JuMP and MathOptinterface: An optimization
framework extensible by design

Benolt Legat (UCLouvain)

Joint work with:

Joaquim Dias Garcia (PUC-Rio), Oscar Dowson (Northwestern) and
Miles Lubin (Google)

25 juin 2019

30th European Conference in Operational Research, 25th June 2019

Extending MathOptInterface

Extending JuMP

Sum-of-Squares extension

Reshaping

Extending MathOptinterface

MathOptinterface (MOI)

MOI in a nutshell :

e add_variable(model).

e add_constraint(model, func, set),eqg.2x+3y=1—
(2«x + 3»y)-in-EqualTo(1.0).

e set, get attributes, e.g.,, ObjectiveSense,

ObjectiveFunction.
Extensible framework :

e Ceneric on attribute, function and set types. New ones can
be defined independently.

e Solver-specific features easily exposed to JuMP/MOI users
through custom attributes.

e Expose specialized problem structure easily through custom
functions, sets (e.g. Sum-of-Squares variables/constraints).

Semidefinite programming

minimize (C, maximi b,
e (C.Q) il (b,y)

subject to (A;, Q) = b; subject to ZA;y; <C

Q>0
File format : SDPA
Solvers : CSDP, SDPA, DSDP, SDPLR, ...

Variables : Q block diagonal, nonnegative scalar variables (1 x 1
blocks) or SDP matrices.

Constraints : Affine equations.

Conic Modelling

using JuMP
model = Model(...)
@variable(model, -1 <= x <= 1)
@variable(model, y)
@variable(model, z <= 0)
@constraint(model, [x + y X
y x - y] in PSDCone())
@constraint(model, [x + y, z, y| in SecondOrderCone())

@objective(model, x~2 - 2xxz + z72)

The gap between models and solvers

The solver interface should only support structures and the
algorithm exploits :

e n solvers and m structures — mn transformations —

unscalable for large m, n.

e enables evaluation of formulation quality, e.g. automatic
transformation and automatic dualization.

The model should

e be independent from solvers.
e represent the structure exploitable by algorithms.

e allow reprentable structure unknown to solvers, e.g.
Sum-of-Squares variables/constraints.

Bridging the gap

XESI S AXES) AS1=5S;
A'yeSieyesS; S =A*S3
In Lagrangian :
(Ax,y)2 = (x,A*y)1
Transformation of variable-in-S, to variable-in-S;.
Primal Transform value v to Av.

Dual Transform dual y to A™*y.

Transformation of f-in-S; constraint to Af-in-S, constraint.

Primal Transform value v of Af to A~1v of £.

Dual Transform dual y of A*y.

FlipSignBridge
e Variable x > [substituted by x = —y where y < —L.

e Constraint a' x < B transformed into —a'x > —pB.

VectorizeBridge

e Variable x > [substituted by x =y + [where y € IR_{.

e Constraint a' x < B transformed into [a' x — B] € R™.

FreeBridge

e Variable x € R substituted by x = y + z where y € Ry and
zeR_.

SlackBridge

e Constraint f € S transformed into f = x for variable x € S.

Selection of bridges

How to select bridges automatically?

Example
Free variable for SDP solver :

e FreeBridge : x € R — y € R (supported) and z € R_ (not
supported)

e FlipSignBridge : x e R —» y € R;.

Shortest path?

Shortest path in directed Hypergraph

Nodes
Node for each set S (variable-in-S).

Node for each constraint F-in-S.
Types F and S are not limited to those defined in MOI.

Infinitely many nodes, we need to be lazy.

Edges
Each bridge defined possible infinitely many edges.

For each edge and ingoing node : outgoing nodes are
e variable-in-S created.

e constraints F-in-S created.

Solved by a modified Bellman-Ford algorithm '

1. See presentation at the Second Annual JuMP-dev Workshop

Extending JuMP

Extending JuMP macros

@constraint(model, [x + 1, x - y] in MOI.Zeros())
Implementation :

function build_constraint(
_error: :Function,
func: :Vector{<:AbstractJuMPScalar},
set::MOI.AbstractVectorSet)
return VectorConstraint(x, set)

end

Extending JuMP macros : Custom set

@constraint(model, [x + 1, x - y] in SecondOrderCone())
Implementation :

function build constraint(_error::Function,
f::AbstractVector,
s::AbstractVectorSet)
set = moi_set(s, length(f))
return build_constraint(_error, f, set)
end
function moi_set(::SecondOrderCone, dim::Int)
return MOI.SecondOrderCone(dim)

end

Extending JuMP macros : PSD cone

using LinearAlgebra # For Symmetric
@constraint(model, Symmetric([x + 1 x -y
x -y y]) in PSDCone())

Implementation :

function build constraint(_error::Function,
Q::Symmetric,
: :PSDCone)
n = LinearAlgebra.checksquare(Q)
func = [Q[i, j] for j in 1:n for i in 1:j]
set = MOI.PositiveSemidefiniteConeTriangle(n)
VectorConstraint(func, set,
SymmetricMatrixShape(n))
end

Sum-of-Squares extension

Sum-of-Squares bridges

Polynomial p € ¥ (p is SOS) iff p = X" Qx with Q €S, (Q is
PSD). Hence ¥~ = AS%,.

SOSPolnomialBridge : Transformation of variable-in-X to
variable-in-$.

Transformation of contraint F-in-X : SlackBridge +
SOSPolnomialBridge.

Result transformations

Constraint Attribute
Examples : ConstraintPrimal, ConstraintDual, ConstraintFunction,

ConstraintSet, ...
Redirected to bridge when constraint is bridged.

New attributes :

e GramMatrixAttribute : Gram matrix Q indexed by X.

e MomentMatrixAttribute : Moment matrix index by X, dual of
constraint Q € &,

e MomentsAttribute : Vector of moments, dual of constraint
p=X"QX.

Sum-of-Squares constraint macro

@constraint(model, p in SO0SCone())
Implementation :

function JuMP.build_constraint(_error::Function, p,
cone: :S0SCone; kws...)

coefs = coefficients(p)

monos = monomials(p)

set = JuMP.moi_set(cone, monos; kws...)

shape = PolyJuMP.PolynomialShape(monos)

return PolyJuMP.bridgeable(
JuMP .VectorConstraint(coefs, set, shape),
JuMP .moi_function_type(typeof(coefs)),
typeof (set)

end 15

Reshaping

Reshaping results

function reshape_vector(vectorized_form::Vector{T},

end

shape: :SymmetricMatrixShape) where T
matrix = Matrix{T}(undef, shape.side_dimension,
shape.side_dimension)
k =0
for j in 1:shape.side_dimension
for i in 1:j
k += 1
matrix[j, i] = matrix[i, j] =
vectorized_form[k]
end
end

return Symmetric(matrix)

Reshaping sets

function reshape_set(set::MOI.AbstractScalarSet,
::ScalarShape)
return set
end
function reshape_set(
::MOI.PositiveSemidefiniteConeTriangle,
::SymmetricMatrixShape

return PSDCone()
end

Reshaping polynomial results

function JuMP.reshape_set(set::S0SPolynomialSet,
::PolyJuMP.PolynomialShape)
return set.cone
end
function JuMP.reshape_vector(x::Vector,
shape: :PolynomialShape)
return polynomial(x, shape.monomials)
end
function JuMP.reshape_vector(x::Vector,
shape: :MomentsShape)
return measure(x, shape.monomials)
end
function JuMP.dual_shape(shape::PolynomialShape)
return MomentsShape (shape.monomials)

end

Backup

Nonnegative quadratic forms into sum of squares

unique

(x1,X2,X3) {()\

p(x) =%TQx
1 1 0
x12+2x1xz+5x22+4x2><3+x_§ = x'|1 5 2]|x
0 21
> — >
px) 2 0 ¥x QzoO ‘choleskg

T
1 10 1 10
(X1+X2)2+(2X2+X3)2 — XT(O 5 1) (O > 1)X

Nonnegative polynomial into sum of squares

(x1, X1X2 x2) not unique
. P) = XT X
110
@+ 2+ 5+ g 3= XT (1 5 2|
0 21

>~
PL)20¥x <= Q=0 cholesky

|
enasamasor 3 19 (31

20

When is nonnegativity equivalent to sum of squares?

Determining whether a polynomial is nonnegative is NP-hard.
Hilbert 1888

Nonnegativity of p(x) of n variables and degree 2d is equivalent
to sum of squares in the following three cases :

e n =1 : Univariate polynomials
e 2d =2 : Quadratic polynomials
e n =2, 2d =4 : Bivariate quartics

Motzkin 1967 "
First explicit example : »]

XPx5 +x7x3 +1—3x$x3 >0 Vx Ak
but is not a sum of squares. LT

21

	Extending MathOptInterface
	Extending JuMP
	Sum-of-Squares extension
	Reshaping
	Backup

