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Abstract
Objectives  Electron paramagnetic resonance (EPR) oximetry using particulate materials allows repeatable measurements 
of oxygen in tissues. However, the materials identified so far are not medical devices, thus precluding their immediate use 
in clinical studies. The aim of this study was to assess the magnetic properties of Carbo-Rep®, a charcoal suspension used 
as a liquid marker for preoperative tumor localization.
Materials and methods  Calibration curves (EPR linewidth as a function of pO2) were built using 9-GHz EPR spectrometry. 
The feasibility of performing oxygen measurements was examined in vivo by using a low-frequency (1 GHz) EPR spec-
trometer and by inducing ischemia in the gastrocnemius muscle of mice or by submitting rats bearing tumors to different 
oxygen-breathing challenges.
Results  Paramagnetic centers presenting a high oxygen sensitivity were identified in Carbo-Rep®. At 1 GHz, the EPR 
linewidth varied from 98 to 426 µT in L-band in nitrogen and air, respectively. The sensor allowed repeated measurements 
of oxygen over 6 months in muscles of mice. Subtle variations of tumor oxygenation were monitored in rats when switching 
gas breathing from air to carbogen.
Discussion  The magnetic properties of Carbo-Rep® are promising for its future use as oxygen sensor in clinical EPR oximetry.
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Introduction

Oxygen is a critical factor in physiology, pathophysiology, 
and therapy. In many circumstances, the ability to measure 
oxygenation is critical to assess tissue function and disease. 
Several potentially useful methods are able to measure tissue 
oxygen level [1–3]. These methods are based on the accu-
mulation of nitroimidazoles in hypoxic cells evidenced by 
immunohistochemistry [4] or positron emission tomography 
(PET) [5], fluorescence and phosphorescence quenching [6], 
electrochemical reaction [7], and magnetic resonance (MR) 
techniques. Oxygen-sensitive MRI techniques include T2* 
and T1 measurements [8–13], as well as fluorine relaxometry 

[14, 15], as illustrative examples. Electron paramagnetic 
resonance (EPR) offers the possibility of providing quanti-
tative pO2 values using paramagnetic centers sensitive to the 
oxygen environment [16–20]. Among the potential EPR oxy-
gen sensors, particulate materials offer several advantages: 
they are highly sensitive to variations of oxygen (changes 
<1 mmHg can be detected), and they are inert in tissues, 
leading to the possibility of repeat oxygen measurements 
from the same site over long periods (months to years) [16, 
17, 19]. Several particulate materials have been identified 
for that purpose: lithium phthalocyanine [21] and substituted 
lithium naphthalocyanine [22], charcoals [23], and carbon 
blacks [24]. These particulate sensors were successfully 
used in preclinical studies to measure oxygen in brain [25], 
heart [26], skeletal muscle [27], liver [28], gastrointestinal 
tract [29], kidney [30], skin [31], ovarian grafts [32], pan-
creatic islet grafts [33], and wounds [34]. One of the larg-
est successes of EPR oximetry has been the monitoring of 
variations in tumor oxygenation induced by pharmacologi-
cal agents [35–41] or during the course of radiation therapy 
[42–45].
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The development of advanced whole-body low-frequency 
EPR systems [46] has opened up the possibility of translat-
ing this unique technology to measure tissue oxygenation in 
patients [47, 48]. When moving into the clinical arena, the 
most crucial issue is to ensure the biocompatibility of the 
oxygen sensors [49]. The seminal idea was to use India ink 
[50], which contains carbon-black particles, as this material 
has been used for several centuries for tattooing humans. 
However, as the paramagnetic properties largely varied from 
batch to batch, synthetic biocompatible India inks were 
developed using well-characterized carbon-black materials 
[24] and suspended in pharmaceutical-grade suspending 
agents [51]. Besides the use of inks, many efforts focused 
on the inclusion of paramagnetic sensors in thin oxygen-
permeable biocompatible materials [52–58]. Still, research-
ers with an interest in applying EPR oximetry in patients are 
facing regulatory problems, namely, the need for production 
of experimental oxygen sensors according to good manufac-
turing practice (GMP) standards and the potential request 
for approval as an authorized medical device. These regula-
tory issues encouraged us to screen the EPR properties and 
oxygen sensitivity of carbon materials already approved as 
medical devices. From this screening, we identified Carbo-
Rep® as a promising candidate for the application of EPR 
oximetry in patients. Carbo-Rep® is a sterile suspension of 
charcoal that is used in Europe for the accurate preoperative 
localization of mammographically detected lesions. This 
charcoal suspension is approved as a medical device class 
IIb. In this publication, we described the EPR characteristics 
of this charcoal with a focus on its sensitivity to oxygen. In 
addition, we performed in vivo experiments in mice and 
rats using low-frequency EPR to assess its ability to identify 
subtle variations of oxygenation in muscle and tumors and 
its long-term responsiveness as an oxygen sensor.

Materials and methods

Chemicals

Carbo-Rep® (40 mg charcoal/ml) was purchased from Stery-
lab (Milan, Italy). The suspension was shaken before sam-
pling. All measurements were carried out on the suspension 
as received without any additional chemicals. The following 
batches were analyzed: nos. 0613-17 and 1152-17.

Particle size

The particle size and the polydispersity index (PDI) were 
characterized by dynamic light scattering (DLS) using a 
Zetasizer Nano ZS (Malvern Instruments Ltd., Worcester-
shire, UK).

In vitro 9‑GHz EPR spectrometry

EPR measurements were performed using a Bruker EMX-
Plus spectrometer (Bruker, Rheinstetten, Germany) oper-
ating at X-band (9.4 GHz) and equipped with a PremiumX 
ultra-low-noise microwave bridge and a Super High Q 
(SHQ) high-sensitivity resonator. EPR settings were as 
follows: microwave power 1.262 mW; modulation fre-
quency 100 kHz; modulation amplitude 0.02 mT; time 
constant 10.24 ms; conversion time 15 ms; data points 
3000; sweep width 3 mT. Calibration curves of linewidth 
(LW) as a function of pO2 were done at 296 and 310 K. 
Approximately 50µl of charcoal suspension were placed 
in a gas-permeable Teflon tube (inner diameter 0.025 
in.; outer diameter 0.029 in.; Zeus Industrial Products, 
Letterkenny, Ireland). The Teflon tube was inserted in a 
quartz tube open at both ends. The oxygen content was 
varied between 0 and 21% O2 using an Aalborg gas mixer. 
The oxygen content in the mixed gas was measured using 
a Servomex MiniMP 5200 oxygen analyzer (precision 
0.1% oxygen content). The gas flux in the EPR cavity 
was 270 l/h.

In vitro 1‑GHz EPR spectrometry

The oxygen calibration curve at 310 K was also performed 
on a low-frequency EPR spectrometer (Clin-EPR LLC, 
Lyme, NH, USA) equipped with a loop-gap surface coil. 
Approximately 500µl of charcoal suspension was placed 
in a glass vial, which was placed in a water bath at 310 K. 
A gas with oxygen content varying between 0 and 21% O2 
was flushed for 75 min in the suspension through a needle. 
A second needle, inserted in the plug, was used to avoid 
hyperpressure in the vial. The oxygen content in the mixed 
gas was measured by a Servomex MiniMP 5200 oxygen 
analyzer. Needles were removed and vials placed on the 
loop-gap surface coil. EPR measurements were performed 
immediately.

In vivo 1‑GHz EPR spectrometry

Anesthesia

Animals were anesthetized by inhalation of isoflurane mixed 
with air (21% oxygen) in a continuous flow (2 l/h) delivered 
by a nose cone. Induction of anesthesia was performed using 
3% isoflurane which was then stabilized at 1.5% for a mini-
mum of 15 min before any measurement. It was previously 
demonstrated that this anesthesia regimen did not disturb the 
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hemodynamics in rodents [59]. A circulating water system 
was used for body-temperature regulation at 37 °C.

Muscle

Male C57BL/6 mice (Janvier, Le Genest-Saint-Isle, France) 
(n = 5) were used for the studies in muscle; 75 µl of charcoal 
suspension was injected in both gastrocnemius muscles. The 
first EPR measurement was done 1 day after administra-
tion of the oxygen sensor. Measurements were repeated over 
6 months. In vivo measurements were performed using a 
low-frequency EPR spectrometer (Clin-EPR LLC) equipped 
with a loop-gap surface coil. In two of five experimental ani-
mals, measurements were carried out on muscles before and 
after transient restriction of the blood supply (the base of the 
thigh was reversibly tied for 5 min with a thread to restrict 
flow through the femoral arteries). In total, ten muscles were 
measured at the basal state at each time point over 6 months 
and four muscles during transient ischemic periods.

Tumors

Seven-week-old male Fischer 344 rats (Charles River, 
Arbresle, France) (n = 3) were subcutaneously injected with 
5.106 9L-glioma cells (kindly provided by Dr. Olivier Bock-
stael, Université Libre de Bruxelles, Belgium) in the thigh. 
Tumor implantation was performed under anesthesia with 
a mixed solution of ketamine and xylazine at doses of 80 
and 10 mg/kg, respectively. Rats were included in the study 
when the tumor reached a diameter of 14–16 mm. Approxi-
mately 400µl of charcoal suspension was introduced within 
the tumor at a depth of 3–6 mm. EPR acquisitions were first 
carried out at 1 day after probe implantation. After recording 
the pO2 value under normoxic condition, the input gas was 
switched from air to carbogen (5% CO2 in oxygen). The pO2 
value under hyperoxic condition was obtained after 30-min 
carbogen breathing. The experiment was repeated the fol-
lowing day (2 days after probe implantation) with the same 
animals.

Results

The Carbo-Rep® preparation is a suspension of charcoal 
particles with a small diameter (mean 2.9 µm, PDI = 0.55), 
allowing easy sampling for injection. This charcoal suspen-
sion presents an EPR spectrum characteristic of a carbon-
centered radical (Fig. 1) with a g-value of 2.00315. The 
microwave-power saturation curve is presented in Fig. 1. 
Interestingly, the EPR LW was highly sensitive to the 
oxygen environment, as shown in Fig. 1. The calibration 
curves (LW as a function of % oxygen) recorded in X-Band 
and L-Band are presented in Fig. 2. This calibration was 

reproducible from vial to vial and from batch to batch (Fig. 2 
top). We found that the calibration was slightly dependent 
on the temperature (Fig. 2 middle). In L band (Fig. 2 bot-
tom), we observed a slightly different calibration compared 
to X band, particularly <2% O2, where LW was lower for 
the same O2 percentage. Low-frequency (1 GHz) EPR spec-
trometry was used to assess the performance of Carbo-Rep® 
as an oxygen sensor in vivo. Figure 3 presents a typical EPR 
spectrum recorded in vivo in the muscle after administration 
of 75µl of charcoal suspension. The LW varied consider-
ably when the blood flow was temporarily interrupted in 
the muscle (Fig. 3). We repeated the measurements of the 
LW over a period of 6 months, which showed that Carbo-
Rep® preserved its responsiveness to variations in oxy-
genation in vivo (Fig. 4). Mean pO2 values are presented 
in Fig. 4. As expected, the administration of Carbo-Rep® 
induced no inflammatory response or damage in the muscle 
injected (Fig. 5). Carbo-Rep® was also administered in a 
glioma tumor model. The charcoal was distributed over the 
whole tumor, allowing measurement of the pO2 distributed 
in the whole tumor (Fig. 6). Baseline pO2 values (while rats 
were breathing air) indicated that these tumors were highly 

Fig. 1   Electron paramagnetic resonance (EPR) characteristics of 
the charcoal suspension present in Carbo-Rep®. Top: EPR spectra 
recorded at 9 GHz in air and in nitrogen. Bottom: microwave-power 
saturation curve
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hypoxic (Fig. 7). Individual tumor responses to a carbogen-
breathing challenge are also presented. There was a large 
heterogeneity in response to carbogen breathing: the pO2 
reached values >10 mmHg in three of six tumors. Overall, 
the increase in pO2 was significant.      

Fig. 2   Calibration curves [linewidth (LW) as a function of percent 
O2] of charcoal suspension present in Carbo-Rep®. Top: oxygen cali-
brations carried out on three different flasks in X band. Closed cir-
cle: batch no. 0613-17 vial 1; Open circle: batch no. 0613-17 vial 2; 
Closed square: batch no. 1152-17 vial 1. Middle: effect of tempera-
ture on oxygen calibration in X band. Open circle: 296 K. Closed cir-
cle: 310 K. Bottom: oxygen calibration performed in L band (1 GHz). 
Results are expressed as mean ±  standard deviation (SD) (n = 4)

Fig. 3   Typical electron paramagnetic resonance (EPR) spectra 
recorded in vivo using a 1-GHz EPR spectrometer in the gastrocne-
mius muscle of a mouse before and after transient restriction of the 
blood flow

Fig. 4   Measurements of line width (LW) and pO2 estimates recorded 
in  vivo in the muscle of mice after administration of Carbo-Rep®. 
Top: electron paramagnetic resonance (EPR) LW measured over time 
in normal muscles (n = 10, open circle) and hypoxic muscles (n = 4, 
closed square). Bottom: mean pO2 values ± standard error of mean 
(SEM) measured in muscles and hypoxic muscles. ****P < 0.0001
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Discussion

While tissue oxygenation is critical in the management of 
many pathologies, current clinical practice often uses indi-
rect markers of tissue hemodynamics. However, there are 
several circumstances in which the knowledge of real pO2 
values could potentially impact the clinical decision. The 
most obvious field is radiation therapy, as the response to 
irradiation is dramatically dependent on pO2 values in the 
range of 0–10 mmHg [60–63]. Eppendorf® pO2 histograph 
has been used over the past two decades to definitely estab-
lish the relevance of pO2 measurements in radiation ther-
apy [7], but its invasive nature led to its withdrawal from 
clinical practice. Among methods that are reporting actual 
pO2 values, EPR offers the unique advantage of repeat-
able measurements from the same site over time after a 
single administration of an oxygen sensor [64]. Pioneering 
clinical EPR studies have used inks made of carbon black 
or charcoal particles [47, 48, 50, 64–66]. To pursue and 
extend the clinical EPR oximetry studies, there is a crucial 

need for the use of paramagnetic oxygen-sensitive probes 
that are recognized as medical devices. From our screening 
on carbon-based materials used in preoperative marking, 
our attention was drawn to Carbo-Rep®. We found that this 

Fig. 5   Histological section in a muscle injected with Carbo-Rep® (a) and magnification of area close to sensor location (b). Minimal inflamma-
tion, if any, was observed around the charcoal material

Fig. 6   Distribution of the charcoal inside a tumor

Fig. 7   pO2 measurements (n = 6) recorded in 9-L gliomas (in rats) 
after administration of Carbo-Rep®. Top: individual responses when 
switching from air to carbogen breathing. Bottom: mean pO2 val-
ues ± standard error of mean (SEM) measured before and after 30 
min carbogen breathing. *P = 0.0353
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material presents a single-line EPR spectrum, with an LW 
highly sensitive to the oxygen environment (Fig. 1). The 
calibration curve (LW as a function of pO2, Fig. 2) is com-
parable with other carbon-based oxygen-sensitive materi-
als previously described [23, 24, 67, 68]. Interestingly, this 
charcoal formulation offers the maximal sensitivity in the 
range of physiological tissue oxygenation values (0–5% 
oxygen, or 0–38 mmHg) (Fig. 2). In addition, the accu-
racy of measurement was high, with an error estimated at 
~0.5 mmHg at 1% oxygen. We also observed that variation 
in temperature may slightly affect the calibration (Fig. 2). 
As a consequence, for an accurate estimate of the pO2, 
it is important to keep tissue temperature constant dur-
ing measurements, especially when sedation or anesthesia 
is necessary. The injection of a small amount (75µl) of 
Carbo-Rep® suspension allowed recording an EPR signal 
using a Clin-EPR system (1-GHz EPR spectrometer) that 
could be further analyzed for LW estimation (Fig. 3). In 
muscles, the pO2 measurements using EPR and Carbo-
Rep® as the oxygen sensor were well within the range of 
physiological values found in other studies [27, 54, 55, 
58]. As responsiveness stability is a critical issue when 
evaluating the performance of an oxygen sensor [53–55, 
58], in  vivo EPR measurements were repeated over a 
period of 6 months. Both baseline values and response to 
blood-flow restriction (Fig. 4) demonstrated Carbo-Rep® 
application allows for long-term oximetry. This feature is 
particularly interesting considering that clinical applica-
tion of an EPR oxygen sensor has the potential for long-
term monitoring of hypoxic status and oxygen changes in 
peripheral vascular diseases, wound healing [69, 70], and 
during the time course of radiation therapy [48, 71, 72]. 
To assess its potential application in the latter scenario, we 
administered Carbo-Rep® in a tumor model and evaluated 
the response to carbogen breathing, a treatment often used 
in an attempt to increase tumor oxygenation. We found that 
this charcoal preparation was capable of monitoring subtle 
changes in tumor oxygenation.

Conclusion

We identified a registered medical device that fulfills the 
requirements for oxygen measurements using EPR oximetry. 
This material, which is used clinically for preoperative local-
ization of breast cancer, possesses EPR properties favorable 
for use as an oxygen sensor in future clinical EPR studies.
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