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Abstract—A full-wave synthesis algorithm for modulated meta-
surface antennas is presented. It is able to provide arbitrary
radiation patterns, with any polarization. The algorithm does
not use the local periodicity approximation, but is directly based
on the electric field integral equation (EFIE). Using Fourier-
Bessel basis functions (FBBFs), one can efficiently discretize the
surface currents. An inverse problem based on the EFIE is then
formulated to derive the surface impedance from the knowledge
of the currents. It has been observed that the FBBFs are also
more suited than the Zernike basis for the surface impedance
discretization. In the case of antenna applications, only the visible
part of the surface currents spectrum is known from pattern
specifications. This visible part can be combined with the near-
field of the average reactance (SW contribution) to derive the
required impedance boundary condition (IBC); this latter is
constrained to be anti-Hermitian as required for implementation
in the absence of losses. An example of shaped beam design is
presented and numerically validated.

Index Terms—beam shaping, metasurfaces (MTSs), integral
equations, basis functions, impedance boundary condition.

I. INTRODUCTION

Metasurfaces (MTSs) are the 2D version of metamaterials
and can be used to manipulate surface waves (SW) or to
control space waves transmission [1], [2]. The first type of
application leads to a new class of transformation Electro-
Magnetics devices [3], [4] and has attracted the interest of the
antenna community. Indeed, the control of the surface wave
dispersion also allows a suitable SW to leaky wave (LW)
transformation mechanism [5]. Such an antenna possesses
the advantage of being flat (low profile) by nature since
the feeding role relies on the SW excitation, which is done
through a coplanar feed [6], [7]. Additionally, the flexibility
in achieving shaped beams (active elements are usually used to
obtain reconfigurable patterns) makes the MTS antennas very
attractive in many applications [8]. Those surfaces implement
an Impedance Boundary Condition (IBC) on a circular [8]
(possibly elliptical [9]) domain, and are usually fed from the
center by a SW launcher. The IBC interacts with the excited
SW and then generates the desired radiation characteristics.
In the microwave regime, the designed IBC is usually im-
plemented by means of sub-wavelength patches printed on a
square lattice. The MTS synthesis problem then consists of
finding the appropriate modulated IBC for a given excitation

and pattern requirements. A lot of efforts have been made in
this direction, thus leading to elegant analytical expressions
of the IBC capable of generating high gain polarized pencil
beams [8]. However, when one needs to arbitrarily shape the
beam, the problem is much more complex. Recently, a LW
Flat-Optics theory has been proposed to address this challenge
[10]. The basic idea behind the Flat-Optics approximation
consists of locally expanding the equivalent surfaces currents
as well as the aperture fields in Floquet modes. The MTS
synthesis can then be carried out by matching the desired
aperture field with the -1 mode of the aperture electric field
expansion. A variant of this technique has also been proposed
in [11]. Once the IBC has been synthesized, its validation
is carried out with the Method of Moments (MoM), by
discretizing the relevant EFIE [12]-[15]. The present paper
briefly describes a new synthesis method directly based on the
solution of the EFIE, the latter being discretized with Fourier-
Bessel basis functions (FBBFs) [14]. The proposed algorithm
starts directly from the desired radiation pattern and follows a
systematic procedure to derive the required surface impedance.

The paper is structured as follows. Section II briefly recalls
the analysis formalism. Then, the MTS synthesis is described
in section III. Section IV presents numerical results and section
V concludes the paper.

II. DIRECT PROBLEM FORMULATION

The metasurface can be efficiently described by modeling
the metallization layer with a sheet transition impedance
boundary condition incorporated in a transmission line net-
work which accounts for the presence of the grounded sub-
strate. The sheet impedance transition is defined as the tensor
relating the electric field tangent to the surface to the jump-
discontinuity of the magnetic field, corresponding to the equiv-
alent surface current flowing on the MTS

Et = Z
S
. ẑ× (Ht|z=0+ −Ht|z=0−) = Z

S
. J (1)

where Z
S

is the sheet impedance, Et is the total tangential
electric field on the MTS, and J is the equivalent surface
current. Starting from equation (1), and identifying the total
electric field as the sum of the one radiated by the surface
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currents and the one provided by the excitation, expression
(1) leads to the following integral equation:

ẑ×
[∫∫

S′
GEJ(ρ,ρ′) J(ρ′) dS′ − Z

S
(ρ) J(ρ)

]
= −ẑ× Ei

(2)
where ẑ is the unit vector normal to the MTS, GEJ is the
substrate dyadic Green’s function, and ρ′ and ρ are the source
and observation coordinates, respectively. Finally, Z

S
and Ei

are the sheet impedance tensor and the excitation electric field,
respectively.

For analysis purposes, the sheet impedance is known and
the current distribution J in (2) is discrtized by means of basis
functions, the unknowns being the coefficients of expansion.
Expression (2) then leads to a system of equations, which can
be written in compact form as:

(Z
G
− Z

IBC
) I = V (3)

where Z
G

and Z
IBC

are respectively the substrate and the
sheet impedance matrix, and V is a vector representing the
discretized excitation.

Recently, the authors of [14] proposed the usage of Fourier-
Bessel basis functions, and have proven that such a basis
allows for an efficient discretization of the surface currents,
which in turn translates into a well conditionned and relatively
small MoM matrix size.

Next, we have shown that one can also numerically derive
the surface impedance from the knowledge of the currents.

III. INVERSE PROBLEM AND MTS SYNTHESIS

We assume a capacitive tensorial IBC of the general form:

ZρρS (ρ ) = Zρρ0 + P ρρ(ρ)

ZρφS (ρ ) = −(ZφρS (ρ ))∗ = P ρφ(ρ) (4)

ZφφS (ρ ) = Zφφ0 − P ρρ(ρ)

where Zρρ0 and Zφφ0 are the average reactances and are
assumed to be purely imaginary, with negative imaginary parts.
P ρρ and P ρφ are purely imaginary functions of ρ describing
the IBC modulation and are assumed to be in absolute value
lower than the average impedance. Note that, the average
impedance Zρρ0 and Zφφ0 are fixed based on considerations
relative to the IBC implementation with patches, the excitation
efficiency [16], and the antenna bandwidth [17]. Such a tenso-
rial IBC is anti-Hermitian and can therefore be implemented
with lossless patches.

The surface impedance is now discretized into a Fourier-
Bessel basis Rmn(ρ) as follows:

ZρρS ≈
∑
nS ,mS

[Kρρ
S (mS , nS) +Xρρ

S (mS , nS)]RmS ,nS (5)

ZρφS ≈
∑
nS ,mS

Xρφ
S (mS , nS) RmS ,nS (6)

ZφφS ≈
∑
nS ,mS

[Kφφ
S (mS , nS)−Xρρ

S (mS , nS)]RmS ,nS (7)

Starting from (2) and (5), one can prove that the required
surface impedance modulation is given by [18]:[

XρρS
XρφS

]
=

[
ZS,ρ ZS,φ

−ZS,φ ZS,ρ

]−1
. U (8)

where

ZS,ρ(mS , nS ;mt, nt) =
∑
nb,mb

iρmbnb
Z(mb, nb;mS , nS ;mt, nt)

(9)

and

ZS,φ(mS , nS ;mt, nt) =
∑
nb,mb

iφmbnb
Z(mb, nb;mS , nS ;mt, nt)

(10)

Z is a pre-tabulated matrix [18]. The vector U in (8) is defined
as:

U =

[
Uρ

Uφ
]
=

[
ZρρG ZρφG
ZφρG ZφφG

]
.

[
Iρ

Iφ
]
−
[

Vρ

Vφ
]
−
[

XρK
XφK

]
(11)

Finally, XρK and XφK are respectively given by

XρK = ZS,ρ Kρρ
S (12)

XφK = ZS,φ Kφφ
S (13)

Expression (8) establishes a full-wave link allowing the
derivation of the surface impedance from the currents. Despite
this expression does formally not require the usage of the
same basis for the current and the IBC, we have observed in
practice that better results are obtained when using FBBFs for
both. Indeed, the usage of the Zernike basis [19] for example
provided in our attempts a less stable solution, especially at
the MTS border.

Now, let us consider the generation of a desired radiation
pattern F(θ, α) in amplitude, phase and polarization. θ and
α are respectively the elevation and azimuthal angles. This
radiation pattern can be directly linked to the visible spectrum
of the electric field on the MTS (see expression (44) in [18]).
The desired visible spectrum of the currents is then obtained
as:

J̃ =
(

G̃
EJ
)−1

(̃f− Ẽi) (14)

where G̃
EJ

is the spectral dyadic Green’s function of the
grounded substrate, Ẽi is the visible spectrum of the MTS
excitation and f̃ is the total tangential aperture field rescaled
w.r.t. the desired radiated power. The radiated power can
be calculated, for example, from the simulation of a pre-
designed broadside pencil beam MTS [8] with the same
average impedance and substrate.

The required surface impedance can now be computed after
applying expression (8). However, a simple usage of this
formula, despite giving a well radiating surface impedance,
will not lead to an anti-hermitian IBC (property required in
absence of loss), since the computed modulation exhibits a not
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negligible real part. This problem is fundamentally due to the
fact the current J̃ in (14) does not have a near-field (invisible)
spectrum. Since MTS antennas are based on a SW to LW
transformation, one cannot neglect the invisible spectrum of
the currents. The latter, despite not being present in the far-
field, is necessary to be consistent with the physics of the
problem. For a given radiation pattern, one may try to find
the appropriate invisible field spectrum that will produce the
desired radiation pattern and ensure at the same time an anti-
Hermitian surface impedance. This has been done in [8] for
the particular case of a pencil beam. However, when dealing
with an arbitrary shaped beam, one cannot make such an a
priori prediction.

Here, we make a simple assumption, i.e the near-field
current spectrum is estimated based on the one obtained
in absence of modulation, namely that corresponding to the
chosen average reactance. This simple estimate in combination
with the visible part of the current spectrum (obtained from
(14)) form the desired current distribution J. Then we solve
equation (8) while mathematically ensuring (in a least-squares
sense) the absence of losses. This is carried out by imposing
a sort of symmetry between the expansion coefficients of the
impedance modulation [18]:

(XS(mS ,−nS))∗ = −
XS(mS , nS)

(−1)n
(15)

The advantages of the proposed method can be summarized
as follows:
• First, the algorithm is systematic, i.e it starts from the

desired radiation pattern F(θ, α) and follows a system-
atic procedure to directly compute the relevant surface
impedance.

• Next, the extension into the invisible region is carried out
in the least-squares sense, and can be applied to generate
any radiation pattern with any polarization.

• Third, the proposed method can be used with any type of
excitation as soon as the coupling between the excitation
and the IBC modulation can be neglected.

IV. RESULTS

Our intention in this section is to demonstrate the robustness
of the proposed algorithm. To this end, we have designed
a MTS radiating a multi-shaped polarized beam. The fre-
quency of operation is 18 GHz. We used a substrate relative
permittivity equal to 3.66, while the average impedance is
Z0 = Zρρ0 = Zφφ0 = −461.5 j. The antenna is excited by
a vertical elementary dipole placed at the MTS center (ρ = 0)
and in the middle of the substrate.

The objective pattern is a right-handed circularly polarized
(RHCP) “fish like” pattern in the spectral (kx/k0, ky/k0)
plane. kx = k0 sin θ cosα and ky = k0 sin θ sinα are the
spectral variables in Cartesian coordinates. The desired “fish
like” radiation pattern F(kx, ky) is illustrated in Fig. 2(a).
Basically, the main body of the fish is drawn with 2 triangles.
The first triangle is perforated with a small ring to represent
the eye. The tail is also drawn with a triangle. The radiation

pattern in Fig. 2(a) is computed after filling the visible part
of the current spectrum with the desired radiation pattern and
the invisible part with the invisible spectrum corresponding to
the average impedance. The obtained current is discretized in
the spectral domain in the Fourier-Bessel basis.

The synthesis IBC tensor is illustrated in Fig. 1. The
obtained IBC has been analyzed with the MoM code validated
in [14]. Figs. 2(c), 2(d) and Fig. 3 show respectively the
designed radiation pattern and its cut in the α = 0 plane. One
can observe a very good agreement of the Co-polar (RHCP)
pattern w.r.t. the desired one. The main difference are in the
cross-pol.

(a) (b)

Fig. 1. Modulated sheet transition IBC for a MTS radiating a “fish like”
beam a) Xρρ −X0 and b) Xρφ.

(a) (b)

(c) (d)

Fig. 2. Circularly polarized “fish like” radiation pattern in the (kx, ky) plane.
(a): Co-polar component for the ideal antenna (desired pattern) (b): Cross-
polar component for the ideal antenna (c): Co-polar component for designed
MTS (d): Cross-polar component for designed MTS.
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Fig. 3. Radiation pattern of the designed “fish-like” radiating MTS in
the plane α = 0. The co-polar and the cross-polar pattern corresponds
respectively to the Right Handed Circular Polarization (RHCP) and the Left
Handed Circular Polarization (LHCP) directivity. The inset disk corresponds
to the absolute value of the current distribution on the designed MTS (on
log10 scale) for a unit current excitation.

V. CONCLUSION

We proposed an EFIE based systematic formalism to design
modulated metasurface antennas. An illustrative example has
shown that a fine control of the antenna radiation pattern can
be achieved. Concerning the surface impedance discretization,
even if the formulation allows a free choice of this basis, we
have observed that the Fourier-Bessel basis provides a much
more stable solution than the Zernike basis, which is another
orthogonal basis.

REFERENCES

[1] N. Yu et al.,“Flat optics: Controlling wavefronts with optical antenna
metasurfaces,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 3, pp.
4700423, May. 2013.

[2] C. Pfeiffer, A. Grbic, “Metamaterial Huygens’ surfaces: Tailoring wave
fronts with reflectionless sheets,” Phys. Rev. Lett., vol. 110, pp. 197401,
May. 2013.

[3] R. Quarfoth, D. Sievenpiper, “Artificial tensor impedance surface waveg-
uides,” IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3597-3606, Jul.
2013.

[4] M. Mencagli, E. Martini, D. González-Ovejero, and S. Maci, “Metasurf-
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