pipe pile resembles a strip foundation that is embedded 20 

only on one side. As penetration continues, the pipe pile penetrates another 21 

𝑑𝑑𝑐𝑐𝑟𝑟𝑐𝑐𝑡𝑡 before the plug breaks and pops up again. Finally, one can expect that 22 

the plug is just a vertical stack of rock disks with a height of two to four 23 

times the pipe wall thickness, 𝑑𝑑𝑐𝑐𝑟𝑟𝑐𝑐𝑡𝑡=2-4 𝑡𝑡. 24 

Another observation from the diagrams of the bearing capacity factor 25 

(Fig. 8) is that for embedment depths greater than 𝑑𝑑𝑐𝑐𝑟𝑟𝑐𝑐𝑡𝑡, the pipe pile with 26 

𝐷𝐷𝑜𝑜/𝑡𝑡 = 38 has a higher bearing capacity than that of the pipe pile with 𝐷𝐷𝑜𝑜/𝑡𝑡 27 

= 22. This is because the latter allows for mobilization of shearing resistance 28 

over a larger zone of 19 times the wall thickness beneath the pipe wall in 29 

comparison with 11 times the pipe thickness for the pipe pile with 𝐷𝐷𝑜𝑜/𝑡𝑡=22. 30 

For circular pile (𝐷𝐷𝑜𝑜/𝑡𝑡 = 2) and nearly-strip foundations (𝐷𝐷𝑜𝑜/𝑡𝑡 = 8000), 31 
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in weightless rock with practically null surcharge pressure, the solution by 1 

Serrano et al. [9] results in increasing bearing capacity values up to a limit 2 

embedment depth, thereafter, the failure envelope closes upon itself (Fig. 1) 3 

and the bearing capacity remains constant as seen in Fig. 8. Their analytical 4 

results are approximately valid up to 2 times pipe wall thickness, which is 5 

the range of interest for rock socketed piles and overestimates the bearing 6 

capacity with increasing embedment depth (𝑑𝑑/𝑡𝑡 > 2). 7 

However, the numerical results (Fig. 8) for the circular and nearly strip 8 

foundations do not indicate approaching the limit embedment depth as 9 

suggested by [9]. The results indicate that the bearing capacity does not stop 10 

to increase with further embedment. The reason may be due to their 11 

postulated failure mechanism, which cannot be captured under the 12 

assumptions of this model: linear elasticity and perfectly nearly-associated 13 

plasticity.  It is worth mentioning that the bearing capacity factors of the 14 

circular pile (𝐷𝐷𝑜𝑜/𝑡𝑡 = 2) for 𝑑𝑑/𝑡𝑡 > 2 underestimate the theoretical ultimate 15 

values and are provided for sake of completeness. 16 

The numerical results of the pipe piles in rock mass are in sharp contrast 17 

with the observations from model pipe pile tests in clay [40] which 18 

suggested that the correlations available for base capacity of closed-ended 19 

pipe piles can be transferred to the annular capacity of open-ended piles. A 20 

possible explanation to this contradiction can be the difficulty in separation 21 

of the pile skin friction and annular base resistance assuming that the pipe 22 

pile bearing response in rock and clay are similar. 23 

  24 

6.2 Inclination of rock mass reaction at pipe tip 25 

The unsymmetrical failure mechanisms shown in Fig. 7 for pipe piles 26 

(𝐷𝐷𝑜𝑜/𝑡𝑡 = 22 and 38) result in rock flow under the pipe wall. This in turn 27 

results in an inclined rock mass reaction at the pile tip tending to cause 28 

closure of the pipe as shown in Fig. 10. The reaction inclination has been 29 

assessed by integrating the normal and shear stress profiles immediately 30 

beneath the pipe wall. For shallow embedment (𝑑𝑑 < 𝑑𝑑𝑐𝑐𝑟𝑟𝑐𝑐𝑡𝑡), the shear stresses 31 
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approximately cancel each other around the pipe wall center indicating that 1 

almost equal amounts of rock flow on both sides. For deep embedment (𝑑𝑑 >2 

 𝑑𝑑𝑐𝑐𝑟𝑟𝑐𝑐𝑡𝑡), the rock tends to flow inwards over the whole pipe wall cross-3 

section. As embedment depth increases, the load inclination angle increases 4 

and seems to approach a quasi-limit value as illustrated in Fig. 11. 5 

Inclination angle increases for lower pipe dimension ratios 𝐷𝐷𝑜𝑜/𝑡𝑡. For 𝑐𝑐𝑐𝑐 > 5, 6 

the variation of the inclination angle with embedment depth does not seem to 7 

depend on 𝑐𝑐𝑐𝑐. 8 

The radially inwards rock mass reaction on the pile tip increases with 9 

embedment depth and can reach a value as high as 22% of the ultimate 10 

vertical load depending on the rock mass strength. This force, if sufficiently 11 

large, can lead to pile closure and refusal in the case of driven piles. It is 12 

worth mentioning that a fully rough interface is assumed between the pipe 13 

toe and the rock mass. Consequently, the reaction inclination can be 14 

expected to reduce with a smoother interface. 15 

 16 

6.3 Comparison with experimental data 17 

Numerical results for bearing capacity enhancement with respect to 18 

embedment depth are compared with test data from impact driving and static 19 

penetration tests of model pipe tests. Holeyman [41] reported measured toe 20 

resistances of 60.3mm diameter instrumented model pipe piles that had been 21 

impact driven into synthetic rock specimens. Synthetic rock specimens were 22 

made of cement mortar and aerated autoclaved concrete (AAC), the 23 

mechanical properties of which are listed in Table 5. Neglecting the shaft 24 

friction, one can estimate the toe bearing resistance for the impact driven 25 

model pipe piles as shown in Fig. 13 together with the FEA results. The 26 

model pipe piles had dimension ratios of 𝐷𝐷𝑓𝑓/𝑡𝑡 = 22 and 𝐷𝐷𝑓𝑓/𝑡𝑡 = 38. Since all 27 

rock specimens were synthetic, they are assumed to be intact (𝐺𝐺𝐺𝐺𝐺𝐺 =100). 28 

For mortars, the Hoek-Brown parameter, mi can be estimated by fitting 29 

the Hoek-Brown failure envelope over the triaxial compression tests on 30 

mortar by Barbosa et al. [42] from which one would find 𝑐𝑐𝑐𝑐=5.5. From Fig. 31 
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13, it seems that the toe bearing resistances from the FE analysis bracket 1 

with a reasonable accuracy the test data of the model pipe piles driven into 2 

the different types of mortars. The FEA curves overestimate the 3 

experimental curves by almost 30% because the amount of settlement after 4 

each hammer blow might not have been enough to mobilize the peak 5 

resistance. As a result, the mobilized peak rock resistance depends on the 6 

hammer drop height. Due to the high porosity of the aerated autoclaved 7 

concrete (AAC), the H-B failure criterion does not seem appropriate to 8 

model its mechanical behavior.  However, the results indicate that mi values 9 

between 1 and 2.5 may predict relatively well the toe bearing capacity of the 10 

model pipe pile driven into AAC (Fig. 13). 11 

A series of static penetration tests of model pipe piles (𝐷𝐷𝑜𝑜  = 60.3mm, 12 

𝑡𝑡=1.6: 𝐷𝐷𝑜𝑜/𝑡𝑡 = 38) were conducted into a block of calcarenite limestone from 13 

Saint-Maximin quarries located close to Paris in France. The rock is locally 14 

referred to as “Roche Douce”. For detailed microscope description of the 15 

rock mass, one can refer to Baud et al. [43]. The specimens were 15cm-16 

prisms of octagonal base for which the diameter of the circumscribed circle 17 

was 45 cm. The height of the model pipe pile was 4cm. The model pipe pile, 18 

the limestone block and testing configuration can be seen in Fig. 14(a). The 19 

penetration rate was set to 90 μm/min. The speed was sufficiently low to 20 

mitigate rate effects. The tests were conducted under laboratory standard 21 

temperature of 20°. The uniaxial compressive strength of the rock mass is 22 

6.8MPa (Standard Deviation, SD=1.7MPa) from cylindrical specimens with 23 

diameter of 60 mm and height of 150 mm. Besides, the splitting tensile 24 

strength is 1.0 MPa (SD=0.2MPa) from cylindrical disks with diameter of 60 25 

mm and thickness of 23-34 mm [44]. The specimens were drilled from a 26 

similar limestone block as shown in Fig. 14(a).  27 

The load-penetration diagrams are plotted in Fig. 15(a). The shaft 28 

resistance is estimated to be below 0.5 kN. The critical embedment depth, 29 

𝑑𝑑𝑐𝑐𝑟𝑟𝑐𝑐𝑡𝑡 presented in Section 6.1 can be clearly observed. The pipe pile bearing 30 

capacity increases with embedment up to the critical embedment (almost 3𝑡𝑡 31 
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here) thereafter, the rock plug pops up and the bearing capacity reduces to a 1 

value close to that of the pipe pile at surface. This sudden/gradual reduction 2 

in the bearing capacity could not be captured by the finite element analysis 3 

since linear elasticity with perfect plasticity is assumed. These cycles of rise 4 

and fall in the ultimate bearing capacity of the pipe pile continues as pipe 5 

penetrates deeper. This justifies to some extent the large band of scatter in 6 

the rock resistance curve for mortar, which was initially attributed to the 7 

possible heterogeneity of the mortar. The static penetration experiments 8 

confirm that the rock inside the tube consists of a vertical stack of individual 9 

rock layers with thickness of almost 2-4 times the pipe wall thickness as 10 

shown in Fig. 14(b) and (c). The number of troughs in the load-displacement 11 

diagram corresponds to the number of rock disks split from the cored rock. 12 

Another important observation from the model pipe pile in limestone is 13 

that peak rock resistance increases initially with embedment depth and after 14 

a certain embedment depth, it actually diminishes. This contradicts what was 15 

observed in numerical simulations. The reason may be the assumption that 16 

the pipe pile is embedded/wished in place in the FE model hence eliminating 17 

the possible installation effects. The installation effects are beyond the scope 18 

of this paper. The rock mass at a certain depth may undergo some damage 19 

before the pipe tip reaches that depth. Despite the simplifying assumptions 20 

of the numerical model, the mechanism of plug formation is captured 21 

accurately. In addition, some insight is gained on the rock mass resistance. 22 

To assess how the numerical results on bearing capacity enhancement 23 

can be applied to this particular experiment. One has to estimate the Hoek-24 

Brown parameters of the rock mass. One can assume the limestone rock 25 

mass is intact (𝐺𝐺𝐺𝐺𝐺𝐺=100) based on the joint and surface characteristics.  The 26 

𝑐𝑐𝑐𝑐 parameter can be determined from Eq. (8). This will lead to 𝑐𝑐𝑐𝑐=6.7.  For 27 

a similar limestone, an 𝑐𝑐𝑐𝑐  = 7.1 has been reported from triaxial tests [15]. 28 

These values are consistent with those presented in Table 2 for sedimentary 29 

carbonate rocks. For GSI=100, the intact uniaxial compressive strength is 30 

equal to the measured uniaxial compressive strength, 𝜎𝜎𝑐𝑐𝑐𝑐=𝜎𝜎𝑐𝑐=6.8 MPa. The 31 
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experimental load-displacement curves of Fig. 15(a) are normalized and 1 

superimposed on  the FEA curves of bearing capacity factor (Fig. 8) for 2 

𝐷𝐷𝑜𝑜/𝑡𝑡=38 and plotted in Fig. 15(b). The numerical curves underestimate the 3 

rock mass resistance by almost 30%. This may be attributed to the scatter in 4 

uniaxial compressive strength data which had a coefficient of variation of 5 

25%. 6 

 7 

7 Conclusion 8 

A numerical and experimental investigation of the annular base bearing 9 

capacity and failure patterns of typical pipe piles embedded in sedimentary 10 

rocks were conducted. The pipe piles were embedded in a homogeneous 11 

weightless isotropic rock mass obeying Hoek-Brown failure criterion. The 12 

pipe piles had dimension ratios, 𝐷𝐷𝑜𝑜/𝑡𝑡 = 22 and 38 and their analysis results 13 

were compared against those of circular piles (𝐷𝐷𝑜𝑜/𝑡𝑡 = 2) and nearly-strip 14 

foundations (𝐷𝐷𝑜𝑜/𝑡𝑡 = 8000). The pile-soil interface is fully rough at the base 15 

and smooth on the shaft. The pile penetrates the rock mass in a fully 16 

unplugged mode. Design charts are provided for bearing capacity values of 17 

the pipe piles. They are employed in estimating rock mass resistance to 18 

penetration of model pipe piles. A summary of the results are hereby 19 

presented: 20 

1. Toe bearing response of pipe piles should be investigated in two zones: 21 

shallow and deep embedment. The embedment depth at which the 22 

transition between these two zones occurs is a critical embedment depth 23 

𝑑𝑑𝑐𝑐𝑟𝑟𝑐𝑐𝑡𝑡.  When the pipe reaches 𝑑𝑑𝑐𝑐𝑟𝑟𝑐𝑐𝑡𝑡, the plug pops up and the pipe pile is 24 

like a strip foundation that is embedded only on one side. If penetration 25 

continues, the pipe pile penetrates another 𝑑𝑑𝑐𝑐𝑟𝑟𝑐𝑐𝑡𝑡 before the rock mass 26 

breaks and pops up again inside the pipe. Finally, one can expect that the 27 

plug is just a vertical stack of rock disks with height equal to 28 

approximately two to four times the pipe wall thickness 𝑑𝑑𝑐𝑐𝑟𝑟𝑐𝑐𝑡𝑡 = 2 − 4 𝑡𝑡. 29 

This behavior was also confirmed through experimental data and 30 
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originates from the brittle nature of the rock mass. 1 

2. At shallow embedment, the pipe pile is an intermediate case between 2 

strip and circular foundations approaching the strip foundation with 3 

increasing dimension ratio 𝐷𝐷𝑜𝑜/𝑡𝑡. For deep embedment, the pipe pile 4 

response is more complex. For the desired range of pipe pile dimensions 5 

in piling operations i.e. 𝐷𝐷𝑜𝑜/𝑡𝑡>18, the ultimate bearing capacity of a pipe 6 

pile approaches a limit value, which is less than or at most equal to that 7 

of an embedded strip foundation of width equal to the pipe wall 8 

thickness. 9 

3. Failure mechanisms of the pipe piles is unsymmetrical. At shallow 10 

embedment, the failure mechanism extends to the surface. At deep 11 

embedment, the failure mechanism is local and consists of an acute 12 

triangular wedge under the pipe wall, a radial shear zone and a passive 13 

zone. An exit wedge forms inside the pipe. The unsymmetrical failure 14 

mechanism results in inclination of the rock mass reaction at the pile tip. 15 

The magnitude of this radially inward reaction at the pipe toe can reach 16 

up to 22% of the vertical limit load. 17 

4. It is shown that an elastic perfectly plastic failure criterion with the 18 

adapted flow results in an acceptable approximation of the bearing 19 

capacity of the pipe pile since the problem is not very kinematically 20 

constrained but it fails to result in failure surfaces that close on the pile 21 

for circular piles and embedded strip foundation. The failure surfaces of 22 

this study extend to the ground surface overestimating the rock 23 

resistance in spite of the fact that the rock at the pile toe can fail in 24 

volumetric compression long before the shearing surface can reach to the 25 

ground level. An approach incorporating the inelastic compressibility of 26 

the rock at the pile tip is necessary for studying circular piles and 27 

embedded strip foundations.  28 

5. Numerically, ultimate bearing capacity of the pipe piles increase by a 29 

factor of 1.3 to 1.5 with respect the surface and remains relatively 30 

constant thereafter. The depth factor depends mostly on the pipe 31 
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dimension ratio, 𝐷𝐷𝑜𝑜/𝑡𝑡 and does not depend significantly on the Hoek-1 

Brown parameter 𝑐𝑐𝑐𝑐. 2 

6. Experimentally, ultimate bearing capacity of the pipe piles demonstrates 3 

a complex behavior, which is due to peculiar mechanism of plug 4 

formation. The peak rock mass resistance occurs after a penetration of 5 

around 3 times pipe wall thickness, thereafter, the rock mass resistance 6 

drops significantly and rises below the initial peak. Consequently, the 7 

practicing engineer may expect significant penetration once the pipe pile 8 

has been able to overcome the first peak resistance without damage. The 9 

peak rock mass resistance to pipe penetration can be estimated relatively 10 

well using the suggested design charts. 11 
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Fig. 1 – Postulated failure mechanisms for (a) deep and (b) shallow piles with surcharge 9 

pressure at the embedment depth less than uniaxial compressive strength of the intact rock 10 

after [8] 11 
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 1 

Fig. 2 – (a) Idealized axisymmetric geometry and boundary conditions of the problem and (b) 2 

a typical model mesh for Do/t=38 and d/t=8  3 
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 1 

Fig. 3 – (a) Friction angle and mobilized dilatancy angle against normalized confining 2 

stresses for a typical Hoek-Brown failure envelope and (b) parameters of the adopted flow 3 

rule against GSI and mi 4 
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 1 

Fig. 4 – Effect of the number of model degrees of freedom on the computed bearing capacity 2 

factor for various pipe pile geometries embedded in the reference Hoek-Brown material 3 

 4 
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 1 

Fig. 5 – Typical diagrams of normalized average vertical pressure at pile tip against relative 2 

settlement 3 

 4 

 5 

 6 

Fig. 6 – Effect of embedment and pipe geometry on the failure mechanism under piles 7 

embedded in the reference H-B material with a typical mi (a) circular pile (b)(c) pipe piles and 8 

(d) nearly strip foundation (shading not to scale) 9 
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 1 

Fig. 7 – Effect of embedment and mi parameter on the failure mechanism under a typical pipe 2 

pile in the reference H-B material (shading not to scale) 3 
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Fig. 8 – Influence of pipe geometry and parameter mi of the reference Hoek-Brown material 1 

on global bearing capacity factor against normalized embedment depth 2 

 3 



 

FOR REVIEW ONLY 

35 

 1 

Fig. 9 – Effect of pipe geometry and mi parameter of the reference Hoek-Brown material on 2 

the depth factor against normalized embedment depth 3 

 4 
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 6 
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 1 

Fig. 10 – Idealized inclined rock mass reaction at the pile tip due to unsymmetrical failure 2 

mechanism around pile wall center 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

Fig. 11 – Role of pipe geometry, embedment and mi parameter of the reference Hoek-Brown 12 

material on the inclination of the rock mass reaction at the pipe tip 13 
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 1 

Fig. 12 – Best fit of the Hoek-Brown failure criterion on mortar triaxial test data after [42] 2 

 3 

 4 

Fig. 13 – Normalized measured and computed depth profiles of bearing capacity for a model 5 

pipe pile impact-driven into synthetic rocks (data after [41]) 6 
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 1 

Fig. 14 – (a) Load test arrangement (b) side view and (c) top view of the retrieved rock plug 2 

for Specimen #6 consisting of  vertical stack of rock disks (Fines are removed for clarity) 3 
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 1 

 2 

Fig. 15 – (a) Depth profile of rock mass resistance as model pipe pile penetrates limestone 3 

block and (b) Comparison of normalized experimental data with the FEA results 4 

 5 

13 Tables 6 

Table 1 – Details of model geometry 7 

 𝑫𝑫𝒐𝒐 𝒕𝒕⁄ = 𝟐𝟐 
(circular) 

𝑫𝑫𝒐𝒐 𝒕𝒕⁄ = 𝟐𝟐𝟐𝟐 
(pipe) 

𝑫𝑫𝒐𝒐 𝒕𝒕⁄ = 𝟑𝟑𝟑𝟑 
(pipe) 

𝑫𝑫𝒐𝒐 𝒕𝒕⁄ = 𝟑𝟑𝟖𝟖𝟖𝟖𝟖𝟖 
(nearly strip) 

𝒃𝒃𝟏𝟏 𝒕𝒕⁄  0 11 19 30 
𝒃𝒃𝟐𝟐 𝒕𝒕⁄  30 30 30 30 

 8 

 9 

 10 
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 1 

Table 2 - Typical values of the material constant, mi for rock masses obeying the H-B failure 2 

criterion after [14] 3 

Rock 
type 

Class Group Texture 
Coarse Medium Fine Very 

fine 

Se
di

m
en

ta
ry

 

Clastic Conglomerate 
(21 ± 3) 
 
Breccia 
(19±5) 

Sandstone 
(17 ± 4) 

Siltstone 
(7 ± 2) 
 
Greywacke 
(18 ± 3) 
 

Claystone 
(4 ± 2) 
 
Shale 
(6 ± 2) 
 
Marl 
(7 ± 2) 

N
on

 -c
la

st
ic

 

Carbonate Crystalline 
Limestone 
(12 ± 3) 

Sparitic 
Limestone 
(10 ± 2) 

Micritic 
Limestone 
(9 ± 2) 

Dolomite 
(9 ± 3) 

Evaporite  Gypsum 
(8 ± 2) 

Anhydrite 
(12 ± 2) 

 

Organic    Chalk 
(7 ± 2) 

 4 

Table 3 – Flow rule parameters for the reference Hoek-Brown material 5 

mi 𝝍𝝍𝒎𝒎𝒎𝒎𝒎𝒎 [°] 𝝈𝝈𝝍𝝍 𝝈𝝈𝒄𝒄𝒄𝒄⁄  
1 8.7 11.40 
5 25.3 4.55 

7.5 30.5 4.04 
10 34.2 3.82 

 6 

Table 4 – Comparison of surface bearing capacity values from FE analysis with some 7 

published results 8 

(a) Strip foundation  9 

mi 
Nσ0 (qu = Nσ0 σci) 
after [5] 

Nσ0 (qu = Nσ0 σci) 
after FEA 
𝐷𝐷𝑜𝑜/𝑡𝑡 = 8000 

Relative 
difference 
% 

5 6.12 6.41 4.7 
10 8.90 9.22 3.6 

 (b) Circular foundation  10 

mi 
Nσ0 (qu = Nσ0 σci)  
after [7]* 

Nσ0 (qu = Nσ0 σci) 
after FEA 
𝐷𝐷𝑜𝑜/𝑡𝑡 = 2 

Relative 
difference 
% 

5 9.03 9.09 0.7 
7.5 11.25 11.49 2.1 
10 13.43 13.79 2.7 

*Value interpolated from charts 11 

 12 

Table 5 – Properties of the synthetic rock specimens after [41] 13 

Specimen 
Designation 

Material 
Type 

Age 
[day] 

Porosity 
(%) 

𝜎𝜎𝑐𝑐𝑐𝑐 
[MPa] 

𝜎𝜎𝑡𝑡𝑐𝑐 
[MPa] 

BC-0100-na AAC >90 >60 4.2 0.6 
BC-0910-na AAC >90 >60 4.2 0.6 
K5-0800-na Mortar - 3-5 16 - 
K8-0600-04 Mortar 4 3-5 11 - 
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