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Abstract: This paper presents an adaptive model reference algorithm for a linear
distributed parameter system with input boundary control and output boundary
reference. The control and adaptation laws are based a model reference adaptive
control approach. . This controller is applied to a tubular reactor model with unknown
kinetic parameters. Simulation results are shown for set-point changes, variation of

kinetic parameters and input perturbation.
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1. INTRODUCTION

Several chemical reactors are essentially dis-
tributed processes and their dynamics can be
appropriately represented by partial differential
equations (PDE). For instance, a tubular reactor
modeled by mass balances leads to parabolic PDE
which account for convection, dispersion and re-
action phenomena occurring in the reactor. Tra-
ditional process control uses a transfer function
representation obtained by input/output identi-
fication for those systems. Feedback controllers
designed with these models often include adaptive
or predictive strategies to account for process non-
linearities and model mismatch (Ogunnaike and
Ray, 1994). Using a PDE model represents an
interesting approach since it gives a more accurate
representation of reality and then more informa-
tion for the process engineer. Moreover, it gives
an interesting framework for the analysis of sensor
and actuator location.

Various approaches have been considered to use
the PDE phenomenological model directly. Ray

(1981) proposed to divide control approaches on
PDEs in two groups . The first group is composed
of early lumping methods. These approaches use
a preliminary discretization of the PDE model
to obtain a set of ODEs. That lumping is of-
ten realized by numerical techniques such as fi-
nite difference, orthogonal collocation or finite
elements. Regarding the numerous equations ob-
tained, model reduction technique may also be
used (Christofides, 1996). Finally, lumped control
design methods could be applied on those models.
The other group is based on late lumping methods
where the controller design problem is solved di-
rectly with the PDE model. When necessary, some
lumping may be applied for controller implemen-
tation.

The problem addressed here is the control of
a tubular reactor by a late lumping approach.
The dynamics of the reactor are defined by two
parabolic equations representing mass balances of
each species. It is assumed that the reaction ki-
netic is not well known and could vary with time,
thus an adaptive approach have been considered.



The control of parabolic PDE have been addressed
previously by Hong and Bentsman (1994) and
more recently in a more theoretical framework
by Bohm et al (1998). They provide a design
solution for systems in which the control action
appears in explicitly in the PDE system. In this
tubular reactor problem, the controller action is
the concentration of one of the reactants at the
inlet. The problem to be solve is then a bound-
ary control problem. Bourrel et al. (1996) have
addressed this problem for bioreactor control and
they have proposed a feedback control law based
on exact linearization in the case of hyperbolic
systems of PDEs .

We propose in this paper an adaptive controller
using a reference model based on a parabolic
PDE system. The first part of this paper shows
the development of the model base adaptive con-
troller using a Lyapunov approach. In the second
part, simulation results are shown for step-point
changes and for perturbation in the kinetic pa-
rameters.

2. MODEL REFERENCE CONTROLLER
DESIGN

A tubular isothermal chemical reactor can be
modeled using mass balances on each reactant.
This leads to the well-known dispersive model.
A reactor with two species is modeled here with
two mass balances. The first one is on reactant
L for which a set point is specified at the end
of the reactor but it may be variable at the
inlet. The second reactant C, is used as control
variable at the inlet. This leads to the following
distributed parameter system (DPS) described by
two parabolic linear equations and their boundary
conditions:
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Fig. 1. Controller structure

In these equations, the parameters v and D can
be determined from hydrodynamic experimenta-
tion on the process but parameters k; — k4 are
considered unknown. The following PDEs are then
used as a reference model with the same boundary
conditions as the system:
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In this approach we consider that one input, Cj,,
in used as the control variable and the other vari-
able input, L;,, is free. The controlled output will
be Lyt while C,y is free. The proposed controller
structure is illustrated in figure (1). A Lyapunov
approach is used to design the adaptation mech-
anism and the control law. Let us first define the
error equations of the system:

ec(z,t) =C(z,t) — M(z,t) (9)
er(z,t)=L(z,t) — N(z,t) (10)

and the parameter estimation errors:

Y1 (t) =ki(t) — ks (11)
pa(t) = k() — k2 (12)
P (t) = ks(t) — ks (13)
pa(t) = ka(t) — ks (14)

Time differentiation of equations (9)-(14) those
errors leads to:
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The above equations can be used to design control
and adaptation laws based on the Lyapunov sec-
ond method. The objective is then to find a posi-
tive definite function with continuous first partial
derivative V(z,t) such that V(0,t) = 0. If the
time derivative of this function V (z,¢) is definite
negative then the system is asymptotically stable.
If V(z,t) is radially unbounded, this property is
global. Consider the following Lyapunov function:

V(Z)t) = 5(60,60) + §<6L)6L>
1 o 2 i _ )
+ 26 (Czn Refzn) + 2’)/ (Cout Refout)
i 2 i 2 i 2 i 2
+ 2a¢1 + 2b‘/’2 + 201/’4 + 2d1/}3 (21)

The time derivative of this function is equal to:
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Introducing equation (15) into (21) leads to:
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Integration by part gives:
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Using the following control law:
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the derivative of the Lyapunov function becomes:
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Finally, the following adaptation laws are used:
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The final expression of the derivative of the Lya-
punov function is then:
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This expression is negative definite, ensuring the
asymptotic stability of the adaptation and control
laws. To avoid division by zero in equation 26, the
following modified control law is considered:
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were w is a tuning parameter with a small positive
value. Note that both version of the control law
are identical for C;,, = 0.

3. RESULTS AND DISCUSSION

Numerical simulation of the control algorithm ap-
plied to the system has been performed by using
a sequencing algorithm with a 100 node mesh
for a 1 meter reactor (Renou et al., 2000). In
this algorithm, convection, dispersion and reac-
tion phenomena are considered successively for
each time step. Initial parameters of the system
are:

v =0.05m/s ky =0.031/s
D = 0.0005 m?/s k3 = 0.04 1/s
by =0.021/s ks =0.031/s

Controller parameters have been chosen to mini-
mize overshoot and oscillatory response. The ob-
jective here is to reject perturbations and model
parameters variation rather then reference track-
ing. Simulations are started at steady state for
an input of L and C equals to 1. The tuning
parameters are equal to:

e=.16=.057=100
a=2b=2 c=2 d=2

Ref,,, = 0.1745 (38)

(37)

Figure (2) show the response of the system to a L
set-point step from 0.17 to 0.20 g/L. The output
curves of L and C are smooth and do not present
any overshoot as required. A perfect match be-
tween the model and system is obtained and no
variation of adaptation parameters is observed.

Figure (3) shows the response of the controlled
system for a system variation. The rate constants
have been modified to the following values:

ky = 0.021/s ky = 0.03 1/s
ks = 0.04 1/s kg = 0.03 1/s

The adaptation mechanism is oscillatory but
rapidly converges to the system values as shown
in figure (4). Model and system simulation curves
show differences for a shorter time than the adap-
tation mechanism. This situation suggests some
oscillation between multiple possible choices for
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Fig. 2. Set point change on Ref,y:
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Fig. 3. Model perturbation
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Fig. 4. Parameters adaptation

parameter convergence. Output L admits a im-
portant deviation from desired set point but re-
turns to set point without steady state error.
This behavior could be explained by the slow
output reference adaptation mechanism used. But
in practice, rate constants are not changing so
aggressively, thus the simulated case can be con-
sidered as a worst case situation.



Figure (5) shows the response of the system to
a step response combined to system parameter
variation. The parameter adaptation curves are
the same as observe in figure (4). This shows that
the adaptation mechanism is a function or the
error between the model and the system instead
of the characteristics of the input. Figure (6)
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Fig. 5. Set point change and model perturbation

shows the effect of adding a noisy L input to
the condition of the preceding simulation. The
convergence around the set point and adaptation
mechanism still works similarly but the variation
of L affects directly the output and is not rejected
efficiently.
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Fig. 6. Set point change, model perturbation and
L;,, variation

4. CONCLUSION

An adaptive model reference controller has been
presented for a distributed parameter system with
input boundary control and output boundary ref-
erence. This algorithm includes a PDE model ref-
erence, an adaptation law and a reference modi-
fication law. Simulations have shown a good set-

point step response and efficient parameter track-
ing. Response to noisy input of the uncontrolled
reactant L needs to be improved. This could
probably be done by using a feedforward strategy
in the reference modification law. Moreover, the
nonlinear kinetics case has to be studied to cover a
wider class of applications in reactor control field.
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