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Abstract

Previous studies identify default rates as the main systematic determinant of bonds’ re-
covery rates. In this work, we revisit this paradigm by investigating the impact of another
factor: economic uncertainty. We study the influence of the latter and the one of tradi-
tional variables on the shape of recovery rates distributions, rather than on recovery rates
themselves. Based on a wide sample of American default issues and statistical methods
tailored to recovery rates data specificities, we show that economic uncertainty is the most
important systematic determinant of recovery rates distributions. By contrast, default rate
remains a key determinant of the dispersion of these distributions, but not for their means.
Taking this evidence into account is critical for the sound implementation of stochastic re-
covery rates models used by financial institutions for the computation of regulatory capital.
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1. Introduction

The 2007 financial crisis convinced regulators to put a lot of effort to reinforce risk

management practices of banks and financial institutions, especially with respect to credit

losses computation and reporting. The enhancement of the European Basel II Advanced

Internal Ratings-Based (A-IRB) approach brought by the Basel III regulation and the

introduction of the corresponding Advanced Approach in the U.S. are two sound outcomes

of this process.

These frameworks set the conditions to allow financial institutions to use internal models

for computing capital requirements for credit losses. The computation is based on portfolio
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risk measures which are dependent on three core factors: exposure at default (EAD),

probability of default (PD) and loss given default (LGD). The latter is often represented as

(1-RR) where RR stands for recovery rate. Whereas PD and EAD received a lot of attention

in the literature, RR is by far the most disregarded factor. This is rather surprising because

appearing as a scaling factor in credit losses, it has a huge impact on risk figures. Yet, it

is still common practice to set recovery rates at a constant level, typically 35%-40%.

In fact, the actual value of the recovery rate is unknown till the end of the liquidation

process, justifying that it should rather be modeled as a random variable. Many empirical

evidences support the idea that recovery rates’ distributions are driven by idiosyncratic

factors (i.e. depending on the defaulted securities’ characteristics, like e.g. seniority or

sector) (Boudreault et al., 2013; Altman and Kalotay, 2014).

However, there is not much literature discussing the systematic determinants of bonds’

recovery rates. This latter generally recalls the seminal work of Altman et al. (2005)

in pointing out that historical default rate impacts the level of recovery rates. In fact,

it is the single systematic determinant of bonds’ recovery rates identified with precision.

More recent studies including macroeconomic variables focus on recovery rates prediction

techniques rather than in the identification of precise determinants (Qi and Zhao, 2011;

Yao et al., 2015; Nazemi and Fabozzi, 2018).

Our main contribution is twofold. First, we improve the standard methodology to

identify the determinants of recovery rates: while previous studies rely mainly on linear

regressions to get conditional means, we rather explain the recovery rates’ conditional dis-

tributions using specific models tailored to the data, namely the beta regression and its

generalization (Ferrari and Cribari-Neto, 2004; Simas et al., 2010). Second, we include

economic uncertainty (quantified via some specific measures taken from the scientific lit-

erature) as another potential systematic determinant, capturing the business cycle effect.

An empirical study performed on 1831 American corporate defaults between 1990 and the

end of 2013, taken from the Moody’s Analytics Default and Recovery Database, leads us
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to specify earlier findings on the topic. When included in the model, uncertainty actually

becomes the most important systematic determinant of the mean of recovery rates. Default

rates still play an important role, but essentially for explaining their dispersion.

Whereas, to the best of our knowledge, this is the first study that sets a link between

the literature on recovery rates determinants and the one on economic uncertainty prox-

ies, this connection looks actual quite natural. First, prices of defaulted bonds represent

“expected recovery rates” in the sense that they reflect present values of future cash flows,

and that the only cash flow of a defaulted bond is the ultimate recovery resulting from

the liquidation process1. As extensively reported in Acharya et al. (2007) and Altman and

Kalotay (2014), this value is strongly influenced by the economic conjuncture, hence by

economic uncertainty.

Second, variations in uncertainty are not an endogenous response to the state of the

business cycle but rather they are a cause (Gieseck and Largent, 2016). Uncertainty proxies

are particularly able to anticipate periods of economic downturns (Ludvigson et al., 2017).

The same cannot be claimed about default rates, which are reasonably a consequence of

economic downturns. This may further explain why models based on uncertainty proxies

perform better than the traditional ones based on default rates.

Eventually, it looks reasonable to assume that in periods of high economic uncertainty,

original investors want to quickly sell defaulted securities to specialized investors (like

vulture funds), thereby creating sell pressures and prices’ drops.

On the top of explaining the systematic factors impacting bonds’ recovery rates, our

research could be used to set guidelines to be met by banks’ internal models under the Basel

III Advanced Approach. It also raises regulators’ attention about new risk dimensions to

be considered for a consistent assessment of credit exposures of financial institutions in

1Ultimate recovery rates result from the sale of the defaulted company’s assets; the sale of all assets
in case of a corporate default implying liquidation (e.g. Chapter 7 default procedure) and only a part of
them in case of milder default events which imply a restructuring (e.g. Chapter 11 procedures).
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view of mitigating systemic risk.

The paper is structured as follows. Section 2 includes the literature review. Section

3 contains the data description and the preliminary data analysis. Section 4 presents the

methodology. Section 5 includes the main results and their discussion. Section 6 contains

the conclusion and proposals for further research.

2. Literature review

This paper builds on two different streams of literature which we eventually connect:

the one about the determinants of bonds’ recovery rates and the one about proxies of

economic uncertainty. Let us now review both of them.

2.1. Determinants of recovery rates

The first comprehensive studies on the determinants of bonds’ recovery rates appeared

in the late 90s and their number increased together with data availability. These empirical

studies, developed by both academia and rating agencies, pointed out two main findings:

(i) recovery rates exhibit large cross-sectional variations and (ii) they are time-varying.

(i) Cross-sectional variations.

To be more specific, Altman and Kishore (1996) show for instance that recovery rates are

strongly influenced by the seniority of the defaulted bond and the bond issuer’s industrial

sector. They find that bonds with higher seniority and higher degree of collateralization

feature higher recovery rates on average. These effects reasonably represent an anticipation

of the so-called absolute priority rule which regulates bankruptcy proceedings in the U.S.

(11 U.S.C. par. 1129(b)) and states that senior creditors have to be reimbursed before

junior creditors in case of a liquidation.

As for industry effects, Altman and Kishore (1996) also find that bonds issued by public

utilities and chemistry-related firms present significantly higher recovery rates with respect

to bonds issued by firms operating in other sectors, even after they are adjusted for seniority.
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Schuermann (2004) reinforces the evidence about higher recovery rates in the utility sector

in the period 1970-2003 and also presents similar conclusions for recovery rates on bonds

issued by technological and telecommunication firms. The main economic justifications

for industry effects relate to asset redeployability considerations as presented in Shleifer

and Vishny (1992) and also by Acharya et al. (2007) who use bonds’ prices at emergence

discounted to the default date. On the one hand, recovery rates should be higher for issuers

operating in industrial sectors featuring more tangible assets. On the other hand, recovery

rates of bonds issued by firms in sectors that registered an high number of distress periods

- and default events - should be lower. This is due to the lower capability of similar firms

to absorb the large quantity of assets sold by the defaulted ones. The imbalance between

demand and supply of assets of the defaulted firms leads to fire sales in periods of industry

distress, which in turn result in lower recovery rates.

Not surprisingly, the severity of the default event is an additional significant determinant

of recovery rates. The general evidence is that more severe default procedures lead to lower

recovery rates. For example, Bris et al. (2006) show that bankruptcy proceedings implying

the liquidation of the defaulted firm - i.e. Chapter 7 procedure in the U.S. - lead to

lower recovery rates with respect to the ones that only imply a reorganization, as it is

the case in Chapter 11 procedures. Previously, Franks and Torous (1994) reported major

differences between recovery rates following Chapter 11 reorganizations and the ones in

distressed exchanges, these latter being considerably higher than the firsts. A distressed

exchange represents the situation in which the contractual terms of a debt obligation are

re-discussed but that do not imply any formal bankruptcy of the debt issuer. Distressed

exchanges typically result in diminished financial obligations with respect to the original

ones. Further evidence on higher recovery rates resulting from this particular type of default

is again reported by Altman and Karlin (2009).

The above-mentioned findings about seniority, industry and default type effects are con-

firmed by other recent research such as Jankowitsch et al. (2014) which is, to our knowledge,
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the most complete study on the determinants of bonds’ recovery rates developed so far.

They define market-based recovery rates as the average trading price of the bonds between

the default date and 30-days post default. They bring evidence about the importance of

a wide number of security-specific characteristics such as bonds’ coupon and maturity and

CDS availability. They also show the importance of several firm-specific variables which are

justified by structural models of credit risk: the presence of default barriers, of investment

and financing covenants and the equity value among others. Most importantly, they report

a link between bond-specific measures of liquidity and recovery rates. They find that bonds

featuring high illiquidity and transaction costs in the post-default market generally obtain

lower recovery rates.

(ii) Time-varying features.

With respect to the time-varying behavior of recovery rates, numerous studies includ-

ing Frye (2000), Hu and Perraudin (2002), Altman et al. (2005) and Boudreault et al.

(2013) acknowledge that recovery rates are strongly dependent on economic conditions or

an unobserved credit-cycle, as specifically modeled in Bruche and Gonzlez-Aguado (2010).

There is no consensus however on the choice of explicit drivers that need to be used in

predictive models for recovery rates, except for default rates and default probabilities. In-

creasing default rates in a given industry are generally associated to lower recovery rates.

The considerations of Shleifer and Vishny (1992) and Acharya et al. (2007) relating to

imbalances between demand and supply of physical assets sold by defaulted firms are still

used to explain these empirical findings. Altman et al. (2005) also show that demand and

supply of distressed securities play a critical role in determining average recovery rates.

As for other proxies for the business cycle, there are mixed evidences. Altman et al.

(2005) investigate the predictive power of GDP and its returns and the level of the SP500

and its returns. They find GDP to be relatively low correlated with average recovery rates;

the significance improves in the case of GDP returns. When included in a multivariate

model together with default rates however, these variables prove to be not significant. The
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corresponding coefficients also feature a counter-intuitive negative sign. Level and returns

of the stock market index are reported to be non-significant in multivariate regressions

although they feature an expected positive sign. On the contrary, Mora (2012) finds that

real GDP growth relieves the significance from default rates when both are included in the

models. They further report the simultaneous significance of the stock market return and

default rates.

Although the general conclusion of the literature is that default rates are the most

important systematic determinant of recovery rates, we show that it may change if we

consider proxies of economic uncertainty, that we now introduce.

2.2. Proxies of economic uncertainty

According to Knight (1921), uncertainty describes a context in which economic agents

cannot compute objective forecasts about future outcomes. Concepts such as the ones

of probability and expectation do not apply in an uncertainty framework; even the set of

possible outcomes to which probabilities are normally attributed is not observable. It is

hence distinguished from the notion of risk.

The interest for the quantification of economic uncertainty is originally linked to real

option theory and specifically to firms’ decisions in the context of uncertainty. One main

idea, carried forward by this stream of literature, is that firms pause their investment and

hiring processes in periods of high uncertainty. These choices, in turn, have depressive

consequences on the aggregate real output (Bernanke, 1983; McDonald and Siegel, 1986;

Dixit and Pindyck, 1994; Bertola and Caballero, 1994; Leahy and Whited, 1996; Bloom

et al., 2007). The fact that uncertainty is a determinant of the economic outlook, and

most importantly of economic downturns, has also been acknowledged by policymakers

and central banks (ECB, 2009; Kose and Terrones, 2012; ECB, 2016).

This evidence further increased the interest for its quantification and gave birth to a

specific stream of literature on proxies for time-varying economic uncertainty. For ease of
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exposition, we divide them in three main categories: (i) survey-based, (ii) news-based and

(iii) volatility-based measures.

(i) Survey-based proxies.

Survey-based proxies for uncertainty were originally defined as the degree of disper-

sion around projections of macroeconomic variables made by professional forecasters. An

important reference is represented by Zarnowitz and Lambros (1987). In particular, these

authors suggest that uncertainty is better captured by the means of the standard deviations

of the predictive probability distributions that professional forecasters attach to their point

forecasts rather than the standard deviation of the point forecasts itself, although the two

measures are commonly correlated. They find that increases in inflation uncertainty are

able to predict lower GDP growth and increases in interest rates in the U.S.

More recent survey-based uncertainty measures build, instead, on the discrepancy in

answers to forward-looking questions inquired after enterprises and households. In this

respect, Bachmann et al. (2013) provide estimators of time-varying economic uncertainty

based on forecast dispersions from business surveys. They analyze the impact of time-

varying uncertainty on real activity for both Germany and the U.S.; they find that sudden

increases in their proxies have small negative effects on the economic activity for the first

country but large and persistent negative effects for the latter. Girardi and Reuter (2017)

generalize the approach of Bachmann et al. (2013) and compute uncertainty measures

using forecast dispersion indicators from surveys addressed to both consumers and firms

from different sectors. Their study brings more evidence about the adverse impact of

uncertainty shocks on real activity for the euro area.

(ii) News-based indicators.

News-based indicators of economic uncertainty emerged together with data-mining re-

search, and automatic text-analysis. In particular, Baker et al. (2015) provide a specific

proxy for policy-related economic uncertainty, commonly referred as the economic policy
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uncertainty index. The methodology for its computation rests on the normalized volume

of newspaper articles published in a given month, which contain an exclusive set of expres-

sions referring to economic policy uncertainty. Different specifications of the terms that

the text-analysis algorithm has to search for allows the author to propose several other

proxies, which they call categorical uncertainty measures. They investigate the impact of

economic policy uncertainty on financial markets and on several macroeconomic indicators

such as aggregate investment, employment and real output for the U.S. and other 11 ma-

jor economies. They conclude that variations in policy uncertainty indicators are able to

predict macroeconomic fluctuations and that high policy uncertainty anticipates periods of

economic downturns.

Successively, Alexopoulos and Cohen (2015) introduce a refined version of the main

news-based indicator of Baker et al. (2015). A better specification (and an enlargement)

of the list of expressions used to proxy economic uncertainty allows the authors to create

an algorithm more sensible to the articles’ context, which minimizes imprecisions related

to word omissions and inclusion errors. When analyzing the impact of uncertainty shocks

on economic fluctuations and stock market activity, they reinforce the evidence of previous

authors: increments in economic-related uncertainty generally anticipate recessions and

high volatility episodes.

(iii) Volatility-based proxies.

Volatility-based proxies of economic uncertainty can be divided in two subgroups: the

ones referring to the stock market and the ones that refer to forecast error volatility.

Stock market realized volatility and implied volatility indexes such as VXO and VIX are

uncertainty measures belonging to the first subgroup. Leahy and Whited (1996), Bloom

et al. (2007) and Bloom (2009) were the first to employ these measures to proxy for firm-

level uncertainty. The evidence brought by these authors is that uncertainty shocks based

on these indexes are generally associated with rapid decreases in industrial production.

They build models which explain the empirical evidence through a real-option channel in
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line with the one described at the beginning of Section 2.2. They also find that the large

value of the wait and see real-option in periods of high uncertainty makes firms to be

less reactive to economic stimuli. In addition, Bekaert et al. (2013) show that the VIX

can be decomposed into an uncertainty and a risk-aversion component and analyze their

relationship with monetary policy. They find the first component to be the less influenced

by monetary policy and to be the one with the stronger effect on the business cycle.

As for measures of time-varying uncertainty based on forecast error volatility instead,

Jurado et al. (2015) represent an important reference. They define uncertainty as the

volatility of the purely non-forecastable prediction error for macroeconomic or financial

variables. They argue that proxies computed from factor models based on macroeconomic

variables are more representative of time-varying economic uncertainty with respect to the

ones based on financial variables, being the latter excessively noisy. They find their measure

of macroeconomic uncertainty to be more stable than stock market volatility and survey-

based measures in spotting periods of high economic uncertainty. Moreover, they contradict

the overshooting effect of Bloom (2009): macroeconomic uncertainty shocks are associated

with a persistent decrease in real output and employment rather than a short-term one.

However, the authors do not discuss a possible causal relationship between uncertainty

and economic fluctuations. This question is addressed in the work of Ludvigson et al.

(2017). The authors find that financial uncertainty shocks can reasonably be a cause for

declines in real activity while variations in macroeconomic uncertainty and in the policy

uncertainty indicator of Baker et al. (2015) rather represent endogenous responses to eco-

nomic fluctuations. Recently, Chulià et al. (2017) developed a daily proxy for financial

uncertainty based on a similar methodology with respect to the one of Jurado et al. (2015)

and Soojin and Rodrigo (2017) combined the latter approach with the use of survey data.

In this work we rely on various measures (belonging to each of the categories described

above) for testing the importance of time-varying uncertainty as a determinant of expected

recovery rates distributions. The reason is twofold. First, there is no consensus on which

10

 Electronic copy available at: https://ssrn.com/abstract=3366889 



is the best proxy for economic uncertainty since each measure features its own specificities

and potential drawbacks (ECB, 2016). The inclusion of different measures allows to draw

general conclusions about the impact of uncertainty in determining expected recovery rates.

Second, while the literature on recovery rates determinants tells us that expected recovery

rates are influenced by business cycle fluctuations, the one on uncertainty proxies reports

these latter to be determined and/or accompanied by variations in economic uncertainty.

Therefore, we can exploit the predictive power of each proxy while remaining silent about a

potential causality relationship between uncertainty and economic fluctuations, a question

which goes beyond the scope of this work.

3. Data

3.1. Moody’s default & recovery database

Our numerical analyses rely on a wide sample of bonds’ recovery rates relating to

American default issues and extracted from the Moody’s Analytics Default and Recovery

Database (Moody’s DRD). The sample is composed by 1831 observations spanning a period

of 24 years, from January 1990 to December 2013. Recovery rates are expressed as bond

prices measured 30 days after the default date, which is declared by the rating agency, and

divided by the face value.

We focus on default issues for which we have the following information in addition to the

recovery rate: seniority of the defaulted bond, industrial sector of the bond issuer, default

type, defaulted amount, coupon level, maturity, presence of backing guarantees different

from the bond issuer’s assets and default date. From Moody’s database we also retrieve

American default rates computed at a monthly frequency. In order to obtain a measure as

free as possible from rating withdrawal effects, we compute the American default rate as

the number of default issues registered in a given month divided by the number of firms

followed by Moody’s in the same period.
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3.2. Uncertainty measures and other systematic variables

Measures of time-varying uncertainty are selected among the different types described

in section 2.2. With respect to survey-based proxies of uncertainty, we employ an inflation

uncertainty measure for United States and a proxy of uncertainty relative to both federal

and state/local purchases. These indicators build on the forecasts dispersion computed

from the Federal Reserve Bank of Philadelphia’s Survey of Professional Forecasters. Data

are retrieved from the database managed by the authors of Baker et al. (2015) who used

them to create a blended version of their news-based indicator.

With respect to new-based measures of uncertainty, we employ the original economic

policy uncertainty index of Baker et al. (2015). The series, available at monthly frequency,

are retrieved from the same source of the latter data, which also includes details regarding

the methodology for its computation.

The stock market volatility-based measure of uncertainty included in our dataset is

represented by the stock market implied volatility index VIX, retrieved from the Chicago

Board Options Exchange (CBOE) database at a daily frequency. As for proxies based

on forecast error volatility instead, we select the one month horizon financial uncertainty

indicator of Jurado et al. (2015) and Ludvigson et al. (2017). Data were retrieved from the

website of the authors.

Figure 1 depicts the dynamics of these uncertainty proxies which are observable at every

default date in our sample. A complete matrix of correlation is instead included in Table 1.

The maximum correlation is found between the VIX index and the financial uncertainty

indicator, with a value of 0.83. This early finding warns us to use them at the same time

for our future analyses. With respect to correlations between other proxies however, we

do not report potentially harmful values, the second larger correlation being 0.43, which is

found between financial uncertainty and inflation uncertainty.

As for other proxies for the business cycle, we also consider quarterly delinquency rates

for commercial and industrial loans extracted from the database managed by the Federal
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Figure 1: Dynamics of uncertainty measures across default dates. VIX is plotted in the upper-left corner.
The financial uncertainty indicator is plotted in the upper-right corner. Economic policy uncertainty indi-
cator is plotted in the lower-left corner. Finally, inflation uncertainty and uncertainty in federal/state/local
expenditures are plotted in the lower-right corner as a continuous and a dotted lines respectively.

Reserve Bank of St. Louis, the Federal Reserve Economic Data (FRED). From the same

database we also extract the industrial production indicator for United States, quarterly

data on the gross domestic product for United States and the NBER based monthly re-

cession indicator. From the database managed by the Chicago Board Options Exchange

(CBOE) instead, we retrieve daily data about the level of the stock market index Standard

& Poor’s 500.

We now proceed with a preliminary data analysis of recovery rates included in our

sample.

3.3. Preliminary data analysis of recovery rates data

Table 2 summarizes recovery rates’ statistics for our sample set. The average recovery

rate is equal to 30.28% and the standard deviation of recovery rates is equal to 25.60%.

The lowest recovery rate is essentially equal to zero while the largest observation is exactly
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one. From the histogram in Figure 2, it can be noticed that the unconditional empirical

distribution is highly right-skewed.
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Figure 2: Histogram of recovery rates. Recovery rates relate to American corporate bonds defaulted be-
tween January 1990 and December 2013. Darker colors are associated with a higher number of observation
in a given bin. The black line represents the empirical density estimated with a Gaussian kernel.

By contrast, one observes very different shapes when considering the empirical distri-

butions of recovery rates conditional on the seniority of the defaulted bonds, the industrial

sector of the bonds’ issuers and the default type. Summary statistics of these empirical

distributions are included in Tables 3, 4 and 5 respectively. Higher levels of seniority and

higher degrees of collateralization lead to higher recovery rates, in general. The largest

average recovery rate is obtained for defaults on senior secured bonds while the lowest

average recovery rate is obtained by junior subordinated bonds. Recovery rates on junior

subordinated bonds are also the ones that are less dispersed with a standard deviation

value clearly below that of other seniorities. Secured bonds exhibit the largest variation.

All recovery rates distributions conditional on seniority are right-skewed except that of

senior secured bonds.

As for the empirical distributions of recovery rates conditioned on the industrial sector

of the bonds’ issuer, bonds issued by banks and technological companies recovered less than
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the others on average. We also report poor performances for bonds issued by other financial,

insurance and real estate companies (FIRE). The largest recovery rates in our sample are

obtained for bonds issued by utility companies. The degree of variability seems to be

balanced among the different sectors. Moreover, the standard deviation of each conditional

distribution is of the same order of magnitude of its mean: even after conditioning on

industry, recovery rates still feature a substantial randomness. An exception is made for

the distribution of recovery rates on bonds issued by utility companies. This latter is also

the only distribution which is left-skewed: all the other distributions are right-skewed with

different sizes.

Summary statistics about the empirical distributions of recovery rates conditional upon

the default type suggest that more severe default procedures are associated with lower av-

erage recovery rates. Recovery rates linked to default types characterized by company reor-

ganizations - such as Chapter 11 and prepackaged Chapter 11 - are evidently lower than the

ones associated to default events triggered by missed interest and/or principal payments.

The lowest average recovery rates are registered for Chapter 7 liquidation procedures. As

for the variability, we observe important differences across conditional distributions. High-

est variability is registered for prepackaged Chapter 11 defaults and for defaults triggered

by missed principal and interest payments, while we register almost no variability for what

concerns liquidation and payment moratorium default events. Finally, the majority of the

empirical distributions conditioned on the default type are again right-skewed with different

intensities. Only the distributions of recovery rates expected from liquidation procedures

and for default events defined as missed principal and interest payments are left-skewed.

A visual comparison among the conditional empirical distributions discussed in this sec-

tion is included in the online supporting information where we approximated the empirical

distributions with Gaussian kernels in order to obtain smoother plots.
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4. Methodology

The vast majority of research works published on the determinants of bonds’ recovery

rates rely on multivariate regression techniques which assume a Gaussian distribution for

the dependent variable. This is rather striking because recovery rates are bounded in [0, 1]

and present empirical features that are incompatible with this implicit assumption. In fact,

as shown in Section 3.3, recovery rates distributions are generally skewed. Recovery rates

also feature heteroskedasticity, a typical characteristic of data generated by a stochastic

process defined on a closed interval. Gaussian-based regression techniques applied to these

data can hence yield deceptive results, such as biased standard errors and p-values. They

are also not suitable for prediction purposes.

Standard mappings such as a classical Box-Cox (Box and Cox, 1964) transform may be

applied to obtain a normal distribution for the transformed variable or the model’s residuals.

However, such method does not guarantee that the distribution of the transformed variable

is exactly normal. It generally puts some constraints on its first four moments and yields

a symmetric distribution (Draper and Cox, 1969). The Manly transformation (Manly,

1976) instead is only able to transform unimodal skewed distributions into normal ones,

but cannot deal with U-shaped or multimodal distributions.

Most importantly, by applying one of these transformations as well as other common

alternatives such as those described in John and Draper (1980), Bickel and Doksum (1981),

Yeo and Johnson (2000) or the simple logit and square-root transformations, the interpre-

tation of the model coefficients is very little intuitive. In fact, regression coefficients have

to be interpreted in terms of the mean of the transformed variable instead of directly in

terms of the mean of the original one.

In order to address these shortcomings, we base our methodology on two special cases of

the general class of beta regression models: the classical beta regression (Ferrari and Cribari-

Neto, 2004) and the variable dispersion beta regression (Smithson and Verkuilen, 2006;

Simas et al., 2010) models. These methods have been specifically conceived to deal with
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the empirical features of percentage data and the model outputs are directly interpretable

in terms of the dependent variable.

The regression models used in this work are based on a re-parametrization of the beta

probability density function characterized by two shape parameters α, β > 0:

f(y;α, β) =
Γ(α + β)

Γ(α)Γ(β)
yα−1(1− y)β−1, 0 < y < 1, (1)

where Γ(·) is the Gamma function. Letting

µ =
α

α + β
∈ (0, 1) and φ = α + β > 0 (2)

the beta density can be re-written as:

f(y;µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1, 0 < y < 1 . (3)

We use the notation Y ∼ B(µ, φ) to stipulate that the random variable Y has the density

given above. This notation allows for an intuitive link between the parameters and the

moments. Indeed,

E[Y ] = µ and V ar[Y ] =
µ(1− µ)

1 + φ
. (4)

Hence, parameter µ is the mean of the distribution of Y while φ can be interpreted as

a precision parameter: for fixed µ, the higher its value the lower the variance of Y . In

particular, φ→∞ corresponds to the Dirac measure δµ(x) whereas φ→ 0 corresponds to

the Bernoulli distribution with mean µ, i.e. the maximum-variance distribution defined on

[0, 1].

Let {Y1, Y2, . . . , Yn} be independent random variables, where Yi ∼ B(µi, φi) for each

i ∈ {1, 2, . . . , n}. The variable dispersion beta regression model (as in Simas et al. (2010))
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is defined as:

g1(µi) = xTi θ = η1i; g2(φi) = zTi γ = η2i (5)

where θ = (θ1, ..., θk)
T and γ = (γ1, ..., γh)

T are unknown coefficient vectors, xi =

(xi1, ..., xik)
T and zi = (zi1, ..., zih)

T are regression vectors (k+h < n), η1i and η2i are linear

predictors and g1(·) : (0, 1) 7→ R and g2(·) : (0,∞) 7→ R are strictly increasing and twice-

differentiable link functions, hence invertible. The most common link function for µ is the

logit g(µ) = log( µ
1−µ). Other possible functions are the probit, log-log, complementary log-

log and Cauchy link functions. Common link functions for g2(·) are instead the logarithmic

function g2(φ) = log(φ), the square-root function and the identity function.

The variable dispersion beta regression models used in this work feature a logit link for

g1(·) and a log link for g2(·). Parameters µi and φi are hence modeled as:

µi = g−1
1 (η1i) =

ex
T
i θ

1 + ex
T
i θ

; φi = g−1
2 (η2i) = ez

T
i γ (6)

Using equations in (5), we can restate the formula for the variance of the dependent variable

as follows:

V ar[Yi] =
g−1

1 (xTi θ)[1− g−1
1 (xTi θ)]

1 + g−1
2 (zTi γ)

(7)

Considering equation (7), it is evident that the regression model based on this parametriza-

tion is naturally heteroskedastic because V ar[Y ] is a function of µ.

The log-likelihood function for the beta distribution re-parametrized as in equation (3)

and based on n observations {y1, y2, . . . , yn}, takes the following form:

`(θ, γ) =
n∑
i

`i(µi, φi) (8)
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where

`i(µi, φi) = log Γ(φi)− log Γ(µiφi)− log Γ((1− µi)φi) + (µiφi − 1) log yi

+ {(1− µi)φi − 1} log(1− yi).
(9)

Since µi = g−1
1 (xTi θ) and φi = g−1

2 (zTi γ) are functions of the coefficient vectors θ and

γ respectively, parameter estimation can be performed by maximum-likelihood. However,

the estimation requires the solution of a nonlinear system of the likelihood equations; hence,

maximization has to be undertaken with a nonlinear optimization method such as a Newton

or quasi-Newton method.

The classical beta regression (Ferrari and Cribari-Neto, 2004) can be considered a sim-

plification of the previous model in which only the parameter 0 < µ < 1 is allowed to vary

with the observations while φ > 0 is constant. We therefore assume Yi ∼ B(µi, φ) for each

i ∈ {1, 2, . . . , n}.

Hence, it is enough to substitute equations in (5) with g1(µi) = g(µi) and g2(φi) = φi

and further impose φi = φ. As before, parameter estimation is performed via numerical

optimization of the log-likelihood2.

An important feature of these methods is that different estimates of µ and φ can yield

various shapes for the underlying beta distributions: skewed unimodal, J-shapes, inverted J-

shapes, U-shapes and even the uniform distribution. Moreover, given the strictly increasing

link functions, the sign of the estimated regression coefficients θ̂ for the classical beta

regression and θ̂ and γ̂ for the variable dispersion beta regression can be directly interpreted

in terms of the effect of the regressors on the mean and dispersion of the beta distributions

generating the observations. However, note that the likelihood functions are only defined

in the interval (0, 1) and not at the extremes. Maximum likelihood estimation based on

2Details regarding the score functions, likelihood equations and Fisher’s information matrices for both
models, as well as the form of the other link functions, are included in the online supporting information.
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inflated beta distributions (Ospina and Ferrari, 2008) can be implemented in order to take

into account of observations at the boundaries3.

5. Results

As anticipated in Section 4, we do not investigate the impact of the regressors on the

observations of recovery rates (as it is done in the majority of the studies about bonds’

recovery rates determinants). Rather, we investigate the effect of the regressors on the

shape of the beta distributions from which we assume recovery rates are generated.

5.1. Uncertainty as a determinant of expected recovery rates

Table 6 shows the estimated parameters and performance statistics of eight beta re-

gression models with fixed dispersion φ as depicted in Section 4. For clarity of exposition,

we denote these models as Mµ
k , where k = {1, . . . , 8} indicates the identifier of the model

and the superscript µ specifies that we are dealing with fixed dispersion models; only µ

varies. The eight predictors all feature a standard logit link for the mean parameter and

an identity link for the precision parameter4.

The purposes of Table 6 are to show how the performance of a model including security-

specific characteristics increases as a result of the addition of a systematic determinant, and

to compare the performances of alternative models which include only one candidate as

systematic determinant of recovery rates. As suggested in Ferrari and Cribari-Neto (2004),

we compare the performance of the different models in terms of pseudo-R2 measures, defined

as the squared sample correlation coefficient between the estimated predictor η̂ and the

link-transformed response g(y)5.

3Two other possible solutions are adding and subtracting a machine-precision quantity from the extreme
observations or to apply a transformation of the form ỹ = (y− a)/(b− a) where a and b denote the sample
minimum and maximum (Ferrari and Cribari-Neto, 2004).

4The only recovery rate observation exactly equal to 1 is removed from the sample. We hence avoid the
implementation of an inflated beta regression model which would require an extended discussion. Moreover,
this observation featured an outlier residual even after the subtraction of a machine-precision quantity and
it was also marked as a leverage point.

5Nested models can also be compared via likelihood ratio tests. Non-nested models can instead be
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5.1.1. Security-specific models augmented for one systematic factor

Models Mµ
1 and Mµ

2 only include security-specific characteristics. Model Mµ
1 only

includes the following categorical variables: seniority of the defaulted bonds, industrial

sector of the issuers, default type and presence of additional guarantees different from

the bond issuer’s asset. Model Mµ
2 is augmented for taking into account of coupon and

maturity. They yield pseudo-R2 measures of 27% and 28% respectively. The estimates of

Mµ
2 suggest that the mean of recovery rates distributions µ is increasing with the coupon

level but decreasing with respect to the maturity of the defaulted bonds, both variables

being significant at the 1% level. These results are indeed in line with the findings of

Jankowitsch et al. (2014).

Model Mµ
3 is augmented to include default rates, which for long time have been con-

sidered the main systematic determinant of recovery rates. This model yields a pseudo-R2

around 30% and it confirms past empirical findings in showing an inverse relationship with

average recovery rates (as in the seminal work of Altman et al. (2005) and the majority of

later research works): higher default rates are able to predict lower means of recovery rates

distributions6.

FromMµ
4 toMµ

8 we substitute default rates with one proxy for time-varying economic

uncertainty. Models Mµ
4 and Mµ

5 include a volatility-based proxy for uncertainty: the

financial uncertainty indicator and the VIX index respectively. Models Mµ
6 and Mµ

7 in-

clude survey-based proxies: the inflation uncertainty indicator and the indicator relative

to federal/state/local expenditures. Model Mµ
8 includes the news-based economic policy

uncertainty index. When analyzing the significance of the coefficients, we first notice that

each of these uncertainty proxies is significant in its own model with the exception of the

compared through AIC criterion. We found that both methods lead to the same conclusions of the pseudo-
R2 measure; hence, we base the discussion on this latter, since it remains the simplest global measure of
goodness-of-fit.

6Here and in what follows, we use the term predict because the monthly regressors are included in the
models using the values one month before default while daily regressors are measured at the default date.
In fact, this structure allows to attribute a casual interpretation to the model results.
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one relating to federal, state and local expenditures entering in Mµ
7 . Moreover, all the

uncertainty-based models feature a negative sign in the estimated coefficient of the system-

atic variable: it appears that increasing uncertainty is indeed able to predict lower means

for the recovery rates distributions.

Comparing the performance measures ofMµ
4 toMµ

8 with the one ofMµ
3 , we notice that

the uncertainty-based models are in general superior to the one based on default rates. For

example,Mµ
4 ,Mµ

5 andMµ
8 show significant improvements in pseudo-R2, with measures of

39%, 35% and 32% respectively. Especially for what concerns models built on volatility-

based measures of uncertainty -Mµ
4 andMµ

5 - it appears that economic uncertainty is able

to explain a higher portion of recovery rates variations than the one explained by default

rates. Hence, the results in Table 6 not only show that increasing uncertainty is able to

predict lower recovery rates, but they also suggest that uncertainty may have a greater role

than default rates as systematic determinant of recovery rates distributions.

5.1.2. Augmented models with other business cycle factors

Table 7 further investigates this question. It includes the results of four beta regressions

with fixed dispersion parameter in which we further control for other systematic determi-

nants. Among these control variables we include a monthly polynomial interpolation of

quarterly GDP for United States, monthly industrial production returns, a monthly reces-

sion indicator, the level of the SP500 and monthly polynomial interpolation of quarterly

delinquency rates in commercial and industrial loans.

Given a modelMµ
k as above, we denote the corresponding augmented model with other

proxies of the business cycle asMµ
k+. Models which further include all uncertainty proxies

are instead denoted by Mµ
k++.

As Mµ
2+ shows, the inclusion of these proxies for the business cycle yields a sensible

increase in the model performance. For this model we report a Pseudo-R2 of 35%, which has

to be confronted with the 28% displayed byMµ
2 of Table 6 including only security-specific
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characteristics.

The inclusion of default rates in modelMµ
3+ however, does not seem to bring additional

information with respect to the one conveyed by the other systematic variables. Although

default rates are strongly significant and feature the expected negative sign, the pseudo-

R2 is unaffected. Moreover, given the size of the estimated coefficients, it seems that

delinquency rates play a greater role.

Interestingly,Mµ
4++ andMµ

5++ - which include proxies of economic uncertainty - come

to rather different conclusions. Performance measures increase steadily to 40% and 39%

respectively and this gain is not strictly linked to the additional number of variables. In fact,

in parallel analyses in which we substitute default rates inMµ
3+ with financial uncertainty,

VIX index or news-based economic uncertainty we report Pseudo-R2 measures of 40%,

38% and 37% respectively7. Uncertainty measures indeed convey additional information

for explaining recovery rates variations.

Moreover, the evidence about economic uncertainty to be the most important systematic

determinant of recovery rates is reinforced. Financial uncertainty is still strongly significant

inMµ
4++ when controlling for other proxies of the business cycle. VIX index, the news-based

proxy of uncertainty and the survey-based proxy for uncertainty about federal/state/local

expenditures are instead significant in Mµ
5++. Given the sign of the estimates associated

with uncertainty proxies, the main evidence is that increasing uncertainty is able to predict

lower means µ of the recovery rates distributions.

Most importantly, significance is relieved from default rates in Mµ
4++ and Mµ

5++, al-

though the estimated coefficients still feature an intuitive negative sign. Default rates can

no longer be considered as key systematic determinants of recovery rates when economic

uncertainty is taken into account.

Comparing the performance measures of Mµ
2+ and Mµ

3+ in Table 7 to the ones of the

7Complete results are omitted due to space considerations but they are available in the online supporting
information.
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lower-dimensional models Mµ
4 and Mµ

5 in Table 6, we can also conclude that volatility-

based measures of uncertainty are able to explain a greater portion of recovery rates vari-

ation with respect to traditional proxies for the business cycle and especially default rates.

Hence, economic uncertainty certainly matters and in fact proves to be the most important

systematic determinant of expected recovery rates among all the factors considered in this

study8.

Another important question is to determine whether uncertainty is also a systematic

determinant of the dispersion of the beta distributions from which we assume recovery

rates are generated. This question is handled in the next section, where we analyze the

determinants of the precision parameter φ using a beta regression technique including

dispersion covariates.

5.2. Uncertainty and default rates as dispersion determinants

As explained in Simas et al. (2010), the regression vectors xi and zi for the mean and

precision submodels of variable dispersion beta regressions are not exclusive. This means

that the number of parameters to estimate doubles in case a model with the same regressors

for µ and φ is fitted. To deal with the trade-off between creating an over-parametrized model

and understanding what are the most important determinants for the shapes of recovery

rates distribution, we perform model selection.

We select the regressors with a backward stepwise model selection algorithm building

on the Generalized Akaike Information Criterion (step-GAIC) and based on the last version

of Rigby and Stasinopoulos (2008). Variable dispersion beta regressions can in fact be seen

as a particular case of the class of generalized additive models for location, scale and shape

(GAMLSS) conceived by Rigby and Stasinopoulos (2005). As it is usual for this type of

models, we first select variables on the mean submodel; given the best subset of variables

8In particular, we find these conclusions to be robust to the specification of different link functions. The
complete results are available upon request.
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in the mean submodel, we then apply the selection algorithm to the precision submodel.

Models in this section are denotes as Mµ,φ
k where k is again the id of the model and µ, φ

specifies that we are dealing with variable dispersion models.

Table 8 includes the results of two generalized beta regressions where the starting models

for the step-GAIC procedure are represented by Mµ
4++ and Mµ

5++ of Table 7. Hence, the

starting models for Mµ,φ
4++ and Mµ,φ

5++ include financial uncertainty and the VIX index

respectively. As specified in Section 4, the mean submodels feature a logit link while the

precision submodels feature a log link.

5.2.1. Robustness of the mean submodel

Again, as for the mean submodels, we notice that uncertainty measures are included

both inMµ,φ
4++ andMµ,φ

5++. ModelMµ,φ
4++ includes financial uncertainty and the news-based

uncertainty proxy, both being very significant and with a negative sign. Model Mµ,φ
5++

selects the VIX and all the other uncertainty measures: all these variables feature the

expected negative sign but inflation uncertainty is not statistically significant. Interestingly,

we notice that volatility-based proxies of uncertainty are chosen as the first systematic

variable by the selection algorithm. Financial uncertainty is chosen to be kept in the model

already at the third step of the selection algorithm, after the default type and seniority and

right before industrial sector and news-based economic uncertainty. VIX is instead chosen

to be kept inside the model at the fourth selection step just after default type, seniority

and industrial sector.

Default rates, usually considered to date as “the most relevant” systematic factor, are

not selected by the algorithm for Mµ,φ
4++ but they are included in Mµ,φ

5++ where they do

not display any significance. They are also chosen as the twelfth variable for order of

importance, after all the uncertainty measures which display significance in Mµ,φ
5++.

25

 Electronic copy available at: https://ssrn.com/abstract=3366889 



5.2.2. The role of uncertainty and default rates for varying dispersion

Uncertainty measures also prove to have a major role in determining the dispersion

of recovery rates distributions. Financial uncertainty and news-based economic policy

uncertainty are selected in the precision submodel of Mµ,φ
4++, with financial uncertainty

being chosen at the third selection step after the default type and industrial sector variables,

hence being the most important systematic determinant also for the precision submodel.

Both financial uncertainty and the news-based indicator are strongly significant in Mµ,φ
4++

and feature a positive and negative sign respectively.

VIX index and the news-based measure are selected for the precision submodel ofMµ,φ
5++.

Only VIX shows to be strongly significant and features a positive sign. As for the selection

procedure however, they are not the first systematic determinant to be selected. In fact,

default rates already enter at the fourth selection step after default event, industrial sector

and maturity.

Default rates are selected in the precision submodel of both model Mµ,φ
4++ and Mµ,φ

5++.

They are strongly significant in both models and feature a negative sign.

From these analyses, it hence appears that, given µ, increases in volatility-based mea-

sures of uncertainty predict an increase in the precision parameter, hence a decrease in

the dispersion of the distributions generating recovery rates. The contrary is true for the

news-based measures.

Moreover, although default rate cannot be considered as a major determinant of average

recovery rates when uncertainty measures are included in the models, it proves to be a key

driver of the dispersion of recovery rates distributions. Increasing default rates predict

higher variability of recovery rates distributions.

We also remark that seniority of the defaulted bond, industrial sector of the bond issuer

and default type are selected in the first iterations of the algorithm for both the mean and

precision submodels, supporting the evidences described in Section 3.3 about the role of

these variables in determining the shapes of the corresponding conditional distributions.
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6. Conclusion

Credit losses on bond portfolios strongly depend on three core factors: exposure at

default, default probability and loss given default. While the first two received a lot of

attention in the literature, the complement of the latter – the recovery rate – remained

disregarded in spite of its primary importance. Moreover, among the few models devel-

oped so far, there are common flaws relating to the identification of bonds’ recovery rates

determinants. In fact, although researchers attained consensus on the variables responsi-

ble for the cross-sectional variations in recovery rates, there is still need to shed light on

the determinants of the systematic fluctuations. Whereas past literature pinpoints default

rates as the most important systematic determinant of recovery rates, we bring evidence

which revisits this paradigm.

In this paper, we analyze the determinants of bonds’ recovery rates using statistical

techniques naturally suited to address recovery rates data specificities such as bounded

support, skewed distributions and heteroskedasticity. These methods allow us to draw

original conclusions on the role of debt characteristics and proxies of the business cycle in

determining the shapes of recovery rates distributions.

We find that economic uncertainty – a concept which, to the best of our knowledge, is

considered in this stream of literature for the first time – plays a key role. In particular,

we find that measures of time-varying uncertainty play a greater role than default rates in

explaining the systematic variations in recovery rates distributions. This evidence is still

valid even after controlling for other proxies of the business cycle such as GDP, industrial

production returns, loans’ delinquency rates, a recession indicator and the level of the

market index SP500. Higher uncertainty – as measured by four different types of proxy –

is always associated with a lower mean of the recovery rates distributions.

Volatility-based proxies of uncertainty play the most relevant role with respect to the

other types of measures. In fact, the explanatory power of volatility-based measures in

explaining the means of recovery rates distributions is only second to default type and
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bonds’ seniority and they outperform default rates in all the models we considered.

By contrast, we find default rates to be among the most relevant systematic factors

regarding the dispersion of recovery rates distributions: it is the first variable selected

after the default event, industrial sector of the bonds’ issuer and maturity, all bond-specific

characteristics. Increasing default rates predict higher dispersion in the recovery rates

distributions. We register significant dispersion effects also for uncertainty proxies, with

measures referring to different types of uncertainty featuring opposite signs.

It hence appears that even if default rates can no longer be identified as the main

systematic determinant of average recovery rates while proxies of economic uncertainty

are considered, they are still important systematic factors for explaining the variability in

recovery rates.

Our results can help improving stochastic models for recovery rates used by practition-

ers for the computation of credit risk measures. In the light of the worldwide introduction

of regulatory provisions allowing financial institutions to self-determine expected and unex-

pected credit losses (an option often exclusive to systemically important banks), taking into

account these findings can have beneficial consequences for the stability of both single insti-

tutions and the overall financial system. This work also raises regulators’ attention on new

risk dimensions that must be considered when assessing the robustness of banks’ internal

models and the related results in terms of credit provisions and capital requirements.

The link found between bonds’ recovery rates determinants and uncertainty measures

also lays the groundwork for an interesting set of questions. Is it possible to create security-

specific or firm-specific proxies of uncertainty? Why default rates and uncertainty measures

convey different informations for the dispersion in recovery rates distributions? How is this

information interpretable in an asset pricing framework? And in general, can our findings

be integrated in a pricing model for defaulted securities? We leave all these questions for

future research.
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Online supplementary material

Technical appendix: Details regarding the likelihood equations, score vectors and Fisher’s

information matrices for both the classical and the variable dispersion beta regression

models. Theoretical tables displaying functional forms of different link functions for

the mean and precision parameters.

Figures of recovery rates distributions: Sample figures of recovery rates conditional

distributions according to seniority of the defaulted bond, industrial sector of the

bonds’ issuer and default type.

Results of Mµ
4+, M

µ
5+ and Mµ

8+: Complete table of results for models Mµ
4+, Mµ

5+ and

Mµ
8+ as defined in the main text.
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Tables

Table 1: Lower triangle of the correlation matrix of uncertainty measures.

VIX Fin. unc. News-based EPU CPI unc. F.S.L. exp. unc.

VIX 100.00
Fin. unc. 83.02 100.00

News-based EPU 36.18 22.39 100.00
CPI unc. 39.01 43.26 -3.73 100.00

F./S./L. exp. unc. -1.05 -9.33 25.15 32.13 100.00

NOTE: All displayed values are expressed in percentage.

Table 2: Summary statistics of our recovery rates sample.

Statistic N Max Mean Median Min Pctl(25) Pctl(75) St. Dev.

Recovery rate 1,831 100.00 30.28 21.00 0.01 10.00 47.50 25.60

NOTE: All displayed values except the sample size are expressed in percentage.

Table 3: Summary statistics of recovery rates according to the seniority of the defaulted bond.

N Min. Median Mean Max. St.Dev. Skewness

Senior Secured 151 0.75 51.50 49.20 99.50 27.92 0.0485
Senior Unsecured 1180 0.30 19.50 29.66 99.50 25.49 0.9622

Senior Subordinated 413 0.01 20.75 26.70 100.00 22.72 1.0455
Subordinated 78 0.25 19.42 24.44 95.00 22.16 1.2025

Junior Subordinated 9 1.00 9.00 10.22 20.75 6.15 0.1511

NOTE: All displayed values except the sample size and skewness are expressed in percentage.

Table 4: Summary statistics of recovery rates according to the industrial sector of the bond’s issuer.

N Min. Median Mean Max. St.Dev. Skewness

Banking 45 0.25 13.50 17.81 57.00 19.46 0.9789
Capital Industries 420 0.13 24.62 31.42 99.25 24.84 0.7639

Consumer Industries 266 0.01 26.50 33.86 100.00 24.55 0.7426
Energy & Environment 112 1.00 35.00 35.61 90.50 21.27 0.5535

FIRE 334 0.13 10.00 22.74 94.50 26.68 1.6836
Media & Publishing 159 0.01 37.00 38.95 96.00 27.43 0.1417

Retail & Distribution 143 0.50 28.00 31.77 99.50 23.18 0.9018
Technology 212 0.38 12.75 18.27 99.50 17.28 2.1323

Transportation 103 1.75 23.00 33.36 95.25 23.37 0.9780
Utilities 37 13.99 83.00 76.01 91.00 16.07 -1.9797

NOTE: All displayed values except the sample size and skewness are expressed in percentage.
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Table 5: Summary statistics of recovery rates according to the default type.

N Min. Median Mean Max. St.Dev. Skewness

Bankruptcy 28 1.00 25.25 32.33 65.00 24.81 0.0833
Chapter 11 712 0.01 10.88 22.85 99.25 22.02 1.5121
Chapter 7 8 0.53 2.88 9.54 46.00 15.33 1.9541
Liquidated 7 13.00 15.38 15.12 16.57 1.35 -0.6822

Missed interest payment 796 0.01 26.00 32.84 100.00 23.88 0.7778
Missed principal & interest payments 66 8.25 65.50 57.68 91.00 29.22 -0.6340

Missed principal payment 25 1.00 39.00 44.40 96.53 26.60 0.3306
Others 5 3.00 9.00 16.33 51.63 19.92 1.4294

Payment moratorium 35 82.05 83.17 83.21 85.13 0.55 1.7748
Prepackaged Chapter 11 101 0.50 15.00 29.95 99.50 28.98 0.7595

Receivership 11 0.25 0.50 5.45 26.50 10.42 1.6362
Suspension of payments 37 5.00 18.50 25.84 99.00 19.41 1.6304

NOTE: All displayed values except the sample size and skewness are expressed in percentage.
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Table 7: Augmented beta regression models.

Recovery rate distributions - Mean model

Mµ
2+ Mµ

3+ Mµ
4++ Mµ

5++

Constant −1.877∗∗∗ −1.927∗∗∗ −1.924∗∗∗ −2.049∗∗∗

(0.354) (0.354) (0.348) (0.349)
Coupon 0.069∗∗ 0.068∗∗ 0.049∗ 0.066∗∗

(0.028) (0.028) (0.028) (0.028)
Maturity −0.069∗∗∗ −0.068∗∗∗ −0.085∗∗∗ −0.092∗∗∗

(0.026) (0.026) (0.025) (0.026)

Rec. indicator −0.382∗∗∗ −0.323∗∗∗ −0.072 −0.147∗

(0.075) (0.080) (0.087) (0.087)
GDP −0.017 −0.029 0.117∗∗∗ 0.172∗∗∗

(0.038) (0.038) (0.045) (0.046)
IP return 0.164∗∗∗ 0.158∗∗∗ 0.088∗∗ 0.134∗∗∗

(0.036) (0.036) (0.036) (0.036)
SP500 −0.246∗∗∗ −0.216∗∗∗ −0.139∗∗∗ −0.325∗∗∗

(0.040) (0.043) (0.049) (0.048)
Del. rate C./I. loans −0.198∗∗∗ −0.143∗∗∗ 0.053 −0.035

(0.041) (0.048) (0.052) (0.051)

Amr. def. rate −0.075∗∗ −0.012 −0.044
(0.033) (0.033) (0.033)

Fin. unc. −0.338∗∗∗

(0.034)
VIX −0.233∗∗∗

(0.030)
CPI disagreement −0.028 −0.051

(0.034) (0.034)
F./S./L. exp. disagr. −0.044 −0.074∗

(0.040) (0.041)
News-based EPU −0.132∗∗∗ −0.117∗∗∗

(0.028) (0.029)

Observations 1,830 1,830 1,830 1,830
Seniority dummies Yes Yes Yes Yes
Industry dummies Yes Yes Yes Yes
Event dummies Yes Yes Yes Yes

Pseudo-R2 0.352 0.353 0.404 0.389
Log Likelihood 802.542 805.040 881.247 862.116

NOTE: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Logit link function is chosen for the mean model. All models includes categorical
variables for controlling for bonds’ seniority and presence of backing, industrial sector of the bond issuer and default type.
The reference categories are set to senior unsecured bonds without backing, financial insurance and real-estate companies
and chapter 11 defaults. Model Mµ

2+ only includes a recession indicator, a monthly polynomial interpolation of the
GDP for United States, monthly IP returns, level of the SP500 and a monthly polynomial interpolation of delinquency
rates for commercial and industrial loans. Model Mµ

3+ additionally includes the monthly American default rate. Model

Mµ
4++ and Mµ

5++ have the same dimensionality and they include different types of proxies of uncertainty. Due to high

correlation between the financial uncertainty indicator and the VIX index, ModelMµ
4++ andMµ

5++ only include one of
the two variables.
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