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ScienceDirect
Climate change is altering the abundance and distribution of

millions of insect species around the world and is a major

contributor to the decline of numerous species. Many insect

species may be indirectly affected through their nutritional

dependence on mutualistic bacteria. Indeed, these bacterial

partners generally have a highly reduced and static genome,

resulting from millions of years of coevolution and isolation in

insect cells, and have limited adaptive capacity. The

dependence of insects on bacterial partners with narrow

environmental tolerance also restricts their ability to adapt,

potentially increasing the risk of their extinction, particularly in a

world characterized by increasing and fluctuating

temperatures. In this review, we examine how climate change

can affect the evolutionary trajectories of bacterial mutualism in

insects by considering the possible alternatives that may

compensate for the dependence on bacterial partners that

have become ‘Achilles’ heels’. We also discuss the beneficial

and compensatory effects, as well as the antagonistic

effects associated with so-called facultative symbionts in the

context of an increased incidence of transient extreme

temperatures.
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Corresponding author: Renoz, Franç ois (francois.renoz@uclouvain.be)
1 These authors contributed equally to this work.

Current Opinion in Insect Science 2019, 35:20–26

This review comes from a themed issue on Global change biology

Edited by Arnaud Sentis and Nicolas Desneux

https://doi.org/10.1016/j.cois.2019.06.006

2214-5745/ã 2019 Elsevier Inc. All rights reserved.

Introduction
Ongoing global climate change is altering all aspects of

biological systems, from genes to ecosystems and is

expected to significantly affect the abundance and distri-

bution of many living species over the next decades [1,2].

Current scenarios predict not only a global increase in mean

temperature, but also an increased variance around that

mean and an increased incidence of transient extreme
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temperatures [3–5]. These environmental changes exert

biological impacts on metazoan organisms notonly directly,

but also indirectly through the microorganisms with which

they interact [6–11]. Disruption of partnerships between

reef-building corals and their photosynthetic bacterial

mutualists is now well documented [12,13�], as well as

alteration of gut microbiota diversity of vertebrates [14] or

disruptions in the complex bacterial communities in forest

soils [15,16]. Mutualistic associations involving microor-

ganisms play a pivotal role in the functioning of ecosystems,

notably because they facilitate access to certain resources of

many metazoan species [17]. However, since these inter-

actions bind multiple species to a common destiny, they

also represent a weak link that is particularly sensitive to

environmental fluctuations, and their breakdown because

of global change may dramatically amplify and/or acceler-

ate biodiversity loss and ecosystem disruption [18].

Insects are ectotherms, which means they do not maintain

their body temperature through homeostatic processes,

which depends to varying degrees on the environment

[19]. This makes these organisms particularly vulnerable to

extreme temperatures thatcan altercellularandphysiological

function, and hence the higher levels of organization [20,21].

By playing a central role in food webs, insects are crucial links

in all ecosystems and changes of their biodiversity could have

unpredictable consequences [22��]. Another feature that

makes certain insect species particularly vulnerable to

extreme temperatures is their propensity to establish mutu-

alistic relationships with bacteria that can deeply influence

their evolutionary ecology [23–25]. Recent studies suggest

that climate change could severely impair these mutualistic

associations, especially obligate mutualisms in which both

partiesarehighly interdependentandcannot liveonewithout

the other [7,23,26–28]. The goal of this review is to highlight

some insights and further questions about how climate

change may affect the evolutionary trajectories of bacterial

mutualisms in insects. We propose several evolutionary sce-

narios based on the general conceptual framework previously

establishedbySachsandSimms[29]andTobyKiers etal. [18]
concerning the evolution of mutualisms and their possible

breakdown under altered climatic conditions. Reviewing the

recent literature, we examine several alternatives regarding

the evolutionary responses of symbiont-dependent insects in

the current context of rising temperatures.

Obligate mutualists: the Achilles’ heel of
insects in fluctuating thermal conditions
Bacterial mutualisms in insects are generally classified into

two categories, mainly based on the degree of codependency
www.sciencedirect.com
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and co-evolution between the host insect and its bacterial

partner [30]. Obligate mutualisms are generally described as

evolutionarily ancient and stable associations (with bacteria

that have sometimes cospeciated with host insects for tens of

millions of years), and involve bacterial partners required for

normal function and development of host insects, providing

themwithessentialnutrients lackingintheirdiets (e.g.,amino

acids and vitamins). They are particularly prevalent in insect

groups specialized on nutritionally unbalanced foods, such as

plant sap or blood [31,25]. Facultative mutualisms result from

associations with bacteria that are not necessary for host insect

survival and reproduction, but which nonetheless provide

host benefits under specific ecological conditions [30].

A striking feature of many obligate symbionts is that their

confinement within specific tissue and cell structures (e.g.

bacteriocytes) and their strict vertical transmission severely

limit the possibilities for gene exchange and favor the

process known as Muller’s Ratchet, whereby the genomes

of asexual populations accumulate deleterious mutations in

an irreversible manner [28,31]. This accumulation results

in a reduction of the stability of the encoded proteins. In

addition, the genomes of obligate symbionts undergo a

degenerative evolution that results in the purging of genes

not absolutely essential, preserving mostly functionally

important one’s (e.g. genes encoding bacterial replication,

basic cellular processes, or nutrient biosynthesis) [28]. This

irreversible genes loss constrains the evolutionary potential

of the symbiont and its relationships with its host. Despite

compensatory mechanisms such as overexpression of heat-

shock proteins for optimal protein folding [31], mutualistic

associations involving obligate bacterial symbionts have

little potential to cope with a changing environment,

including heat stress, such as highlighted by several studies

[23,26,28]. However, other sources of ecological innovation

may exist in nature and provide new traits that compensate

for the fragility of obligate mutualism and allow symbiont-

dependent insects to adapt to a fluctuating environment. In

the following sections, we examine different scenarios of

how bacterial mutualism in insects could evolve in an

altered thermal environment, highlighting possible com-

pensatory mechanisms (Figure 1).

‘You are the weakest link, goodbye’ – the
extinction risk
In obligate mutualisms, the reduced genome function of

the bacterial symbiont tends to drive the insect partner

into an evolutionary spiral that constrains its ecological

range and makes the entire mutualistic system more

vulnerable to environmental stresses [26]. One scenario

currently being debated is that the increase in

average temperature and temperature fluctuations due

to global change may lead to the breakdown of host–

endosymbiont partnerships and the possible extinction

of both partners (Figure 1) [23,26,28]. Indeed, recent

studies have shown that obligate bacterial mutualisms in

insects are generally heat-sensitive [32,33,34�,35,36�].
www.sciencedirect.com 
For example, aphids exposed for a few hours at tem-

peratures up to 38�C have a reduced density of the

bacteriocyte-associated symbiont Buchnera aphidicola,
which can even be completely lost [32,37]. Although

the heat sensitivity of B. aphidicola cells is not fully

understood, it is hypothesized that this may depend in

particular on the presence of a mutation in the ibpA gene

that encodes a heat-shock protein ensuring optimal

protein folding under heat stress conditions [35,37,38].

Aphids whose B. aphidicola strain exhibiting the muta-

tion has been experimentally replaced by an unmutated

strain regain some thermal tolerance [35]. Some authors

also speculate that B. aphidicola’s low tolerance to heat

may partly explain why aphids are so rare in the tropics

[39]. Another study has shown that after being exposed

to a continuous heat stress at 35�C, the obligate symbiont

Portiera and the facultative symbiont Hamiltonella defensa
that both reside in bacteriocytes are almost completely

depleted in the whitefly Bemisia tabaci, while facultative

symbionts residing outside bacteriocytes tend to resist

heat stress [36�]. These observations suggest that heat

vulnerability of obligate mutualists may be due not only

to the genomic feature of symbionts (i.e. a degenerate

genome in which deleterious mutations accumulate), but

also to the thermal susceptibility of the host cells in

which they are confined (i.e. the primary bacteriocytes).

Although the mechanisms underlying the thermal sen-

sitivity of obligate bacterial mutualism in insects remain

poorly understood, they are probably the result of com-

plex interactions between host bacteriocytes and the

genotype of bacterial symbionts.

Most of the studies that have focused on the impact of

increasing temperatures on symbiotic systems in insects

were carried out on thermal stresses involving tempera-

tures between 35�C and 38�C. However, such experi-

mental conditions do not necessarily reflect the gradual

rise in temperatures due to global warming. A recent

study examined the impact of increasing temperatures

on the obligate gut symbiont of a stinkbug species, Nezara
viridula, by simulating global warming in semi-natural

conditions [7]. Interestingly, they showed that a slight

increase in mean temperature severely depresses obligate

symbiont titers and has adverse effects on insect devel-

opment comparable to the use of antibiotics. The

innovative (and rather alarming) aspect of this study is

that the slight increase in temperatures imposed by

climate change could already affect the obligate bacterial

mutualism in which many species of insects are involved,

and severely impair the normal development of sym-

bionts-dependent insects. If there is now evidence that

high temperatures can rapidly and severely affect the

integrity of obligate bacterial symbioses in insects, there

is currently a lack of data to generalize the impact of

global change on these mutualisms. This is especially true

for insects living in tropical and equatorial regions, for

which there is a critical lack of data, while their bacterial
Current Opinion in Insect Science 2019, 35:20–26
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Figure 1

Mutualistic Insect–Bacterial Symbioses
in a Climate Change Context
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Scenarios drawing potential evolutionary trajectories of mutualistic symbiosis in insects in a climate change context. (1) One of the scenarios is

that the heat stress may cause to the breakdown of host–endosymbiont associations, leading to the extinction of both partners. (2) Another

evolutionary scenario is that the heat stress leads to the breakdown of the mutualist association without the death of one or more partners. For

instance, horizontal gene transfers (HGT) from a bacterial partner to the host genome may maintain the needed functions, continuing its own

evolutionary path without its microbial partner. (3) The last scenario is that the mutualist association is maintained facing to a heat stress through

different strategies. The symbiotic bacteria may shift from mutualism to antagonism if they no longer confer a selective advantage in the prevailing

environmental conditions. Otherwise, the mutualist association may acclimate and adapt to the heat stress conditions, evolving towards

relationships involving a new less degenerate and vulnerable bacterial partner to compensate or replace the one that has become too weak.

Orange color corresponds to co-extinction, blue color corresponds to negative consequences for mutualisms persistence and green color

corresponds to positive consequences for mutualisms persistence. The circles correspond to the symbionts, where the hollows correspond to

mutualists and the filled correspond to parasites. The other colored circles (yellow and purple) correspond to other mutualists.
partners may be less heat-sensitive compared to strains

present in insects living in areas with a more temperate

climate.

Alternative resource acquisition strategies:
symbiont complementation and switching
Although obligate symbionts tend to be vulnerable to

heat stress and have little room for adaptation, they are

rarely the only mutualistic partners for insects that can

also host facultative symbionts or additional obligate

partners that are sources of ecological innovation [40].

Thereby, to avoid falling into the spiral of extinction of

both partners, obligate bacterial mutualism could follow

an alternative evolutionary scenario: evolve towards rela-

tionships with a less degenerate and vulnerable bacterial

partner to compensate or replace the one that has become

too weak. There are many situations in nature,
Current Opinion in Insect Science 2019, 35:20–26 
particularly in specialized mutualisms, where environ-

mental changes drive shifting allegiances [18]. For

example, in altered environmental conditions, native

symbionts of certain species of corals and sponges are

replaced by new more thermally resistant bacterial part-

ners [13�]. There are many reports of mutualistic systems

in which insect species can rely on these bacterial partners

to compensate for their old friend’s deficits and, in some

cases, which may become obligate themselves [28]. This

is the case of many sap-feeding insect species that can

host additional nutritional obligate symbionts (often

called co-obligate symbionts) whose metabolic abilities

complement those of the native but more degenerate

obligate partner [41]. Aphids of the subfamily Lachninae

harbor highly deteriorate B. aphidicola strains generally

supplemented by Serratia symbiotica strains that fulfill the

nutritional functions lost by the native obligate symbiont
www.sciencedirect.com
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[41]. It is interesting to note that, in certain aphid species,

these co-obligate S. symbiotica strains have been replaced

many times by other Enterobacteriaceae probably picked

up from their diet, which demonstrates the great flexibil-

ity of the mechanisms of acquisition and replacement of

symbiotic partners in insects [41–43]. Cases of metabolic

complementation have been found in other clades of

insects including mealybugs and cicadas, which may

harbor more than three obligate symbionts working

together to synthesize certain metabolites [40,44,45].

There are also examples of bacterial mutualisms in which

the obligate symbiont has been completely replaced by a

new microbial partner [41]. For example, in aphids of the

genus Geopemphigus, B. aphidicola has been fully sup-

planted by a new partner from the bacterial phylum

Bacteroidetes which perform the nutritional role previ-

ously fulfilled by the native symbiont [46]. It is now

increasingly evident that shifts in symbiotic associations,

and in particular the replacement of ancient and defective

obligate symbionts by more functional microbial partners,

are frequent in many insect groups [40,45,47]. And these

replacements do not always involve the recruitment of

new bacterial partners since in aphids and cicadas, for

example, several cases of replacement of the degenerate

essential bacterial symbionts by yeast-like fungal associ-

ates have been reported recently [48��,49].

Obligate symbiont complementation  and/or replacement by

more efficient and less vulnerable microbial partners are

mechanisms providing host insects with a means of over-

coming dependence on partners with limited adaptive

capacity [28]. In this evolutionary context, climate change

mayresult inswitchingcombinationswithmicrobialpartners

allowing acclimation and rapid adaptation of the host insect

in a world of fluctuating temperatures, as has been demon-

strated in the case of corals and sponges [13�]. However,

although a growing body of literature suggests that obligate

symbiont supplementation and/or switching may be

more widespread in insects than previously appreciated,

these events probably occur gradually over an evolutionary

time-scale [31]. Given the rapid pace of environmental

change imposed by global warming, it is not certain that

these alternative pathways can occur quickly enough to

ensure the long-term survival of insect populations and

species.

Let your bacterial partner down (it’s not
worth it)
Another evolutionary scenario would be the integration of

metabolic skills of the obligate symbiont into the host

genome, which would pursue its own evolutionary path

without its cumbersome microbial partner (Figure 1).

This scenario requires horizontal gene transfer (HGT)

from the obligate bacterial partner or other bacteria to the

host genome to maintain the needed functions. Although

HGT are recurrent among bacteria, their frequency and

importance in the context of animal-bacterial interactions
www.sciencedirect.com 
are currently less clear because of technical artifacts that

lead to misinterpretation of some genomic data and

because of the small number of sequenced insect gen-

omes [50��]. However, numerous cases of HGT events

between bacteria and invertebrates have recently been

documented [45,51,52], and even if the bacterial trans-

ferred sequences are not necessarily functional in the

recipient eukaryote, it is now clear that HGT can partici-

pate in the shaping of the genome of insects and other

invertebrates. Interestingly, Luan et al. have shown that

metabolism genes coded in the B. tabaci genome have

been acquired from exogenous bacteria by HGT, but not

from nutritional obligate symbionts [52]. In another

study, Husnik et al. have shown that several expressed

horizontally transferred genes present in the mealybug

Planococcus citri genome come from diverse bacteria and

likely complement missing genes of the degenerate obli-

gate symbiont Tremblaya [53]. Finally, there is also

evidence of horizontal transfers of B-vitamin biosynthetic

genes between symbionts in multi-symbiotic systems in

Cinara aphids [42]. These few examples demonstrate that

HGT events are not so rare and can compensate for the

loss of functionality of the native obligate symbiont.

Effects of other players: roles of facultative
mutualists on insect host thermal tolerance
Facultative bacterial mutualism occurs commonly in many

insect species, including species that do not harbor obligate

symbionts [54,55]. Some strains of these facultative bacte-

rial partners have been reported to confer resistance to heat

stress [25]. For example, certain strains of Wolbachia have

the ability to increase the heat stress tolerance of their host

Drosophila melanogaster by intensifying dopamine metabo-

lism [56�]. In aphids, certain facultative strains of

S. symbiotica increase host survival and/or reproduction after

a heat shock by releasing metabolites as a result of cell lysis,

thereby preserving the integrity of the primary bacterio-

cytes in which B. aphidicola resides [32]. In addition, studies

suggest that facultative symbionts could be less affected by

heat stress than obligate ones as is the case with B. tabaci
where the populations of obligate symbionts localized in

bacteriocytes decrease strongly under heat stress condi-

tions, while facultative symbionts are more able to resist

[36�]. In contrast, it has been shown that high temperatures

can severely impair the transmission of facultative sym-

bionts, suggesting that climate stress could have a signifi-

cant impact on the maintenance and dynamics of these

symbioses in natural insect populations [23,57]. Thus, even

if some laboratory studies suggest that facultative symbio-

ses may positively affect the response of insects to rising

temperatures, responses probably vary depending on the

strains involved and the nature of the association.

Besides their associated benefits, the facultative sym-

bionts described so far impose costs on their host in

the absence of stress [58]. Balancing selection plays a

major role in facultative symbioses maintenance: the
Current Opinion in Insect Science 2019, 35:20–26
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balance of the costs and benefits they confer determines

the persistence and stability of these associations in insect

populations. For example, the defensive symbiont

H. defensa that provides protective effects to infected

aphids against parasitoids may be associated with detri-

mental effects in the absence of selection pressure

(i.e. the presence parasitoids in the direct environment)

[59,60]. Costs associated with the presence of facultative

partners may appear more intensely when the host is

under physiological stress [23] and could thus increase the

sensitivity of infected insects to environmental stresses.

In their study, Skaljac et al. have shown that the presence

of the facultative symbiont S. symbiotica in A. pisum aphids

decreases the tolerance of these insects to different

insecticides [61�]. Costs of climate stresses could thus

be added to the costs associated with facultative sym-

bionts, and these symbiotic bacteria could shift from

mutualism to antagonism if they no longer confer a

selective advantage in the prevailing environmental

conditions.

The pressure of a thermophilic lifestyle on
bacterial genome
One aspect of the genomic evolution of symbiotic bacte-

ria rarely mentioned in the context of bacterial mutualism

in insects concerns the effects that high temperatures may

have on genome reduction. Indeed, it has been shown

that growth temperature and genome size in bacteria are

negatively correlated [62�,63]. For example, Escherichia
coli cells growing under a regime of increasing tempera-

ture tend to accumulate mutations and lose certain genes

[64]. At high temperatures, bacteria tend to experience

selective pressures favoring more compact and more

efficient genomes, as well as tiny cell size. In other words,

small genomes are adaptive at high temperatures [62�].
Although these aspects have mainly been studied in the

context of thermophilic lifestyles, they remain poorly

addressed in the context of the evolution of bacterial

mutualism of insects. We will not speculate here on the

role of the increase of the temperatures on the reductive

evolution that undergoes the genome of bacterial sym-

bionts. However, with an increased incidence of transient

extreme temperatures expected to exacerbate the geno-

mic reduction of bacteria, we suggest here that the

repetition of thermal stresses could have direct conse-

quences on the evolution of symbiont genomes by

accelerating their deterioration.

Conclusions and future directions
Many insect species harbor nutritional obligate sym-

bionts, sometimes embedded in complex multi-symbiotic

systems involving co-obligate and facultative bacterial

partners. Understanding how thermal stresses affect the

susceptibility of these mutualistic relationships is of

enormous interest in light of our rapidly changing climate.

Many studies now suggest that thermal tolerance of

certain insect species is not only governed by the host
Current Opinion in Insect Science 2019, 35:20–26 
genes, but also by the bacterial partners they host.

Indeed, the weak capacity of obligate symbionts to

‘reinvent themselves genetically’ (because of their isola-

tion and reduced genome) severely limits their ability to

adapt to rapid environmental changes. Thus, in the

context of climate change, the pressure exerted on obli-

gate bacterial mutualisms does not result so much from

high temperatures, but rather from a sudden change for

associations that have shaped in a relatively stable envi-

ronment, sometimes millions years ago. In this review, we

propose putative evolutionary scenarios that may contrib-

ute to the acclimatization and adaption of insect species in

a rapidly changing climate. Unfortunately, even though

there is evidence that such scenarios exist in other inver-

tebrates (e.g. corals and sponges), there is still not enough

evidence that symbiotic plasticity can allow for rapid

adaptation of insects in the context of current global

change. Furthermore, there is clearly a lack of data

regarding the thermal tolerance of bacterial mutualism

in insects living in tropical areas. Finally, insects evolve in

a context of accumulation of anthropogenic environmen-

tal pressures, in particular habitat loss, pesticides

applications and pollution. Future studies taking into

account the multiple environmental constraints insects

face are needed to more accurately predict the impact of

global changes on bacterial mutualism.

Conflict of interest statement
Nothing declared.

Acknowledgements
We are very grateful to Florence Hecq and Guillaume Le Goff for their
helpful comments and corrections on the manuscript.

This work was supported by the Fonds de la Recherche Scientifique -
FNRS through a Fonds pour la Formation à la Recherche dans l’Industrie et
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Crécy E: Experimental evolution of a facultative thermophile
from a mesophilic ancestor. Appl Environ Microbiol 2012,
78:144-155.
www.sciencedirect.com

http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0210
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0210
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0215
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0215
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0215
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0215
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0215
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0220
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0220
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0220
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0225
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0225
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0225
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0230
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0230
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0230
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0235
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0235
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0235
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0240
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0240
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0240
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0240
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0245
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0245
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0245
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0250
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0250
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0255
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0255
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0255
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0255
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0260
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0260
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0260
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0260
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0260
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0265
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0265
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0265
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0265
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0270
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0270
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0270
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0275
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0275
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0275
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0275
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0275
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0280
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0280
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0280
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0280
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0280
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0285
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0285
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0285
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0285
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0290
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0290
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0295
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0295
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0295
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0300
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0300
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0300
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0300
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0305
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0305
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0305
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0305
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0310
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0310
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0310
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0315
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0315
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0315
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0315
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0320
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0320
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0320
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0320
http://refhub.elsevier.com/S2214-5745(19)30020-3/sbref0320

	Evolutionary responses of mutualistic insect–bacterial symbioses in a world of fluctuating temperatures
	Introduction
	Obligate mutualists: the Achilles’ heel of insects in fluctuating thermal conditions
	‘You are the weakest link, goodbye’ – the extinction risk
	Alternative resource acquisition strategies: symbiont complementation and switching
	Let your bacterial partner down (it’s not worth it)
	Effects of other players: roles of facultative mutualists on insect host thermal tolerance
	The pressure of a thermophilic lifestyle on bacterial genome
	Conclusions and future directions
	Conflict of interest statement
	References and recommended reading
	Acknowledgements


