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Analysis of Large Nonregular Printed Scatterers
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Abstract— In fast Fourier transform (FFT)-based iterative
methods for electromagnetic analysis of planar structures,
the convolution between Green’s function (GF) and the basis
functions is carried out by a product in the spectral domain.
In layered media, the GF is known analytically but exhibits
singularities in the spectral domain, giving rise to numerical
inaccuracy when processed by a direct FFT. We propose a direct
spectral approach where the convolution is carried out with due
account for the presence of a singular kernel. Using Contour-FFT,
the integration contour is deformed and the spatial convolution
is expressed as a rapidly converging series of FFTs. We also
introduce a novel inverse Contour-FFT operator required for the
process. As other FFT-based methods, the short-range interac-
tions are corrected using a precomputed sparse operator, to which
we propose an implementation compatible with the Contour-FFT.
We control the accuracy of the method with a simple scheme
that adapts the method’s parameters to the problem at hand.
Several practical numerical examples demonstrate the efficiency
and accuracy of the method for the analysis of large nonregular
printed structures.

Index Terms— Antenna arrays, fast method, Fourier trans-
forms, metasurfaces, method of moments (MoM), numerical
analysis, reflectarrays.

I. INTRODUCTION

FOR several decades, the method of moments (MoM) has
been the method of choice for analyzing electromagnetic

radiation and scattering by planar printed structures, despite
its well-known limitations both in memory consumption and
solving times. A lot of research has been carried out to reduce
the computational effort of the classical MoM, resulting in a
collection of fast methods. Many of these fast methods have
been designed for the analysis of arrays of antennas or scatter-
ers that consist of identical or similar elements [1]–[4], with
impressive results in terms of time saving. However, when the
structure considered does not present any particular symmetry,
one cannot fully reap the benefits of these methods.
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To tackle the memory issue, one can rely on matrix-free
Krylov subspace iterative methods [5]–[7]. These methods
iteratively construct a solution subspace through successive
matrix-vector products. The product of the interaction matrix
with an arbitrary vector can be viewed as the convolution
between the current distribution defined by the vector and
Green’s function (GF) associated with the medium, followed
by testing of the resulting fields on a set of testing functions.
The resulting vectors can thus be estimated without the need
to compute the whole MoM interaction matrix. This provides
a serious advantage in terms of time and memory complexity,
as long as the number of iterations needed to reach the desired
accuracy remains much smaller than the number of unknowns.

Several works initiated by [8]–[10] propose to use the fast
Fourier transform (FFT) to perform the convolution between
the GF and the current distribution through a product in
the spectral domain, thus reducing the matrix-vector product
time complexity from O(N2) to O(N log2 N). An important
milestone in the development of FFT-based methods was
the adaptive integral method (AIM) [8], which introduced a
precorrection technique (see below) to preserve high accu-
racy for very close interactions. O(N log2 N) complexities
are also approached with kernel-independent techniques [11],
although, generally, the knowledge of the applicable GF
allows more compact field representations and better error
control. Another widespread class of methods uses a multi-
pole expansion of the currents to approximate the far fields:
the multilevel fast multipole algorithm [12] also exhibits an
O(N log2 N) complexity. Some optimized techniques even
approach a linear complexity for specific dense problems [13].
However, the multilevel aspect of these methods requires
complex implementations, whereas FFT-based convolution is
more straightforward.

In the aforementioned FFT-based methods, it is clear that
computing the convolution in the spectral domain provides
a significant time saving for large systems of equations,
as detailed in [8]-[10] and [14]-[18]. However, in those
references, few comments have been raised concerning the
accuracy of that discrete convolution, which requires special
attention, given the wide spectrum of the GF and its slowly
converging oscillatory nature. The latter can be associated
with the singularities that appear in the Fourier transform of
the GF [19]. Besides, when the spatial-domain GF is used,
the numerical calculation of a Sommerfeld integral or the
application of the discrete complex image method [20] can
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also entail numerical errors. Finally, in the FFT-based convo-
lution, in order to avoid aliasing, the space domain is usually
doubled through zero padding in both directions.

In this paper, we directly express the convolution in the
spectral domain, using the closed-form expression of the
spectral GF for layered media [21]. This approach provides
two main advantages over classical FFT-based methods. First,
it avoids the spatial GF calculation over a regular grid. While
spatial GF computation in layered media has been intensely
studied (see [21]–[24] and references therein), the proposed
method simply bypasses this step. Then, in favorable cir-
cumstances, the proposed approach may allow an accurate
calculation of convolution without doubling the space domain,
effectively reducing the number of space and spectral-domain
samples, and thus the computation time and memory.

Such a direct spectral-domain approach supposes a proper
treatment of the spectral singularity. The Contour-FFT [3]
is a recent method conceived to quickly compute Fourier
transforms of singular functions. It essentially combines the
FFT and integration path deformation to properly compute
convolutions with singular kernels. Its efficiency has already
been proven [3] for the analysis of large irregular arrays of
identical planar scatterers, where the interactions between
predefined macro basis functions [25] are very efficiently
tabulated versus relative positions.

One drawback of the spectral domain convolution is a less
accurate evaluation of short-range interactions, due to the finite
size of the FFT, truncating higher spectral components. This
issue, common to all FFT-based methods, has been addressed
in [16] and [26], where it is treated properly in the “precorrec-
tion” step of the algorithm. Essentially, the same approach is
found in [1] where a sparse correction matrix is precomputed
and used to compensate for the error at each iteration. This
precorrection is capable of exactly compensating for the short-
range errors, no matter their origin. The same principle is used
in this paper, though we introduce a new formulation adapted
to convolutions based on the Contour-FFT.

This paper proposes an iterative scheme using a novel
Contour-FFT acceleration. The matrix-vector products are
computed as follows: first, we expand the current distribution
on a regular grid of points and evaluate its Fourier trans-
form in the complex plane using an inverse Contour-FFT,
and then, we evaluate the convolution with the GF using
the Contour-FFT, which includes due treatment of spectral-
domain singularities. The resulting field on the grid is tested
on each testing function in the spatial domain, and finally,
the short-range interactions are corrected using a precomputed
sparse operator. A simple scheme to control the error is also
demonstrated to adapt the method’s parameters to a specific
problem beforehand, and to determine the size of the short-
range zone where the correction is applied. The resulting
method is quite accurate and scales well with the number of
unknowns, for arbitrary structures where no symmetry can be
found.

The remainder of this paper is organized as follows. Section
II provides details on every step of the proposed method.
Section III summarizes the parameters governing the method’s
accuracy, and proposes a scheme to adapt them to a specific

problem. Section IV presents validating examples as well
as a comparison with other established FFT-based methods.
Section V focuses on complexity analysis in larger problems,
and Section VI concludes this paper.

II. DEVELOPMENT OF THE ITERATIVE METHOD

For the sake of completeness, all the steps of the method
are described below. Some of them are already well estab-
lished, whereas those exploiting the Contour-FFT are new.
We consider a planar metallization printed on one interface
of a layered medium, for simplicity. After expanding the
metallization into N basis functions, such as rooftop or Rao–
Wilton–Glisson (RWG) [27] basis functions, we express the
MoM system of equations as

Zx = −b (1)

with Z ∈ CN×N the interaction matrix, and x and b ∈ CN the
current distribution and excitation vectors, respectively. Each
element of the interaction matrix Z is expressed as [28]

Zi j =
∫∫

Si

fi (r)
∫∫

S j

G(r − r′) f j (r′) dr′ dr (2)

with fi the i th basis and testing functions (assuming a Galerkin
testing procedure), G the dyadic space-domain GF, r and
r′ the observation and source vectors, respectively, and Si

the domain of the basis function i . Equivalently, the mixed-
potential expression can be used [21]

Zi j =
∫∫

Si

∫∫
S j

G A(r − r′)(fi (r) · f j (r′))

+ GV (r − r′)(∇ · fi (r))(∇ · f j (r′)) dr′ dr (3)

where it is emphasized that, for layered media, the scalar GFs
G A and GV are different.

When a direct solution of (1) is not computationally fea-
sible, an iterative scheme can approximate the solution with
controllable accuracy. The well-known Krylov subspace-based
iterative techniques [7] are based on the construction of a
reduced matrix Qn as

Qn = [b Zb Z2b . . . Zn−1b]. (4)

The reduced matrix (4) spanning the Krylov subspace can
thus be computed iteratively, each iteration requiring only
one matrix-vector product. At each iteration step, the vector
obtained at the previous step is used as a current distribution
and the new vector is obtained by testing the field generated
by these currents on the testing functions. This operation is
sped up in the proposed formulation, in the following way:

1) Expansion: The current distribution is expanded on
a regular Cartesian grid of points [16]. This step is
detailed in Section II-A.

2) Convolution: The 2-D Fourier transform of the whole
current distribution is computed, and its spatial convo-
lution with the GF is computed in the spectral domain.
Section II-B details the formulation and highlights the
accuracy problems that arise if the convolution is imple-
mented as a simple FFT, due to the singular kernel.
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Fig. 1. Illustration of a first-order expansion scheme for a single RWG basis
function. Lines: section of the regular grid. Plain dots: quadrature points (here,
a 5-point middle-edge quadrature). Empty dots: grid points where the basis
function is expanded. Arrows: 2 × 2 subgrid (L = 2) where the quadrature
point is expanded.

Section II-C presents our contribution to solve these
problems using the Contour-FFT.

3) Testing: The resulting radiated field is interpolated and
integrated on each testing function. This step is the
reciprocal of the Expansion step and is also detailed in
Section II-A.

4) Correction: The short-range interactions are corrected
using a precomputed sparse operator. To this end,
the precorrection step described in [16] is adapted for
the specific formulation developed in the three previ-
ous steps. This new correction algorithm is detailed in
Section II-D.

A. Distribution and Testing Scheme

As in [8] and [16], we define a Cartesian grid of M × M
points equally spaced at distances �x , �y from each other
in each direction of space, which covers the entire domain
of metallization. Each basis function is then projected on that
Cartesian grid using Lagrange polynomials of arbitrary orders.
To ease its implementation, this procedure is presented here
in more detail, and illustrated in Fig. 1.

1) To each basis function, f j (r′) is assigned a set of quadra-
ture points (xg, yg) and weights wg . The number of
points can vary for larger or smaller basis functions. For
RWG and rooftop basis functions, Gauss or Dunavant
quadratures [29] can be used for instance.

2) For each quadrature point, we select the square subgrid
of L2 points (xl, yl) centered around the quadrature
point.

3) Each point of this subgrid is assigned a vectorial weight
f̂ such that

[f̂ j ]g = f j (xg, yg)Sj ll(xg)ll(yg)wg (5)

with ll(x) the Lagrange polynomial associated with the
lth subgrid point and Sj the surface of the j th basis
function. The Lagrange interpolation is then of order
L − 1.

4) If a subgrid point is used by more than one quadrature
point, the weights are simply summed up, resulting in

the expansion of each basis function into a tiny set of
weights f̂ j on the grid as

f̂ j =
∑

g

[f̂ j ]g . (6)

These weights are precomputed and will be used for both
the Expansion and Testing steps. Assuming again a Galerkin
procedure, the source and testing functions form a unique set
of basis functions, and thus the weights are the same. This
procedure is similar to [1] with one important difference: here,
we use Lagrange polynomials to expand the basis functions on
the grid and to interpolate the field for the testing phase, but
not to approximate the spatial GF for long-range interactions,
since we never explicitly construct the spatial GF. In addition,
we observed that using the same set of weights and points
for the Expansion and Testing steps produced more accurate
results than nonsymmetrical operators.

Note that the time needed for the expansion and testing
steps scales linearly with the number of unknowns; the time
and memory complexity of these steps is thus O(N).

B. Spectral Acceleration

The convolution, which corresponds to the inner integral
of (2), can be expressed in the Fourier domain as

Zi j =
∫∫

Si

fi (r) F−1{G̃(kx , ky) f̃ j (kx , ky)}dr (7)

with G̃ and f̃ j denoting the Fourier transform of the dyadic GF
G and the basis function, respectively. Note that the spectral
GF G̃ is known analytically for any layered substrate [21].

Entry i of the resulting matrix-vector product in (4) is then
expressed as

[Zb]i =
∫∫

Si

fi · F−1

⎧⎨
⎩G̃ F

⎧⎨
⎩

N∑
j=1

b j f j

⎫⎬
⎭

⎫⎬
⎭ dr (8)

which, assuming a e jωt time dependence, is realized as

[Zb]i ≈
∫∫

f̂i · FFT

⎧⎨
⎩G̃ FFT−1

⎧⎨
⎩

N∑
j=1

b j f̂ j

⎫⎬
⎭

⎫⎬
⎭ dr. (9)

In that way, the Fourier transform of the complete current
distribution is obtained with a single FFT. Note that, in this
paper, all FFTs are 2-D. The computation complexity of that
operation and the convolution with the GF thus reduces to
O(M2 log2 M2).

The spectral GF G̃ in (9) may cause numerical inaccuracy
if F−1 is implemented using a simple FFT and the sampling
points are close to its poles. Section II-C presents our contri-
bution to solving this problem.

C. Direct and Inverse Contour-FFT

We will first recall the principles of the Contour-FFT for the
case of an inverse Fourier transform of the singular integrand
H̃ , that is

H (x, y) = 1

4π2

∫∫
H̃(kx , ky) e− j (kx x+ky y) dkx dky . (10)
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Fig. 2. Quadratic contour used for the integration path. The imaginary part
of the radial spectral variable βi is expressed as a function of its real part βr .
ka = k0

√
�a = 2π/λa is the average wavenumber with �a = (�r + 1)/2.

The H̃ function varies rapidly near its poles, which greatly
complicates its numerical integration. One possibility to
smoothen the integrand of (10) is to use a contour deformation
to push the integration path away from the poles. Assuming
that all the poles lie inside a centered circle of radius 2ka

in the (kx , ky) plane, the contour of Fig. 2 can be used along
the radial spectral direction. As proven in [3], (10) still can be
expressed in terms of the real Cartesian coordinates (kx , ky) as

H (x, y) = 1

4π2

∫∫
H̃(kc

x , kc
y) e− j (kx x+ky y)e(ki

x x+ki
y y)

C(kx , ky) dkx dky (11)

where kx , ky and ki
x , ki

y are, respectively, the real and imagi-
nary parts of the complex wavenumbers kc

x , kc
y , and

C(kx , ky) =
(

1 + j
dβi

dβr

) (
1 + j

βi

βr

)
(12)

where βr = (kx
2 + ky

2)1/2 is the radial wavenumber and βi

is its imaginary part defined by the contour in Fig. 2.
Expression (11), despite properly treating the poles, cannot

be evaluated using the FFT because of the real exponential
factor that contains spectral and spatial variables that are not
separable. To overcome this drawback, that factor is expanded
into a Taylor series of the spatial variables (x, y) around (0, 0),
resulting in a rapidly converging series of FFTs as

H (x, y) ≈ K ′
T∑

t=0

1

t !
t∑

t ′=0

Pt ′
t x t ′ yt−t ′FFT

{
γ t kt ′

x kt−t ′
y H̃ ′}

�= CFFTT {H̃} (13)

where T is the order of the Taylor expansion, Pt ′
t is Pascal’s

triangle element, γ = βi/βr = ki
x/kx = ki

y/ky is defined as
the local height of the contour, and

H̃ ′(kc
x , kc

y) = (−1)k1+k2 C(kx , ky) H̃
(
kc

x , kc
y

)
(14)

K ′ = (−1)k1+k2
�kx�ky

4π2 . (15)

The factors �kx ,�ky and k1, k2 are, respectively, the spacing
and index of the point in the spectral grid and result from
the change of variables (see [3, Appendix A] for a rigorous
definition).

Note that both the spectral GF and the Fourier transform of
the currents need to be evaluated at the complex wavenumbers
(kc

x , kc
y) according to the integration contour. This is not an

issue for the GF, which is known in closed form. However,
some special attention has to be paid to the Fourier transform
of the currents. To this end and to preserve the speed-up
advantages of the FFT, the principles of the Contour-FFT
can be applied to the inverse transform. This leads to an
inverse Contour-FFT operator, derived here for the first time.
Following the same development as in (10)–(15), we start by
expressing the Fourier transform H̃ evaluated in the complex
spectral variables (kc

x , kc
y), that is:

H̃(kc
x , kc

y) =
∫∫

H (x, y) e j (kx x+ky y) e−(ki
x x+ki

y y) dx dy (16)

where the real and imaginary parts of kc
x and kc

y have already
been separated. Once again, this expression cannot be eval-
uated directly using the FFT because of the real exponential
factor, containing spectral and spatial variables. Expanding that
factor into a Taylor series, we obtain a rapidly converging
series of inverse FFTs. This brings us to the inverse Contour-
FFT transformation, defined as

H̃(kc
x , kc

y) ≈ CFFT−1
T {H }

�= K ′′
T∑

t=0

(−γ )t

t !
t∑

t ′=0

Pt ′
t kt ′

x kt−t ′
y FFT−1{xt ′ yt−t ′ H ′}

(17)

with

H ′(x, y) = (−1)n1+n2 H (x, y) (18)

K ′′ = (−1)n1+n2 M2 �x�y. (19)

Again, the factors n1, n2 are the indices of the point in the
spatial grid and result from the change of variables.

The complete expression for the approximation of the
matrix-vector products in (4) using the Contour-FFT is then

[Zb]i ≈ [Ẑb]i

≈
∫∫

f̂i · CFFTT

⎧⎨
⎩G̃ CFFT−1

T

⎧⎨
⎩

N∑
j=1

b j f̂ j

⎫⎬
⎭

⎫⎬
⎭ dr. (20)

The number of FFT evaluations in (13) and (17) for a Taylor-
series order of T is (T + 1)(T + 2); the time complexity for
the expression (20) is thus O(T 2 M2 log2 M2).

For comparison, matrix-vector products evaluated with
FFT-based methods, such as the AIM [8], can be expressed
as

[Zb]i ≈
∫∫

f̂i · FFT

⎧⎨
⎩FFT−1{G} FFT−1

⎧⎨
⎩

N∑
j=1

b j f̂ j

⎫⎬
⎭

⎫⎬
⎭ dr

(21)

where the spectral GF, FFT−1{G} (instead of G̃), is obtained
from samples precomputed in the space domain. To avoid
aliasing in (21), the domain of the FFT must be twice as large
as the computation domain, in both the directions.

A discussion about the effect of each parameter of the
method on complexity and accuracy is presented in Section III.
However, it is observed that the computation remains inac-
curate. This is due to the crude truncation of the spectral
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integration domain inherent to the FFT approach, which leads
to inaccurate short-range interactions. Section II-D proposes
a way to overcome this issue, building on precorrection
techniques [8], [16].

D. Correction of Short-Range Interactions

As introduced in [8] and adapted to printed structures
in [16], a sparse matrix P is precomputed to correct the inac-
curate short-range interactions. In the context of the proposed
method, this correction can be written as

Pij = Zi j −
∫∫

f̂i · CFFTT
{
G̃ CFFT−1

T {f̂ j }
}
dr (22)

for expanded testing functions f̂i , which are “close” to
the source functions f̂ j ; this criterion will be discussed in
Section III. The first term in the right-hand side of (22) is
the exact MoM interaction matrix element defined in (2), and
the second one is the matrix-vector product defined in (20)
with only one pair of source and testing functions involved.
Including this correction step, the final expression of the
matrix-vector product is

Z b ≈ Ẑ b + P b. (23)

For very large problems, the rightmost matrix-vector prod-
uct in (23) is computationally feasible, since the correction
matrix P is sparse, requiring the evaluation of only a tiny
subset of elements of the MoM interaction matrix. The naive
computation of the second term in the right-hand side of (22)
would require carrying out a complete Contour-FFT operation
for each basis function. That would defeat the purpose of the
iterative solver, i.e., the amount of matrix-vector products has
to remain much smaller than the number of unknowns. In the
next paragraphs, we propose an alternative formulation that
greatly reduces the time needed for that operation.

Since the elements of (22) only concern source and testing
functions that are spatially close to each other, for each source
point, only a very small subset of the spatial grid is used as test
points. Reasoning in the spatial domain allows the exploitation
of this observation by rearranging the order of operations. The
result is an optimized algorithm for the evaluation of the sparse
correction matrix without losing any accuracy. We start by
expressing the spectral convolution by injecting (13) and (17)
into the rightmost term of (22). Since the development of the
CFFT and its inverse consists of linear combinations of FFTs,
we use the linearity property of the FFT to move the sums
and the constants in front of the expression. After rearranging,
the discretized field in (22) becomes

CFFT{G̃ CFFT−1{f̂ j }}
=

∑
t

(−1)t

t !
∑

t ′
Pt ′

t

∑
u

1

u!
∑

u′
Pu′

u xu′
yu−u′

F j (u, u′, t, t ′)

(24)

with

F j (u, u′, t, t ′)
= FFT

{
γ u+t ku′+t ′

x ku+t−u′−t ′
y G̃′ FFT−1{f̂ j x ′t ′ y ′t−t ′}} (25)

with (x, y) and (x ′, y ′) denoting, respectively, the observation
(testing) and source points. Using the circular convolution
properties of the discrete Fourier transform [30], the latter
Fourier transform can be reinterpreted as a discrete spatial
convolution and is rewritten as

F j (u, u′, t, t ′)
=

∑
q

Gu+t
u′+t ′(x − xq, y − yq) f̂ j (xq , yq) xt ′

q yt−t ′
q (26)

where q are the indices of the points on the grid expanding the
basis function f̂ j , and Ga

b is a single term of the series (13),
that is

Ga
b(x, y) = FFT

{
γ akb

x ka−b
y G̃′(kc

x , kc
y

)}
. (27)

The final expression for the correction matrix is then

Pij = Zi j −
∑

p

f̂i (x p, yp) ·
∑

q

Gmod
p,q f̂ j (xq, yq) (28)

where the modified spatial GF Gmod
p,q has to be computed for

each pair of points (p, q) sufficiently “close” to each other,
and is defined as

Gmod
p,q = Gmod(x p, yp, xq , yq)

=
T∑

t=0

(−1)t

t !
t∑

t ′=0

Pt ′
t x t ′

q yt−t ′
q

×
T∑

u=0

1

u!
u∑

u′=0

Pu′
u xu′

p yu−u′
p Gt+u

t ′+u′(x p − xq , yp − yq).

(29)

The matrices defined by (27) are precomputed for the small
subset of spatial distances (x, y) defined as the “short-range”
zone and for every order a, b ∈ [0, 2T ].

Finally, symmetries are considered to further reduce the
memory and time consumption in this optimization. Indeed,
(29) is the reciprocal and exhibits a double-axial symmetry,
which leads to the following equalities:

Gmod
p,q = Gmod−p,q = Gmod

p,−q = Gmod−p,−q = Gmod
q,p (30)

and means that (28) can be evaluated for up to eight pairs of
points with a single evaluation of the quadruple sum (29).

Since (28) is just a reformulation of (22), the two expres-
sions are rigorously equivalent. We indeed observed that short-
range interactions are corrected within machine precision.

III. ERROR CONTROL

The accuracy of the proposed method relies on an informed
choice of a set of parameters summarized here.

1) M2: The number of points in the square Cartesian grid.
2) kmax : The maximum spectral component in the grid.

Together with M , these two parameters fully deter-
mine the characteristics of the spectral and spatial grids
through the constraints that the FFT imposes on the
sampling points in both the domains.

3) γ0: The height of the quadratic contour defined in Fig. 2.
4) T : The order of the Taylor expansion for the

Contour-FFT and its inverse.
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5) L: The order of the Lagrange expansion of the basis
functions.

An exhaustive analysis of the effect of the first four parameters
on the evaluation of planar GFs can be found in [31] and [32],
and a complete error model related to free-space planar
GF has been developed in [33]. To summarize that work,
the evaluation is more accurate in a certain range from the
source when increasing γ0, and that range increases with the
order T . At very short range, the radius of the zone over which
the correction is necessary is inversely proportional to kmax .
It has also been observed that the envelope of the relative
error is constant on the whole chosen spatial domain when the
ratio

kmax/M γ0 (31)

is kept constant.
To control the error and estimate the radius of the “short-

range” zone for a given problem, we rely on the comparison
between the spatial GF estimated by the Contour-FFT and a
reference solution. The latter is computed using a classical
numerical integration scheme such as a Hankel transform
with contour deformation and a safe amount of integration
points to ensure accuracy [31]. Since this reference solution is
computed once and for all for a given substrate, the execution
time is not critical and does not need to be optimized.
By changing the aforementioned parameters following the
guidelines in [31]–[33], one can manage to fit the targeted
accuracy level over the desired domain. This is illustrated in
Fig. 3. We observe that the accuracy mask is not respected in
G A for distances smaller than 0.55λa: this defines the “short-
range” zone where the correction operation will be applied.

It is interesting to note that the parametrization algorithm
described in [32] assumes a sequential implementation. That
is, if the series of FFTs in (13) can be carried out in
parallel, then a higher contour and fewer integration points
(smaller FFTs) may be chosen. Indeed, higher contours are less
sensitive to integration difficulties such that a lower density of
spectral points can be afforded.

This procedure is simple and efficient, and offers a worst
case scenario estimation of the Contour-FFT accuracy on the
domain of interest. Indeed, in the iterative scheme, the spectral
GF is first multiplied by the Fourier transform of the current
distribution before being processed, as expressed in (20). This
product by a band-limited spectrum attenuates higher spectral
components, and thus reduces the impact of the truncation
of the spectral domain inherent to the FFT approach. This
filtering by the current distribution is mentioned in [3] and
has a positive impact on the accuracy of the Contour-FFT.

Note that this procedure does not consider the distribution
and the testing scheme (see Section II-A), characterized by the
Lagrange order L. However, numerical experiments showed
that for most typical sets of parameters, the accuracy does not
seem to improve much beyond L = 2.

IV. VALIDATION

For validation purposes, two representation examples will
be provided in this section, followed by a comparison with an
approach based on the AIM.

Fig. 3. Example of error estimation by comparison between the scalar spatial
GF defined in (3) estimated with the Contour-FFT and a reference solution.
The −30 dB mask is defined for ρ < 8λa . Single layer substrate with �r = 9.8
and thickness d = λ0/12, backed with PEC. Method parameters: M = 256,
kmax = 6 k0, γ0 = k0/340, and T = 2.

A. Array of Random Patches

First, we analyze the port currents and embedded radiation
patterns of a regular array of 169 patches of random sizes and
orientations, pictured in Fig. 4. The patches are printed on a
single-layer substrate with permittivity �r = 2.2 and thickness
d = λ0/20, and they are fed by a delta-gap source in the
middle of a stripline extension, as can be seen in Fig. 5.
For this example, the “short-range” zone is defined as one
array cell. That is, the correction step is carried out only
on the self-interaction of each patch. The method parameters
are selected according to the guidelines described in [31]
and [32] and summarized in Section III to achieve −30 dB
of accuracy on the whole domain of the array (excluding the
short-range zone), and the following parameters are obtained:
M = 1024, kmax = 8k0, γ0 = k0/600, and T = 2.
To accelerate the convergence of the iterative method, a block-
diagonal preconditioner is implemented using the short-range
interaction matrices Zi j already computed in (22).

Figs. 6–8 present the embedded radiation patterns and
currents at the ports, as a comparison between the iterative
solver and the classical MoM solution used as a reference.
For the sake of comparison, the difference between the MoM
and three different methods is displayed:

1) the proposed Contour-FFT method;
2) the same iterative scheme with contour deformation and

using a simple FFT (that is, γ0 �= 0 and T = 0);
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Fig. 4. Array of 13 × 13 scaled patches. The elements are 1.65λa apart in
the x- and y-directions and the total number of unknowns is 22 101.

Fig. 5. Details of one patch element, meshed with rooftop basis functions.
The delta-gap source is highlighted in red.

3) the same iterative scheme without contour deformation
and using a simple FFT (that is, γ0 = 0 and T = 0).

We observe that the error is much lower with the proposed
Contour-FFT scheme, with the targeted accuracy of −30 dB
respected on the majority of the port currents (exceptions
mainly concern extremely low port current values). The
embedded pattern is also very well estimated. Note that the
solution produced by the third solver (simple FFT without
contour deformation) is highly inaccurate for most of the port
currents.

Table I summarizes the execution times’ distribution for the
three methods. We note that the computation of the sparse
interaction matrix needed for the correction on the short-range
zone and the preconditioner is still by far the bottleneck;
however, it only requires the evaluation of 0.66% of the
elements of the full MoM matrix.

Fig. 9 presents a comparison of the solvers’ execution times
and number of iterations, and Fig. 10 compares convergence
rates. From these, we observe that the number of iterations
is almost double for the simple FFT method. That is, the

Fig. 6. Directivity of the embedded element pattern of the center element of
the array, E-plane cut (φ = 0◦). Error is the absolute value of the difference
between the directivities obtained with MoM solution and with the three
solvers.

Fig. 7. Directivity of the embedded element pattern of the center element
of the array, H-plane cut (φ = 90◦).

Fig. 8. Port currents (in dB) of each of the 13×13 patches, arranged rowwise.

more accurately the matrix vectors are estimated, the faster
the solution converges. This is an important result that justifies
the small overhead due to the computation of a series of
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TABLE I

COMPARISON OF EXECUTION TIMES IN SECONDS

Fig. 9. Comparison of the three iterative solvers: amount of iterations and
execution time. The solution has converged each time with a normalized
residual criterion of −150 dB.

Fig. 10. Convergence rate for the three solvers. The solvers were stopped
at a normalized residual of −150 dB.

FFTs at each iteration, which is inherent to the proposed
method. In addition, the solver is a bit slower for the proposed
scheme, compared with the second solver, but the solution
error achieved by that second solver is far above the initially
targeted −30 dB.

B. Scattering by a Large Ring

For the second example, we analyze the scattering by a
large ring printed on a single-layer dielectric substrate with
permittivity �r = 9.8 and thickness d = λ0/12, illuminated
by a linearly polarized plane wave normally incident to the
surface of the patch. The parameters used are the same as
in Fig. 3, that is: M = 256, kmax = 6 k0, γ0 = k0/340, and
T = 2. The metallization is meshed with RWG basis functions
and displayed in Fig. 11.

Fig. 11. Mesh of the second example: the inner and outer radii are
3λa and 4λa , respectively. The total number of unknowns is 10 605.

Fig. 12. Directivity of the electric field scattered by the ring, E-plane cut
(φ = 0◦).

Fig. 13. Directivity of the electric field scattered by the ring, H-plane cut
(φ = 90◦).

Since this is a fully connected structure, a special attention
is paid to the definition of short-range interactions. We start
by dividing the mesh into hexagonal subdomains. For each
source subdomain, we define the six adjacent subdomains
(and itself) as neighbors of the source subdomain. The cor-
rection matrix (22) is then computed for every pair of basis
functions lying in neighboring subdomains. To ensure that
every interactions outside the short-range zone is accurate,



HUBERT et al.: ANALYSIS OF LARGE NONREGULAR PRINTED SCATTERERS USING THE CONTOUR-FFT 6123

the diameter of one hexagonal subdomain has to extend at
least over the “short-range zone”: in this case 0.45λa . The
same zone is used for the computation of a shielded block
diagonal preconditioner [34], [35], again to reuse Zi j required
in (22).

As with the previous example, Figs. 12 and 13 present
the scattered fields obtained with the three different solvers,
compared with the reference solution obtained with the clas-
sical MoM. As above, the accuracy is much better with the
proposed method. However, here, the solution converges in
about 400 iterations in each case. This high and constant
number indicates that the implemented shielded-block precon-
ditioner is not very well suited to these connected structures.
Nevertheless, the solver does converge, with a gain of more
than 15 dB in relative accuracy on most secondary lobes
compared with the simple FFT solver.

C. Comparison With AIM-Based Method

This section aims at relating the respective performance of
the proposed method with previously developed FFT-based
techniques. The proposed iterative method based on the
matrix-vector product in (20) is thus compared with the
AIM approach [8], [16], based on expression (21). Note that
the latter approach corresponds to a circular (or cyclic)
convolution [30]: the spatial domain needs to extend to twice
the area of the actual current distribution in order to avoid
aliasing effects. This phenomenon is well described in [15].
The specificity of the Contour-FFT is to bypass that spatial
approach, for which aliasing is inherent. The proposed method
should thus compute matrix-vector products efficiently, using
smaller FFT grids. This observation adds up to the already
mentioned advantages of the availability of an accurate error
model, and of avoiding the computation of the spatial GF on
all grid points.

In both the methods tested below, the projection and interpo-
lation scheme based on Lagrange polynomials and presented
in Section II-A is used to obtain f̂i . This means that (21) does
not exactly correspond to the formulation in [16], where the
projection operator is based on matching the vector potential
on a set of points around the basis function.

We first compared both approaches on the normal operating
conditions of AIM, that is, with the spatial domain extending
to twice the computation domain. The parametrization algo-
rithm described in Section III and [32] sometimes creates this
configuration for two connected reasons. First, based on (31),
increasing kmax leads to a higher contour, and thus to a larger
Taylor order (13) to maintain accuracy at long distances.1

Second, in a sequential implementation, to avoid that larger
Taylor order, doubling the number of spectral points can be
computationally more efficient, but leads to a wider spatial
domain. This situation typically occurs with thin substrates,
for which large spectral components are needed to catch
the sharp spatial singularity. In this case of a zero-padded
spatial domain, we observed that both the methods produce
very similar results in terms of accuracy and convergence.

1A low contour with a lower density of spectral points near the singular-
ity(ies) may degrade the accuracy (see also Fig. 2).

Fig. 14. Average relative error on the current distribution, after convergence,
for both the proposed and AIM-based approaches.

Fig. 15. Example of an 8 × 8 series-fed patch array. Dimensions from [36].
The structure is fed at the extreme left with a delta-gap source and a λ/4
microstrip extension. The frequency is 9.42 GHz.

TABLE II

SIMULATED SERIES-FED MICROSTRIP ARRAY CONFIGURATIONS

The advantages of the Contour-FFT method for the case
of very thin substrates may thus be limited, at least if the
parametrization algorithm is followed systematically.

However, for the case of thick substrates, the parametriza-
tion algorithm suggests spatial grids that fit more tightly
the computation domain. We then also compared both the
approaches using this reduced spatial domain. The chosen
structure is similar to that in Section IV-A: we generated a
regular array of 169 patch antennas presented in Fig. 5, with
a randomized scale factor and an orientation angle. The array
is 10.8λ0 wide, but now, the substrate has a permittivity of
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Fig. 16. Execution time distribution for the array of series-fed patches. Thick lines: total execution times for the proposed iterative method and for classical
MoM (for smaller problems). Thin lines: each step of the method. For classical MoM, the matrix filling curve is hidden behind total time curve.

�r = 4 and is 0.3λ0 thick. We analyzed the current distribution
on this array fed at its central element, using both the proposed
and AIM-based methods, compared with a classical MoM.
As mentioned before, for each method, two situations are
investigated: the “reduced spatial domain” that fits the compu-
tation domain as prescribed by the parametrization algorithm
and the “padded spatial domain” that extends to twice the
computation domain. The “reduced” set of parameters is M =
128, kmax = 4 k0, γ0 = k0/150, and T = 4.

The results are summarized in Fig. 14. Note that this
configuration exhibits a rather coarse spatial grid, which is
why the results strongly depend on the order of the Lagrange
expansion (5). We observe that the AIM-based method is
inaccurate with the reduced spatial domain because of aliasing,
to which the Contour-FFT method is much less subjected. The
two methods produce essentially the same results when the
domain is padded with zeros.

V. SCALING

This section presents results for larger problems with a
focus on the scaling of execution times with the number of
unknowns. As the method is designed for arbitrary structures,
for the sake of demonstration, there are no other specific
optimizations implemented compared with those mentioned
in Section II.

The first series of examples consists of arrays of series-fed
patches inspired from [16] and [36]. Fig. 15 presents an
example of a small 8 × 8 array, and Table II summarizes
the configurations of the simulated arrays and the parameters
obtained to reach a target accuracy of −30 dB. The substrate
is 1.575 mm thick and has a permittivity of �r = 2.2.

Due to the connections between patches, the interactions
of each patch on itself and its eight neighbors are

Fig. 17. Example of a 616 element array of random patches. The array is
illuminated by a circularly polarized plane wave with 30◦ incidence.

TABLE III

SIMULATED RANDOM PATCHES ARRAY CONFIGURATIONS

corrected and the corresponding shielded-block preconditioner
is implemented (see Section IV-B). Finally, the convergence
criterion is fixed at −150 dB (normalized residual).
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Fig. 18. Execution time distribution for the circular array of random patches. Thick lines: total execution times for the proposed iterative method and for
classical MoM (for smaller problems). Thin lines: each step of the method. For classical MoM, the matrix filling curve is hidden behind total time curve.

Fig. 16 summarizes the solution times with the proposed
Contour-FFT iterative method, and provides a comparison with
the MoM for problems small enough to fit into 16 GB of
memory. For those, the mean error on the current distribution
compared with the MoM ranges from −40 to −34 dB for a
target accuracy of −30 dB, which confirms the worst case
scenario behavior of parametrization.

We observe from the execution times’ distribution (Fig. 16)
that the longest steps concern the computation of the correction
matrix [that is, both the terms in the right-hand side of (22)],
and that these durations grow mostly linearly with the number
of unknowns. As a result, the total time exhibits also a
mostly linear behavior. Regarding the solver time, the trend
is piecewise linear, with a step at each increase in the FFT
size. This results in a difficult to predict complexity.

In the second series of examples, we analyze scattering by
a printed regular array of rectangular patches with random
dimensions and rotation angles, such as the one presented
in Fig. 17. The substrate is the same as in the previous
example, and the whole structure is illuminated by a circularly
polarized plane wave with a 30◦ incidence at 24 GHz. The
same criteria for tuning, convergence, correction, and precon-
dition are used as well.

The configurations analyzed are summarized in Table III
and the execution times’ distribution is plotted in Fig. 18.
As with the previous example, the mean error on the current
distribution varies between −37.5 and −32 dB. We note
that this problem converges in substantially fewer iterations,
probably because each patch is isolated, which results in a
better conditioning of the initial system of equations. Also the
correction matrix is computed much faster with this configura-
tion, leaving the computation of short-range interactions as the

sole dominant part of the execution time. The same comments
about the trends of execution times can be made.

It should be noted that all the numerical results presented
in this paper were computed on a typical desktop computer.
Nevertheless, critical optimizations can be developed to further
reduce the computation time. First, the implementation is
written partly in MATLAB [37] and in C++ languages, both
sharing information via a simple file-based protocol. This
impacts primarily the distribution of the current on the spatial
grid, which currently takes approximately 70% of the time at
each iteration. The language of implementation also has an
impact on the computation of the correction matrix, though to
a lesser extent. Last, most of the code does not support multi-
core processors, which are now quite standard and could divide
the overall execution time by a nonnegligible factor, especially
for highly parallelizable operations such as the sparse matrix
filling. Addressing these issues would considerably accelerate
the aforementioned steps.

VI. CONCLUSION

FFT-based convolution is already in use for several decades
for the fast MoM analysis of planar structures. In general,
those methods first estimate the spatial GF from the analytical
spectral GF, and then compute the convolution in the spectral
domain via an FFT. The main contribution of this paper
consists of a way to directly use the analytical spectral GF in
the convolution, obliterating the need to compute the spatial
GF on every spatial point. That is made possible with the help
of the Contour-FFT, which allows the computation of FFTs of
singular functions with controllable accuracy, using integration
on a complex-plane path, which is not directly compatible with
the FFT algorithm. The inverse Contour-FFT operator is also
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introduced, enabling FFTs evaluated in complex spectral coor-
dinates, again with controllable accuracy. We also proposed an
algorithm for the computation of the sparse correction matrix
dealing with short-range interactions, as well as an efficient
scheme for finding the method parameters to reach a given
target accuracy.

The proposed method is capable of high accuracy, with a
mean error on the current distribution lower than −30 dB,
when compared with the classical MoM. The radiated far
fields are also very well estimated using the Contour-FFT
method, with much better results than direct spectral methods
using a simple FFT. The time complexity is almost linear with
respect to the number of unknowns for very large problems.
It is also shown that, provided that the system of equations is
well-conditioned, the Contour-FFT method provides a better
approximation of the matrix-vector products and increases the
convergence rate of the iterative solver and the accuracy of
the converged solution, than direct spectral methods using a
simple FFT. Connected problems still exhibit a slower conver-
gence rate, which could be tackled in a future communication
through the implementation of a better suited preconditioner.

In terms of accuracy and convergence, the performance
of the proposed direct method is similar to that of already
established FFT-based methods in the observed thin-substrate
cases. However, the advantages of the Contour-FFT method
have been demonstrated for planar structures on thick sub-
strates, for which the proposed method is able to compute
matrix-vector products using smaller FFTs. In addition, in a
parallel implementation with each Taylor term computed on a
different core, higher contours requiring fewer spectral points
can be afforded, leading to significantly smaller FFT sizes.

Finally, in the context of arbitrary structures, a large frac-
tion of the computation time and memory resources may
still consist of computing explicit interactions between basis
functions in the near-field zone and the associated spectral
correction. Those near-field operations may be reduced at the
expense of a wider spatial spectrum (see Section III, and [32]
and [33]), with observed maximum distances ranging from
λa/4 to λa/10. Further research will be needed to approach
the quasi-static limit. We also note that contrary to the iterative
part of the solver, these operations can be straightforwardly
parallelized.

The method presented in this paper is readily applicable
to a wide range of planar layered structures, ranging from
classical phased arrays to reflectarrays or metasurfaces, and is
suitable for the fast analysis of printed structures with arbitrary
metallization or arrays with different elements.
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