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Abstract — Fast methods for the evaluation of the
EFIE operator at a given current distribution un-
dergo some difficulties at low frequency. In par-
ticular, it is well known that the MLFMA at low
frequency undergoes a breakdown due to the trans-
lation operator that becomes unstable. In this pa-
per, an innovative method that provides a fast way
to calculate the evaluation of the EFIE operator at
a given current distribution and for low-frequency
problem is presented. It is based on local Taylor
approximation of the Green’s function coupled with
one-time (once and for all geometry) SVD compres-
sion technique.

1 INTRODUCTION

One of the best known kernel-dependent methods
is the Fast Multipole Method (FMM) [6] with
a complexity of O(N1.5). An updated version
of the FMM, the Multi-Level Fast Multipole
Algorithm (MLFMA) [14], is a direct improvement
of the FMM, which consists of subdividing the
domain into an octree of parents and children
domains. Then, the complexity of the aggrega-
tion operations, translation operations and the
disaggregation operations can be reduced to a
complexity of O(N log(N)). However, the basis
and test functions must be placed at least a half
wavelength apart, otherwise the FFM-MLFMA
undergoes a breakdown. At low frequency, the
translation operator computation becomes unsta-
ble. Therefore, for close basis and testing functions,
a classical computation of the impedance matrix
is generally performed. This means that, when
the size of the basis and testing functions becomes
relatively small (smaller than a hundredth of a
wavelength), the computation of the impedance
matrix in the near-field zone becomes cumbersome
because of O(N2) complexity. Several authors
have been trying to stabilize the FMM-MLFMA
breakdown in the past decade [7], [3], [4]. However,
all these methods suffer from uncontrolled ap-
proximations and sometimes even from somewhat
contradictory hypotheses [8], which then requires
a tedious empirical tuning.

For low-frequency problems, several authors
have focused on kernel-free methods [10]. Basi-
cally, they focus more on the algebraic property of
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the rank deficiency of the off-diagonal blocks of the
impedance matrix itself than on the kernel used to
calculate the matrix. These methods are said to
be kernel-free because they can be applied to any
matrix that contains rank-deficient off-diagonal
blocks. However, although the iterative solver
converges faster, the full impedance matrix is
still required. Several methods not requiring the
knowledge of the full matrix have been developed,
such as the Adaptive Cross Approximation [2] and
its multi-level version [15]. The ACA-SVD [15]
method consists of applying a low-cost SVD
on an ACA decomposition to further reduce
the two low rank matrices obtained with the
ACA. However, although this method provides
a matrix-vector multiplication in O(Nlog(N))
the computational complexity of the matrix
compression (pre-processing) has a O(N2log(N))
complexity. The kernel-free methods suffer from an
important default: the control over the accuracy of
the solution. The process that consists in stopping
the columns and lines generation is somewhat
empirical. In particular, it is relatively easy to
imagine a PEC shape that breaks down the ACA
when applied to a MoM problem.

In this work, an alternative kernel-dependant
method is proposed in order to reduce the computa-
tion time due to the direct computation of the EFIE
impedance matrix and the matrix-vector products
in the iterative solver. The relative error in com-
parison to a MoM direct method can be potentially
controlled which is an important difference with
present fast methods. The idea resides in the obser-
vation that for basis functions much smaller than
the wavelength, the local variations of the Green’s
function are relatively small. An alternative ap-
proach consists of using a Taylor expansion of the
Green’s function for source and test points given on
a regular grid and of combining this approximation
with a SVD compression technique. Using a regu-
lar grid of only few different sizes allows one to pre-
calculate the SVD compressions once and for all,
independently from the scatterers shapes. It will
be shown that the method allows the separability of
the EFIE integral. The method has been validated
on a sphere and on a Radio Frequency Quadrupole
(RFQ) which is a cavity placed at the very begin-
ning of a linear accelerator [16], [5]. A comparison
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between a Methods of Moments approach solution
of the RFQ and our proposed solver will be pre-
sented. The proposed method is called the Fast
Near Field Method of Moments Solver (FNFMMS).

2 Mathematical formulation

The Taylor expansion is used to initiate the sep-
arability between source and observation coordi-
nates. Indeed, the Taylor expansion expresses a
given function as the sum of terms containing only
monomial functions of the variables. In a first in-
stance, for source and observation points located
in different regions, the Green’s function is decom-
posed into a polynom of the difference between co-
ordinates, ri − r′i. In this notation, the primed co-
ordinates correspond to sources and the unprimed
ones to observation points. The index i stands for
the selection of coordinate, i.e. x, y or z.
Thanks to the Newton binomial formula the powers
of ri − r′i appearing in the Green’s function can be
rewritten as follows:

(r′i − ri)
αi =

αi∑
ki=0

(
αi

ki

)
(r′i)

αi−ki(−r′i)ki (1)

where αi, ki ∈ � and

(
αi

ki

)
= αi!

(αi−ki)!ki!
. Let

us define the following function that corresponds
to the different moments of a given current T in
region A

Ml,k,A(T ) ≡
∫
A

fl(T )(r)
3∏

i=1

(ri)
kidr (2)

where k = (k1, k2, k3). Now, the electric field due
to basis function J and tested by testing function
T can be rewritten as follows:

< T |E(J) >=jμc

4∑
l=1

N∑
|α|=0

(3)

α∑
k=0

KαBα,kMl,k,A(T )Ml,α−k,B(J)

where j ≡ √−1, μ the free space permeability,
c the speed of light, |α| ≡ α1 + α2 + α3, N

the Taylor expansion order,
α∑

k=0

≡
α1∑

k1=0

α2∑
k2=0

α3∑
k3=0

,

Bα,k ≡
3∏

i=1

(
αi

ki

)
(−1)ki , Kα ≡ 1

α!
∂αg
∂xα |R2−R1

and

g : �, x → ejk||x||
||x|| . The local regions A and B cor-

respond to respectively a local source region and
a local test region, which must be separated by a

reasonable distance in order to limit the slow con-
vergence of the Taylor expansion close to the sin-
gularity. Therefore, a dead region must be defined
around a source region in which the brute force
method is applied i.e. use matrix-vector multipli-
cation to compute the source to tested field opera-
tion. Obviously, the dead region includes the source
region. Fig. 1 illustrates the definitions of the re-
spective domains. In order to apply the approxi-
mation, the geometry of the whole MoM problem
must be split into several local source domains, to
which correspond respectively several local test do-
mains. The field scattered by the current in the
source domain is tested in the test region, where
the approximation remains valid.
For each local source domain in the source zone,

Figure 1: Definitions of the source, dead and test zones

one can use Eq. 4 to speed up the computation.
The final expression reads

< T,E(S) > ≈jμc
4∑

l=1

n∑
|α|=0

α∑
k=0

Bα,k (4)

P∑
p=1

Ml,k,Ap
(T )

O∑
o=1

Gα
p,oMl,α−k,Bo

(S)

where Bo is a local source domain indexed o, Ap

is a local test domain indexed p, O is the total
number of local source domains in the source zone,
P is the total number of local test domains in the
test zone, Gα

po ≡ 1
α!

∂αg
∂xα |Tp−So

, Tp is the center

point of the local test domain indexed p and So is
the center of the local source domain indexed o.

In order to further speed up the evaluation of
Eq. 6, a truncated SVD decomposition [11] can
be performed on the matrix Gα. The size of the
matrix is reduced by selecting the singular val-
ues larger than a certain given threshold. Let
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p ∈ � be the number of selected singular val-
ues. Let us define Uα

r ≡ [c1, ..., cp] ∈ �M×P and
V α
r = [S11l1; ...;SPP lP ] ∈ �P×N ; then the approx-

imate matrix reads

Gα,a = Uα
r V

α
r (5)

Now, one can subdivide the whole geometry into
non-overlapping source zones. Each source domain
receives a portion of the current living on the scat-
terer. For each current in each source zone, Eq. 4
is used to speed up the computation. The source
zone size is predefined in order to be able to pre-
calculate the compressed matrices. A uniform grid
that covers the structure is first generated. The
grid is generated in such a way that each source
zone contains the same amount of sampling points.
Each local region of validity of the Green’s func-
tion approximation (the region of space around a
sampling point) is indexed by a unique and global
index. This global index is also used to point to
the center of this local region which is by defini-
tion a rectangular parallelepiped. For each source
domain denoted Sg,s corresponds a test zone and a
dead-zone denoted respectively by Tg,s and DZg,s.
The basis functions used in this paper are the Rao-
Wilton-Glisson (RWG) basis functions [9]. The test
of the field in a dead-zone Tg,s is performed using
a brute-force method and is given by Is,2β where β
is the source current expressed through half basis
function coefficients and Is,2 is the brute force EFIE
operator computed for the half source basis func-
tions in the source zone Sg,s and the half test basis
functions in the dead-zone DZg,s multiplied by an
injection matrix. The injection matrix injects the
current coefficients of the half basis functions into
the set of half basis functions that live in Sg,s. The
testing of the field in the Tg,s zone is given by

Is,1β ≡ jμc
4∑

l=1

n∑
|α|=0

α∑
k=0

Bα,k

Mg,l,kI
t
T,sU

α
r V

α
r IS,sMg,l,α−kβ (6)

where IS,s and IT,s are the sparse parallel injection
matrices that inject global points of the grid to local
points in respectively IS,s and IT,s. The matrix
Ml,α−k is the global matrix of the moments and is
a sparse matrice as well. The number of non-zero
elements in Ml,α−k is equal to N (the number of
half basis functions). The matrices Uα

r and V α
r are

the compressed matrices that remain of small fixed
dimension. Finally, the contribution of all source

domains to the matrix-vector product is given by

S∑
s=1

Is,1β = jμc
4∑

l=1

n∑
|α|=0

α∑
k=0

Bα,k

Mg,l,k

S∑
s=1

ItT,sU
α
3 V

α
3 IS,sMl,α−kβ

(7)

where S is the total number of source zones cover-
ing the whole geometry. Eq. 7 expresses the tested
fields, as produced by basis functions covering the
whole geometry, and tested by functions located
everywhere else (excluding the dead and source
zones). The limited number of columns and lines
in U and V matrices, resulting from the low-rank
aspect of the interactions, accelerate the matrix-
vector products.

3 Numerical results

The simulation was performed on a sphere of radius
one meter and at frequency of 178MHz an with
19000 (RWG) basis functions. Figure 2 shows a
given source domain and its associated dead-zone
domain in green and the test domain in blue. The
number of source domains required to cover the
whole structure is 74. In this paper, GMRES [13]

Figure 2: Presentation of a source domaine (red)
and its associated dead-zone (green) and test domains
(blue).

is used to solve the system of equations. In order
to improve further the computational time, lower
order Taylor approximation are used to calculate
first-guess currents for the GMRES solver. The
taylor order has been set to three and the accu-
racy set to a relative error of 10−5 on the excitation
vector. The following criterion of relative error for
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type \ Taylor order 0 1 2 3
FNFMMS Non pre. 250s 305s 602s 1211s

FNFMMS Pre. 49s 68s 154s 315s

Table 1: GMRES Convergence times

each guess solution has been used

errorn =
errorn−1

10
(8)

error3 = 10−5 (9)

where n corresponds to the Taylor order. Fig. 3
shows that the GMRES convergence for this rel-
ative residual error criterion. In order to im-

Figure 3: Number of iterations.

prove the computational time, a low-frequency pre-
conditioner has been used [1], [12]. Table 1 shows
the GMRES computation time for each order of
Taylor approximation with and without the pre-
conditioner. Table 2 shows the total computation
time (GMRES and the brute force matrices compu-
tation) for the method with and without the pre-
conditioner. The brute-force solution with the low-
frequency solver has been calculated as well to show
the improvement of GMRES convergence on the ac-
curate impedance matrix. It is important to note
that the low-frequency preconditioner is necessary
for the good behavior of the method on such a dense
mesh. When the preconditioner is used, the pro-
posed method is more than three times faster than
a brute-force approach. It is important to say that
the computational times for the GMRES conver-
gence of respectively the brute force method with
and without the preconditioner are so low because
an optimized LAPACK library for Intel CPU has
been used. The proposed method has been imple-
mented in C++ but without optimized instructions
for the underlying hardware.

GMRES DeadZone Total
FNFMMS Non pre. 2368s 324s 2692s

FNFMMS Pre 586 324s 910s
Brute Force 229s 2784s 3013s

Brute Force Pre. 122s 2784s 2907s

Table 2: Comparison of total simulation times

4 Conclusion

The new proposed method appears to be more than
three times faster than a brute force method when
combined with an efficient preconditioner. The pre-
conditioner is necessary in order to obtain good
performances. The method remains of complexity
O(N2) because of the fixed size of the dead zones.
However, we have been working to overcome to is-
sue and a solution will be soon published.
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