
Constraints (2019) 24: 183–209
https://doi.org/10.1007/s10601-018-9300-y

The item dependent stockingcost constraint

Vinasetan Ratheil Houndji1 ·Pierre Schaus2 · Laurence Wolsey3

Published online: 19 February 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In a previous work we introduced a global StockingCost constraint to compute the total
number of periods between the production periods and the due dates in a multi-order capaci-
tated lot-sizing problem. Here we consider a more general case in which each order can have
a different per period stocking cost and the goal is to minimise the total stocking cost. In
addition the production capacity, limiting the number of orders produced in a given period,
is allowed to vary over time. We propose an efficient filtering algorithm inO(n log n)where
n is the number of orders to produce. On a variant of the capacitated lot-sizing problem, we
demonstrate experimentally that our new filtering algorithm scales well and is competitive
wrt the StockingCost constraint when the stocking cost is the same for all orders.

Keywords StockingCost constraint · Production planning · Lot-sizing · Scheduling ·
Constraint programming · Global constraint · Optimization contraint · Cost-based filtering

1 Introduction

In production planning, one of the most important and difficult tasks is the determination
of the size of the production lots [1, 16]. Lot-Sizing (LS) problems have been well stud-
ied since their introduction by [12]. There are many variants of LS problems depending on
their characteristics: single or multiple item, capacitated or uncapacitated, single level or
multiple levels, set up costs, changeover costs, storage/stocking costs, etc. We refer to [5,

� Vinasetan Ratheil Houndji
ratheil.houndji@uac.bj

Pierre Schaus
pierre.schaus@uclouvain.be

Laurence Wolsey
laurence.wolsey@uclouvain.be

1 Institut de Formation et de Recherche en Informatique (IFRI), Université d’Abomey-Calavi (UAC),
Abomey-Calavi, Benin

2 Institute of Information and Communication Technologies, Electronics and Applied Mathematics
(ICTEAM), Université catholique de Louvain (UCL), Louvain la Neuve, Belgium

3 Institute for Multidisciplinary Research in Quantitative Modelling and Analysis (IMMAQ),
Université catholique de Louvain (UCL), Louvain la Neuve, Belgium

http://crossmark.crossref.org/dialog/?doi=10.1007/s10601-018-9300-y&domain=pdf
http://orcid.org/0000-0002-5467-9448
mailto: ratheil.houndji@uac.bj
mailto: pierre.schaus@uclouvain.be
mailto: laurence.wolsey@uclouvain.be

184 Constraints (2019) 24:183–209

15, 16, 21, 27] for some reviews on this family of problems. The Capacitated Lot-Sizing
Problem (CLSP) treated here is a production planning problem which consists of determin-
ing a minimal cost production schedule for multiple items (production costs, setup costs,
changeover costs, stocking costs, etc.) over a discrete and finite planning horizon, such that
machine capacity restrictions are respected and all demands are satisfied. Exact solution
approaches are based on mixed integer programming formulations to which one adds strong
valid inequalities or extended formulations involving additional variables (see for example
[2, 3, 10, 11, 17]). We refer to [16] for operations research approaches to the CLSP proposed
in the literature.

It is well known that Constraint Programming (CP) can be effective in solving some hard
combinatorial problems. For example, CP is one of the best approaches to tackle scheduling
problems. Surprisingly lot-sizing has only very recently become a field of research in Con-
straint Programming. In [9] German et al. proposed the LotSizing constraint for a single
item problem in which the different costs depend on the period of the production of the
order. Our work [14] introduced the StockingCost constraint to compute the total num-
ber of periods between the production periods and the due dates in a capacitated lot-sizing
problem. This constraint is well suited to compute the stocking cost when the per period
stocking cost is the same for every order. Unfortunately, in many problems the stocking cost
is order dependent since some order types (items) are more or less expensive to hold in stock.
In this case, each order has the per period stocking cost of the corresponding item. This
work generalizes1 the StockingCost constraint allowing a per period stocking cost that
is potentially different for each order. The new constraint is denoted IDStockingCost
(ID stands for Item Dependent) for the rest of the paper.

Cost-based filtering algorithms for this kind of optimization constraint are often based
on the following pieces of information [7] (assuming minimization):

– a relaxed or less constrained problem;
– the value of an optimal solution to this relaxed problem. This value is a lower bound

on the original problem objective function. It is used to 1) check the consistency of the
constraint and 2) filter the objective variable;

– an optimistic evaluation of the cost increase if a value is assigned to a decision variable
Xi . This cost increase is often called marginal cost or reduced cost or regret and is used
to filter decision variables.

We use this approach to derive a filtering algorithm for the IDStockingCost constraint.
We relax the problem by only considering the due dates of orders and the capacity restric-
tions. This relaxation allows us to have an O(n log n) algorithm to achieve a filtering of the
IDStockingCost constraint based on a lower bound on the marginal costs. Thus the fil-
tering algorithm introduced is weaker than bound consistency but the experimental results
show that it scales well.

The remainder of this paper is organized as follows: Section 2 presents the item-
dependent problem, gives a formal definition of the item dependent stockingCost constraint
IDStockingCost, and shows how one can achieve pruning with the state-of-the-art con-
straints; Section 3 describes a filtering algorithm for the cost variable H based on a relaxed

1in the same way as minimumAssignment [6, 7] generalizes allDifferent [18], cost-gcc [24]
generalizes gcc [22, 23], or cost-regular [4] generalizes regular [19], etc.

Constraints (2019) 24:183–209 185

problem; Section 4 shows how to filter the date variables X based on an optimal solution
of the relaxed problem and a lower bound on the marginal costs; Section 5 presents some
computational experiments on an NP-Hard variant of the CLSP involving changeover costs
when switching from production of one order to another; and Section 6 concludes.

2 The item dependent StockingCost problem and constraint

One has a time horizon T , a set i = 1, . . . , n of orders each with a due date di ∈ [1, . . . , T]
and a per period stocking cost hi . There is a machine which has ct units of production
capacity in period t . Producing an order in period t consumes one unit of machine capacity.
The problem is to produce each order by its due date at latest without exceeding the machine
capacity and to minimize the sum of the stocking costs of the orders. Below we formally
define the Item Dependent StockingCost Constraint and shows some decompositions of this
constraint.

The IDStockingCost2 constraint takes the following form:

IDStockingCost([X1, . . . , Xn], [d1, . . . , dn], [h1, . . . , hn], H, [c1, . . . , cT])
in which:

– n is the total number of orders to produce;
– T is the total number of periods over the planning horizon [1, . . . , T];
– the variable Xi is the date of production of order i on the machine, ∀i ∈ [1, . . . , n]. Let

Xmin
i (resp. Xmax

i) denote the minimal (resp. maximal) value in the finite domain Di of
variable Xi ;

– the integer di is the due-date for order i, ∀i ∈ [1, . . . , n];
– the integer hi ≥ 0 is the stocking cost for order i, ∀i ∈ [1, . . . , n];
– the integer ct ≥ 0 is the maximum number of orders the machine can produce during

the period t (production capacity for t), ∀t ∈ [1, . . . , T];
– the variable H is the maximum value of the total stocking cost. Let Hmin (resp. Hmax)

denote the minimal (resp. maximal) value in the finite domain of variable H .

The IDStockingCost constraint holds when:

Xi ≤ di, ∀i (1)∑

i

(Xi = t) ≤ ct ,∀t (2)

∑

i

(di − Xi) · hi ≤ H (3)

This decomposition imposes that (1) each order i is produced before or on its due date, (2)
the capacity of the machine is respected at any period t and (3) H is the maximum value of
the total stocking cost.

As proposed in [14], the T constraints in (2) can be replaced by a global cardinality
constraint gcc [22, 23]. Note that for ct = 1, ∀t ∈ [1, . . . , T], the gcc constraint can

2In typical applications of this constraint, assuming that ct is O(1), the number of orders n is on the order of
the horizon T : n ∼ O(T).

186 Constraints (2019) 24:183–209

be replaced by an allDifferent [18] constraint. The bound consistency of gcc con-
straint can be obtained in O(n) plus the time for sorting the n variables [22]. An even
stronger model (with arc-consistent filtering) is obtained by replacing the constraints in
(2) and (3) by an arc-consistent cost-gcc [24] constraint. Similarly, for the unit capac-
ity case one can use the minimumAssignment [6, 7] constraint with filtering based on
reduced costs. Arc consistent filtering algorithms for the minimumAssignment [6] and
cost-gcc [24] execute in O(T 3) ≈ O(n3). This paper presents a fast filtering algorithm
for IDStockingCost running in O(n log n).

In the rest of the paper, without loss of generality, we assume that:

1. Xi ≤ di,∀i;
2. the gcc constraint is bound consistent.3 By definition, the gcc bound consistency

detects all Hall intervals and updates the bounds accordingly. A Hall intervall I is an
interval such that

∑
t∈I ct variables have their respective domains completely include

in the interval I . Thus the |I| domain values of the interval I must be reserved to the
|I| variables that have their domains in I . For example, consider three orders such that
X1 ∈ [3, 4], X2 ∈ [3, 4], X3 ∈ [1, 4] and c1 = 0, c2 = c3 = c4 = 1. Here the interval
[3, 4] is an Hall interval. We can see that X3 can neither take the value 4 nor 3 because
the interval [3, 4] must be reserved for X1 and X2. On the other hand, X3 cannot take
value 1 because c1 = 0. Thus gcc is bound consistent if X1 ∈ [3, 4], X2 ∈ [3, 4], and
X3 ∈ {2}.

Formally the gcc constraint is bound consistent if for each Xi, ∀vi ∈ {Xmin
i , Xmax

i }
and ∀Xj �= Xi : ∃vj ∈ [Xmin

j , . . . , Xmax
j] such that ∑k(vk = t) ≤ ct ,∀t .

The gcc bound consistent propagator (in O(n) plus the time for sorting the n

variables) is triggered before any filtering from the IDStockingCost constraint.

3 Filtering of the cost variable H

This section explains how to filter the lower bound on H in O(n log n). First we define the
problem associated to the optimal cost of the problem (denoted P) and a relaxed version of
this problem (denoted Pr). Problem Pr is used to filter the IDStockingCost constraint
in order to have a scalable filtering algorithm. After establishing the condition for optimality
of Pr , we give an O(n log n) algorithm to compute an optimal solution of Pr .

3.1 The problem definition

By considering the definition of the IDStockingCost constraint, the best lower bound
Hopt of the global stocking cost variable H can be obtained by solving the following
problem:

Hopt = min
∑

i (di − Xi) · hi

(P)
∑

i (Xi = t) ≤ ct , ∀t

Xi ∈ Di,∀i

3A constraint is bound consistent if, for each minimum and maximum values, there exists a solution wrt the
constraint by considering the domains of other variables without holes.

Constraints (2019) 24:183–209 187

in which Di is the domain of the variable Xi that is the set of values ∈ [1, . . . , T] that Xi

can take.
The problem P can be solved with a max-flow min-cost algorithm on the bipartite graph

linking orders and periods [24]. Indeed the cost of assigning Xi ← t can be computed as
(di − t) · hi if t ∈ Di , +∞ otherwise. With unit capacity, it is a min-assignment problem
that can be solved in O(T 3) with the Hungarian algorithm. The costs on the arcs have the
particularity to evolve in a convex way (linearly) along the values, but even so, we are not
aware of a faster min-assignment algorithm. Since our objective is to design a fast scalable
filtering, we now introduce the relaxed problem.

The relaxation we make is to assume that Xi can take any value ≤ Xmax
i without holes:

Di = [1, . . . , Xmax
i]. Our filtering algorithm is thus based on a relaxed problem in which

the orders can be produced in any period before their minimum values (but not after their
maximum values). Let Pr denote this new relaxed problem and (Hopt)r denote its optimal
value. (Hopt)r gives a valid lower bound on Hopt allowing us to possibly increase Hmin.

(Hopt)r = min
∑

i (di − Xi) · hi

(Pr)
∑

i (Xi = t) ≤ ct ,∀t

Xi ≤ Xmax
i ,∀i

We will show below that one can compute (Hopt)r in a greedy fashion assigning the
production periods from the latest to the earliest. Clearly the orders should be produced
as late as possible (i.e. as close as possible to their due-date) in order to minimize their
individual stocking cost. Unfortunately, the capacity constraints usually prevent us from
assigning every Xi to its maximum value Xmax

i . We now characterize an optimal solution
of Pr .

3.2 Conditions for optimality ofP r

By considering Pr , without loss of generality, we assume that all orders i ∈ [1, . . . , n] are
such that hi > 0. If this is not the case, assuming that the gcc constraint is bound consistent,
one can produce n0 = |{Xi : hi = 0}| orders in the first n0 periods and then consider the
other orders over the planning horizon [n0 + 1, . . . , T].

Observe first that if in a valid solution of Pr , there is a place available for production in
period t and there is an order that can be assigned to t but is assigned to t ′ < t then that
solution is not optimal.

Definition 1 Denote by assP eriod a valid assignment vector in which assP eriod[i] is
the value (period) taken by Xi . Considering a valid assignment wrt Pr and a period t ,
the boolean value t .f ull indicates whether this period is used at maximal capacity or not:
t .f ull ≡ |{Xi : assP eriod[i] = t}| = ct .

Observation 1 Consider a valid assignment assP eriod: assP eriod[i], ∀i ∈ [1, . . . , n]
wrt Pr . If this assignment is optimal, then (i) ∀i ∈ [1, . . . , n], �t : (assP eriod[i] <

t) ∧ (Xmax
i ≥ t) ∧ (¬t .f ull).

Proof Let assume that assP eriod does not respect the criterion (i). This means that
∃Xk ∧∃t : (assP eriod[k] < t)∧ (Xmax

k ≥ t)∧ (¬t .f ull). In this case, by moving Xk from

188 Constraints (2019) 24:183–209

assP eriod[k] to t , we obtain a valid solution that is better than assP eriod. The improve-
ment is: (t−assP eriod[k])·hk . Thus the criterion (i) is a necessary condition for optimality
of Pr .

Corollary 1 Any optimal solution assP eriod uses the same set of periods:
{assP eriod[k] : ∀k} and this set is unique.

This unique set can be obtained from right to left by considering orders decreasingly
according to their Xmax

i , not assigning any order before its Xmax
i and moving to a previous

not completely filled period in case the current period is full.
On the other hand, if in a solution of Pr a valid permutation between two orders

decreases the cost of that solution, then this latter is not optimal.

Observation 2 Consider a valid assignment assP eriod: assP eriod[i], ∀i ∈ [1, . . . , n]
wrt Pr . If this assignment is optimal, then (ii) �(Xk1 , Xk2): (assP eriod[k1] <

assP eriod[k2]) ∧ (hk1 > hk2)∧ (Xmax
k1

≥ assP eriod[k2]).
Proof Let assume that assP eriod does not respect the criterion (ii). That means ∃(Xk1 , Xk2)

: (assP eriod[k1] < assP eriod[k2]) ∧ (hk1 > hk2) ∧ (Xmax
k1

≥ assP eriod[k2]). In this
case, by swapping the orders k1 and k2, we obtain a valid solution that is better than assP eriod.
The improvement is : (assP eriod[k2] − assP eriod[k1]) · hk1 − (assP eriod[k2] −
assP eriod[k1]) · hk2 > 0. Thus the criterion (ii) is a necessary optimality condition.

The next proposition states that the previous two necessary conditions are also sufficient
for testing optimality to problem Pr .

Proposition 1 Consider a valid assignment assP eriod: assP eriod[i], ∀i ∈ [1, . . . , n]
wrt Pr . This assignment is optimal iff

(i) ∀i ∈ [1, . . . , n], �t : (assP eriod[i] < t) ∧ (Xmax
i ≥ t) ∧ (¬t .f ull)

(ii) �(Xk1 , Xk2): (assP eriod[k1] < assP eriod[k2]) ∧ (hk1 > hk2)∧ (Xmax
k1

≥
assP eriod[k2]).

Proof Without loss of generality, we assume that 1) All the orders have different stocking
costs : ∀(k1, k2) : hk1 �= hk2 . If this is not the case for two orders, we can increase the
cost of one by an arbitrarily small value. 2) Unary capacity for all periods : ct = 1, ∀t .
The periods with zero capacity can simply be discarded and periods with capacities ct > 1
can be replaced by ct “artificial” unit periods. Of course the planning horizon changes. To
reconstruct the solution of the initial problem, one can simply have a map that associates to
each artificial period the corresponding period in the initial problem. 3) All the orders are
sorted such that assP eriod[i] > assP eriod[i + 1].

We know that (i) and (ii) are necessary conditions for optimality. The objective is to
prove that a solution that respects (i) and (ii) is unique and thus also optimal. From Corol-
lary 1, we know that all optimal solutions use the same set of periods: {t1, t2, . . . , tn} with
t1 = maxi{Xmax

i } > t2 > . . . > tn. Let C1 = {k : Xmax
k ≥ t1} be the orders that could possi-

bly be assigned to the first period t1. To respect the property (ii), for the first period t1, we
must select the unique order argmaxk∈C1hk . Now assume that periods t1 > t2 > . . . > ti
were successively assigned to orders 1, 2, . . . , i and produced the unique partial solution
that can be expanded to a solution for all the orders 1, . . . , n. We show that we have also

Constraints (2019) 24:183–209 189

a unique choice to expand the solution in period ti+1. The order to select in period ti+1 is
argmaxk∈Ci+1

{hk} with Ci+1 = {k : k > i ∧Xmax
k ≥ ti+1} is the set of orders that could pos-

sibly be assigned in period ti+1. Indeed, selecting any other order would lead to a violation
of property (ii). Hence the final complete solution obtained is unique.

3.3 Filtering algorithm of the cost variable H

This section describes an algorithm to filter the cost variable H based on an optimal solu-
tion of Pr . As mentioned above, a gcc bound consistent filtering is performed before any
filtering from the IDStockingCost constraint. Algorithm 1 computes an optimal solu-
tion of Pr and filters the variable H . This algorithm considers orders sorted decreasingly
according to their Xmax

i . A virtual sweep line decreases in period starting at maxi{Xmax
i }.

The sweep line (at position t) collects in a priority queue all the orders that can be possibly
scheduled in that period (such that t ≤ Xmax

i). Each time it is decreased new orders can pos-
sibly enter into a priority queue (loop at line 11). The priorities in the queue are the stocking
costs hi of the orders. A large cost hi means that this order has a higher priority to be sched-
uled as late as possible (since t is decreasing). The variable availableCapacity represents
the current remaining capacity in period t . It is initialized to the capacity ct (line 10) and
decreased by one it each time an order is scheduled at t (line 18). An order is scheduled
at lines 14 − 19 by choosing the one with highest stocking cost from ordersT oSchedule.
The capacity and the cost are updated accordingly. The orders are scheduled at t until the
capacity is reached (and then the current period is updated to the previous period with non
null capacity) or the queue is empty (and then the algorithm jumps to the maximum value
of the next order to produce). This process is repeated until all orders have been sched-
uled. Algorithm 1 has two invariants. Each of them is related to a condition of Proposition
1 to ensure that the solution returned by the algorithm respects the conditions for optimal-
ity of Pr . At the end 1) optP eriod[i], ∀i ∈ [1, . . . , n] is the optimal schedule showing
the period assigned to the order i; and 2) optOrders[t], ∀t ∈ [1, . . . , T] is the set of
orders produced at period t - stored in a stack such that the order on the top is the last
to be produced. We thus have at the end:

∑n
i=1 (di − optP eriod[i]) · hi = (Hopt)r and

optOrders[t] = {Xi : optP eriod[i] = t}, ∀t ∈ [1, . . . , T] is the set of orders produced
in period t .

Algorithm 1 uses the priority queue ordersT oSchedule with two primitives that have
been used: 1) ordersT oSchedule.insert (i) inserts the order i in the queue; and 2)
ordersT oSchedule.delMax() returns an order with the highest cost and removes it from
ordersT oSchedule. Also Algorithm 1 uses optOrders[t].push(j) to add the order j on
the top of the stack optOrders[t] for a given period t .

Proposition 2 Algorithm 1 computes an optimal solution of Pr in O(n log n).

Proof Algorithm 1 works as suggested in the proof of Proposition 1 and then Invariant
(a) and Invariant (b) hold for each t from maxi{Xmax

i }. Thus the solution returned by the
algorithm 1) is feasible and 2) respects the properties (i) and (ii) of Proposition 1 and is
therefore optimal.

Complexity: the loop at line 1 that increments the order index i from 1 to n ensures that
the main loop of the algorithm is executed O(n) times. On the other hand, each order is
pushed and popped exactly once in the queue ordersT oSchedule in the main loop. Since
ordersT oSchedule is a priority queue, the global complexity is O(n log n).

190 Constraints (2019) 24:183–209

The next example shows the execution of Algorithm 1 on a small instance of Pr .

Example 1 Consider the following instance: IDStockingCost([X1 ∈ [1, . . . , 4], X2 ∈
[1, . . . , 5], X3 ∈ [1, . . . , 4], X4 ∈ [1, . . . , 5], X5 ∈ [1, . . . , 8], X6 ∈ [1, . . . , 8]], [d1 =
4, d2 = 5, d3 = 4, d4 = 5, d5 = 8, d6 = 8], [h1 = 3, h2 = 10, h3 = 4, h4 = 2, h5 =
2, h6 = 4], H ∈ [0, . . . , 34], c1 = c2 = c4 = c5 = c6 = c7 = c8 = 1, c3 = 0).

The main steps of the execution of Algorithm 1 are:

Constraints (2019) 24:183–209 191

Fig. 1 An optimal assignment for Pr

– t = 8, ordersT oSchedule = {5, 6} and X6 ← 8. (Hopt)r = 0.
– t = 7, ordersT oSchedule = {5} and X5 ← 7. (Hopt)r = h5 = 2.
– t = 5, ordersT oSchedule = {4, 2} and X2 ← 5. (Hopt)r = 2.
– t = 4, ordersT oSchedule = {4, 1, 3} and X3 ← 4. (Hopt)r = 2.
– t = 3, ordersT oSchedule = {4, 1} (c3 = 0).
– t = 2, ordersT oSchedule = {4, 1} and X1 ← 2. (Hopt)r = 2 + 2 · h1 = 8.
– t = 1, ordersT oSchedule = {4} and X4 ← 1. (Hopt)r = 8 + 4 · h4 = 16.

Then H ∈ [16, . . . , 34]. Figure 1 shows the optimal period assignments for Pr . Period 6
(filled with light gray color) is an idle period in which there is no production while the
capacity of production is not null. The maximum capacity of the machine is 1 (represented
by a line) for all periods except period 3.

4 Pruning the decision variables Xi

The filtering of a decision variable Xi relies on an efficient computation of the marginal
costs, that is the value of the optimal solution of problem P (resp. Pr) if Xi is forced to
take a given value. We propose an efficient algorithm to compute a lower bound on the
marginal costs for values v < optP eriod[i] that allows to prune Xmin

i based on the linear
evolution of these. Unfortunately we are not able to efficiently compute these costs for
v > optP eriod[i] because the monotonicity4 property does not hold in this case.

To compute the marginal costs, two important notions are 1) a period that uses all its
capacity in an optimal solution (called a full period) and 2) an ordered set of full periods
with non null capacity in an optimal solution (called a full set). The next section formally
defines a full period and a full set and gives a complete algorithm to obtain all full sets while
computing the optimal cost of Pr . Then a lower bound on the marginal costs is introduced
before using it for the filtering of Xmin

i . Finally we illustrate with an example the non mono-
tonic evolution of the marginal costs for v > optP eriod[Xi] making it difficult to filter
Xmax

i efficiently.

4.1 Full periods and full sets

In an optimal solution of Pr , a period t is full (t .f ull) iff its capacity is reached: t .f ull ≡
|optOrders[t]| = ct . Actually, an optimal solution of Pr is a sequence of full periods
(obtained by scheduling orders as late as possible) separated by some non full periods. Let
us formally define these sequences of production periods. We call them full sets. These are
used to filter the decision variables in the following sections.

4The monotonicity ensures that if we prune the upper bound of a variable to a given value, all other values
greater than this value in the domain of the variable are inconsistent.

192 Constraints (2019) 24:183–209

Definition 2 For a period t with ct > 0, minf ull[t] is the largest period ≤ t such that all
orders k : Xmax

k ≥ minf ull[t] have optP eriod[Xk] ≥ minf ull[t].

Definition 3 For a period t with ct > 0, maxf ull[t] is the smallest period ≥ t such that all
orders k : Xmax

k > maxf ull[t] have optP eriod[Xk] > maxf ull[t].

For the instance in Example 1, minf ull[5] = minf ull[4] = minf ull[3] =
minf ull[2] = minf ull[1] = 1 and maxf ull[5] = maxf ull[4] = maxf ull[3] =
maxf ull[2] = maxf ull[1] = 5.

Definition 4 An ordered set of periods f s = {M, . . . , m} (with M > . . . > m) is a full set
iff:

(∀t ∈ f s \ {m} : ct > 0 ∧ t .f ull) ∧ (∀t ∈ f s, maxf ull[t] = M ∧ minf ull[t] = m).

We consider that minf ull[f s] = m and maxf ull[f s] = M .

For the instance in Example 1, there are two full sets: {8, 7} and {5, 4, 2, 1}.
We show that all full sets of a given optimal solution can be obtained while computing

this solution (by using Algorithm 1). Algorithm 2 is a complete algorithm that computes an
optimal solution of Pr and all full sets. The new four invariants ((a), (b), (e), and (f)) that
appear in this algorithm ensure that all full sets are computed correctly. The invariants (a),
(b), (e), and (f) respectively identify maxfull periods, full periods, minfull periods and full
sets.

Proposition 3 Algorithm 2 computes f ullSetsStack: a stack of all full sets of an optimal
solution of Pr .

Proof Invariant:

(a) and (e) - invariants for the maxfull and minfull periods.
Note that since gcc is bound consistent, ∀Xi : cXmax

i
> 0. Consider the first itera-

tions of the algorithm. At the beginning, tmax = maxi{Xmax
i } is a maxfull period (by

definition). Exiting the loop 12 − 26 means that all orders in {k : tmax ≥ Xmax
k ≥ t}

(t is the current period) are already produced and the current period t is the closest
period to tmax such that all orders in {k : tmax ≥ Xmax

k ≥ t} are produced: the current
period t is then the minfull of all orders in {k : tmax ≥ Xmax

k ≥ t}. Thus Invariant
(a) and Invariant (e) hold for the first group of orders. The algorithm repeats the pro-
cess - when it starts at line 10 with another group of orders not yet produced - until all
orders are produced. We know that: ∀i : cXmax

i
> 0. Then, for each group of orders i.e.

each time the algorithm comes back to line 10 (resp. line 27), the current t is a maxfull
(resp. minfull).

(b) At line 23, t is a full period with ct > 0.
At line 23, for the current period t : availableCapacity = 0 and at least one order

is produced before the period t . Thus t .f ull and ct > 0.
(f) f ullSet is a full set

This invariant holds because the invariants (a), (b) and (e) hold.
The algorithm starts from maxi{Xmax

i } and Invariant (f) holds until the last order is
produced. Therefore the proposition is true.

Constraints (2019) 24:183–209 193

194 Constraints (2019) 24:183–209

4.2 A lower bound on themarginal cost

Given the value of an optimal solution of P (resp. Pr), the marginal costs mXi←v (resp.
(mXi←v)

r) is the cost increase when the variable Xi is forced to take the value v ∈ Di . Let
H

opt
Xi←v (resp. (H

opt
Xi←v)

r) denote the optimal cost of P (resp. Pr) in a situation in which
Xi is forced to take the value v (with v < optP eriod[i]) in an optimal solution of P
(resp. Pr): that is equivalent to adding the constraint Xi = v to P (resp. Pr). We have
mXi←v = H

opt
Xi←v − Hopt and (mXi←v)

r = (H
opt
Xi←v)

r − (Hopt)r .

Note that if H
opt
Xi←v = Hopt +mXi←v > Hmax, then the resulting problem is inconsistent

and v can be safely removed from the domain of Xi . Since Pr is a relaxed problem of P , if
(H

opt
Xi←v)

r = (Hopt)r + (mXi←v)
r > Hmax, then v can be removed from the domain of Xi .

To filter the decision variables Xi , the idea is to find a valid lower bound for (H
opt
Xi←v)

r by
performing some sensitivity analysis of the optimal solution of Pr returned by Algorithm 1.

If Xi is forced to take a value v with v < optP eriod[i], it increases (Hopt)r by at least
(optP eriod[i] − v) · hi but an additional production slot in optP eriod[i] becomes free in
the associated optimal solution. Consequently the production of some orders can possibly
be delayed and (Hopt)r decreased. Formally,

Definition 5 Let newoptP eriod[j], ∀j ∈ [1, . . . , n] \ {i} denote the new optimal
assignment of periods when the order i is removed from its position optP eriod[i].

gainCost[t]i is the maximum cost decrease when order i scheduled in t =
optP eriod[i] is removed:

gainCost[t]i =
∑

j∈[1,...,n]\{i}
(newoptP eriod[j] − optP eriod[j]) · hj ≥ 0

Of course, newoptP eriod[j],∀j ∈ [1, . . . , n] \ {i} must respect the two conditions for
optimality of Proposition 1. It is worth noting that, given an order k and its position in an
optimal solution tk = optP eriod[k], gainCost[tk]k can be strictly greater than 0 only if tk
is a full period with ctk > 0. Otherwise gainCost[tk]k = 0. Actually, a period t is not full
means that there is at least one free place in t for production. The fact that these places are
not used in the initial optimal assignment means that they will not be used if another place
in t is freed (see condition (i) of Proposition 1).

Example 2 Consider the instance of Example 1 and its optimal solution represented in
Fig. 1:

– period 8: if the order 6 is removed from its optimal period 8, then
newoptP eriod[5] = 8 (Fig. 2) and newoptP eriod[j] = optP eriod[j], ∀j �∈ {5, 6}.
gainCost[8]6 = h5 = 2;

Fig. 2 An optimal assignment for Pr without X6

Constraints (2019) 24:183–209 195

Fig. 3 An optimal assignment for Pr without X2

– period 7: newoptP eriod[j] = optP eriod[j], ∀j �= 5.
gainCost[7]5 = 0;

– period 5: if the order 2 is removed from its optimal period 5, then newoptP eriod[4] =
5 (Fig. 3) and newoptP eriod[3] = optP eriod[3],
newoptP eriod[1] = optP eriod[1] because d1, d3 < 5.
gainCost[5]2 = (5 − 1) ∗ h4 = 8;

– period 4: gainCost[4]3 = 2 · h1 + h4 = 8 (Fig. 4);
– period 2: gainCost[2]1 = h4 (Fig. 5);
– period 1: gainCost[1]4 = 0.

Intuitively, one can say that, if a place is freed in a full period t , only orders k that
have optP eriod[k] < t in the full set of t will eventually move. More precisely, for each
full period t , let lef t[t] be the set of orders such that: lef t[t] = {Xi : optP eriod[i] ∈
[minf ull[t], . . . , t[}.

Proposition 4 If a full period t is no longer full due to the removal of order i (with
optP eriod[i] = t) from t , then only orders in k ∈ lef t[t] can have

newoptP eriod[k] �= optP eriod[k]. All other orders j have the same optimal period
newoptP eriod[j] = optP eriod[j].

Proof We run Algorithm 2 again with order i removed:

1. all orders k with optP eriod[k] > maxf ull[t] will conserve their respective optimal
periods because Xmax

i < optP eriod[k], ∀k and then i is not taken into account (in the
queue ordersT oSchedule) for optimal assignment of periods > maxf ull[t];

2. all orders k with t ≤ optP eriod[k] ≤ maxf ull[t] will conserve their respective
optimal periods. Actually, from Proposition 1, we know that for a given order k,
Xmax

i < optP eriod[k] or hk ≥ hi . In these two cases, the presence/absence of
Xi does not change the decision taken for orders k with their optimal periods in
[t, . . . , maxf ull[t]];

3. all orders k with optP eriod[k] < minf ull[t] will conserve their respective optimal
periods because Xi is not taken into account (in the queue
ordersT oSchedule) for optimal assignment of periods for all these orders.

Fig. 4 An optimal assignment for Pr without X3

196 Constraints (2019) 24:183–209

Fig. 5 An optimal assignment for Pr without X1

Observation 3 For a period t , gainCost[t]i does not depend on the order i in
optOrders[t] that is removed. Thus we can simplify the notation from gainCost[t]i to
gainCost[t]: gainCost[t] = gainCost[t]i ,∀Xi ∈ optOrders[t].

Corollary 2 For a full period t with ct > 0:

gainCost[t] =
∑

j :Xj ∈lef t[t]
(newoptP eriod[j] − optP eriod[j]) · hj

Observe that only orders k in lef t[t] that have Xmax
k ≥ t can replace the order removed

from t in the new optimal assignment. For each full period t , let candidate[t] denote the
set of orders ∈ lef t[t] that can jump to the freed place in t when an order is removed from
t . Formally, for a full period t , candidate[t] = {i ∈ lef t[t] : Xmax

i ≥ t}. Let st denote the
order that will replace the removed order in t : st ∈ candidate[t]∧newoptP eriod[st] = t .
For a given full period t with ct > 0, gainCost[t] depends on the order st and also depends
on gainCost[optP eriod[st]] since there is recursively another freed place created when st
jumps to t .

We want to identify the order st that will take the freed place in t when an order is
removed from t . This order must have the highest “potential gainCost” for period t among
all other order in candidate[t]. More formally,

Definition 6 Let (gainCost[t])k be the potential gainCost[t] by assuming that it is the
order k ∈ candidate[t] that takes the freed place in t when an order is removed from t :

(gainCost[t])k = (t − optP eriod[k]) · hk + gainCost[optP eriod[k]]

The objective is to find the order st ∈ candidate[t] with the following property:
(gainCost[t])st ≥ (gainCost[t])k, ∀k ∈ candidate[t] and then gainCost[t] =
(gainCost[t])st .

For each full period t , let toSelect[t] denote the set of orders in candidate[t] that have
the highest stocking cost: toSelect[t] = argmaxk∈candidate[t] hk .

Proposition 5 For a full period t with candidate[t] �= ∅: st ∈ toSelect[t].
Proof Consider a full period t such that candidate[t] �= ∅ (and then toSelect[t] �= ∅). If
st �∈ toSelect[t], then ∃k ∈ toSelect[t] such that Xmax

k ≥ t ∧ hk > hst . This is not possible
in an optimal solution (see condition (ii) of Proposition 1).

Now we know that st ∈ toSelect[t], but which one exactly must we select? The
next proposition states that whatever order s in toSelect[t] is chosen, we can compute
gainCost[t] from s. That means that all orders in toSelect[t] have the same potential
gainCost .

Proposition 6 ∀s ∈ toSelect[t], (gainCost[t])s = gainCost[t].

Constraints (2019) 24:183–209 197

Proof If |toSelect[t]| = 1, then the proposition is true. Now we assume that
|toSelect[t]| > 1. Consider two orders Xk1 and Xk2 in toSelect[t]. From Proposition
1, only null capacity periods can appear between optP eriod[Xk1] and optP eriod[Xk2]
because k1, k2 ∈ argmaxk∈candidate[t] hk (and Xmax

k ≥ t). Since all orders Xk ∈ toSelect[t]
have the same stocking cost and Xmax

k ≥ t , any pair of orders k1 and k2 in toSelect[t] can
swap their respective optP eriod without affecting the feasibility of the solution and the
optimal cost. Thus the proposition is true.

We can summarize the computation of gainCost for each period in a full set.

Corollary 3 Consider a full set {M, . . . , m} with m = minf ull[t] and M = maxf ull[t],
∀t ∈ {M, . . . , m}: gainCost[m] = 0 and for all full periods t ∈ {M, . . . , m} \ {m} from m

to M:
gainCost[t] = (t − optP eriod[s]) · hs + gainCost[optP eriod[s]] with s ∈ toSelect[t].

By assuming that gainCost[t], ∀t is known, the next proposition gives a lower bound
on (H

opt
Xi←v)

r .

Proposition 7

(H
opt
Xi←v)

r ≥ (Hopt)r + (optP eriod[i] − v) · hi − gainCost[optP eriod[i]]
Proof The cost gainCost[optP eriod[i]] is the maximum decrease in cost when an order
is removed from optP eriod[i]. We know that the cost (optP eriod[i] − v) · hi is a lower
bound on the increased cost when the order Xi is forced to take the value v because the
capacity restriction can be violated for the period v. Thus (Hopt)r + (optP eriod[i] − v) ·
hi − gainCost[optP eriod[i]] is a lower bound on (H

opt
Xi←v)

r .

Let us illustrate this lower bound with the next example.

Example 3 Consider the following instance:
IDStockingCost([X1 ∈ [1, . . . , 2], X2 ∈ [1, . . . , 3], X3 ∈ [1, . . . , 6], X4 ∈

[1, . . . , 6]], [d1 = 2, d2 = 3, d3 = 6, d4 = 6, [h1 = 20, h2 = 5, h3 = 5, h4 = 10], H ∈
[0, . . . , 55], c1 = c2 = c3 = c4 = c5 = c6 = 1).
An optimal soluion is shown below with (Hopt)r = h3 = 5.

Assume that :

1. we force X4 to take the value v = 1. The new optimal solution is

(H
opt

X4←1)
r = (Hopt)r + (optP eriod[4] − 1) · h4 − gainCost[optP eriod[4]]

(H
opt

X4←1)
r = 5 + (6 − 1) · h4 − h3 = 50

Note that, here, our lower bound computes the exact new cost (Hopt

X4←1)
r .

198 Constraints (2019) 24:183–209

2. we force X4 to take the value v = 2. The new optimal solution is

(H
opt

X4←2)
r = ((Hopt)r + (optP eriod[4]−2) ·h4−gainCost[optP eriod[4]])+h1

(H
opt

X4←1)
r = (5 + (6 − 2) · h4 − h3) + h1 = (40) + 20 = 60

Here our lower bound is 40, strictly less than the exact new cost (Hopt

X4←1)
r .

3. we force X4 to take the value v = 3. The new optimal solution is

(H
opt

X4←3)
r = ((Hopt)r+(optP eriod[4]−3)·h4−gainCost[optP eriod[4]])+2·h2

(H
opt

X4←3)
r = (5 + (6 − 3) · h4 − h3) + 2 · h2 = (30) + 10 = 40

Here our lower bound on (H
opt

X4←3)
r is 30.

This example shows that the evolution of (Hopt
Xi←v)

r with v < optP eriod[i] is not mono-

tone. In this paper, we use the monotone lower bound on (H
opt
Xi←v)

r of Proposition 7 to
efficiently filter decision variables. In the following, we give an O(n) algorithm to filter the
decision variables.

4.3 Pruning Xmin
i

From the lower bound on (H
opt
Xi←v)

r (Proposition 7), we have the following filtering rule for
variables Xi, ∀i ∈ [1, . . . , n].

Corollary 4 ∀i ∈ [1, . . . , n],
Xmin

i ≥ optP eriod[i] −
⌊

Hmax − (Hopt)r + gainCost[optP eriod[i]]
hi

⌋

Proof We know that v can be removed from the domain of Xi if (H
opt
Xi←v)

r > Hmax

and (H
opt
Xi←v)

r ≥ (Hopt)r + (optP eriod[i] − v) · hi − gainCost[optP eriod[i]]. The
highest integer value v∗ that respects the condition (Hopt)r + (optP eriod[i] − v) · hi −
gainCost[optP eriod[i]] ≤ Hmax is

v∗ = optP eriod[i] −
⌊

Hmax−(Hopt)r+gainCost[optP eriod[i]]
hi

⌋
.

Algorithm 3 computes gainCost[t] for all full periods in [1, . . . , T] in chronogical order
and filters the n decision variables. It uses the stack orderT oSelect that, after processing,
contains an order in toSelect[t] on top. At each step, the algorithm treats each full set
(loop 5 − 15) from their respective minfull periods thanks to f ullSetsStack computed in
Algorithm 1. For a given full set, the algorithm pops each full period (in chronological order)
and computes its gainCost[t] until the current full set is empty ; in this case it takes the

Constraints (2019) 24:183–209 199

next full set in f ullSetsStack. Now let us focus on how gainCost[t] is computed for each
full period t . For a given full period t , the algorithm puts all orders in lef t[t] into the stack
orderT oSelect (lines 14 − 15) in chronological order. Thus for a given period t , for each
pair of orders k1 (with Xmax

k1
≥ t) and k2 (with Xmax

k2
≥ t) in orderT oSelect : if k1 is above

k2, then hk1 ≥ hk2 . The algorithm can safely remove orders k with Xmax
k < t from the top of

the stack (lines 7− 8) since these orders k �∈ candidate[t ′], ∀t ′ ≥ t . After this operation, if
the stack orderT oSelect is not empty (orderT oSelect .isNotEmpty = T rue), the order
on top is an order in toSelect[t] (Invariant (b) - see the proof of Proposition 8) and can be
used to compute gainCost[t] based on Corollary 3 (lines 12 − 13). Note that for a period
t if the stack is empty, then toSelect[t] = ∅ (ie candidate[t] = ∅) and gainCost[t] = 0.
Algorithm 3 has three invariants that ensure that gainCost[t] for all full period t are well
computed. At the end, this algorithm filters each variable Xi based on the lower bound from
Corollary 4 (lines 16 − 18).

Algorithm 3 uses the classical primitives of stack such as 1) isNotEmpty (resp.
isEmpty) that returns T rue (resp. False) if the stack is not empty and False (resp. T rue)
otherwise; 2) f irst that returns the element on the top of the stack; and 3) pop that returns
the element on the top of the stack and removes it from the stack.

Proposition 8 Algorithm 3 computes gainCost[t] for all O(n) full periods in linear time
O(n).

Proof Invariants:

(a) After line 6, ∀t ′ ∈ [minf ull[t], . . . , t[with ct ′ > 0: gainCost[t ′] is defined.
For a given full set f s, the algorithm computes the different gainCost of periods

inside f s in increasing value of t from its minf ull. Thus Invariant (a) holds.
(c) After line 15, ∀k1, k2 ∈ {Xk ∈ X : k ∈ orderT oSelect ∧ Xmax

k ≥ t}: if k1 is above k2
in orderT oSelect , then hk1 ≥ hk2 .
From Proposition 1, we know that ∀k1, k2 such that optP eriod[k1] < optP eriod[k2]
we have hk1 ≤ hk2 or ((hk1 > hk2) ∧ (Xmax

k1
< optP eriod[k2])). The algorithm

pushes orders into orderT oSelect from minf ull[t] to t . If we are on period t ′ =
optP eriod[k2], then all orders k1 pushed before are such that (hk1 ≤ hk2) or ((hk1 >

hk2) ∧ (Xmax
k1

< t ′)). Thus Invariant (c) holds.
1. (b)] After line 8, orderT oSelect .f irst ∈ toSelect[t].

For a period t , the loop 14 − 15 ensures that all orders Xi in lef t[t] are pushed
once in the stack. The loop 7 − 8 removes orders that are on the top of stack such that
{k : Xmax

k < t}. That operation ensures that the order s on the top of the stack can
jump to the period t (i.e. Xmax

s ≥ t). Since this order is on the top and Invariant (c)
holds for the previous period processed, it has the highest stocking cost wrt {k : k ∈
orderT oSelect ∧ Xmax

k ≥ t} and then s ∈ toSelect[t]. Thus Invariant (b) holds.
Based on Invariant (a) and Invariant (b), the algorithm computes gainCost[t] for each full
period from Corollary 3.

Complexity: there are at most n full periods and then the main loop of the algorithm
(lines 3 − 15) is executed O(n) times. Inside this loop, the loop 14 − 15 that adds orders
of the current period to orderT oSelect is in O(c) with c = max{ct , t ∈ f ullSetsStack}.
On the other hand, the orders removed from the stack orderT oSelect by the loop at lines
7 − 8 will never come back into the stack and then the complexity associated is globally in

200 Constraints (2019) 24:183–209

O(n). Hence, the global complexity of the computation gainCost[t] for all full periods is
O(n).

We give below an example of the execution of Algorithm 3.

Example 4 Let us run Algorithm 3 on the instance of Example 1. There are two full sets:
f ullSetsStack = {{8, 7}, {5, 4, 2, 1}}
1. f ullSet = {5, 4, 2, 1}, orderT oSelect ← {}.

– t = 1, gainCost[1] = 0 and orderT oSelect ← {4},
– t = 2, s = 4, gainCost[2] = gainCost[1] + (2 − 1) · h4 = 2 and

orderT oSelect ← {4, 1},
– t = 4, s = 1, gainCost[4] = gainCost[2] + (4 − 2) · h1 = 8 and

orderT oSelect ← {4, 1, 3},

Constraints (2019) 24:183–209 201

Fig. 6 The optimal assignment
for Pr of Example 5

– t = 5, after line 8 orderT oSelect ← {4}, s = 4, gainCost[5] = gainCost[1] +
(5 − 1) · h4 = 8 and orderT oSelect ← {4, 2}.

2. f ullSet = {8, 7}, orderT oSelect ← {}.
– t = 7, gainCost[7] = 0 and orderT oSelect ← {5},
– t = 8, s = X5, gainCost[8] = gainCost[7] + (8 − 7) · h5 = 2 and

orderT oSelect ← {5, 6}.
Now the filtering is achieved for each order. Consider the orderX2: v = optP eriod[2]−⌊

Hmax+gainCost[optP eriod[2]]−(Hopt)r

hi

⌋
= 5 −

⌊
34+8−16

10

⌋
= 3 and Xmin

2 = 3. Since c3 = 0,

Xmin
2 = 4 thanks to the gcc constraint.

4.4 Strengthening the filtering

During the search some orders are fixed by branching decisions or during the filtering in
the fix-point calculation. The lower bound (Hopt)r can be strengthened by preventing these
fixed orders from moving. This strengthening requires very little modification to our algo-
rithm. First the fixed orders are filtered out such that they are not considered by Algorithm
1 and 3. A reversible5 integer maintains the contributions of those to the objective. This
value is denoted Hf ixed . Also when an order is fixed in a period t , the corresponding
capacity ct - also a reversible integer - is decreased by one. The strengthened bound is then
(Hopt)r + Hf ixed . This bound is also used for the filtering of the Xi’s.

4.5 Pruning Xmax
i

Algorithm 3 uses a lower bound on the marginal cost mXi←v when the variable Xi is forced
to take a value v such that v < optP eriod[i] to filter Xmin

i . One could compute mXi←v

for v ∈ [optP erio[i] + 1, . . . , Xmax
i] and then filter the decision variable accordingly as

illustrated in the next example.

Example 5 Consider the following instance. IDStockingCost([X1 ∈ [1, . . . , 4], X2 ∈
[1, . . . , 3], X3 ∈ [1, . . . , 3], X4 ∈ [1, . . . , 4]], [d1 = 4, d2 = 3, d3 = 3, d4 = 4], [h1 =
1, h2 = 10, h3 = 20, h4 = 2], H ∈ [0, . . . , 20], c1 = c2 = c3 = c4 = 1). Figure 6 shows
the optimal solution wrt Pr . The cost of this solution is Hopt = h2 + 3 · h1 = 13 and then
the domain of the variable H can be updated to [13, . . . , 20].

If the variable X1 is forced to take the value 2, the order 2 must be delayed and the
optimal cost will increase by mX1←2 = h2 − h1 = 9. Thus (H

opt

X1←2)
r = 13 + 9 = 22 and

the value 2 can be removed from the domain of X1 since (H
opt

X1←2)
r > Hmax. However the

evolution of mX1←v with v > optP eriod[i] is not monotone and prevents us to directly

5A reversible variable is a variable that can restore its domain when backtracks occur during the search.

202 Constraints (2019) 24:183–209

Fig. 7 The optimal assignment
corresponding to (H

opt

X1←3)
r

update Xmax
1 to 2. In this example, mX1←3 = h2 + h1 − 2 · h0 = 28 (see the corresponding

solution in Fig. 7) and mX1←4 = 3 · h3 − 3 · h0 = 3 (see the corresponding solution in
Fig. 8). The value 3 should be removed from the domain of X1 but not the value 4.

To filter Xmax
i based on mXi←v for v > optSlot[i], one should test (explicitely or

implicitely) the different values from Xmax
i to optSlot[i] for each variable Xi . Since this

work focusses on the scalability of the filtering, prefer not to increase the complexity of
our algorithm to O(n2), the complexity of a naive approach that would test each value
one by one. Finding an efficient algorithm that can efficiently update Xmax

i , ∀i in less than
O(n2) is an open research question. In this work we simply rely on the decomposed model
(constraints (1), (2), and (3)) to filter Xmax

i , ∀i.

4.6 Consistency property

As mentioned in Section 2 the IDStockingCost constraint can be modeled with an arc-
consistent cost-gcc constraint in O(n3). Since our aim is to propose a scalable filtering
algorithm for the IDStockingCost constraint, we make a relaxation by considering the
problemPr (Xi can take any value ≤ Xmax

i without holes: Di = [1, . . . , Xmax
i]) to filter the

cost variable H in order to have a fast filtering algorithm. Moreover, to filter the decision
variables, we use a lower bound on the marginal cost when a variable is forced to take a
value v < optSlot[i] and do not consider the case in which v > optSlot[i]. Hence the
filtering obtained is weaker than bound consistency but offers a good computational tradeoff
as shown in the next section. It is worth noting that this kind of partial filtering (such as that
based on linear programming reduced costs) is difficult to characterize but often provides a
relatively good filtering.

5 Experimental results

This section describes the experiments we performed on a variant of capacitated lot-sizing
called the Pigment Sequencing Problem [21].

5.1 The problem description

We consider the multiple item capacitated lot-sizing problem with sequence-dependent
changeover costs. There is a single machine with capacity limited to one unit per period.
There are item-dependent stocking costs and sequence-dependent changeover costs: 1) the

Fig. 8 The optimal assignment
corresponding to (H

opt

X1←4)
r

Constraints (2019) 24:183–209 203

Fig. 9 A feasible solution of the PSP instance of Example 6

total stocking cost of an order is proportional to its stocking cost and the number of peri-
ods between its due date and the production period; 2) the changeover cost is induced
when passing from the production of one item another. More precisely, consider n orders
(from m ≤ n different items6) that have to be scheduled over a discrete time horizon of
T periods on a machine that can produce one unit per period. Each order p ∈ [1, . . . , n]
has a due date dp and a stocking (storage) cost hI(p) ≥ 0 (in which I(p) ∈ [1, . . . , m]
is the corresponding item of order p). There is a changeover cost qi,j ≥ 0 between
each pair of items (i, j) with qi,i = 0, ∀i ∈ [1, . . . , m]. Let successor(p) be the order
produced just after producing the order p. One wants to associate to each order p a
production period date(p) ∈ [1, . . . , T] such that each order is produced on or before
its due date (date(p) ≤ dp, ∀p), the capacity of the production is respected (|{p |
date(p) = t}| ≤ 1, ∀t ∈ [1, . . . , T]), and the total stocking costs and changeover costs
(
∑

p (dp − date(p)) · hI(p) +∑
p qI(p),I(successor(p))) are minimized. A small instance of

the PSP is described next.

Example 6 Two types of orders (1 and 2) must be produced over the planning horizon
[1, . . . , 5] : m = 2, T = 5 and ct = 1, ∀t ∈ [1, . . . , T]. The stocking costs are respectively
h1 = 5 and h2 = 2 for each item. The demands for item 1 are d1

t∈[1,...,5] = [0, 1, 0, 1, 0]
and for the second item are d2

t∈[1,...,5] = [0, 0, 1, 0, 1]. Thus the number of orders is n = 4,

two for each item. The changeover costs are: q1,2 = 10, q2,1 = 5 and q1,1 = q2,2 = 0. The
solution S1 = [1, 2, 0, 1, 2] (represented in Fig. 9) is a feasible solution.

This means that the item 1 will be produced in periods 1 and 4 while the item 2 will be
produced in periods 2 and 5. Period 3 is an idle period.7 The cost associated to S1 is Cs1 =
h1+h2+q1,2+q2,1+q1,2 = 32. The optimal solution for this problem is S2 = [2, 1, 0, 1, 2]
(represented in Fig. 10) with cost Cs2 = 19.

To the best of our knowledge, the state-of-the-art of exact method for the PSP is an
Integer Programming formulation strengthened by some particular valid inequalities. We
refer to [21] for details concerning this formulation.

5.2 The CPmodel

The model used is a variant of that described in [14]. Each order is uniquely identified.
The decision variables are date[p] ∈ [1, . . . , T], ∀p ∈ [1, . . . , n]. For the order p,
date[p] is the period for production of the order p. Note that date[p] must repect its
dueDate[p]: date[p] ≤ dueDate[p]. Let objStorage denote the total stocking cost:
objStorage = ∑

p (dueDate(p) − date(p)) · hp with hp = hi is the stocking cost of

6item: order type.
7idle period: period in which there is no production.

204 Constraints (2019) 24:183–209

Fig. 10 An optimal solution of the PSP instance of Example 6

the order p for an item i. The changeover costs are computed as in [14] using a successor
based model and the circuit [20] constraint. The changeover costs are aggregated into the
variable objChangeOver . The total stocking cost variable objChangeOver is computed
using the constraint introduced in this paper:

IDStockingCost(date, dueDate, [h1, . . . , hn], objStorage, [c1, . . . , cT])

with ct = 1, ∀t ∈ [1, . . . , T]. The overall objective to minimize is: objStorage +
objChangeover .

5.3 Methodology and experimental settings

In our experiment we study the gains obtained in terms of filtering and speed when
replacing the IDStockingCost constraint by its decomposition or using the alternative
minimumAssignment formulations. The implementations and tests have been realized
within the OscaR open source solver [26]. All our source-code for the models, the global
constraints and the instances are available at [13].

All experiments were conducted on a 2.4 GHz Intel core i5 processor using OS X 10.11.
The evaluation of our global constraint uses the methodology that is described in [28]. The
search tree with a baseline model is recorded and then the gains are computed by replaying
the search tree with stronger alternative filtering. This allows us to use dynamic search
heuristics without interfering with the filtering. In particular we use the conflict ordering
search (COS) [8] that performs well on the problem. The baseline model (called Basic) is
obtained by decomposing IDStockingCost as:

– allDifferent(date) using a forward checking filtering,
–

∑
p(dueDate(p) − date(p)) · hp ≤ objStorage

The search tree recorded are obtained with an exploration limit of 60 seconds using the
Basic model.

Table 1 Results on instances with T = 20: IDS, MinAss, MinAss2 and Basic

IDS MinAss MinAss2 Basic

Nodes Time Nodes Time Nodes Time Nodes Time

Average (Av.) 30.1 104 15.7 26.2 104 13.2 24.9 104 51.7 130 104 51.4

Av. gain factor 5.0 4.0 6.2 4.9 6.7 1.0 1.0 1.0

Entries highlighted in bold are the best performance wrt Time/Nodes

Constraints (2019) 24:183–209 205

Table 2 Results on instances with T = 50: IDS, MinAss and Basic

IDS MinAss Basic

Nodes Time Nodes Time Nodes Time

Average (Av.) 36.1 104 13.5 34.6 104 15.1 206 104 67.0

Av. gain factor 7.26 6.57 8.36 6.73 1.0 1.0

Entries highlighted in bold are the best performance wrt Time/Nodes

Table 3 Results on instances with T = 100: IDS, MinAss and Basic

IDS MinAss Basic

Nodes Time Nodes Time Nodes Time

Average (Av.) 43.0 104 16.3 41.4 104 22.14 219 104 69.9

Av. gain factor 5.94 5.15 6.92 4.43 1.0 1.0

Entries highlighted in bold are the best performance wrt Time/Nodes

Table 4 Results on instances with T = 200: IDS, MinAss and Basic

IDS MinAss Basic

Nodes Time Nodes Time Nodes Time

Average (Av.) 28.3 104 18.2 25.7 104 39.0 127 104 65.4

Av. gain factor 5.18 4.27 6.43 2.29 1.0 1.0

Entries highlighted in bold are the best performance wrt Time/Nodes

Table 5 Results on instances with T = 300: IDS, MinAss and Basic

IDS MinAss Basic

Nodes Time Nodes Time Nodes Time

Average (Av.) 24.3 104 20.61 21.4 104 45.97 99.5 104 66.6

Av. gain factor 4.49 3.61 5.80 1.90 1.0 1.0

Entries highlighted in bold are the best performance wrt Time/Nodes

Table 6 Results on instances with T = 500: IDS, MinAss and Basic

IDS MinAss Basic

Nodes Time Nodes Time Nodes Time

Average (Av.) 6.68 104 5.8 8.30 104 25.8 73.5 104 52.8

Av. gain factor 12.7 10.0 11.1 2.3 1.0 1.0

Entries highlighted in bold are the best performance wrt Time/Nodes

206 Constraints (2019) 24:183–209

5.4 Comparison on small instances

As first experiment, we consider 100 small random instances limited to 20 periods, 20
orders and 5 items. We measure the gains over the Basic model using as filtering for
IDStockingCost:

1. IDS : our filtering algorithms for IDStockingCost.
2. MinAss: the minimumAssignment constraint with linear programming (LP)

reduced costs based filtering + the allDifferent constraint with bound consistency
filtering. Actually, after some experiments, the minimumAssignment constraint is
much more efficient when it is together with the allDifferent constraint (bound
consistency filtering).

3. MinAss2: the minimumAssignment constraint with exact reduced costs based
filtering [6] + allDifferent constraint with bound consistency filtering.

Table 1 shows the arithmetic average of the number of nodes and the time required for
Basic,MinAss,MinAss2 and IDS respectively. Table 1 also shows the geometric average
gain factor (wrt Basic) for each propagator. Not surprisingly, MinAss2 prunes the search
trees the most, but this improved filtering does not compensate for the time needed for the
exact reduced costs. It is still at least 4 times (on average) slower than MinAss and IDS.

These results suggest that on small instances MinAss offers the best trade-off wrt
filtering/time. Notice that IDS is competitive with MinAss in terms of computation time.

5.5 Comparison on large instances

The previous results showed that MinAss and IDS are competitive filtering for the
IDStockingCost constraint on small instances. We now increase the size of the
instances to respectively T = 50, T = 100, T = 200, T = 300, and T = 500. Again we
consider 100 random instances for each size.

Tables 2, 3, 4, 5 and 6 give the average values for the number of nodes and computa-
tion time when replaying the search trees, plus the geometric average gain over the Basic

approach for respectively T = 50, T = 100, T = 200, T = 300, and T = 500. The
reported values suggest that, on average, IDS performs best wrt the computation time. This
performance increases with the size of the instances. The time gain factor wrt MinAss is
close to 2 with T = 200 and 4 with T = 500, on average on this benchmark.

Fig. 11 Performance profiles: IDS, MinAss and Basic

Constraints (2019) 24:183–209 207

Table 7 Results on instances with T = 500: StockingCost, IDS, MinAss and Basic

StockingCost IDS MinAss Basic

Nodes Time Nodes Time Nodes Time Nodes Time

Average (Av.) 8.81 104 7.4 9.36 104 7.2 15.6 104 62.3 76.9 104 52.3

Av. gain factor 11.4 8.8 10.0 8.3 6.1 1.0 1.0 1.0

Entries highlighted in bold are the best performance wrt Time/Nodes

For T = 500, Fig. 11 shows the performance profiles (for IDS, MinAss and Basic)
wrt the number of nodes visited and the time needed to complete the search respectively.
For a given propagator, the performance profile provides a cumulative distribution of its
performance wrt the best propagator on each instance. For a point (x, y) on the performance
profile, the value (1 − y) gives the percentage of instances for which the given propagator
was at least x times worse than the best propagator. Then from Fig. 11, we can see that:

– wrt nodes: for ≈ 80% of instances, IDS provides the best filtering;
– wrt time: IDS requires the least time for all instances. Note that IDS is at least 4 times

as fast as MinAss for ≈ 60% of instances.

5.6 IDS vs StockingCost

The IDStockingCost constraint generalizes the StockingCost constraint that we
introduced in [14]. We now compare the performance of IDS with StockingCost on
instances with equal stocking costs. We reuse the previous 100 instances generated with 500
demands and time periods, but using the same stocking cost for all the items.

As can be observed in Table 7, both StockingCost and IDS outperform MinAss.
MinAss is at least 8 times slower (on average) than IDS and StockingCost. Note that,
as established in [14], StockingCost offers a bound consistent filtering and is thus as
expected the best propagator in this setting. However, the average values reported in Table 7
show that IDS is competitive wrt StockingCost. This is confirmed by the performance
profiles presented in Fig. 12:

– wrt nodes: for ≈ 80% of instances, StockingCost is not more than 1.1 times better
than IDS;

Fig. 12 Performance profiles: StockingCost, IDS, MinAss and Basic

208 Constraints (2019) 24:183–209

– wrt time: for ≈ 80% of instances, IDS has the best time. However, on ≈ 5% of
instances, it takes more than twice as long as StockingCost.

6 Conclusion

We have introduced the IDStockingCost constraint to handle the stocking cost aspect
of some Capacitated Lot Sizing problems using Constraint Programming. This constraint
takes into account item independent stocking and production capacity that may vary over
time. We have proposed a scalable filtering algorithm for this constraint in O(n log n). Our
experimentation on a variant of the capacitated lot-sizing problem shows that the filtering
algorithm proposed: 1) scales well wrt a CP formulation based on the minimum assignment
problem, and 2) can be used instead of the StockingCost constraint [14] even when the
stocking costs are the same for all items.

The filtering described in this paper is based on a lower bound on the marginal cost
increase when one is forced to produce an order earlier than its optimal period. An inter-
esting direction for future work is to compute efficiently the exact marginal cost and also
consider the case when a variable is forced to take a value greater than its optimal period.
Also, in this paper, we have focussed only on the filtering of the stocking costs that may
arise in a CLSP. It would be interesting to propose some global constraints to efficiently fil-
ter the other costs of such problems (production costs, set up costs, changeover costs, etc.).
In particular, an efficient filtering algorithm for the changeover cost part of the Pigment
Sequencing Problem would certainly improve the performance of CP on this problem. On
the other hand, this paper does not include customized heuristics for this problem. Research
on search aspects should be conducted in order to compare the CP approach with the spe-
cialized approaches on these problems. For instance, one could use LNS [25] to drive the
search quickly toward good solutions or develop dedicated heuristics.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Armentano, V.A., Franca, P.M., de Toledo, F.M.B. (1999). A network flow model for the capacitated
lot-sizing problem. Omega, 27, 275–284.

2. Barany, I., Roy, T.J.V., Wolsey, L.A. (1984). Strong formulations for multi-item capacitated lot sizing.
Management Science, 30, 1255–1261.

3. Belvaux, G., &Wolsey, L.A. (2001). Modelling practical lot-sizing problems as mixed integer programs.
Management Science, 47, 724–738.

4. Demassey, S., Pesant, G., Rousseau, L.M. (2006). A cost-regular based hybrid column generation
approach. Constraints, 4(11), 315–333.

5. Drexl, A., & Kimms, A. (1997). Lot sizing and scheduling - survey and extensions. European Journal of
Operational Research, 99, 221–235.

6. Ducomman, S., Cambazard, H., Penz, B. (2016). Alternative filtering for the weighted circuit constraint:
Comparing lower bounds for the tsp and solving tsptw. In 13th AAAI conference on artificial intelligence.

7. Focacci, F., Lodi, A., Milano, M. (1999). Cost-based domain filtering. In Principles and practice of
constraint programming–CP’99 (pp. 189–203). Springer.

8. Gay, S., Hartert, R., Lecoutre, C., Schaus, P. (2015). Conflict ordering search for scheduling problems.
In Principles and practice of constraint programming - CP 2015 (pp. 144–148). Springer.

9. German, G., Cambazard, H., Gayon, J.P., Penz, B. (2015). Une contrainte globale pour le lot sizing. In
Journée francophone de la programation par contraintes - JFPC 2015 (pp. 118–127).

Constraints (2019) 24:183–209 209

10. Ghomi, S.M.T.F., & Hashemin, S.S. (2001). An analytical method for single level-constrained resources
production problem with constant set-up cost. Iranian Journal of Science and Technology, 26(B1), 69–
82.

11. Gicquel, C. (2008). Mip models and exact methods for the discrete lot-sizing and scheduling problem
with sequence-dependent changeover costs and times. Paris: Ph.D. thesis, Ecole centrale.

12. Harris, F.W. (1913). How many parts to make at once. Factory, The magazine of management, 10(2),
135–136.

13. Houndji, V.R., Schaus, P., Wolsey, L. Cp4pp: Constraint programming for production planning. https://
bitbucket.org/ratheilesse/cp4pp.

14. Houndji, V.R., Schaus, P., Wolsey, L., Deville, Y. (2014). The stockingcost constraint. In Principles and
practice of constraint programming–CP 2014 (pp. 382–397). Springer.

15. Jans, R., & Degraeve, Z. (2006). Modeling industrial lot sizing problems: A review. International Journal
of Production Research.

16. Karimi, B., Ghomi, S.M.T.F., Wilson, J. (2003). The capacitated lot sizing problem: a review of models.
Omega, The international Journal of Management Science, 31, 365–378.

17. Leung, J.M.Y., Magnanti, T.L., Vachani, R. (1989). Facets and algorithms for capacitated lot sizing.
Mathematical Programming, 45, 331–359.

18. López-Ortiz, A., Quimper, C.G., Tromp, J., van Beek, P. (2003). A fast and simple algorithm for bounds
consistency of the alldifferent constraint. In International joint conference on artificial intelligence –
IJCAI03.

19. Pesant, G. (2004). A regular language membership constraint for finite sequences of variables. In
International conference on principles and practice of constraint programming (pp. 482–495). Springer.

20. Pesant, G., Gendreau, M., Potvin, J.Y., Rousseau, J.M. (1998). An exact constraint logic programming
algorithm for the traveling salesman problem with time windows. Transportation Science, 32(1), 12–29.

21. Pochet, Y., & Wolsey, L. (2005). Production planning by mixed integer programming. Springer.
22. Quimper, C.G., Van Beek, P., López-Ortiz, A., Golynski, A., Sadjad, S.B. (2003). An efficient bounds

consistency algorithm for the global cardinality constraint. In Principles and practice of constraint
programming–CP 2003 (pp. 600–614). Springer.

23. Régin, J.C. (1996). Generalized arc consistency for global cardinality constraint. In Proceedings of the
13th national conference on artificial intelligence-Volume 1 (pp. 209–215). AAAI Press.

24. Régin, J.C. (2002). Cost-based arc consistency for global cardinality constraints. Constraints, 7(3–4),
387–405.

25. Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing prob-
lems. In International conference on principles and practice of constraint programming (pp. 417–431).
Springer.

26. Oscar Team (2012). Oscar: Scala in or https://bitbucket.org/oscarlib/oscar.
27. Ullah, H., & Parveen, S. (2010). A literature review on inventory lot sizing problems. Global Journal of

Researches in Engineering, 10, 21–36.
28. Van Cauwelaert, S., Lombardi, M., Schaus, P. (2015). Understanding the potential of propagators. In

Integration of AI and OR techniques in constraint programming for combinatorial optimization problems
- CPAIOR 2015 (pp. 427–436). Springer.

https://bitbucket.org/ratheilesse/cp4pp
https://bitbucket.org/ratheilesse/cp4pp
https://bitbucket.org/oscarlib/oscar

	The item dependent stockingcost constraint
	Abstract
	Introduction
	The item dependent StockingCost problem and constraint
	Filtering of the cost variable H
	The problem definition
	Conditions for optimality of Pr
	Filtering algorithm of the cost variable H

	Pruning the decision variables Xi
	Full periods and full sets
	A lower bound on the marginal cost
	Pruning Ximin
	Strengthening the filtering
	Pruning Ximax
	Consistency property

	Experimental results
	The problem description
	The CP model
	Methodology and experimental settings
	Comparison on small instances
	Comparison on large instances
	IDS vs StockingCost

	Conclusion
	References

