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Abstract

Monte Carlo integration with variance reduction by means of control variates can be implemented
by the ordinary least squares estimator for the intercept in a multiple linear regression model with the
integrand as response and the control variates as covariates. Even without special knowledge on the
integrand, significant efficiency gains can be obtained if the control variate space is sufficiently large.
Incorporating a large number of control variates in the ordinary least squares procedure may however
result in (i) a certain instability of the ordinary least squares estimator and (ii) a possibly prohibitive
computation time. Regularizing the ordinary least squares estimator by preselecting appropriate control
variates via the Lasso turns out to increase the accuracy without additional computational cost. The
findings in the numerical experiment are confirmed by concentration inequalities for the integration error.

1 Introduction
Whereas the basic Monte Carlo (MC) estimate is given by (1/n)

∑
i fi, for independent and identically

distributed random variables fi, the control variates method is based on (1/n)
∑
i(fi + hi), where the hi

variables, called control variates, are constructed to have zero expectation. When the controls hi have been
selected or estimated properly (based on the samples fi), the use of control variates might reduce the variance
of the basic MC estimate significantly. The method of control variates, already used frequently to compute
prices of financial derivatives [4], has been employed recently in many different fields of Machine Learning.
Examples include (i) reinforcement learning and more particularly policy gradient methods [8, 9] where the
score function permits to define many control variates ; (ii) inference in complex probabilistic models [15]
where the Stein method allows to define accurate control variates [10]; and (iii) gradient based optimization
[20, 6].

Suppose that m > 1 control variates are available and n > 1 samples have been generated. Any linear
combination of control variates can be used as a particular control variate. In terms of the variance of the
estimation error, the optimal linear combination can be estimated based on the empirical risk minimization
principle applied to an ordinary least squares (OLS) regression problem [see Eq. (2.3) below]. This approach,
referred to as OLSMC, is the most common implementation of the control variates method as detailed for
instance in [12, Section 8.3] or [14, 17], although other implementations are possible, see Remark 2 below.

Asymptotically, the OLSMC error is bounded by the MC error and is proportional to the L2 approximation
error of the integrand in the linear span of control variates [5]. In combination with well-known approximation
results in Lp-spaces [16], this representation of the OLSMC error suggests to use an increasing number of
control variates. Indeed, in [14] it is shown that when m grows with n, the OLSMC error rate can be faster
than 1/

√
n.

However, when based on a large number of control variates, the OLSMC suffers from two classical problems
common for least squares methods: (i) numerical instabilities when the control variates are nearly collinear,
and (ii) a computational complexity in m3 + nm2, which might be prohibitive.

To deal with these two issues, it has been proposed in [17] to regularize the OLSMC estimate by adding a
`1-penalty term in the minimization problem, just as in the LASSO [18]. Simulation results in [17] show that
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this approach, referred to as LASSOMC, provides great improvements in practice. However, those practical
findings are not supported by an asymptotic error rate nor by a non-asymptotic error bound.

The main objective of the paper is to provide a non-asymptotic theory for the use of control variates in
Monte Carlo simulations. The contributions are as follows.

1. A new method called LSLASSOMC is proposed. In the spirit of [1], it consists in selecting the best control
variates via the LASSO, using subsampling to decrease the computation time, and then to apply OLSMC
with the selected controls.

2. Support recovery : the LASSO is shown to select the correct control variates with large probability.

3. Concentration inequalities are derived for the OLSMC and LASSOMC errors. The one for the OLSMC
highlights a compromise between the approximation error of the integrand in the linear span of control
variates and the multicollinearities between the control variates. The one for LASSOMC shows significant
improvements regarding the effects of multicollinearity.

The outline of the paper is as follows. Section 2 introduces the theoretical background and the different MC
estimates and provides some comments about their practical implementation and some possible alternative
approaches. Section 3 contains the statements of the theoretical results. Section 4 is a simulation study to
illustrate the practical behavior of the methods.

All proofs are gathered in Appendix. The approach combines well known sub-Gaussian concentration
inequalities [2] with a recent concentration bound for the smallest eigenvalue of an empirical Gram matrix
[21].

2 Monte Carlo integration and control variates
Background. Let f ∈ L2(P ) be a square integrable, real-valued function on a probability space (S,S, P )
of which we would like to calculate the integral

P (f) =

∫
S

f(x)P (dx).

The MC estimator of P (f) based on an independent random sample X1, . . . , Xn from P is

α̂mc
n (f) = Pn(f) =

1

n

n∑
i=1

f(Xi).

This estimator is unbiased and has variance n−1σ2
0(f), where σ2

0(f) = P [(f − P (f))2].
The control variates are functions h1, . . . , hm ∈ L2(P ) with known expectations. Without loss of generality,

assume that P (hk) = 0 for all k ∈ {1, . . . ,m}. Let h = (h1, . . . , hm)
T denote the Rm-valued function with

the m control variates as elements. Let Fm = Span{h1, . . . , hm} = {βTh : β ∈ Rm} denote the closed linear
subspace of L2(P ) generated by the control variates.

For any β = (β1, . . . , βm)
T ∈ Rm, we have P (f − βTh) = P (f), so that Pn(f − βTh) is an unbiased

estimator of P (f), with variance n−1P [(f − P (f)− βTh)2]. Any coefficient vector

β?(f) ∈ argmin
β∈Rm

P [(f − P (f)− βTh)2]

minimizes the variance. If such a β?(f) would be known, the resulting oracle estimator would be

α̂or
n (f) = Pn[f − β?(f)Th]. (2.1)

By definition, the oracle estimator achieves the minimal variance n−1σ2
m(f) where σ2

m(f) is the minimum
value of P [(f − P (f) − βTh)2] with respect to β. For any m′ = 0, 1, . . . ,m, if we use only the first m′

2



control variates h1, . . . , hm′ , or even none at all in case m′ = 0, we have σ2
m(f) 6 σ2

m′(f). In particular, if
β∗(f) would be known, the use of control variates would always reduce the variance of the basic Monte Carlo
estimator.

As β?(f)Th is the L2(P )-projection of f − P (f) on the linear vector space Fm and since the control
variates are centered, β?(f) satisfies the normal equations P (hhT )β?(f) = P (hf). The integral P (f) thus
appears as the intercept of a linear regression model with response f and explanatory variables h1, . . . , hm,
and it can be expressed as

(P (f), β?(f)) ∈ argmin
(α,β)∈R×Rm

P [(f − α− βTh)2]. (2.2)

The empirical risk minimization paradigm applied to the risk function on the right-hand side of (2.2) will
lead to the OLSMC and LASSOMC estimates, to be defined further in this section. The same paradigm
suggests the use of other regression methods for MC integration such as Principal Component Regression
(PCR) or Ridge Regression [3], both of which will be considered in the numerical experiments.
Remark 1 (Choice of control variates). Which control variates work well depends on the problem. In the
Black–Scholes model, for instance, an effective control variate for the price of an option is the geometric
average of the price series [4, Example 4.1.2]). Two generic ways to construct control variates are to be noted.
Whenever P (dx) = w(x)Q(dx), where w : S → [0,∞) and Q is a probability measure on (S,S), the quantity
of interest is P (f) = Q(wf), so that we can use control variates for wf with respect to Q. This trick can
be useful in combination with importance sampling [11]. If P has density p with respect to the Lebesgue
measure and if we have access to the derivatives of p, Stein’s method might be used to build infinitely many
control functions [10].

Ordinary Least Squares Monte Carlo. Replacing the distribution P by the sample measure Pn in
(2.2), we obtain the OLSMC estimator α̂ols

n (f) of P (f) as a minimizer of the empirical risk:(
α̂ols
n (f), β̂ols

n (f)
)
∈ argmin

(α,β)∈R×Rm

‖f (n) − α1n −Hβ‖22, (2.3)

where ‖ · ‖2 denotes the Euclidean norm, f (n) = (f(X1), . . . , f(Xn))
T ∈ Rn, 1n = (1, . . . , 1)T ∈ Rn, and H is

the random n×m matrix defined by
H =

(
hj(Xi)

)
i=1,...,n
j=1,...,m

.

The minimization problem in (2.3) can be expressed using an OLS estimate with centered variables as

α̂ols
n (f) = Pn[f − β̂ols

n (f)Th],

β̂ols
n (f) = argmin

β∈Rm

‖f (n)c −Hcβ‖22,
(2.4)

where f (n)c = f (n) − 1n(1
T
nf

(n))/n and Hc = H − 1n(1
T
nH)/n. Indeed, for fixed β ∈ Rm, the minimizer

over α ∈ R of the objective function in Eq. (2.3) is just Pn(f − βTh) = Pn(f) − βTPn(h), and since
Pn(f) = (1Tnf

(n))/n and Pn(h) = (1TnH)/n, the equivalence of (2.3) and (2.4) follows.
Remark 2 (Variations). The objective function in (2.4) involves the empirical covariance matrix n−1HT

c Hc =
Pn(hh

T )− Pn(h)Pn(hT ). Using different estimates of the Gram matrix P (hhT ) leads to alternative control
variate MC estimates for P (f) [5, 14]. For fixed m and as n→∞, all these estimators are consistent and
asymptotically normal. The OLSMC, however, is the only one that can integrate both the constant functions
and the control functions without error. In [14], the alternative estimators have been shown to perform poorly
compared to the OLSMC.
Remark 3 (Invariance). The OLSMC estimator does not change if we replace the control variate vector h by
Ah, where A is an arbitrary invertible m×m matrix. Provided the control functions are linearly independent,
the property of isotropy, i.e., P (hhT ) = Im, can always be enforced by an appropriate linear transformation
of the vector of control variates.
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Remark 4 (Computation time). The reliance on least squares makes the OLSMC computing time to be in
nm2 +m3 + nT , where T stands for the time needed to evaluate f . Computational benefits occur when there
are multiple integrands, since the OLSMC estimate can be represented as wT f (n), where the weight vector
w ∈ Rn does not depend on the integrands [14]. If q integrals need to be evaluated, the computing time then
becomes nm2 +m3 + qnT .

LASSO Monte Carlo. The LASSO, introduced in [18], is a regression technique that consists in minimizing
the usual least squares loss plus an `1-penalty term on the vector of regression coefficients. In contrast with
OLS, the LASSO usually produces a vector with many zero coefficients, meaning that the corresponding
variables are no longer included in the predictive model. The LASSO thus achieves estimation and variable
selection at the same time. As the use of control variates in MC integration is linked with regression, the
LASSO can be used to take advantage from situations where many control variates are present but not all of
them are useful.

The LASSOMC estimator α̂lasso
n (f) of P (f) follows from (2.3), adding a penalization to the regression

coefficient: we have (
α̂lasso
n (f), β̂lasso

n (f)
)
= argmin

(α,β)∈R×Rm

1

2n
‖f (n) − α1n −Hβ‖22 + λ‖β‖1,

where ‖ · ‖1 denotes the `1-norm. By the same argument used to justify the equivalence of (2.3) and (2.4),
the LASSOMC can be based on centered variables via

α̂lasso
n (f) = Pn[f − β̂lasso

n (f)Th],

β̂lasso
n (f) = argmin

β∈Rm

1

2n
‖f (n)c −Hcβ‖22 + λ‖β‖1. (2.5)

LSLASSO Monte Carlo. Another approach is to use the LASSO to select the active variables among
a large number of control variates and then to compute OLSMC using only the variables selected at the
previous stage. We refer to this approach as the LSLASSOMC. To decrease the computation time when the
dimensions involved in the problem, either n or m, are large, we recommend to use sub-sampling of a smaller
size N 6 n when conducting the first step.

Let Ŝ = {k ∈ {1, . . . ,m} : β̂lasso
N,k (f) > 0} denote the estimated active set of control variates based on the

subsample of size N . The LSLASSOMC estimate α̂lslasso
n (f) of P (f) is defined by(

α̂lslasso
n (f), β̂lslasso

n (f)
)
∈ argmin

(α,β)∈R×Rˆ̀

‖f (n) − α1n −HŜβ‖
2
2, (2.6)

where ˆ̀= |Ŝ| and HŜ is the n× ˆ̀matrix made of the columns of H with index k in Ŝ.

Remark 5 (Computation). As for the LASSO, the LASSOMC and LSLASSOMC can be computed by cyclical
coordinate descent using at each step the soft-thresholding operator [18, Section 2.4]. The LASSOMC then
requires nD operations, where D stands for the number of updated coordinates in β̂lasso

n (f). This kind of
optimization strategy allows to compute approximate solutions in a reduced time by, for instance, choosing at
random the coordinates to update and thus reducing D. For the LSLASSOMC, the number of operations
would be in ND + nˆ̀2 + ˆ̀3, combining the cost of selecting the control variates on the subsample of size N
and running the OLSMC estimate based on the selected control variates for the full sample of size n.

3 Non-asymptotic bounds
To derive concentration inequalities for the errors of the estimators proposed in Section 2, we use the notion
of sub-Gaussianity as defined for instance in [2, Section 2.3]. Recall that the moment generating function of a
centered Gaussian random variable with variance σ2 is equal to λ 7→ exp(λ2σ2/2).
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Definition 1. A centered random variable Y is sub-Gaussian with variance factor τ2 > 0, notation Y ∈ G(τ2),
if logE[exp(λY )] 6 λ2τ2/2 for all λ ∈ R.

If Y ∈ G(τ2), then necessarily Var(Y ) 6 τ2 [2, Exercise 2.16]. Chernoff’s inequality provides exponential
bounds on the tails of sub-Gaussian random variables. Moreover, the sum of independent sub-Gaussian
variables is again sub-Gaussian. Centered, bounded random variables taking values in an interval [a, b] are
sub-Gaussian with variance factor at most (b− a)2/4 [2, Lemma 2.2].

The concentration inequalities for the various Monte Carlo methods with control variates will be largely
due to the following assumption that requires the residuals to be sub-Gaussian.

Assumption 1 (sub-Gaussian residuals). The residual function ε = f − P (f)− β?(f)Th satisfies ε ∈ G(τ2)
for some τ > 0, that is,

∫
S
exp(λx) ε(x)P (dx) 6 exp(λ2τ2/2) for all λ ∈ R.

The estimation error of the oracle estimator in (2.1) is just α̂or
n − P (f) = Pn(ε) = n−1

∑n
i=1 ε(Xi). Under

Assumption 1, this is a sub-Gaussian variable with variance factor τ2m/n. Chernoff’s inequality [2, p. 25] then
implies that for all δ ∈ (0, 1) and all n = 1, 2, . . ., with probability at least 1− δ,

|α̂or
n (f)− P (f)| 6

√
2 log(2/δ)

τ√
n

(3.1)

This concentration inequality provides a baseline when the best possible control variate in the space Fm is
selected. The case m = 0 also covers the basic MC method: in that case: τ2 is the variance factor of the
sub-Gaussian variable f − P (f) on (S,S, P ).

From now on, consider m > 1 control variates h1, . . . , hm ∈ L2(P ), all of which are centered. To analyze
the OLSMC method we need some additional assumptions on the control functions. For a function v : S → R,
write ‖v‖∞ = supx∈S |v(x)|.

Assumption 2 (Bounded control variates). The control variates are uniformly bounded. Put U :=
maxj=1,...,m‖hj‖∞.

Assumption 3 (Linearly independent control variates). The control variates h1, . . . , hm ∈ L2(P ) are linearly
independent. As a consequence, the Gram matrix G := P (hhT ) ∈ Rm is positive definite and its smallest
eigenvalue γ := λmin(G) is positive.

The error OLSMC estimation error is subject to the following concentration bound.

Theorem 3.1 (Concentration inequality for OLSMC). Assume Assumptions 1, 2 and 3 hold. Write
ζh = U2/γ. Then for all δ ∈ (0, 1) and all integer n such that

n > 8m log(8m/δ) ζh and n > 4‖hTG−1h‖∞(32m+ 4 log(4/δ))

we have, with probability at least 1− δ,

|α̂ols
n (f)− P (f)| 6

√
2 log(8/δ)

τ√
n
+ 27m log(8m/δ) ζh

τ

n
. (3.2)

Compared to the bound (3.1) for the oracle estimator, the bound (3.2) for OLSMC has an additional
term. This term is due to the additional learning step that is needed to estimate the optimal control variate.
Remark 6 (On the factor ζh). The smallest eigenvalue of G being bounded by the mean of the eigenvalues,
we have γ 6 m−1

∑m
j=1 P (h2j ) 6 U2 and thus ζh = U2/γ > 1. Further, the quantity ζh does not change if all

control variates h1, . . . , hm are scaled the same way.
Remark 7 (On the factor ‖hTG−1h‖∞). By the cyclic property of the trace operator, we have P (hTG−1h) =
P [tr(G−1hhT )] = tr(Im) = m, and therefore ‖hTG−1h‖∞ > m. We thus need n > 128m2. The function
hTG−1h remains invariant under invertible linear transformations of the vector h and thus depends only on
the control space Fm. The inequality n > 4‖hTG−1h‖∞(32m+ 4 log(4/δ)) is a finite-sample version of the
(asymptotic) Newey condition ‖hTG−1h‖∞ = o(n/m) as n→∞ in [14].

5



Remark 8 (Rates). Consider an asymptotic set-up where the number of control variates m tends to infinity
with n. The OLSMC method improves upon the basic MC method (m = 0), which has rate 1/

√
n, as soon

as τ + τζhm log(m)/
√
n → 0. To recover the same order as the one of the oracle estimator α̂or

n (f), which
has rate τ/

√
n, one must have m log(m)ζh = O(

√
n) as n→∞. This means that m must be not too large

compared to n.

The LASSOMC takes advantage of sparse regression models. A regression model is sparse whenever many
of the coefficients of the parameter vector β are equal to zero, i.e., many of the covariates are useless to
predict the output in the presence of the other covariates. The active set associated to the coefficient vector
β ∈ Rm is

S(β) = {j = 1, . . . ,m : βj 6= 0}.

The number of elements in S? = S(β?(f)), denoted by `? := |S?|, quantifies the level of sparsity associated
to the regression model. We will see that the LASSOMC improves upon the OLS whenever `∗ becomes small
compared to m.

We follow the approach of [19, Section 11.4.1], in which the analysis of the LASSO is carried out using a
restricted eigenvalue condition dealing only with the directions in the active set, discarding the non-active
directions. For a vector β ∈ Rm and an ordered set S = (k1, . . . , k`) ⊂ {1, . . . ,m}, let βS = (βk1 , . . . , βk`)

T .

Assumption 4 (Linearly independent active control variates). The active control variates hk, k ∈ S?, are
linearly independent. As a consequence, the `? × `? Gram matrix GS? = P (hS?hTS?) is positive definite and
its smallest eigenvalue γ? := λmin(GS?) is strictly positive.

Needed also will be that the active control functions are orthogonal, in L2(P ), to the inactive ones.

Assumption 5 (Orthogonality between active and inactive controls). We have P (hjhk) = 0 for all j ∈ S \S?
and all k ∈ S?.

Recall that the `1-penalty of the LASSO is weighted by a regularization parameter λ > 0.

Theorem 3.2 (Support recovery of LASSOMC). If Assumptions 1, 2, 4 and 5 hold, then for all δ ∈ (0, 1),
all integer n such that

n > 4‖hTS?G−1S? hS?‖∞(32`? + 4 log(5/δ)) and n > 70(`?)2 log(10`?m/δ)(U2/γ?)2,

and all λ such that
17
√

log(10m/δ)U
τ√
n
6 λ <

γ∗

3
√
`?

min
j∈S?
|β?j (f)|, (3.3)

it holds that, with probability at least 1− δ, the LASSO solution β̂lasso
n (f) in (2.5) is unique and S(β∗(f)) =

S(β̂lasso
n (f)).

Theorem 3.3 (Concentration inequality for LASSOMC). Under the same conditions as Theorem 3.2, we
have, with probability at least 1− δ,

∣∣α̂lasso
n (f)− P (f)

∣∣ 6√2 log(10/δ)
τ√
n
+ 9λ`?

√
log(10m/δ)

U/γ?√
n
.

For λ equal to the lower bound in (3.3), we have, on the same event,∣∣α̂lasso
n (f)− P (f)

∣∣ 6√2 log(10/δ)
τ√
n
+ 153`? log(10m/δ)(U2/γ?)

τ

n
. (3.4)

The benefits of LASSOMC over OLSMC can be observed by comparing the bounds in (3.2) and (3.4). The
total number m, of control functions has been replaced by the active number `? of such functions. Further,
the smallest eigenvalue γ? of GS∗ in Assumption 3 is at least as large as the smallest eigenvalue γ of G in
Assumption 4.
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4 Numerical application
To compare the practical performance of the different MC estimates using control variates, we focus on
the standard integration problem over the unit cube [0, 1]d. The goal is to compute

∫
[0,1]d

f(x) dx. We
shall consider various dimensions d > 1, different integrands f : [0, 1]d → R, and several choices for the
computational budget, n, and the number of control variates, m. We shall focus on difficult situations where
d is relatively large compared to n. For ease of reproducibility, the code is available upon request.

Control variates. Multivariate control functions with respect to the uniform distribution over [0, 1]d are
easy to construct based on univariate ones. Let (h1, . . . , hK) be a vector of one-dimensional control functions,
i.e.,

∫ 1

0
hk(x) dx = 0 for each k = 1, . . . ,K. Without further information on the integrand, the usual way to

construct multivariate controls is by forming tensor products of the form h`(x1, . . . , xd) =
∏d
j=1 h`j (xj), for

a multi-index ` = (`1, . . . , `d) in {0, 1, . . . ,K}d \ {(0, . . . , 0)}, yielding a total number of m = (K + 1)d − 1
control functions. A drawback of such a construction is that the number of control functions grows quickly
with K. Alternative approaches yielding smaller control spaces consist of imposing `j = 0 for all but a small
number (one or two, say) of coordinates j = 1, . . . , d or simply picking at random a desired number, say m,
of indices ` = (`1, . . . , `d).

The set of control variates at our disposal is constructed as follows. Let K = 12 and for k ∈ {1, . . . ,K},
let hk(x) = Pk(2x − 1) for x ∈ [0, 1], with Pk the univariate Legendre polynomial (Legendre function of
the first kind) of degree k. Because the Legendre polynomials are orthogonal, they provide some numerical
stability when inverting the Gram matrix. Let mmax = 2000 and let d be such that Kd 6 mmax. The first
Kd control variates gather all the Legendre polynomials seen as tensor products but with `j = 0 for all but a
single coordinate. The mmax−Kd others are chosen at random uniformly over the remaining tensor products.
The set of control variates constructed in this way is fixed during the whole study.

Integrands. We consider three integrands on [0, 1]d:

f1(x1, . . . , xd) = (2/π)
1/2

x−11 exp
(
−(log x1)2/2

)
,

f2(x1, . . . , xd) = (2/π)
d/2

d∏
j=1

{
x−1j exp

(
−(log xj)2/2

)}
,

f3(x1, . . . , xd) = 1 + sin
(
π
(

2
d

∑d
j=1 xj − 1

))
.

All three functions integrate to 1 on [0, 1]d. The function f1 depends on the first coordinate only. In contrast,
f2 and f3 represent more difficult situations. None of the three integrands belongs to the linear span of the
control variates constructed in the previous paragraph.

Methods in competition. Besides the methods in Section 2, we also consider methods where the least
squares estimator is computed via Principal Component Regression (PCR) or Ridge regression. Together, the
methods in competition are thus OLSMC, Principal Component Regression Monte Carlo (PCRMC), Ridge
regression Monte Carlo (RidgeMC), LASSOMC, LSLASSOMC with variable selection on the full sample and
LSLASSOMCX, which is the same as LSLASSOCM but with a subsampling strategy when computing the
active set.

The OLSMC, LASSOMC, RidgeMC and LSLASSOMC/X have been computed using the sklearn library
[13]. To select the regularization parameter, we use standard cross-validation with the number of folds equal
to 3 and the following parameter grids: 20 values from 1e-5 to 1e-1 for the LASSO variations and from
1e-5 to 1e2 for Ridge. The size of the subsample is N = b3

√
nc. This choice accelerates the computation

in a substantial manner without deteriorating too much the support recovery property of the LASSO. The
implementation of PCRMC is not standard. The number of components selected by the Principal Component
Analysis is set equal to the number of active variables given by the LASSO.
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Figure 4.1: Boxplots (based on 50 replications) of the values returned by each of the methods (top) and
zooming on the best ones (bottom) for f1. The dimension is d = 5, the sample size is n = 5000 and m
(horizontal axis) varies from 400 to 2 000.
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Figure 4.2: Boxplots (based on 50 replications) of the values returned by each of the methods for f2 (top)
and f3 (bottom). The dimension is d = 5, the sample size is n = 10 000 and m (horizontal axis) varies from
400 to 2 000.

Parameter configuration. The following configurations of (n, d,m) are considered: d ∈ {5, 10}, n ∈
{5 000, 10 000}, and m ∈ {400, 800, 1 200, 1 600, 2 000}. The case d = 10 represents a difficult situation as the
number of points n is relatively small compared to the dimension. For instance, a grid made of only 3 points
in each direction would already comprise 59 049 points.

Results. The figures presented in the paper deal with the case d = 5. The corresponding figures for d = 10
are given in the Appendix.

In Figure 4.1, boxplots of the values returned by each of the methods are provided for f1 when d = 5
and n = 5000. The bottom panel zooms in on the most accurate methods. The clear winners are the
LSLASSOMC and the LSLASSOMCX. The LASSO variable selection was very stable: almost always the
same set of active variables was selected. Whereas the number of sample points used in the selection step
of LSLASSOMCX has been reduced drastically compared to the LSLASSOMC (from n to b3

√
nc), the

stability of the active set is barely attenuated. Accordingly, the error distributions for LSLASSOMC and
LSLASSOMCX are quite similar. In contrast, PCRMC performs quite poorly because the construction of the
principal components is done regardless of the integrand and tends to discard information that is carried by
relevant control variates.

In Figure 4.2, boxplots of the values returned by each of the methods are provided for f2 and f3 when d = 5
and n = 10 000. Even if neither function exhibits any sparsity (which, as for f1, would favor the LASSO), the
three LASSO-based methods are among the most accurate ones. Because f2 and f3 are symmetric in their
arguments (in contrast to f1), the PCRMC shows a reasonable performance. The traditional cross-validation
approach for the LSLASSOMC tends to select too many control variates, while for the LSLASSOMCX,
due to subsampling, it selects a smaller number of variables. This explains the excellent performance of
LSLASSOMCX for these examples.
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A Auxiliary results
For a function f on S, write ‖f‖∞ = supx∈S |f(x)|. Let P and E denote the probability measure and the
corresponding expectation operator on the probability space carrying the random variables Xi.

Lemma 1. Let X1, . . . , Xn be independent and identically distributed random variables with distribution P .
Let ϕ1, . . . , ϕm be real-valued functions such that P (ϕk) = 0 and ϕk ∈ G(τ2) for all k = 1, . . . ,m. Then for
all δ > 0, we have with probability at least 1− δ,

max
16k6m

∣∣∣∣∣
n∑
i=1

ϕk(Xi)

∣∣∣∣∣ 6√2nτ2 log(2m/δ).

Proof. For each k = 1, . . . ,m, the centered random variable
∑n
i=1 ϕk(Xi) is sub-Gaussian with variance

factor nτ2. By the union bound and by Chernoff’s inequality, we have, for each t > 0,

P

(
max

16k6m

∣∣∣∣∣
n∑
i=1

ϕk(Xi)

∣∣∣∣∣ > t

)
6

m∑
k=1

P

(∣∣∣∣∣
n∑
i=1

ϕk(Xi)

∣∣∣∣∣ > t

)

6 2m exp

(
−t2

2nτ2

)
.

Set t =
√
2nτ2 log(2m/δ) to find the result.

Let λmin(A) denote the smallest eigenvalue of the symmetric matrix A.

Lemma 2. Let X1, . . . , Xn be independent and identically distributed random variables with distribution P .
Let h = (h1, . . . , hm)

T ∈ L2(P )m be such that the m×m Gram matrix G = P (hhT ) satisfies λmin(G) > 0.
Let δ, η ∈ (0, 1). If the integers m and n are such that 1 6 m < n and

‖hTG−1h‖∞ 6
nη2

32m+ 4 log(1/δ)
, (A.1)

then with probability at least 1− δ, the empirical Gram matrix Ĝn = Pn(hh
T ) satisfies

λmin(Ĝn) > (1− η)λmin(G).

Proof. Suppose that the result is true when G is the identity matrix. Then it would be possible to apply
the result to the vector of functions h̃ = G−1/2h, whose Gram matrix is the identity matrix. We would
get that λmin(Pn(h̃h̃

T )) > 1− η with probability at least 1− δ. Since Pn(h̃h̃T ) = G−1/2ĜnG
−1/2 and since

uTG−1u 6 1/λmin(G) for every unit vector u ∈ Rm, we have

λmin

(
Pn(h̃h̃

T )
)
= min
uTu=1

{
uTPn(h̃h̃

T )u
}
= min
uTu=1

{
(G−1/2u)T ĜnG

−1/2u

(G−1/2u)TG−1/2u
uTG−1u

}
6 λmin(Ĝn)/λmin(G).

It would then follow that

λmin(Ĝn) > λmin(Pn(h̃h̃
T ))λmin(G) > (1− η)λmin(G).

Hence we only need to show the result for G = I. Write λ̂ = λmin(Ĝn). By [21, Theorem 2.2], we have

λ̂ > 1− 4C
√
m/n+ CZ/

√
n,

where Z is a centered random variable that satisfies the lower-tail bound

∀t > 0, P(Z 6 −t) 6 exp(−t2/2) (A.2)
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and where
C2 = sup

v∈Rm:vT v=1

P (|vTh|4).

It follows that

P(λ̂ > 1− η) > P[1− 4C
√
m/n+ CZ/

√
n > 1− η]

= P[Z > −(
√
nη/C − 4

√
m)]. (A.3)

Write κ = ‖hTh‖∞. For v ∈ Rm such that vT v = 1, we have, by the Cauchy–Schwarz inequality,

|vTh|4 = |vTh|2|vTh|2 6 (vT v)(hTh)(vThhT v) 6 κ(vThhT v).

In view of the isotropy of h, we find, again for all v ∈ Rm such that vT v = 1,

P (|vTh|4) 6 κP (vThhT v) = κvTP (hhT )v = κvT v = κ.

As a consequence, also C2 6 κ. Condition (A.1) implies that nη2/C2 > nη2/κ > 16m and thus
√
nη/C −

4
√
m >

√
nη/
√
κ− 4

√
m > 0. The bounds (A.2) and (A.3) yield

P(λ̂ > 1− η) > 1− exp{−(
√
nη/C − 4

√
m)2/2}

> 1− exp{−(
√
nη/
√
κ− 4

√
m)2/2}.

A sufficient condition for P(λ̂ > 1− η) > 1− δ is therefore that

exp{−(
√
nη/
√
κ− 4

√
m)2/2} 6 δ,

which is in turn equivalent to √
nη/
√
κ− 4

√
m >

√
2 log(1/δ)

and thus to
nη2/κ > [4

√
m+

√
2 log(1/δ)]2.

This criterion coupled with the elementary inequality (a+ b)2 6 2a2 + 2b2 produces the inequality (A.1) as
sufficient condition.

Lemma 3. Let (X,Y ) be a pair of centered and uncorrelated random variables. If X ∈ G(ν) and if |Y | 6 κ,
where ν > 0 and κ > 0, then XY ∈ G(8κ2ν).

Proof. The proof is based upon a refinement of [2, Theorem 2.1]. Without loss of generality, suppose
ν = 1 = κ; for the general case, consider the variables X/

√
ν and Y/κ.

Let λ ∈ R. Let (X1, Y1), (X2, Y2) be two independent copies of (X,Y ). Since XY is centered too, we have
E[e−λXY ] > 1 and thus

E[eλXY ] 6 E[eλXY ]E[e−λXY ]

= E[eλ(X1Y1−X2Y2)] =
∞∑
q=0

λ2q

(2q)!
E[(X1Y1 −X2Y2)

2q].

Note that the odd moments in the series expansion vanish since X1Y1 −X2Y2 is symmetric.
To show that E[eλXY ] 6 e4λ

2

for all λ, it is sufficient to show that, for all q = 0, 1, 2, . . .,

E[(X1Y1 −X2Y2)
2q]

(2q)!
6

4q

q!
. (A.4)

We treat the cases q = 0, 1, 2 and q > 3 separately. A useful inequality will be that, since X ∈ G(1), for
nonnegative integer q, by [2, Theorem 2.1]

E[X2q] 6 2q+1q!. (A.5)

Moreover, E[X2] 6 ν = 1 [2, Exercise 2.16].
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• For q = 0 there is nothing to show.

• For q = 1, we use E[X1Y1X2Y2] = E[X1Y1]E[X2Y2] = 0 and |Y | 6 κ = 1 to find

E[(X1Y1 −X2Y2)
2] = E[(X1Y1)

2] + E[(X2Y2)
2] = 2E[(XY )2] 6 2E[X2] 6 2.

• For q = 2, we use again the fact that the variables X1Y1 and X2Y2 are independent, identically distributed
and centered to get that

E[(X1Y1 −X2Y2)
4] = 2E[X4Y 4] + 6E[X2Y 2] 6 2E[X4] + 6 6 2 · 16 + 6 = 38.

• For q > 3, we have, by convexity of the function x 7→ x2q and by (A.5), that

E[(X1Y1 −X2Y2)
2q] 6 22q−1

(
E[(X1Y1)

2q] + E[(−X2Y2)
2q]
)

= 22q E[(XY )2q] 6 4q E[X2q] 6 4q2q+1q!.

Hence, the inequality (A.4) for integer q > 3 follows provided that 2q+1(q!)2 6 (2q)! for all such q. But
this is true since, for all integer q > 3, we have

(2q)!

(q!)2
=

q∏
j=1

q + j

j
= (q + 1)

q∏
j=2

q + j

j
> 4 · 2q−1 = 2q+1.

We have thus verified (A.4) for all integer q > 0, and thus E[eλXY ] 6 e4λ
2

= e8λ
2/2, as required.

B Proof of Theorem 3.1
The proof is divided into several steps. In one of them, we use a non-probabilistic property of the OLS
estimate

β̂ols
n (f) ∈ argmin

β∈Rm

‖f (n)c −Hcβ‖22, (B.1)

where f (n)c = f (n) − 1n(1Tnf (n))/n and Hc = H − 1n(1TnH)/n.

Lemma 4. If there exists ν > 0 such that ‖Hcu‖22 > nν‖u‖22 for all u ∈ Rm, then the minimizer β̂ols
n (f) in

(B.1) is unique and

‖β̂ols
n (f)− β?(f)‖2 6

√
m

νn
max

k=1,...,m
|HT

c,kε
(n)
c |, (B.2)

where ε(n)c = f
(n)
c −Hcβ

?(f) and where Hc,k is the k-th column of Hc.

Proof. The matrix HT
c Hc is invertible, since its smallest eigenvalue is bounded from below by nν. The OLS

estimate is thus unique and given by

β̂ols
n (f) = (HT

c Hc)
−1HT

c f
(n)
c

= (HT
c Hc)

−1HT
c

(
Hcβ

∗(f) + ε(n)c

)
= β∗(f) + (HT

c Hc)
−1HT

c ε
(n)
c .

The largest eigenvalue of (HT
c Hc)

−1 being bounded from above by (nν)−1, we obtain

‖β̂ols
n (f)− β∗(f)‖2 = ‖(HT

c Hc)
−1HT

c ε
(n)
c ‖2 6

1

nν
‖HT

c ε
(n)
c ‖2

Since ‖x‖2 6
√
mmaxk=1,...,m |xk| for x ∈ Rm, we can conclude.

12



Step 1. — Since f = P (f) + β∗(f)Th+ ε, the oracle estimate of P (f), which uses the unknown, optimal
coefficient vector β∗(f), is

α̂or
n (f) = Pn[f − β∗(f)Th] = P (f) + Pn(ε).

The difference between the OLS and oracle estimates is

α̂ols
n (f)− α̂or

n (f) =
(
β̂ols
n (f)− β∗(f)

)T
Pn(h).

The estimation error of the OLS estimator can thus be decomposed as

n
(
α̂ols
n (f)− P (f)

)
= n (α̂or

n (f)− P (f)) +
(
β∗(f)− β̂ols

n (f)
)T

nPn(h)

=
n∑
i=1

ε(Xi) +
(
β∗(f)− β̂ols

n (f)
)T n∑

i=1

h(Xi).

By the triangle and Cauchy–Schwarz inequalities and since ‖x‖2 6
√
mmaxk=1,...,m |xk| for x ∈ Rm, we get

n
∣∣α̂ols
n (f)− P (f)

∣∣ 6 ∣∣∣∣∣
n∑
i=1

ε(Xi)

∣∣∣∣∣+ ‖β∗(f)− β̂ols
n (f)‖2

√
m max
k=1,...,m

∣∣∣∣∣
n∑
i=1

hk(Xi)

∣∣∣∣∣ . (B.3)

To proceed, we will construct an event that has probability at least 1− δ and on which we can control each
of the three terms on the right-hand side simultaneously (Step 2). Most difficult to treat will be the term
‖β∗(f)− β̂ols

n (f)‖2 (Step 3). Collecting all the inequalities, we will arrive at the stated bound (Step 4).
Step 2. — Let δ > 0 and n > 1. We construct an event with probability at least 1 − δ on which four

inequalities hold simultaneously.

• The empirical Gram matrix of the vector h = (h1, . . . , hm)
T ∈ L2(P ) based on the sample X1, . . . , Xn is

n−1HTH. By Lemma 2 with η = 1/2, because 4‖hTG−1h‖∞ 6 n/(32m+ 4 log(4/δ)) by assumption, we
have with probability at least 1− δ/4,

‖Hu‖22 > nγ‖u‖22/2. (B.4)

• By virtue of Assumptions 1 and 2, we can apply Lemma 3 to find hkε ∈ G(Cτ2U2) with C = 8.1. Hence
we can apply Lemma 1 to get that, with probability at least 1− δ/4,

max
k=1,...,m

∣∣∣∣∣
n∑
i=1

hk(Xi)ε(Xi)

∣∣∣∣∣ 6√2nCτ2U2 log(8m/δ)). (B.5)

• In view of [2, Lemma 2.2] and Assumption 2, we have hk ∈ G(U2) for all k = 1, . . . ,m. Hence we can
apply Lemma 1 to get that, with probability at least 1− δ/4,

max
k=1,...,m

∣∣∣∣∣
n∑
i=1

hk(Xi)

∣∣∣∣∣ 6√2nU2 log(8m/δ), (B.6)

• Finally, because ε ∈ G(τ2), with probability at least 1− δ/4,∣∣∣∣∣
n∑
i=1

ε(Xi)

∣∣∣∣∣ 6√2nτ2 log(8/δ). (B.7)

1We use a generic C so as to allow for easy modifications in case sharper constants can be found.
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By the union bound, the event on which the inequalities (B.4), (B.5), (B.6), and (B.7) are all satisfied
simultaneously has probability at least 1− δ. For the remainder of the proof, we work on this event, denoted
by E.

Step 3. — We will show that, on the event E constructed in Step 2, we have

‖β̂ols
n (f)− β∗(f)‖2 6

4
√
m

γn

√
2nCτ2U2 log(8m/δ)

(
1 +

√
(2/C) log(8/δ)/n

)
. (B.8)

To do so, we will apply Lemma 4 with ν = γ/4, but we need to show first that the condition on Hc is satisfied
(Step 3.1). Then, we will control the right-hand side in (B.2) (Step 3.2). Inequality (B.10) below together
with Lemma 4 with ν = γ/4 will then yield (B.8).

Step 3.1. — On the event E, we have

‖Hcu‖22 >
nγ

4
‖u‖22, ∀u ∈ Rm. (B.9)

To see why, first note that n−1HT
c Hc = n−1HTH − Pn(h)Pn(h)T . The Cauchy–Schwarz inequality gives

‖Hcu‖22 = ‖Hu‖22 − n(Pn(h)Tu)2 > ‖Hu‖22 − n‖Pn(h)‖22‖u‖22.

In view of (B.6), we also have

‖Pn(h)‖22 6
m

n2
max

k=1,...,m

∣∣∣∣∣
n∑
i=1

hk(Xi)

∣∣∣∣∣
2

6
m

n2
2nU2 log(8m/δ) 6

γ

4
,

as n > 8m log(8m/δ)U2/γ by assumption. In view of (B.4), we get

‖Hcu‖22 >
nγ

2
‖u‖22 −

nγ

4
‖u‖22 =

nγ

4
‖u‖22.

This shows (B.9) with ν = γ/4.
Step 3.2. — On the event E, we have

max
k=1,...,m

|HT
c,kε

(n)
c | 6

√
2nCτ2U2 log(8m/δ)

(
1 +

√
(2/C) log(8/δ)/n

)
. (B.10)

Indeed, the left-hand side in (B.10) is

max
k=1,...,m

∣∣∣∣∣
n∑
i=1

(hk(Xi)− Pn(hk))(ε(Xi)− Pn(ε))

∣∣∣∣∣
= max
k=1,...,m

∣∣∣∣∣
(

n∑
i=1

hk(Xi)ε(Xi)

)
− nPn(hk)Pn(ε)

∣∣∣∣∣
6 max
k=1,...,m

∣∣∣∣∣
n∑
i=1

hk(Xi)ε(Xi)

∣∣∣∣∣+ n−1

∣∣∣∣∣
n∑
i=1

ε(Xi)

∣∣∣∣∣ max
k=1,...,m

∣∣∣∣∣
n∑
i=1

hk(Xi)

∣∣∣∣∣
6
√
2nCτ2U2 log(8m/δ) + n−1

√
2nτ2 log(8/δ)

√
2nU2 log(8m/δ).

The right-hand side can be simplified to the bound in (B.10).
Step 4. — The three terms in the bound (B.3) on the estimation error of the OLS estimate can be

controlled by inequalities (B.6), (B.7), and (B.8), all of which hold on the event E. We find

n
∣∣α̂ols
n (f)− P (f)

∣∣
6
√
2nτ2 log(8/δ) +

4m

γn

√
2nCτ2U2 log(8m/δ)

(
1 +

√
2 log(8/δ)

Cn

)√
2nU2 log(8m/δ)

=
√
2 log(8/δ)τ

√
n+ 8

√
Cγ−1τU2m log(8m/δ)

(
1 +

√
2 log(8/δ)

Cn

)
.
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Divide by n and plug in C = 8 and ζh = U2/γ to find∣∣α̂ols
n (f)− P (f)

∣∣ 6√2 log(8/δ)τ
√
n+ 16m

√
2 log(8m/δ)

(
1 +

1

2

√
log(8/δ)/n

)
ζh
τ

n
.

The smallest eigenvalue of G is certainly bounded by the mean of its eigenvalues. It follows that γ 6
m−1

∑m
j=1 P (h

2
j) 6 U2 and thus ζh > 1. The condition n > 8m log(8m/δ) ζh thus implies log(8/δ)/n 6

1/(8m) and therefore
1

2

√
log(8/δ)/n 6

1

2
√
8m

=
1

4
√
2m

6
1

4
√
2
.

Substitute this into the bound on the OLS estimation error to find∣∣α̂ols
n (f)− P (f)

∣∣ 6√2 log(8/δ)τ
√
n+ 16

(√
2 +

1

4

)
m log(8m/δ)ζh

τ

n
,

and use that 16(
√
2 + 1/4) 6 27 to obtain the final inequality.

C Proof of Theorem 3.2
Any norm ‖ · ‖ on the Euclidean space Rp can be extended to a matrix norm ‖ · ‖ on Rp×p via ‖A‖ :=
sup‖u‖=1‖Au‖. For any vector β ∈ Rm and any ordered set S = (k1, . . . , k`) ⊂ {1, . . . ,m}, let βS =

(βk1 , . . . , βk`)
T . For any matrix A ∈ Rn×m and k ∈ {1, . . . ,m}, denote by Ak its k-th column. For any matrix

A ∈ Rn×m and any ordered set S = (k1, . . . , k`) ⊂ {1, . . . ,m}, let AS = (Ak1 , . . . , Ak`).
Recall that S? = {j = 1, . . . ,m : β?j (f) 6= 0} is the set of active control variates, of which there are

`? = |S?|. Further, recall that the LASSO estimator of the coefficient vector is

β̂lasso
n (f) = argmin

β∈Rm

1

2n
‖f (n)c −Hcβ‖22 + λ‖β‖1, (C.1)

where f (n)c = f (n) − 1n(1Tnf (n))/n and Hc = H − 1n(1TnH)/n and where λ > 0 is a regularization parameter.
Its support set is S(β̂lasso

n (f)) = {k = 1, . . . ,m : β̂lasso
n,k (f) 6= 0}, and these are variables selected by the LASSO.

The vector of centered (and observable) errors is

ε(n)c = f (n)c −Hcβ
?(f).

Our treatment follows from the one exposed in [19, Chapter 11], except that we pay special attention to
the randomness of the design matrix Hc, the properties of which follow from the ones of the control variates.

Step 1. — We first establish some (non-probabilistic) properties of β̂lasso
n (f). To this end, we consider the

linear regression of the non-active control variates on the active ones: for k ∈ S? = {j = 1, . . . ,m : β?j (f) = 0},
this produces the coefficient vector

θ̂(k)n ∈ argmin
θ∈R`?

‖Hc,k −Hc,S?θ‖2.

Further, we consider the OLS oracle estimate β̂?n, which is the OLS estimator based upon the active control
variables only, i.e.,

β̂?n ∈ argmin
β∈R`?

‖f (n)c −Hc,S?β‖2.

Our assumptions will imply that, with large probability, Hc,S? has rank `∗, in which case

θ̂(k)n = (HT
c,S?Hc,S?)−1HT

c,S?Hc,k,

β̂?n = (HT
c,S?Hc,S?)−1HT

c,S?f (n)c .

The following lemma provides a number of (non-probabilistic) properties of β̂lasso
n (f), given certain

conditions on Hc and ε
(n)
c .
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Lemma 5. If Hc,S? has rank `? and if there exists κ ∈ (0, 1] such that

max
k∈S?
‖θ̂(k)n ‖1 6 1− κ, (C.2)

max
k∈S?
|(Hc,k −Hc,S? θ̂(k)n )T ε(n)c | 6 κλn, (C.3)

then the minimizer β̂lasso
n (f) in (C.1) is unique, with support S(β̂lasso

n (f)) ⊂ S?, and it satisfies

max
k∈S?
|β̂lasso
n,k (f)− β?k(f)| 6 max

k∈S?
|β̂?n,k − β?k(f)|+ nλ‖(HT

c,S?Hc,S?)−1‖∞. (C.4)

Proof. The proof of the previous result is actually contained in [19]. The uniqueness of the LASSO solution
and the property that it does not select inactive covariates follows directly from the proof of their Theorem 11.3.
The only difference is that, in our case, the inequality (C.3) is an assumption whereas in [19] it is a property
of the Gaussian fixed design model. The approach in [19] is based upon checking the strict dual feasibility
condition. The bound (C.4) is Eq. (11.37) in [19].

We slightly modify Lemma 5 to make the conditions (C.2) and (C.3) easier to check and to make the
bound (C.4) easier to use.

Lemma 6. If there exists ν > 0 such that

‖Hc,S?u‖22 > nν‖u‖22, ∀u ∈ R`
?

, (C.5)

and if there exists κ ∈ (0, 1] such that

`?

νn
max
k∈S?

max
j∈S?
|HT

c,jHc,k| 6 1− κ, (C.6)

max
k=1,...,m

|HT
c,kε

(n)
c | 6

1

2
κλn, (C.7)

then the minimizer β̂lasso
n (f) in (C.1) is unique, with support S(β̂lasso

n (f)) ⊂ S?, and it satisfies

max
k∈S?
|β̂lasso
n,k (f)− β?k(f)| 6 (1 + κ/2)

√
`?λ/ν. (C.8)

Proof. By (C.5), the smallest eigenvalue of the `? × `? matrix HT
c,S?Hc,S? matrix is positive, so that it is

invertible and Hc,S? has rank `?.
We show that (C.6) implies (C.2). For each k ∈ S?, the vector θ̂(k)n has length `?, so that

‖θ̂(k)n ‖1 6
√
`?‖θ̂(k)n ‖2.

Because θ̂(k)n is an OLS estimate, we can apply Lemma 4 with θ? = 0 to get

‖θ̂(k)n ‖2 6

√
`?

νn
max
j∈S?
|HT

c,jHc,k|.

Combining the previous two bounds, we find that (C.6) indeed implies (C.2).
Next we show that (C.7) implies (C.3). For k ∈ S?, we have

|(Hc,k −Hc,S? θ̂(k)n )T ε(c)n | 6 |HT
c,kε

(c)
n |+ |(θ̂(k)n )THT

c,S?ε(c)n |

6 |HT
c,kε

(c)
n |+ ‖θ̂(k)n ‖1 max

j∈S?
|HT

c,jε
(c)
n |.

Using (C.2) and (C.7) we deduce (C.3).
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The conditions of Lemma 5 have been verified, and so its conclusion holds. We simplify the two terms in
the upper bound (C.4). First, we apply Lemma 4 to the oracle OLS estimator β̂?n. Second, for any matrix
A ∈ Rp×p, we have ‖A‖∞ 6

√
p‖A‖2 (e.g., [7, page 365]), and this we apply to (HT

c,S?Hc,S?)−1. In this way,
the upper bound in (C.4) is dominated by

‖β̂?n − β?(f)‖2 + nλ ·
√
`?‖(HT

c,S?Hc,S?)−1‖2 6

√
`?

nν
max
k∈S?
|HT

c,kε
(n)
c |+ nλ ·

√
`? · 1

nν
,

since the largest eigenvalue of (HT
c,S?Hc,S?)−1 is at most (nν)−1. Use (C.7) to further simplify the right-hand

side, yielding (C.8).

Step 2. — Let δ ∈ (0, 1) and n = 1, 2, . . .. In a similar way as in the proof of Theorem 3.1, we construct
an event of probability at least 1− δ. This time, we need five inequalities to hold simultaneously.

• Because n > 4‖hTS?G
−1
S? hS?‖∞(32`? + 4 log(5/δ)) by assumption, we have, by Lemma 2 with η = 1/2, with

probability at least 1− δ/5,
‖HS?u‖22 > nγ?‖u‖22/2, ∀u ∈ R`

∗
. (C.9)

• By virtue of Assumptions 1 and 2, we have hkε ∈ G(CU2τ2), where C = 8. Hence we can apply Lemma 1
to get that, with probability at least 1− δ/5,

max
k=1,...,m

∣∣∣∣∣
n∑
i=1

hk(Xi)ε(Xi)

∣∣∣∣∣ 6√2Cnτ2U2 log(10m/δ)). (C.10)

• Similarly, because hk ∈ G(U2), with probability at least 1− δ/5,

max
k=1,...,m

∣∣∣∣∣
n∑
i=1

hk(Xi)

∣∣∣∣∣ 6√2nU2 log(10m/δ), (C.11)

• Because ε ∈ G(τ2), with probability at least 1− δ/5,∣∣∣∣∣
n∑
i=1

ε(Xi)

∣∣∣∣∣ 6√2nτ2 log(10/δ). (C.12)

• Finally, because P (hkhj) = 0 and ‖hkhj‖∞ 6 U2 for all k ∈ S? and j ∈ S?, we have hkhj ∈ G(U4) for
such k and j, and thus, with probability at least 1− δ/5,

max
k∈S?

max
j∈S?

∣∣∣∣∣
n∑
i=1

hk(Xi)hj(Xi)

∣∣∣∣∣ 6√2nU4 log(10`?m/δ). (C.13)

By the union bound, the event, say E, on which (C.9), (C.10), (C.11), (C.12) and C.13 are satisfied
simultaneously has probability at least 1− δ. We work on the event E for the rest of the proof.

Step 3. — On the event E, we have

‖Hc,S?u‖22 > nαγ?‖u‖22, ∀u ∈ R`
?

(C.14)

where α ∈ (0, 1/2) is an absolute constant whose value will be fixed later in the proof.
The proof of (C.14) is similar to the one of (B.9). We have

HT
c,S?Hc,S? = HT

S?HS? − nPn(hS?)Pn(hS?)T
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and thus, by the Cauchy–Schwarz inequality and by (C.9),

‖Hc,S?u‖22 > ‖HS?u‖22 − n‖Pn(hS?)‖22‖u‖22
> n

(
γ?/2− ‖Pn(hS?)‖22

)
‖u‖22.

In view of (C.11), we have

‖Pn(hS?)‖22 6
`?

n2
· 2nU2 log(10m/δ) = 2`? log(10m/δ)U2/n.

We thus get

‖Hc,S?u‖22 > nγ?
[
1

2
− 2`? log(10m/δ)U2/γ?

n

]
‖u‖22

A sufficient condition for (C.14) is thus that the term in square brackets is at least α, i.e.,

n >
2

1/2− α
`? log(10m/δ)U2/γ?

Since `? > 1 and U2 > γ?, a condition of the form

n > ρ(`?)2 log(10`?m/δ)(U2/γ?)2 (C.15)

is thus sufficient, provided ρ > 2/(1/2− α). In Step 6(ii), we will choose α in such a way that the constant
ρ = 70 appearing in the statement of the theorem is sufficient.

Step 4. — On the event E, we have

max
k∈S?

max
j∈S?

|HT
c,jHc,k| 6

√
2nU4 log(10`?m/δ) + 2U2 log(10m/δ). (C.16)

Indeed, the left-hand side is bounded by

max
k∈S?

max
j∈S?

∣∣∣∣∣
(

n∑
i=1

hk(Xi)hj(Xi)

)
− nPn(hk)Pn(hj)

∣∣∣∣∣
6 max
k∈S?

max
j∈S?

∣∣∣∣∣
n∑
i=1

hk(Xi)hj(Xi)

∣∣∣∣∣+ 1

n
max
k∈S?

∣∣∣∣∣
n∑
i=1

hk(Xi)

∣∣∣∣∣max
j∈S?

∣∣∣∣∣
n∑
i=1

hj(Xi)

∣∣∣∣∣
6 max
k∈S?

max
j∈S?

∣∣∣∣∣
n∑
i=1

hk(Xi)hj(Xi)

∣∣∣∣∣+ 1

n
max

k=1,...m

∣∣∣∣∣
n∑
i=1

hk(Xi)

∣∣∣∣∣
2

6
√
2nU4 log(10`?m/δ) +

1

n
· 2nU2 log(10m/δ),

which is (C.16).
Step 5. — On the event E, we have

max
k=1,...,m

|HT
c,kε

(c)
n | 6

√
2nCτ2U2 log(10m/δ)

(
1 +

√
(2/C) log(10/δ)/n

)
. (C.17)

The proof is the same as the one of (B.10).
Step 6. — We will verify that on the event E, the three assumptions of Lemma 6 are satisfied with

κ = 1/2 and ν = αγ?, with α as in Step 3. We will make use of the inequality2

∀(a, b, c) ∈ (0,∞)3, ∀x >
√
b2 + 4ac/a, ax2 > bx+ c. (C.18)

2The convex parabola x 7→ ax2 − bx− c has zeroes at x± = (b±
√
b2 + 4ac)/(2a), and x− < 0 < x+ <

√
b2 + 4ac/a.
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(i) Eq. (C.5) with ν = αγ? is just (C.14).

(ii) Eq. (C.6) with ν = αγ? and κ = 1/2 follows from (C.16) provided we have

`?

αγ?n
·
(√

2nU4 log(10`?m/δ) + 2U2 log(10m/δ)
)
6 1− 1

2
.

To check whether the latter inequality is satisfied, we apply (C.18) with x =
√
n and

a = αγ?/(2`?),

b =
√
2U4 log(10`?m/δ),

c = 2U2 log(10m/δ).

Sufficient is that n = x2 is bounded from below by (b2 + 4ac)/a2 = (b/a)2 + 4c/a, which is

2U4 log(10`?m/δ)

(αγ?/(2`?))2
+ 4

2U2 log(10m/δ)

αγ?/(2`?)

=
8

α2
(`?)2 log(10`?m/δ) · (U2/γ?)2 +

16

α
`? log(10m/δ) · U2/γ?.

But `? > 1 and γ? 6 (1/`?)
∑
j∈S? P (h2j ) 6 U2, so that a sufficient condition is that

n >

(
8

α2
+

16

α

)
(`?)2 log(10`?m/δ) · (U2/γ?)2.

The constant ρ in (C.15) must thus be such that

ρ > max

(
2

1/2− α
,
8

α2
+

16

α

)
.

The minimum of the right-hand side as a function of α ∈ (0, 1/2) occurs at α =
√
2/3 and is equal to

2/(1/2−
√
2/3) ≈ 69.94113. Taking ρ = 70 as in the assumption on n is thus sufficient.

(iii) Eq. (C.7) with κ = 1/2 follows from (C.17), since (recall C = 8)√
16nτ2U2 log(10m/δ)

(
1 +

√
log(10/δ)/(4n)

)
6 λn/4

by the assumed lower bound on λ. Indeed, since `? > 1 and U2 > γ?, the assumed lower bound for n
implies that n > 70 log(10m/δ) and thus

log(10/δ)

4n
6

log(10/δ)

280 log(10mδ)
6

1

280
.

Since 16 · (1 + 1/
√
280) ≈ 16.95618, the assumed lower bound for λ suffices.

Step 7. — By the previous step, the conclusions of Lemma 6 with κ = 1/2 and ν = αγ? hold on the event
E, where α =

√
2/3 was specified in Step 6(ii). The minimizer β̂lasso

n in (C.1) is thus unique and we have
S(β̂lasso

n ) ⊂ S?.
To show the reverse inclusion, we need to verify that |β̂lasso

n,k (f)| > 0 for all k ∈ S?. To this end, we apply
(C.8) with κ = 1/2 and ν = αγ?, which becomes

max
k∈S?
|β̂lasso
n,k (f)− β?k(f)| 6 (5/4)

√
`?λ/(αγ?).

For any k ∈ S?, we thus have

|β̂lasso
n,k (f)| > min

j∈S?
|β?j (f)| − (5/(4α))

√
`?λ/γ?.

But for α =
√
2/3, we have 5/(4α) ≈ 2.6516. As minj∈S? |β?j (f)| > 3

√
`?λ/γ? by the assumed upper bound

for λ, we find |β̂lasso
n,k (f)| > 0, as required.
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D Proof of Theorem 3.3
Recall β̂lasso

n in (C.1). We start with a deterministic property of the LASSO.

Lemma 7. If

nλ > 2 max
k=1,...,m

∣∣∣∣∣
n∑
i=1

(hk(Xi)− Pn(hk))(ε(Xi)− Pn(ε))

∣∣∣∣∣ , (D.1)

then, writing û = β̂lasso
n (f)− β?(f), we have

‖Hcû‖22 6 3nλ
√
`?‖ûS∗‖2. (D.2)

Proof. This is just a reformulation of the reasoning on p. 298 in [19]. The vector ν̂ at the right-hand side of
their Eq. (11.23) is in fact ν̂S .

We work on the same event E as in Step 2 of the proof of Theorem 3.2, i.e., (C.9), (C.10), (C.11), (C.12)
and C.13 are all satisfied. This event has probability 1− δ. On this event, the LASSO solution β̂lasso

n (f) is
unique and S(β̂lasso

n (f)) = S?, as shown in the proof of Theorem 3.2.
We show that on the event E and given the assumed bounds on n and λ, the inequality (D.1) is satisfied.

As in Step 3.2 of the proof of Theorem 3.3, we have, on the event E, with C = 8 and with δ/4 there replaced
by δ/5 here, the bound

max
k=1,...,m

∣∣∣∣∣
n∑
i=1

(hk(Xi)− Pn(hk))(ε(Xi)− Pn(ε))

∣∣∣∣∣ 6 4
√

log(10m/δ)τU
√
n

[
1 +

1

4

√
log(10/δ)

n

]
.

Since `? > 1 and U2 > (1/`?)
∑
k∈S? P (h2k) > γ?, the assumed lower bounds on n imply that n >

70 log(10/δ), so that the factor in square brackets is bounded by 1 + 1/(4 · 8) = 33/32. But as nλ/2 >
(17/2)

√
log(10m/δ)Uτ

√
n by assumption, the inequality (D.1) is clearly satisfied.

Set û = β̂lasso
n (f)− β?(f). On the event E, the inequality (D.1) holds, and by Lemma 7, then also (D.2).

Because ûk = 0 whenever k 6∈ S?, we have, as in Step 1 of the proof of Theorem 3.1, with β̂ols
n (f) replaced by

β̂lasso
n (f), the inequality

n
∣∣α̂lasso
n (f)− P (f)

∣∣ 6 ∣∣∣∣∣
n∑
i=1

ε(Xi)

∣∣∣∣∣+ ‖ûS?‖2
√
`? max
k∈S?

∣∣∣∣∣
n∑
i=1

hk(Xi)

∣∣∣∣∣
6
√

2nτ2 log(10/δ) + ‖ûS?‖2
√

2n`?U2 log(10m/δ). (D.3)

Using (C.14) with α =
√
2/3 [as in Step 6(ii) of the proof of Theorem 3.2] and then (D.2), we find

‖ûS?‖22 6
1

αγ?n
‖Hc,S? ûS?‖22

=
3√
2γ?n

‖Hcû‖22 6
3√
2γ?
· 3λ
√
`?‖ûS?‖2.

It follows that
‖ûS?‖2 6

9λ√
2γ?

√
`?.

Injecting this bound into (D.3), we obtain

∣∣α̂lasso
n (f)− P (f)

∣∣ 6√2 log(10/δ)
τ√
n
+ 9λ`?

√
log(10m/δ)

U/γ?√
n
.

Setting λ equal to its minimal value, the lower bound simplifies as stated.
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E Additional graphs
We provide two additional illustrations. Figures E.1 and E.2 correspond to the same experiments as the ones
of Figure 4.1 and 4.2 in the paper, respectively, except that the underlying dimension is now d = 10. The
remarks given in Section 4, paragraph “Results”, extend to the present situation.

Figure E.1: Boxplots (based on 50 replications) of the values returned by each of the methods (top) and
zooming on the best ones (bottom) for f1. The dimension is d = 10, the sample size is n = 5000 and m
(horizontal axis) varies from 400 to 2 000.

References
[1] Alexandre Belloni, Victor Chernozhukov, et al. Least squares after model selection in high-dimensional

sparse models. Bernoulli, 19(2):521–547, 2013.

[2] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities. Oxford University
Press, 2013.

[3] LLdiko E Frank and Jerome H Friedman. A statistical view of some chemometrics regression tools.
Technometrics, 35(2):109–135, 1993.

[4] Paul Glasserman. Monte Carlo Methods in Financial Engineering, volume 53. Springer Science &
Business Media, 2013.

[5] Peter W Glynn and Roberto Szechtman. Some new perspectives on the method of control variates. In
Monte Carlo and Quasi-Monte Carlo Methods 2000, pages 27–49. Springer, 2002.

[6] Robert M Gower, Nicolas Le Roux, and Francis Bach. Tracking the gradients using the Hessian: A new
look at variance reducing stochastic methods. arXiv preprint arXiv:1710.07462, 2017.

21



Figure E.2: Boxplots (based on 50 replications) of the values returned by each of the methods for f2 (top)
and f3 (bottom). The dimension is d = 10, the sample size is n = 10 000 and m (horizontal axis) varies from
400 to 2 000.

[7] Roger A Horn and Charles R Johnson. Matrix Analysis. Cambridge University Press, 2012.

[8] Tang Jie and Pieter Abbeel. On a connection between importance sampling and the likelihood ratio
policy gradient. In Advances in Neural Information Processing Systems, pages 1000–1008, 2010.

[9] Hao Liu, Yihao Feng, Yi Mao, Dengyong Zhou, Jian Peng, and Qiang Liu. Action-depedent control
variates for policy optimization via Stein’s identity. arXiv preprint arXiv:1710.11198, 2017.

[10] Chris J Oates, Mark Girolami, and Nicolas Chopin. Control functionals for Monte Carlo integration.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3):695–718, 2017.

[11] Art Owen and Yi Zhou. Safe and effective importance sampling. Journal of the American Statistical
Association, 95(449):135–143, 2000.

[12] Art B. Owen. Monte Carlo Theory, Methods and Examples. 2013.

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[14] François Portier and Johan Segers. Monte Carlo integration with a growing number of control variates.
arXiv preprint arXiv:1801.01797, 2018.

[15] Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. In Artificial Intelligence
and Statistics, pages 814–822, 2014.

[16] Walter Rudin. Real and Complex Analysis. Tata McGraw-hill education, 2006.

22



[17] Leah F South, Chris J Oates, Antonietta Mira, and Christopher Drovandi. Regularised zero-variance
control variates for high-dimensional variance reduction. arXiv preprint arXiv:1811.05073, 2018.

[18] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996.

[19] Robert Tibshirani, Martin Wainwright, and Trevor Hastie. Statistical Learning with Sparsity: The Lasso
and Generalizations. Chapman and Hall/CRC, 2015.

[20] Chong Wang, Xi Chen, Alexander J Smola, and Eric P Xing. Variance reduction for stochastic gradient
optimization. In Advances in Neural Information Processing Systems, pages 181–189, 2013.

[21] Pavel Yaskov. Lower bounds on the smallest eigenvalue of a sample covariance matrix. Electronic
Communications in Probability, 19(83):1–10, 2014.

23


	1 Introduction
	2 Monte Carlo integration and control variates
	3 Non-asymptotic bounds
	4 Numerical application
	A Auxiliary results
	B Proof of Theorem ??
	C Proof of Theorem ??
	D Proof of Theorem ??
	E Additional graphs

