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1 Introduction 

A key question in process control is bow to monitor 
reactant and product concentrations in a reliable and 
cost effective manner. However, it appears that, in many 
practical applications, only some of the concentrations 
of the components involved and critical for quality 
control are available for on-line measurement. For 
instance, dissolved oxygen concentration in bioreactors, 
temperature in non-isothermal reactors and gaseous 
flowrates are available for on-line measurement wbile 
the values of the concentration of biomass, reactants 
and/or products are often available via off-line analysis. 
An interesting alternative wbich circumvents and 
exploits the use of a model in conjuction with a limited 
set of measurements is the use of Luenberger or Kalman 
observers. 
One of the reasons for the popularity of the EKF is that 
it is easy to implement since the algorithm can be 
derived directly from the state space model. However, 
since (as the extended Luenberger observer) it is based 
on a linearized model of the process, the stability and 
convergence properties are essentially local and valid 
around some equilibrium point, and it is rather difficult 
to guarantee its stability over wide ranges or operation. 
[9] shows that the EKF for state and parameter 
estimation of linear systems may give biased estimates 
or even diverge if it is not carefully initialized. 

One reason for the problem of convergence of EKF is 
that, in order to guarantee the (arbitrarily cbosen) 
exponential convergence of the observer, the process 
must be locally observable, i.e. the linearized tangent 
model must be observable and fulfil the classical 
observability rank condition. This condition, as it turns 
out, is restrictive in many practical situations and may 
account for the failure of EKF to find widespread 
application (e.g. [1]). Another problem is that the theory 
for the extended Luenberger and Kalman observers is 
developed using a perfect knowledge of the system 
parameters, in particular of the process kinetics: it is 
difficult to develop error bounds and there is often a 
large uncertainty on these parameters. It appears from 
the above remarks that there is a clear incentive to 
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develop new methodologies for the on-line estimation of 
the un measured concentration variables in 
(bio)cbemical reaction systems that do not only rely on 
the explicit use of kinetic models. Tbis bas resulted in 
the design and application of asymptotic observers based 
on the well-known nonlinear model of the process 
without the knowledge of the process kinetics being 
necessary ([1], [4]). 

In this paper, the extension to tubular reactors of 
asymptotic observers originally developed for stirred 
tank reactors is first considered (see also [3]) and 
illustrated with real-life data on an non-isothermal fixed 
bed reactor. Then it will be sbown bow to design 
exponential observers, wbicb are also independent from 
the process kinetics but for wbicb the rate of 
convergence may be arbitrarily fixed (unlike the 
asymptotic observers for wbicb the rate of convergence 
depends on the operating conditions). The exponential 
observers are applicable to multi-tank reactors, a class of 
reactors for wbicb the tubular reactor models in their 
discretized form are a sub-class. 

2 Dynamic Model of Tubular Reactors 

Let us consider a tubular rector with N components and 
M reactions. From mass and energy balance, we can 
deduce the following general dynamical model for 
tubular reactors with axial dispersion: 

iJx iJx i) 2x -; 
-=-u-+D --+Kr(x)+V 
iJt az • az2 (I) 

with : 

x=[~] (2) 

[
Rh 1 [D ... I N 0 1 

u = - ~Cp . D. = 0 p~p (3) 



and where C is the process component concentration 
vector (kg .m- 3 , T is the temperature (1\) , Aea is the 
axial energy dispersion coefficient (k 1. m-I .S-I .1\--1) , 
IN is the identity matrix of dimension N , U (1\ .S-I is 
an external transfer vector (which is only includes the 
external heat exchange rate Rh, 6.H is the reaction 
heat vector (k1.kg- l

) : 6.HT = [6.HI , uH2 , ... , 6.H,\.-fJ 
p is the fluid density (kg/m3 ), Cp is the specific 
heat (k1.kg-I .I\-I) , r(x) is the reaction rate vector 
(kg.m- 3 .s- l ) : rT(x) = h(x), r2(x) , ... , rM(x)J . Rh is 
the external heat exchange rate (kJ.s- 1 m3 ) , and 1\ 
is the stoichiometric coefficient matrix. In a tubular 
reactor, Rh is often given by the following expression : 

with l~_M = [1, 1, ... , 1J . Note that the above dynami­
cal equations are independent of the reaction rate r( x) . 
The equations (6) (7) are the basis for the derivation of 
the asymptotic observer. The dynamical equations of 
( are used to calculate an estimate of ( on-line, which 
is used, via equation (6) and the on-line data of XI, to 
derive an estimate of the unmeasured component X2 : 

a(, 
at 

a(, a2( , 
-u a:; + Dma a:;2 + CaUT 

Aea a2 T 
-(-C Ca - Dma 1N - M )--;r-=;-

p p u:-

(, + I(2Kl lx l 

(8) 

(9) 

(4) Remark: note that, in presence of reversible reac­
tions , the matrix K will not be full column rank be-

where h, d and Tw are , respectively, the wall heat trans­
fer coefficient (kJ. m -"2 .1\-1 .s-I) , the reactor diameter 
(m) and the coolant temperature (1\) . 

3 Design of the Asymptotic Ob­
server 

The derivation of the asymptotic observer equations is 
based on the following assumptions: 

1. M components (including the temperature) are 
measured on-line along the reactor. 

2. The influent concentrations Xin, the coolant tem­
perature Tw , and the fluid superficial velocity u are 
known either by measurement or by choice of the user . 

3. The stiochiometric coefficient matrix K , and the 
parameters 6.H, p, Cp , h, d, Dma and Aea are known. 

4. The reaction rate vector r is unknown. 
5. The M reactions are irreversible and independent, 

i.e . rank(K) = R = M 

From assumption 1, we can define the following state 
partition : 

cause it will contain two identical columns. However a 
simple way to treat the asymptotic observation prob­
lem of reversible reactions is to consider each reversible 
reaction as one global reaction (whose rate may then 
be positive or negative) and therefore characterized by 
only one column in the matrix. This means that if the 
"forward" and "backward" reactions are characterized 
by a reaction rate rJ and rb respectively, we consider, 
for the observation , one global reaction characterized 
by one global reaction r 9 = r J - rb · 

It has been shown in ([3]) that the practical imple­
mentation of the asymptotic observer will be asymptot­
ically stable if the eigenvalues of the matrix Dma C2 -

uC\ are stable , where Cl and (;2 are the matrices as­
sociated to the approximation (e.g. finite differences 
or orthogonal collocation) of the first and second order 
space derivatives: 

( 10) 

k = 1,2, with dim(ck = q x 1 and dim(Ck = q x q . 
(5) Note that the stability of the asymptotic observer 

where Xl and X2 hold for the measured component con­
centrations and the unmeasured ones, respectively. 

Let us consider the following state transformation (: 

only depends on the axial mass transfer and not on 
the kinetics . In other words, the reactor may be un­
stable (due to the kinetics like in the classical exother­
mic reactor example with Arrhenius kinetics) while the 

( K K -l = X2 - 2 1 Xl (6) asymptotic observer is asymptotically stable (because 
of stable hydrodynamics) . 

where Kl and KI are the submatrices associated to 
Xl and X2 . If the M measured components and the M 
reactions are independent, then Kl will be invertible. 
In order to simplify the notations and without loss of 
generality, let us consider that the temperature T is 
the first entry of Xl. Then if we consider Ca the first 
column of Ca = K2K1l, the dynamics of ( are given 
by the following set of PDE's : 

a( 
at 

(7) 

3.1 Example 1 a simple non-
isothermal reactor 

Let us consider a tubular reactor with one non­
isothermal reaction : 

A+bB -+ dD (11) 

Its dynamics are described by equations (1) with : 
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If T is measured on-line, and if we choose Il = T. I2 
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Figure 1: Estimation results of ethanol 

= C , and the auxiliary variables ( is equal to : 

( 13) 

and the asymptotic observer then specializes as follows: 

CD 

(20) 

3.2 Experimental Result 

The above asymptotic observer has been implemented 
with data from a chemical reactor used for the synthesis 
of ethyl tertio-butyl ether (ETBE), a powerful octane 
enhancer which can be added to unleaded gasoline, see 
[6]. The reaction is characterized by the following re­
action scheme : 

Ethanol + Isobutene ;:::= ETBE (21) 

in presence of an acidic catalyst (a solid sulfonic resin). 
The reaction is exothermic . In order to shift the equi­
librium to the right and have a high conversion , the 
reaction has to be carried out at low temperature (323 
- 363 K). Under usual operating conditions , the selec­
tivity of the reaction is close to 100 % : this means that 
the effect of the side reactions may be neglected. The 
reaction takes place in a fixed bed reactor (a 8.5 mm di­
ameter and 0.6 m long tube with a coolingjacket). On­
line temperature measurements are collected at four 
positions (zo = 0, 21 = 0.05 m , =2 = 0.13 m , =3 = 0.6 
m) and in the cooling fluid (water). On-line measure­
ment of the reaction components at the reactor out­
put is performed via a HPLC (high performance liq­
uid chromatograph). The dynamics of the process are 
characterized by the model (1) with : 

t::.H 

4h 

d 
Dma 

-40 kJ/mo/, p = 0.6 kg / I, Cp = 2.3 kJ/kg / 

0.023 kJ/I/I{/s , d = 0.085 m, L = 0.6 m 

0.0014 u m 2 
/ s, Aea = 5 10- 6 m 2 

/ s 
t::.H 

[- pC
p

'; -1, -1 , 1] 

The asymptotic observer has been implemented by 
considering a backward difference approximation for 
both first and second order space derivatives . The sam­
pling rate is equal to 30 s. The auxiliary variables ( 
have been initialised as follows: 

11.8 mol/I, (i(=2,0) = 11.81 mol/I 

(i(Z3,0) = 11.83 mol/I, i = 1,2 

This corresponds to set the initial values of the esti­
mates of Ca and Cb to zero. The results of the asymp­
totic observer for the ethanol (CA) and isobutene (CB) 
concentrations at the two internal points and at the 
reactor output (where it is compared with the on-line 
data) are shown in Figures 1 and 2, while the opera­
tion variables (u, CA,in and CB ,in) and the data of the 
different temperatures are shown in Figures 3 and 4. 

4 Design of the Exponential Ob­
server 

One of the main advantage of the asymptotic observers 
consists of incorporating the process dynamics without 
requiring the usually uncertain process kinetics. One of 
the disadvantages is that its dynamics are completely 
dependent on the process operating conditions or char­
acteristics. This does not appear a major problem in 
the experimental result presented in the preceding sec­
tion (where the convergence rate appears to be quite 
fast), but it seems interesting to look if it is possible to 
design an observer which presents the same advantages 
as the asymptotic observer while allowing the user to 
fix arbitrary observer dynamics. The design of such 
observers (that we shall call exponential observers, in 
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order to make the connection with the asymptotic ob­
servers , but by also suggesting that there is a "plus" 
with respect to these) is possible for multi-tank (possi­
bly interconnected) cascade reactors . This class of sys­
tems covers in particular the approximation of tubular 
reactor models (either by finite differences or with or­
thogonal collocation). 

The design of the exponential observer is based on 
the same ideas as for the asymptotic observer , and also 
on works on state observers with unknown inputs [8], 
[5], [7], [10J (with respect to the process dynamics . the 
kinetics term can be viewed as a system input). 

The design is based on the discretized model of the 
tubular reactor obtained after lumping the partial dif­
ferential equations of the model. Then the dynamics of 
the approximated model are then given by the follow­
ing set of differential equations : 

(-uCI + D a C2 )x r + R1' 

+ Ur + (-UCl + DaC2)X/(Z = O,t) (22) 

Let consider the following state partition: 

(23) 

where Xl is the vector of the measured variables 
(dim(xI) = p), and X2 the vector of the unmeasured 
ones (dim(x2) = N.q - p, where N is the number of 
process components, i.e. reactants, products, and tem­
perature in non-isothermal reactors) . Assume also that 
KI is full rank (rank(KIJ = rank (K) = R.q) . As it 
will be seen below, the number of measured variables 
need to be larger than the rank of the yield coefficient 
matrix [( (p > R.q). 

According to the state estimation problem, the dy­
namical equations (22) can be formally rewritten as 
follows: 

:t [ ~~ ] = A [ ~~ ] + [ ~~ ] l' + [ ~~] (24) 

with: 

A [
All 
An 

(26) 

By considering the auxiliary variable (, the following 
observer equations can be introduced : 

with: 

F 

G 

0 

F( + GXI - LU1 + U2 

(+ LXI 

A22 - LA12 

F L + A21 - LAll 

K2 - LKl 

(27) 

(28) 

(29) 

(30) 

(31 ) 

Assuming that p > R.q , the general solution of (31) 
can be written as follows: 

L = [\2Kt + S(Ip - [\1 [\n (32) 

where [\"t is a left inverse of Xl . The poles of the 
observer (27) (28) are determined by the matrix F. in 
which the degrees of freedom for acting the observer 
dynamics are given by the matrix L, which is the ob­
server gain. The observer may be erponentlOi (in the 
sense that its dynamics may be arbitrarily fixed) if we 
are able to arbitrarily determine the poles of F via the 
gain matrix L , i.e. if the pair (A22 , .421 ) is observable. 

Note that if the number of measured variables was 
equal to the rank of K 1 (p = R.q), the matrix L would 
reduce to K2Kll : then there is no more degree of 
freedom for fixing the observer dynamics. Therefore 
this confirms that a minimal requirement is that : p > 
R.q. Before expliciting some rules, let us first try to 
clarify the question via a simple example. 

4.1 A Simple Example 

Let us consider a non-isothermal plug flow reactor with 
one reaction. Assume that the reactor model is ap­
proximated by three cascade reactors (finite difference 
approximation), that the temperature is measured on­
line at the reactor input and output , and at the two 
internal positions of the approximation Zl and Z2, that 
the concentration of the reactant A, CA is measured 
on-line at the reactor output, and that the objective to 
reconstruct the concentration of the reactant A in the 
reactor . 

This means that here N = 3, p = 4, R = 1 and q = 
3. Then Xl and X2 are equal to : 

This means that the matrices Aij and K j are equal to: 

1 0 0 0 0 0 
-1 0 0 0 0 
0 -1 1 0 0 0 

.4 
U 

~z 
0 0 0 1 0 -1 

0 0 0 0 1 0 
0 0 0 0 -1 1 

t>.H 0 0 - pep 

0 t>.H 0 - pep 

0 0 t>.H 
- pep 

0 0 -1 

-1 0 0 
0 -1 0 

[*d 1 l' r(z2} (34) 
r(z3) 
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Let us consider the left pseudo-inverse of [\'1 

r+ \ 1 (l'T}' )-lrT 
\ 1 \ 1 \ 1 

[ -~ 0 t1H 

0 _6 
~H 

0 0 

tlH 
0- = - H~ ~ C" ~ - + p- p 

o 
o 

Q P2C~ 
~H 

1 (35) 

(36) 

After some calculations by using expression (29 ) and 
denoting Sij the entries of the matrix 5 , one obtains 
the following expression for the observer matrix F : 

F---u [ 1 
- tlz -1 

o-(pCp Sl3 - tlH S14 ) ] 

1 + o-(pCp S23 - 6.H S24) 
(37) 

with : Note that only the last two columns explicitly 
appears in the formulation of the matrix F . Moreover 
the entries of the last columns play a similar role in 
the matrix F (i .e. S13 and S14 on one hand , and S23 

and S24 appear in an additive way in the entries (1,2) 
and (2 ,2) of F , respectively) . Therefore only one of the 
last columns needs to be different from zero in order 
to assign the poles of F (i.e. to assign the dynamics of 
the observer). For instance if 5 is equal to : 

o S13 

o S23 ~ ] (38) 

then the characteristic polynomial of F , 1).1 - FI. is 
equal to : 

It is therefore possible to assign arbitrarily the poles of 
F via the choice of the parameters S13 and S23. 

that only the condition is fulfill ed with C A3 (which can 
be connected to C A 2, which in turn can be connec ted 
to CAd 

4.2 Generalization for Plug Flow Reac­
tors 

Let us consider a cascade reactor (e.g . a plug flow reac­
tor approximated with finite differences) . Thise gener­
alisation can be formalized into the following theorem : 

Theorem 1 The poles of the observer (27)(28) can be 
arbitrarily assigned if : 
1. rank(f{l ) = rank(I\) = R.q; 
2. p = R .q + N - R > R .q; 
3. among the p measured variables, R process compo­
nents are measured at the q positions along the reactor 
and the N - R remaining process components are m ea­
sured at the reactor output. 

Proof : see [2] 

The above result can be applied to tubular reactor 
with axial dispersion approximated by a finite differ­
ence when the second order space derivative is approx­
imated by a backward difference (then the candidate 
invariant zero is s = - ;:'z + ~';~ ). But extensions to 
other approximations (central difference for the second 
order space derivative , functional approximation) is not 
straightforward, even if it might be conjectured that in 
absence of any information about the kinetics , the mea­
surement of each component at one position along the 
reactor , although not necessarily at the reactor output, 
should be a sufficient condition . 

Conclusions 
The exercise can be repeated by considering the 

other combinations of the temperature T I , T2 and T 3 , 5 
and one of the other concentrations CAlor CA2 as the 
measured variables . It is routine to check that it is then Here we have shown how to design state observers 

which are independent of the knowledge of the process 
kinetics in tubular reactors . A minimal requirement 
is that a number of process components at least equal 
to the number of independent reactions must be mea­
sured on-line to reconstruct the state. Then asymptotic 
observers can be implemented to observe the time evo­
lution of the other unmeasured components. However 
the observer dynamics are then completely dependent 
on the process operating conditions. If in addition the 
value of each process component is known at the reac­
tor output , then the state of the tubular reactor can be 
reconstructed via an exponential observer , the dynam­
ics of which can be a priori arbitrarily determined. 

not possible to assign the poles of the observer matrix 
F . The only good measurement in addition to the tem­
perature measurements , is the reactant concentration 
at the reactor output. 

This is consistent with the basic notion of observabil­
ity, i.e. the possibility to "connect" the unmeasured 
variables to the measured ones. Here the observability 
properties are based on the transport dynamics (at the 
exclusion of the kinetics) : it is easy to check by simple 
inspection of the transport dynamics part of the finite 
difference approximation model : 

dCAI U U 
-- = -CAin - -CAI 

dt tlz 6.z 
(39) 

dCA 2 U U -- = -CAI - -CA2 
dt 6.z 6.z 

( 40) 

dCA3 U U -- = -CA2 - -CA3 
dt 6.z 6.z 

( 41) 

that , for instance, the equation of CA I does not contain 
any information about the other two, CA2 or CA3 , and 

It is worth noting that one of the key property of the 
proposed observers is their inherent stability properties 
which only depend on the hydrodynamics of the model. 
In other words , even if the process is unstable (typically 
because of unstable kinetics), the observer dynamics 
will remain stable , i.e. the algorithm will still be able 
of reconstructing the state of the process and track the 
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time evolution of the process component concentrations 
and/or of the temperature . 

An important practical example is the non­
isothermal reactor with only one reaction : the con­
centration along the reactor of all the components can 
be estimated without the knowledge of the kinetics be­
ing required from temperature and thermal balance ; in 
addition , the observer dynamics can be arbitrarily as­
signed if the concentration of the components at the 
reactor output are available for on-line measurement . 

Acknowledgements: This paper presents research 
results of the Belgian Programme on Interuniversity 
Poles of Attraction initiated by the Belgian State, 
Prime Minister's Office, Science, Technology and Cul­
ture. The scientific responsibility rests with its authors. 

References 

[1] G. Bastin and D. Dochain . "On-line Estimation 
and Adaptive Control of Bioreactors ". Elsevier , 
Amsterdam, 1990. 

[2] D. Dochain. Contribution to the Analysis 
and Control of Distributed Parameter Systems 
with Application to (Bio)chemical Processes and 
Robotics. These d ' Aggregation de I 'Enseignement 
Superieur, VCL, Belgium, 1994. 

(3] D. Dochain and M. Perrier. Asymptotic observers 
for fixed bed reactors. Proc. A CC'93, pages 1179-
1183, 1993. 

(4] D. Dochain , M. Perrier, and B.E. Ydstie. Asymp­
totic observers for stirred tank reactors . Chem. 
Eng. Sci., 47:4167-4178, 1992. 

[5] F.W. Fairman, 5 .5. Mahil, and L.Luk. Distur­
bance decoupled observer design via singular value 
decomposition. IEEE Trans. Aut. Cont ., AC-29 
(1) :84-86,1984. 

[6] O . Francoisse. "Modilisation et Commande Adap­
tative de Riacteurs Tubulaires. Application a la 
Synthese de l'Ethyl Tertio-butyl Ether". PhD the­
sis , VCL, Belgium, 1993. 

[7] M. Hou and P.C. Muller. Design of observers for 
linear systems with unknown inputs. IEEE Trans. 
Aut. Control, AC-3i :871-875, 1992. 

[8] P. Kudva, N. Viswanadham, and A. Ramakrishna. 
Observers for linear systems with unknown inputs. 
IEEE Aut. Cont., AC-25 (1) :113-115, 1980. 

[9] 1. Ljung . Asymptotic behavior of the extended 
kalman filter as a parameter estimator for linear 
systems. IEEE Trans. Aut. Cont., 24:36-50, 1979. 

[10] H. Rafaralahy, M. Zasadzinski, C . Mechmeche, 
and M. Darouach. Unkonwn input observers for bi­
linear systems with gain optimization. Proc. 13th 
IFAC World Cong., 1:441-446, 1996. 

708 

O' r\ .. 
lO'li~~ ~alO.4 0 - MIINIOn 

o 0 m .. IoU'em.n. 

02 

°0L-~0.-S--~--~'S--~---2~.S--~--~JS~~---'~S--~ 

O.20L-~O.~S -~--~'S--~---2~.S --~--~3.S~~---'~.S-~ 
..... (h) 

Figure 2: Estimation results of isobutene 

C
B

,,-> --_._-_.-... __ .-. __ ..... _ ......... . 

'.' 
1.2L----'-----'-----'-----'----:'":---'---,."....--"'---":-----! 

o 0.5 ' .5 2.5 l .S 4.5 

X 10-4 

1.2 

Z 
~1.' 

\ 
, 

o-ooL~o.-:-S --~~,~.S==~:::::~2.;;:S :::=:;::=~3.5~~==.~.5=-~ 
..... (h) 

Figure 3: Experimental data of the influent 

~7r-~--~--~--~--~-~--~-T--~-, 

3.a 

~S 

"'" 
~O~--~0.5~---'--~1.5---7--~2.~5--~--~3.5~-7-~.~.5--~ 

""7 

Figure 4: Experimental data of temperature 


