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low level of information loss vis-à-vis the degree of overall localization. The properties and results of the
algorithm are discussed through two applications, namely Argentina and Brazil.

Keywords: relative sectorial specialization, relative regional concentration, two-mode clustering, biclus-
tering, hierarchical clustering, correspondence analysis, large two-way contingency tables, permutation
bootstrap.

Corresponding author: Michel Mouchart, ISBA, voie du Roman Pays 20 - L1.04.01, B-1348 Louvain-la-
Neuve, Belgium. Tel.: +32 10474318; Mob.: +32 472335927; E-mail: michel.mouchart@uclouvain.be.

∗Michel Mouchart gratefully acknowledges financial support from IAP research network grant nrP6/03 of the Belgian
government (Belgian Science Policy). Both authors gratefully acknowledge the financial support of FOP, that promoted in-
tercontinental cooperation. A special thank is due to Vicente N. Donato for the impetus he gave to the development of the
topic of this paper. Dominique Peeters also deserves a particular gratitude for a series of comments that lead to substantial
improvements of a previous version of this paper.

1



Contents

1 Introducing the topic of this paper 3

2 The conceptual background of the algorithm 5

3 Two-mode clustering of regions and sectors 6
3.1 Motivation of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Singular Value Decomposition and Correspondence Analysis . . . . . . . . . . . . . . . . . . . 7
3.3 Automatic optimal collapsed table: the algorithm based on HCCA . . . . . . . . . . . . . . . 8

4 Applications 10
4.1 Application for Argentina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Application for Brazil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Conclusions 14

References 16

2



1 Introducing the topic of this paper

It is known that the economic activity is spatially concentrated and this concentration generates agglomer-
ation economies: localization economies, that is, the benefits that firms derive from the presence of same
sector firms in a geographical area, and urbanization economies, that is, the advantages that firms obtain
from large (and often economically diverse in terms of sector of activities) cities. Therefore, the industrial
policy objectives can be better fulfilled if they are more sensitive to the characteristics of the regions and
of the sectors in design and delivery (Donato, 2002; Nathan and Overman, 2013). More explicitly, in the
statistical analysis of specialization and concentration for understanding the sectorial and regional pattern
of the economic activity, the extension of the sectors and of the regions is known to have a prominent role.

The New Economic Geography (NEG) models explaining specialization mainly originated in trade theory,
while other models explaining concentration mainly came from location theory. These models combine the
insights of traditional regional science with those of modern trade theory and thus attempt to provide an
integrative approach to interregional and international structure of the economic activity (Krugman, 1998;
Schmutzler, 1999; Fujita, Krugman and Venables, 2001; Fujita and Thisse, 2002). The explanations about
the existence and determinants of the agglomeration economies started with the pioneer works of Marshall
(1890), Scitovsky (1954), Arrow (1962), Becattini (1979), and Romer (1986), regarding the localization
economies; and Jacobs (1969), Henderson (1985), Lucas (1988) and Glaeser et al. (1992) regarding the
urban economies. This literature is extensively reviewed in Duranton and Puga (2000), Henderson (2003),
Baldwin and Martin (2004), Rosenthal and Strange (2004), Viladecans-Marsal (2004), Ellison, Glaeser and
Kerr (2010), Puga (2010), Combes and Gobillon (2015), Cottineau et al. (2018). The main purpose of
this paper is to regroup simultaneously regions and sectors following structural similarities in terms of the
presence of agglomeration economies.

This paper is based on lattice data in the form of a two-way contingency table, namely regions × sectors1.
These data are mainly used for the identification and analysis of sectorial specialization of regions and of
regional concentration of sectors. These basic concepts make sense only under a dual approach of regions
and sectors. Using the perspective of a Stochastic Independence Approach (SIA) borrowed from the analysis
of contingency tables and developed in Haedo and Mouchart (2018), the relative measures of specialization
and of concentration are based on the comparison of two distributions, namely the profile (or, conditional
distribution) of the region, or of the sector, and the corresponding marginal distribution. At the country level,
the average of these relative measures provides a concept of overall localization of the economic activity. This
approach allows a simultaneous treatment of sectorial specialization and of regional concentration thanks to
a symmetric manipulations of rows and columns, in the present case of regions and sectors. This feature
enhances a global view of the relative roles of regions and sectors on the regional structure of economic
activity and the analysis of lattice data by means of a two-way contingency table appears as a most natural
framework.

Several challenges are at stake, three of which should be singled out. A first one consists in identifying
regions, respectively sectors, with identical, or similar, structure. These regions, respectively sectors, might
be associated in view of developing a joint policy of between- and within-sectorial and regional cooperation.
At contrast, a second challenge consists in identifying regions, respectively sectors, with complementary
sectorial, respectively regional, structure. It should be clear that any regrouping, of regions and/or of
sectors, involves a loss of information. The third challenge consists in obtaining a regrouping involving a
controlled loss of information while the reduction of the overall dimension is substantial. This is indeed a
crucial challenge with large tables. Moreover, this paper extends in two directions the analysis of grouping
for the evaluation and characterization of overall localization. Firstly, simultaneous groupings of regions and
sectors, rather than separate ones are examined. Secondly, instead of considering arbitrarily pre-specified
groupings, the algorithm provides an automatic construction of grouping aimed at giving optimal groupings
according to a pre-specified criterion. The aim is to simultaneously regroup regions with a similar sectorial
structure in terms of relative over- and under-specialization and sectors with a similar regional pattern in
terms of relative over- and under-concentration. Shortly said, we look for a summary of a large regions ×
sectors contingency table that keeps (almost) unchanged the measure of overall localization of the economic
activity.

1Note that regions and sectors are qualitative unstructured variables and that the data, in the cells of the table, are frequency
numbers rather than quantitative variables.
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The algorithm developed in this paper is in the family of so-called biclustering (Mirkin, 1996), block
clustering (Govaert and Nadif, 2008, 2010; Keribin et al. 2015), co-clustering (Govaert and Nadif, 2013), or
two-mode clustering (Madeira and Oliveira, 2004; Van Mechelen, Bock and De Boeck, 2004; Jagalur et al.
2007). This family allows simultaneous clustering of the rows and columns of a matrix, an approach dating
back to Hartigan (1972), Braverman et al. (1974), Govaert (1977), Bock (1979), Gilula (1986). Biclustering
methods are aimed at designing in a same exercise a clustering of the rows and the columns of a large array
of data. These methods are expected to be useful to summarize large data sets by dramatically smaller data
sets with a similar structure.

There is a vast litterature on biclustering. In general the proposed algorithms are based on a concept
of interaction between rows and columns, with data in the form of quantitative variables. This concept
in the spirit of analysis of variance is based on local averages, often with an underlying hypothesis of
normal distribution; for an historic view, see for instance Denis and Vincourt (1982) or Corsten and Denis
(1990). A particularly interesting paper, Schepers, Bock and Van Mechelen (2017), proposes an algorithm
of maximal interaction for two-mode clustering. The innovative contribution of the present paper is to base
the clustering on measures of the degrees of specialization and of concentration and of overall localization
by means of discrepancies (i.e. distance or divergence) among distributions. This introduces a particularly
fruitful flexibility in the algorithm though the (exogenous) choice of the discrepancy2.

Furthermore, the two-mode clustering algorithm developed in this paper is also in the family of so-called
deterministic procedures, that operate in the spirit of descriptive statistical methods, see for instance, Duffy
and Quiroz (1991), Lebart and Mirkin (1993), Govaert (1995), Tibshirani et al. (1999), Cheng and Church
(2000), Tang et al. (2001), Ciampi, González Marcos and Castejón Lima (2005), Banerjee et al. (2007),
Busygin, Prokopyev and Pardalos (2008), Charrad (2009), Caldas and Kaski (2011), Benabdeslem and Allab
(2013), Liu, Zou and Ravishanker (2018), Orzechowski et al. (2018). Most of these works are based on the
salient results about the links and the complementarity between clustering and factor analysis of contingency
tables, reconciling two different accents: the symmetry of the roles of rows and columns in the process, and
the property of distributional equivalence (Benzécri, 1973; Escofier, 1978; Jambu, 1978; Goodman, 1981,
1985; Hirotsu, 1983; Cazes, 1986; Gilula, 1986; Greenacre, 1988), which allows for a greater stability of the
results when grouping elements with similar profiles.

For large tables, trying all possibilities of grouping is computationally expensive and may be not feasible.
Therefore, a greedy algorithm that only ensures a local optimum is preferable. This is obtained by means
of a technique of Hierarchical Clustering (HC), according to a dendrogram approach, combined with a
Correspondence Analysis (CA), thus the HCCA procedure. Finally, at each step of the tree, permutation
bootstrapping is used as a test that the envisaged regrouping performs better than if it had been generated
randomly.

When our algorithm looks for collapsing simultaneously regions and sectors, no restriction is considered
about the regions or the sectors to be clustered. Thus, for the regions, no criteria of contiguity, or of
some distance-based pattern, is operating because the algorithm is not looking for agglomerations, in the
sense of clustering “neighboring” regions. Therefore, they are constant under spatial permutations and not
distinguished for the inequality of the spatial distribution. The clusters to be elicited are of a structural
nature, i.e. clusters of regions with a similar relative sectorial specialization pattern, or regions with similar
sectorial structure, irrespectively of their geographical localization. Similarly, when collapsing sectors, no
consideration of inter-sectorial relationship, nor of value chain, is operating because only a similar relative
regional concentration of sectors is at stake.

This paper is an extension of part of chapter 2 of Haedo (2009), with the following order of exposition.
After this first section giving an informal introduction to the topic of this paper, a second section provides
a more explicit conceptual background. Third section describes the object of this paper, namely a fully
automatic algorithm of simultaneous grouping of regions and sectors. Discussion of the properties and
results of the algorithm is made through the presentation of two applications, namely Argentina and Brazil
in the fourth section. The last section gathers some concluding remarks.

2In particular, Haedo and Mouchart (2018) proposes the use of one distance, Hellinger, and two divergences, Kullback-Leibler
and χ2 (Inertia).
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2 The conceptual background of the algorithm

The finite framework for the analysis of specialization and concentration may be presented as follows. For a
given country, a finite set of disjoint regions i ∈ I = {1, ..., I}, and a finite set of sectors j ∈ J = {1, ..., J}
are considered. For each pair (i, j) ∈ I × J , a number Nij of primary units is observed; these could be for
instance number of employees or number of establishments. These data refer to lattice data as the Nij are
characteristics of the area defined by region i. Putting together these data, a two-way I × J contingency
table N = [Nij ] is obtained, with the row, column and table totals denoted as follows:

Ni· =
∑J

j=1
Nij ; N·j =

∑I

i=1
Nij ; N·· =

∑I

i=1

∑J

j=1
Nij =

∑J

j=1
N·j =

∑I

i=1
Ni·. (1)

The issues of specialization of regions in terms of sectors and of concentration of sectors within regions are
to be analyzed from the contingency table N in terms of profiles, or conditional distributions, characterizing
regions and sectors.

Following the Stochastic Independence Approach (SIA), as developed in Haedo and Mouchart (2018), the
relative measures of specialization and of concentration are based on the comparison of two distributions, by
means either of a distance or of a divergence. The term discrepancy is used to designate either one or the
other one and d(q | r) denotes the discrepancy of distribution q with respect to distribution r. When d(· | ·)
is not symmetric, as may be the case with a divergence, the distribution r acts as a benchmark against which
distribution q is to be evaluated.

More specifically, the relative sectorial specialization of region i is measured by a discrepancy d(p~j|i |
p·~j) that operates a comparison between its profile (or conditional distribution)3 of the i-th row, p~j|i =

(p1|i, · · · , pj|i, · · · , pJ|i), and the global row profile (or marginal distribution) taken as a benchmark of no

specialization, p·~j = (p·1, · · · , p·j , · · · , p·J), where pj|i =
Nij

Ni·
and p·j =

N·j
N··

. Similarly, the relative regional

concentration of sector j is measured by a discrepancy d(p~i|j | p~i·) that operates the comparison between the

profile (or conditional distribution) of the j-th column p~i|j = (p1|j , · · · , pi|j , · · · , pI|j) and the global column

profile (or marginal distribution) p~i· = (p1·, · · · , pi·, · · · , pI·), where pi|j =
Nij

N·j
and pi· = Ni·

N··
.

The discrepancy d([pij ] | [pi· p·j ]) compares the actual bivariate distribution, on regions × sectors, with
the product of their marginal distributions that represents the closest distribution revealing independence
between regions and sectors, taken as a benchmark of a completely non-specialized, or non-concentrated,
economic structure. This measure represents the (global) information provided by the contingency table
N about the overall localization4 of the economy and allows one to analyze the contribution of each cell
(i, j). This analysis may be conducted by means of the so-called Location Quotient5 LQij . This quotient,
well-known in the literature on relative sectorial specialization and on relative regional concentration, may
be written as follows:

LQij =
pij

pi· p·j
=
pj|i

p·j
=
pi|j

pi·
(2)

and is a local indicator, for the cell (i, j) of the contingency table, that reveals, for example, the following
feature of sector j in region i6:

LQij = 1 or pij = pi· p·j non-specialization

> 1 or pij > pi· p·j over-specialization

< 1 or pij < pi· p·j under-specialization (3)

When pij = 0, LQij = 0, that is an indicator of maxima under-specialization. For the measures of
relative sectorial specialization, of relative regional concentration and of overall localization, three different

3When the components of a vector are indexed by i (regions) or by j (sectors), we use an arrow above the index that marks
the components of the vector.

4For overall localization, Bickenbach and Bode use the term polarization in 2006 but localization in 2008. Haedo (2009) used
global specialization. In 2010, Bickenbach, Bode and Krieger-Boden use localization. Overall localization is used for instance
by Alonso-Villar and Del Ŕıo (2013) and is also adopted in Haedo and Mouchart (2018) and in this paper.

5The well stablished Location Quotient (Florence, 1939), is also known as the (estimated) Hoover-Balassa coefficient for the
cell (i, j). More information may also be found e.g. in Haedo and Mouchart (2018).

6where “non-specialization” stands for: no sectorial specialization of region i or no regional concentration of sector j, and
similarly for the others lines.
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discrepancies are the object of attention, namely the χ2-divergence or Inertia, the Kullback-Leibler divergence
and the Hellinger-distance.

Table 1: Measures of specialization, of concentration and of overall localization

Concepts χ2-divergence or Inertia, Kullback-Leibler divergence, Hellinger-distance,
dχ2(· | ·) dKL(· | ·) d2H(· | ·)

Relative sectorial =
∑
j

(pj|i − p·j)
2

p·j
=
∑
j pj|i log

(
pj|i
p·j

)
= 1

2

∑
j (
√
pj|i −

√
p·j)

2

specialization of region i, =
∑
j p·j (LQij − 1)2 =

∑
j p·j LQij log(LQij) = 1

2

∑
j p·j (

√
LQij − 1)2

d(p~j|i | p·~j)

Relative regional =
∑
i

(pi|j − pi·)
2

pi·
=
∑
i pi|j log

(
pi|j
pi·

)
= 1

2

∑
i (
√
pi|j −

√
pi·)

2

concentration of sector j, =
∑
i pi· (LQij − 1)2 =

∑
i pi· LQij log(LQij) = 1

2

∑
i pi· (

√
LQij − 1)2

d(p~i|j | p~i·)
Overall localization, =

∑
i

∑
j

(pij − pi·p·j)2

pi·p·j
=
∑
i

∑
j pij log

(
pij
pi·p·j

)
= 1

2

∑
i

∑
j(
√
pij −

√
pi·p·j)

2

d([pij ] | [pi· p·j ]) =
∑
i

∑
j

pi·(pj|i − p·j)
2

p·j
=
∑
i

∑
j pi· pj|i log

(
pj|i
p·j

)
= 1

2

∑
i

∑
j(
√
pi· pj|i −

√
pi·p·j)

2

=
∑
i

∑
j

p·j(pi|j − pi·)
2

pi·
=
∑
i

∑
j p·j pi|j log

(
pi|j
pi·

)
= 1

2

∑
i

∑
j(
√
p·j pi|j −

√
pi·p·j)

2

=
∑
i

∑
j pi· p·j(LQij − 1)2 =

∑
i

∑
j pi· p·j LQij log(LQij) = 1

2

∑
i

∑
j pi· p·j (

√
LQij − 1)2

Once a measure of overall localization is considered as an adequate summary representation of the regional
and sectorial structure of the economic activity, an algorithm for optimal groupings of rows and columns
should minimize the loss of that measure. The three approaches sketched in Table 1 suggest three families of
that algorithm. The KL family uses the expression of “loss of information” because of its roots in information
theory. The X 2 family rather speaks of Inertia and is the one explicitly used in this paper.

3 Two-mode clustering of regions and sectors

3.1 Motivation of the algorithm

A purpose of this algorithm is to summarize the original information contained in the complete contingency
table N = [Nij ], in order to extract from the data the most relevant patterns of overall localization.

The nature of the actual challenge should be kept in mind. In the case of Brazil, for instance, there
are I = 5,138 regions. Using just the first 2 digits of the International Standard Industrial Classification
of manufacturing sectors (ISIC-Rev.3), there are J = 22 sectors. In 1998, for example, the total number of
employees is N = 6,018,445. Therefore the contingency table is a 5,138 × 22 matrix of 6,018,445 primary
units spread in 113,036 cells. Thus it should be expected that many cells have either a very small number
of employees or no employee at all.

The skeleton of the proposed algorithm may be viewed as follows. An optimal grouping of regions
and sectors should compromise between two opposite desiderata: the collapsed table should be as small as
possible but should also display a minimum loss of overall localization of the country. Collapsing tables
means building tables of smaller dimension through aggregated regions (rows) and/or sectors (columns).
The total number M of possible collapsed tables7 for the I × J matrix N is:

M =
∑

(m1...mi...ml)

(
I

m1 . . .mi . . .ml

)
×
∑

(n1...ni...nk)

(
J

n1 . . . nj . . . nk

)
(4)

7Equation (4) may also be written as a product of two Bell numbers Bn =
∑

(m1...mi...ml)

( n
m1...mi...ml

)
=
∑

0≤k≤n
(n
k

)
where l 6 n − 1, m1 + . . . + mi + . . . + ml < n. The Bell number is the sum of Stirling numbers of the second kind S(n, k)
that are equal to the number of partitions with k elements of a set with n members. Thus, the Bell number represents the total
number of partitions of a set of n elements. In equation (4), we have n = I and m = J . More information may be found in
Rota (1964), Gardner (1978), Branson (2000) or Sloane (2001).
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where l 6 I − 1, k 6 J − 1, m1 + . . .+mi + . . .+ml < I and n1 + . . .+ nj + . . .+ nk < J .
For I and J large, as in the present case, M is huge and trying all possibilities is computationally

expensive. Therefore, a greedy algorithm that only ensures a local optimum is preferred.

3.2 Singular Value Decomposition and Correspondence Analysis

Let

P =

[
N

N··

]
=

[
Nij
N··

]
be the probability matrix corresponding to N, r = [pi·] the vector of row marginals, c = [p·j ] the vector
of column marginals and Dr and Dc be the diagonal matrices formed with the row marginals and column
marginals, respectively. Let R = [pij − pi· p·j ] be the matrix of residuals between an observed pij and an
expected one, under an hypothesis of independence, pi· p·j . The matrix of the residuals may be conveniently
written as: R = P − rc′. Later on, it will be rather worked on the matrix of the standardized residuals
defined as:

S = D−1/2
r RD−1/2

c sij =
pij − pi·p·j√

pi·p·j
. (5)

The standardized residual sij is connected to the location quotient LQij by the following relationship:

sij =
√
pi·p·j [LQij − 1] (6)

Therefore the sign of the standardized residual gives exactly the same information on the cell (i, j) as the
position of the location quotient with respect to the pivot value 1. The standardized residual may also be
viewed as an homothetic transformation of the location quotient, by a factor

√
pi·p·j . This scale factor may

be viewed as an adjustment for the problems raised by small regions, and small sectors, in line with the
works of Moineddin, Beyene and Boyle (2003), O’Donoghue and Gleave (2004) and Guimarães, Figueiredo
and Woodward (2003, 2009).

When elaborating a simultaneous grouping of regions and sectors, a Singular Value Decomposition (SVD)
of a matrix operates simultaneously on the rows and the columns. More specifically, a SVD of S may be
written as:

S = UDλV
′ (7)

where λ = (λ1, . . . , λK) is the vector of the strictly positive singular values, or eigenvalues, of S organized
in descending order: λ1 ≥ λ2 ≥ · · · ≥ λK > 0 with K = min(I − 1, J − 1)8, the dimension of U is I ×K,
of V is J ×K and where Dλ is accordingly K ×K; moreover U′U = V′V = I(K). The space IRK is called
the factor space. The χ2-divergence between [pij ] and [pi·p·j ], or Total Inertia, may now be written as9:

dχ2([pij ] | [pi· p·j ]) = φ2 =

I∑
i=1

J∑
j=1

(pij − pi·p·j)
2

pi·p·j
=
∑
i

∑
j

s2
ij = trS′S =

K∑
k=1

λ2
k (8)

Thus, the SVD decomposes simultaneously the linear space generated by a matrix and the χ2-statistic,
or inertia. This is precisely the way Correspondence Analysis (CA) operates. Indeed, CA defines a sequence
of subspaces containing an increasing proportion of the total inertia; for more information see e.g. Benzécri
(1973, 1992), Lebart, Morineau and Warwick (1984), Greenacre (1984, 1993, 2007). More explicitly, the
principal coordinates for the rows (regions) are defined as:

F = D−1/2
r UDλ = [fik] I ×K fik = p

−1/2
i· λk uik (9)

where fik represents the score of region i in the k-th dimension of the factor space IRK . Later on, we shall
systematically use the decomposition of F into its I-dimensional columns denoted as F = [f~i1, · · · , f~iK ]. It
may be checked that:

F′DrF = D2
λ i .e.

∑
i

pi·f
2
ik = λ2

k (10)

8with, evidently, λK+1 = · · · = λmax(I,J) = 0
9Remember that, in general, when a matrix A = [aij ], one has: tr(A′A) =

∑
i

∑
j a

2
ij
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thus equation (10) decomposes the k-th eigenvalue of S′S, also the k-th component of the inertia, according
to the contribution of each region i, namely Ii = pi·f

2
ik. Similarly, the principal coordinates for the columns

(sectors) are defined as:

G = D−1/2
c VDλ = [gjk] J ×K gjk = p

−1/2
·j λk vjk (11)

where gjk represents the score of sector j in the k-th dimension of the factor space IRK . Similarly, the
decomposition of G into its J-dimensional columns is denoted as G = [g~j1, · · · , g~jK ]. Here also:

G′DcG = D2
λ i .e.

∑
j

p·jg
2
jk = λ2

k (12)

thus equation (12) decomposes the k-th eigenvalue of S′S according to the contribution of each sector j,
where Ij = p·jg

2
jk measures the contribution of the sector j.

The SVD of S will be used in the following spirit. Let Dλ(m) be the principal submatrix of Dλ correspond-
ing to the first m eigenvalues λk and U(m) and V(m) be the submatrices made of the first m columns of U
and V, respectively. The least-squares rank m approximation of S is obtained as: S(m) = U(m) Dλ(m) V

′
(m)

(Eckart-Young theorem, see e.g. Eckart and Young, 1936). For each m = 1, . . . ,K, the algorithm will
consider a sequence of hierarchical clusterings corresponding to a sequence of improved approximations of
S. Therefore, the SVD of S provides a decomposition of the total overall localization measure φ2 in terms
of the contributions of each factor k and of the contribution of the regions i, respectively the sectors j:

φ2 =
∑
i

Ii =
∑
i

∑
k

pi· f
2
ik =

∑
j

Ij =
∑
j

∑
k

p·j g
2
jk (13)

For more information, see e.g. Mardia, Kent and Bibby (1979), Jobson (1992) and Greenacre (2007).
Let us write the rows and columns profiles as follows:

D−1
r P =

[
pij
pi·

]
= [pj|i] PD−1

c =

[
pij
p·j

]
= [pi|j ] (14)

Comparing, by means of a divergence, a profile with the corresponding marginal distribution provides a
measure of relative sectorial specialization of region i and of relative regional concentration of sector j:

dχ2(p~j|i | p·~j) =
∑
j

(pj|i − p·j)
2

p·j
= [p~j|i − p·~j ]

′D−1
c [p~j|i − p·~j ] =

∑
k

f2
ik (15)

dχ2(p~i|j | p~i·) =
∑
i

(pi|j − pi·)
2

pi·
= [p~i|j − p~i·]

′D−1
r [p~i|j − p~i·] =

∑
k

g2
jk (16)

Therefore, the decomposition of the Total inertia as a measure of overall localization, in (13), may also be
written in terms of average relative specialization or concentration:

φ2 =
∑
i

pi· dχ2(p~j|i | p·~j) =
∑
j

p·j dχ2(p~i|j | p~i·) (17)

More details, under a Stochastic Independence Approach (SIA), are given in Haedo and Mouchart (2018).

3.3 Automatic optimal collapsed table: the algorithm based on HCCA

In this section, we give the essentials of the algorithm. We shall use the applications, in next section, to
provide further details on the working of the algorithm.

An overview
In line with (15) and (16), the distance between regions or sectors is provided by means of a “square of
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weighted Euclidean distances” among profiles. The dissimilarity between the profiles of two regions i and i′

or two sectors j and j′ is accordingly measured as follows:∑
j

1

p·j

(
pj|i − pj|i′

)2
= [p~j|i − p~j|i′ ]

′D−1
c [p~j|i − p~j|i′ ] = d2

Dc
(p~j|i | p~j|i′) (18)

∑
i

1

pi·

(
pi|j − pi|j′

)2
= [p~i|j − p~i|j′ ]

′D−1
r [p~i|j − p~i|j′ ] = d2

Dr
(p~i|j | p~i|j′) (19)

Following Ward (1963)’s approach, the least decrease in inertia is identified by the pair of rows (i, i′) which
minimize the following measure:

pi· pi′·
pi· + pi′·

∑
j

1

p·j

(
pj|i − pj|i′

)2
=

pi· pi′·
pi· + pi′·

[p~j|i − p~j|i′ ]
′D−1

c [p~j|i − p~j|i′ ] (20)

The overall localization of an economy decreases as a consequence of clustering and this loss of information
is reduced by clustering the most similar regions or sectors. Thus the algorithm chooses pairs of regions i
and i′ and pairs of sectors j and j′ minimizing the measures of dissimilarity (18) and (19). The two rows
are then merged by summing their frequencies and the profile and mass are recalculated. The same measure
of difference as (20) is calculated at each stage of the clustering. We also operate similarly for merging two
columns.

A collapsed table is characterized by two partitions: a partition I∗ of the rows and a partition J ∗ of
the columns. Thus a collapsed table is denoted as TI∗×J ∗ and is obtained by merging the rows and the
columns of the original table according to the relevant partition. Hierarchical clustering, of the rows or of the
columns, generates a nested sequence of (I + 1) partitions of the rows and (J + 1) partitions of the columns,
with the first and the last ones being:

I(0) = {{1}, {2}, . . . , {I}} J (0) = {{1}, {2}, . . . , {J}} (21)

I(I) = {{1, 2, . . . , I}} J (J) = {{1, 2, . . . , J}} (22)

The other not extreme (I − 1) and (J − 1) partitions corresponds to the levels of a dendrogram.

First step: building collapsed tables from HCCA
• Work on the rows (regions). For m = 1, 2, . . . ,K:
Consider the first m columns of F, i.e. let the I × m matrix F(m) = (f~i1, . . . , f~il, . . . , f~im) , where f~il
represents the l-th column of F, and obtain a hierarchical clustering of the rows of F(m), corresponding to
the rows of S, as follows. Let I(n,m) n = 0, . . . , I, with ∀m : I(0,m) = I(0) and I(I,m) = I(I), be the
nested sequence of I + 1 partitions of regions, starting with I(0) and with each following cluster obtained
as an optimized clustering scheme based on I(n−1,m). Thus ∀m, there are only I − 1 relevant levels of the
hierarchical clustering, graphically represented by a dendrogram.
• Work on the columns (sectors). For m = 1, 2, . . . ,K:
Repeat the same with the columns of G, with the J ×m matrix G(m) = (g~j1, . . . , g~jl, . . . , g~jm) where g~il
represents the l-th column of G, and obtain a dendrogram through a hierarchical clustering of the rows of
G(m), corresponding to the columns of S, as follows. Let J (h,m) h = 0, . . . , J , with ∀m : J (0,m) = J (0)

and J (J,m) = J (J), be the nested sequence of J + 1 partitions of sectors, starting with J (0) and with each
following cluster obtained as an optimized clustering scheme based on J (h−1,m). Thus ∀m, there are only
J − 1 relevant levels of the hierarchical clustering.
• Building collapsed tables:
For each level of the rows and columns dendrograms, buildK collapsed tables, each of dimension (I−1)(J−1),

and repeat the operation for each m, obtaining accordingly K collapsed tables T
(m)

In,m×J h,m , and calculate

the corresponding inertia φ2
(
T

(m)

In,m×J h,m

)
.

Second step: identifying an optimal collapsed table through bootstrapping
Having built the array A of (I − 1)(J − 1)K collapsed tables, the final question is: which of the collapsed
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tables is better in the sense of an optimal compromise between a smallest table that preserves the highest
overall localization (i.e. association) possible? Permutation bootstrapping provides a tool for a suitable
compromise.
• Bootstrapping:

Let us consider whether a particular table T
(m)

In,m×J h,m is optimal in the sense alluded above. At least, one

should check that this table is not dominated by a table obtained through a random shuffling of the labels
(of rows and/or of columns) based on a same level of the dendrogram. The optimized tables from the den-
drograms are completely characterized by the three characteristics (n, h,m). Here, In,m is a partition I with
I − n elements, let {I1, . . . , II−n}. Let πr be a permutation defined on I, i.e. πr : I → I, bijective and let
us write πr(In,m) for the image of the partition In,m transformed by πr. Similarly, let πc be a permutation
defined on J and its image πc(J h,m).
• Optimal collapsed table:

Given (πr, π
c), one may define a transformed table T

(m)

πr(In,m)×πc(J h,m)
, following the same partition scheme as

the optimized table T
(m)

In,m×J h,m with shuffled labels, and compute a corresponding inertia φ2
(
T

(m)

πr(In,m)×πc(J h,m)

)
.

Note that the transformed table T
(m)

πr(In,m)×πc(J h,m)
has a same dimension as T

(m)

In,m×J h,m ; thus their inertia

are comparable. The difference φ2
(
T

(m)

In,m×J h,m

)
− φ2

(
T

(m)

πr(In,m)×πc(J h,m)

)
is an effect of the label shu-

fllings of the rows and of the columns. The permutation bootstrap is obtained by generating randomly the
permutations (πr, π

c) and evaluates the average, denoted as IEB , of the corresponding inertia. Thus, the
difference

ψ(n, h,m) = φ2
(
T

(m)

In,m×J h,m

)
− IEB φ

2
[
T

(m)

πr(In,m)×πc(J h,m)

]
(23)

represents how much the optimized table has gained, in inertia, relatively to a table with a same cluster
scheme but with randomly shuffled individuals and variables. The algorithm terminates by defining the
optimal collapsed table, In∗,m∗ × J h

∗,m∗ by solving the maximization problem:

(n∗, h∗,m∗) = argmaxn,h,m ψ(n, h,m), (24)

balancing by so-doing the trade-off between the association degree and the table dimension.
• Stopping rules:
Two stopping rules of the algorithm may be considered, corresponding to two different approaches to the
issue of optimal collapsing. The applications that are now coming, correspond to (24) and terminate the
computation once identified the collapsing providing the largest difference between the overall localization

φ2
(
T

(m)

In,m×J h,m

)
of a given table and the bootstrap average of randomly shuffled labels of a same level of the

dendrogram. Another stopping rule would introduce an overall objective function built through a weighting
of the size of a table and its corresponding overall localization measure. In that case, the algorithm computes
this objective function at each level of the dendrogram and retains that one with the highest score.

Remark. In general, a clustering of a table involves a loss of information, measured by a decrease of the
inertia. In the extreme cases, TI(I)×J (J) is a 1 × 1 table representing a maximum level of clustering and
maximum loss of information, whereas TI(0)×J (0) is a I ×J table representing the original table with no loss
of information. In both cases, bootstrapping is irrelevant.

4 Applications

Preliminary works with simulated data had provided encouraging results about the performance of this
algorithm, motivating a further step with real data. The next step was, evidently, to let the algorithm
work on real data of several countries. The purpose of these applications is to analyze the degree of overall
localization using the optimal collapsed table algorithm and to evaluate how far the functioning of the
algorithm provides additional information on the regional structure of the economic activity. Two of these
applications are presented for different aspects of the results of the algorithm for Argentina and for Brazil.
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These results are not presented with an exhaustive approach but rather with the objective of expliciting the
characteristics of the proposed methodology with some insights about how these results might be used for
policy making.

The sector classification used in both applications refers to the first 2 digits (divisions) of the International
Standard Industrial Classification (ISIC-Rev.3.1) of manufacturing industry (23 divisions) and is given in
Table 2.

Table 2: Sectors of the manufacturing industry (Divisions ISIC-Rev.3.1)

Sector Description
15 Manufacture of food products and beverages
16 Manufacture of tobacco products
17 Manufacture of textiles
18 Manufacture of wearing apparel; dressing and dyeing of fur
19 Tanning and dressing of leather; manufacture of luggage, handbags, saddlery,

harness and footwear
20 Manufacture of wood and of products of wood and cork, except furniture;

manufacture of articles of straw and plaiting materials
21 Manufacture of paper and paper products
22 Publishing, printing and reproduction of recorded media
23 Manufacture of coke, refined petroleum products and nuclear fuel
24 Manufacture of chemicals and chemical products
25 Manufacture of rubber and plastics products
26 Manufacture of other non-metallic mineral products
27 Manufacture of basic metals
28 Manufacture of fabricated metal products, except machinery and equipment
29 Manufacture of machinery and equipment n.e.c.
30 Manufacture of office, accounting and computing machinery
31 Manufacture of electrical machinery and apparatus n.e.c.
32 Manufacture of radio, television and communication equipment and apparatus
33 Manufacture of medical, precision and optical instruments, watches and clocks
34 Manufacture of motor vehicles, trailers and semi-trailers
35 Manufacture of other transport equipment
36 Manufacture of furniture; manufacturing n.e.c.
37 Recycling

The optimal collapsed tables of Argentina and Brazil are found using B=1,000 permutation bootstraps
and the first eigenvalues selected in the step of the algorithm where the optimal collapsed tables were found:
the first 15 out of 22 for Argentina and the first 15 out of 21 for Brazil.

4.1 Application for Argentina

The spatial units are the lower level political-administrative jurisdictions called departments (511) of Ar-
gentina. After eliminating those without employees, there are remaining 491. The data, related to the number
of employees in the manufacturing industry, were obtained from of the National Institute of Statistics and
Censuses of Argentina (INDEC-2004: 941,337 employees).

Table 3 shows a summary of the results obtained from the three measures of overall localization proposed
in Table 1 for the original and for the optimal collapsed table, namely the number of cells, and the resulting
loss of information about the level of overall localization.

Table 3: Summary of the results of Argentina

Measure
Original Optimal collapsed Lost level of
table table overall localization (%)

dX2 1.9519 1.5833 18.9
dKL 0.2060 0.1350 34.5
dH 0.0949 0.0671 29.4

# of cells
11,293 578

(491x23) (34x17)
Reduction # of cells 94.9%

The loss of information, between 18.9% and 34.5%, seems quite attractive vis-à-vis a substantial reduction
in the size of the table (94.9%). The percentages of the loss of information clearly depend on the underlying
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divergences. That dX 2 be associated with the smallest loss of information may be connected to the fact that
this version of the algorithm is based on optimizing the loss in terms of dX 2 .

Figures 1 and 2 are heatmaps that allows one, in the present case, to summarize and visualize large
tables by representing each cell by one color: white for cells non-specializaed or non-concentrated, yellow
for cells under-specialized or under-concentrated and orange for cells over-specialized or over-concentrated.
These figures provide the contribution to overall localization of each pair (region, sector): Figure 1, for
the original data- thus 491 rows and 23 columns- and, Figure 2, for the optimal collapsed table- thus 34
rows, corresponding to g-regions, and 17 columns, corresponding to g-sectors. In Figure 1, the g-regions
are separated by an horizontal black line and numerated in the first column (under GR). Similarly for the
g-sectors, in the first row, in case of two lines, the first one gives the number of the g-sector (GS) and the
second one gives the original labels of the sector.

These results provide a deeper understanding about the realization of specialization and concentration in
economy. Thus it may be clearly viewed that every GR has a specific characterization in terms of sectorial
specialization and every GS in terms of regional concentration. For instance, the GR1 is over-specialized
in 5 sectors and GS1 is over-concentrated in 2 GR’s. These facts suggest that the results of the two-
mode clusterization may provide underlying information on the process leading to these specialization and
concentration for specific GR’s and GS’s.

Let us now have a spatial view on the results of the algorithm. Figure 3 gives a map of the GR4 where
the right-hand side part gives an ampliation of the metropolitan zone of Buenos Aires. As mentioned in the
Introduction, this algorithm does not impose restrictions of contiguity or of some distance-based pattern on
the regions to be clustered. Nevertheless, it should be noted that in the metropolitan zone of Buenos Aires
and in the rest of Argentina several neighboring original regions are clustered within the GR410. The GR4
clusters 37 regions with 26.3% for the manufacturing occupation at the national level and is specialized in
the 7 g-sectors: 17, 21, GS2, GS3, 29, 34 and 37 with 30.5%, 34.3%, 41.5%, 39.8%, 28.7%, 28.1% and 33.6%,
respectively, of manufacturing occupation at national level. In the metropolitan zone of Buenos Aires, 18
regions are contiguous representing 83.8% of the occupation in GR4 and 22.0% at the national level. These
18 regions represent, on the specialized sectors in GR4, a manufacturing occupation of 88.5%, 77.6%, 81.7%,
87.1%, 83.9%, 93.0% and 60.2%, respectively; and 27.0%, 26.6%, 33.9%, 34.7%, 24.1%, 26.2% and 20.3%,
respectively, of manufacturing occupation at national level.

4.2 Application for Brazil

The spatial units are the lower level political-administrative jurisdictions called municipalities (5,138) of
Brazil. The data, related to the number of employees in the manufacturing industry, were obtained from of
the National Institute of Statistics and Censuses of Brazil (IBGE-1998: 6,018,445 employees).

Similarly to Table 3 for Argentina, Table 4 shows a summary of the results obtained from the three
measures of overall localization proposed in Table 1.

Table 4: Summary of the results of Brazil

Measure
Original Optimal collapsed Lost level of
table table overall localization (%)

dX2 3.0604 2.4151 21.1
dKL 0.3222 0.2140 33.6
dH 0.1524 0.1067 30.0

# of cells
113,036 884

(5,138x22*) (52x17)
Reduction # of cells 99.2%

*For Brazil, sector 37 is included in sector 36 (ISIC-Rev.3).

It may be noticed that the (5,138 × 22) original table is now reduced to a (52 × 17) optimal collapsed
table, i.e. a reduction of 99.2% of the number of cells but only a loss of information of 21.1% in terms of
the dX 2 .

10The First Law of Geography, according to Waldo R. Tobler (1970), is: “Everything is related to everything else, but near
things are more related than distant things”.
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Figure 1: Heatmap of the original table for overall lo-
calization of Argentina

Figure 2: Heatmap of the optimal collapsed table for
overall localization of Argentina
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Figure 3: GR4 of Argentina

Similarly to Figure 2 for Argentina, Figure 4 is the heatmap of the optimal collapsed table- thus 52
rows, corresponding to GR’s, and 17 columns, corresponding to GR’s. Again, it may be observed that every
GR has a specific characterization in terms of sectorial specialization and every GS in terms of regional
concentration. For instance, the GR2 is over-specialized in 2 sectors and GS2 is over-concentrated in 3 GR’s.

The results of the algorithm for Brazil are now used to comment on the standardized residuals, introduced
in (6). As mentioned before, these residuals may be viewed as an homothetic transformation of the location
quotient, thus as a measure of local relative specialization and concentration, in connection to the concept of
overall localization. Figure 5 depicts the standardized residuals of the 113,036 cells of the original table. Most
of the standardized residuals are around zero. Therefore, it is to be expected that most of the cells are not
significantly over- or under-specialized or over- or under-concentrated, suggesting that the degree of overall
localization can be explained with much less information. Figure 6 shows the standardized residuals for the
884 cells of the optimal collapsed table obtained by grouping regions and sectors. The strong decrease of the
zero and close to zero residuals make the overall localization phenomenon more apparent. As a matter of
fact, grouping into g-regions and g-sectors succeeds in better identifying simultaneouly homogenous regions
of similar relative specialization structure and homogenous sectors of similar relative concentration structure.

5 Conclusions

The results of the applications demonstrate that the innovative aspects of this algorithm are in providing a
new way of understanding the similarities and dissimilarities of the processes of relative specialization and
concentration between regions or sectors that are not bound to spatial or technological closeness. The con-
nection with the regional-sectorial distribution of the employment, the presence of agglomeration economies
and the tendency to co-localize employment are accordingly of a major interest.

A distinctive feature of this greedy algorithm in an unsupervised framework is to be completely automatic
in the sense that the number of clusters and the dimension of the factor space of the final solution are
determined by the algorithm itself rather than by pre-specified parameters. The motivation for this choice is
the development of a tool designed for deepening specific concepts of economic geography, in the framework
of the SIA, at variance from other biclustering algorithms oriented toward specific characteristics of the
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Figure 4: Heatmap of the optimal collapsed table for
overall localization of Brazil

Figure 5: Standardized residuals of the original table
of Brazil

Figure 6: Standardized residuals of the optimal col-
lapsed table of Brazil

resulting regrouping. Indeed the underlying concepts of GR’s and of GS’s are completely specified by the
algorithm itself, at variance from an algorithm requiring the a priori specification of some parameters. In this
later case, such algorithms would define a family of concepts rather than a unique concept. In the present
case, the concerts of GR’s and of GS’s are defined in terms of relative specialization and concentration
respectively.

The Introduction of this paper mentions three challenges the proposed algorithm should consider:

• In this algorithm, the basic criterion for grouping regions, respectively sectors, is the similarity of the
sectorial, respectively regional, structure: this is the natural answer to the first challenge.

• Distinct GR’s imply different sectorial structures between the GR’s and similar sectorial structure of
the regions within each GR. This property of the proposed algorithm provides a useful information for
the policy maker either within a country or between countries. For instance, it is of a particular interest
for policy cooperation to notice that the GR2 of Argentina (Figure 2) and the GR2 of Brazil (Figure
4) are over- and under-specialized in the same sectors. This feature may be viewed as a contribution
to the second challenge. Interestingly enough, this information may also be used for extending the
analysis of complexity and ubiquity as proposed in the Atlas of Economic Complexity, see Hausmann
et al. (2015), when it is mentioned that “individual specialization begets diversity at the national
and global level”. This has also been a major achievement in the development of the project Mapas
Industriales de América Latina y el Caribe (MIALC), see Haedo and Mouchart (2015b).

• When treating large contingency tables regions × sectors, it is possible to reduce substantially the
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number of cells, by a factor of more than 90%, along with quite a reasonable loss of the information
contained in the table on the overall localization, namely with a factor around 20%. This is quite an
achievement regarding the third challenge.

Concerning the issue of local agglomeration economies, particular features of a country appear more
explicitly after collapsing the original table:

• Figure 3 of the metropolitan zone of Buenos Aires, GR4, is over-specialized in various sectors and
suggests the presence of urban economies (large cities and economically diverse in terms of over-
specialized sectors), while the GR10 of Argentina and GR24 of Brazil are over-specialized in only one
sector and accordingly suggest the presence of localization economies.

• The algorithm does not include any restriction of contiguity or of some distance-based pattern within
the GR’s. Nevertheless, in Figure 3, it should be noticed that within GR4, 18 regions of the metropoli-
tan zone of Buenos Aires are contiguous, displaying a clear spatial clustering that suggests an effect of
specialized agglomeration; this fact comforts some of the findings of Haedo and Mouchart (2015a).

Table 4 shows that, in line with the SIA, the choice of a specific metric for measuring the overall local-
ization may be highly influential in the clustering procedures. This paper is based on the χ2-divergence.
Thus a promising avenue for future research might be to develop this algorithm on the basis of other metrics
such as Kullback-Leibler divergence (KL) or Hellinger-distance (H) and compare the results with the present
version. In this direction, Rao (1995) and Marinelli and Winzer (2004) provide useful starting points.

In line with the biclustering algorithms of Bhattacharya and Cui (2017) and Orzechowski et al. (2018)
based on parallel computing platform, the extension of the present algorithm to n-dimensional contingency
tables is under development.
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Donato, V. (2002), Poĺıticas públicas y localización industrial en Argentina. Buenos Aires: Fundación
Observatorio PyME, CIDETI Working Paper 2002/01.

Duffy, D.E. and Quiroz, A.J. (1991), A permutation-based algorithm for block clustering. Journal of
Classification 8: 65-91.

Duranton, G. and Puga, D. (2000), Diversity and specialization in cities: why, where and when does
it matter? Urban Studies 37: 533-555.

Ellison, G., Glaeser, E.L. and Kerr, W.R. (2010), What causes industry agglomeration? Evidence
from coagglomeration patterns. American Economic Review 100: 1195-1213.

Escofier, B. (1978), Analyse factorielle et distances répondant au principe d’équivalence distributionnelle.
Revue de Statistique Appliquée 16: 29-37.

Eckart, C. and Young, G. (1936), The approximation of one matrix by another of lower rank. Psy-
chometrika 1: 211-218.

Florence, P. (1939), Report of the Location of Industry. Political and Economic Planning, London, UK.
Fujita, M., Krugman, P. and Venables, A. (2001), The Spatial Economy. Cities, Regions, and

International Trade. Cambridge, MA: MIT Press.
Fujita, M. and Thisse, J-F. (2002), Economics of Agglomeration. Cities, Industrial Location, and

Regional Growth. Cambridge: Cambridge University Press.
Gardner, M. (1978), The Bells: versatile numbers that can count partitions of a set, primes and even

rhymes. Scientific American 238: 24-30.
Gilula, Z. (1986), Grouping and associations in contingency tables: an exploratory canonical correlation

approach. Journal of American Statistical Association 81: 773-779.
Glaeser, E., Kallal, H., Scheinkman, J. and Shleifer, A. (1992), Growth in cities. Journal of

Political Economy 100: 1126-1152.
Goodman, L. (1981), Criteria for determining whether certain categories in a cross-classification table

should be combined with special reference to occupational categories in an occupational mobility table.
American Journal of Sociology 87: 612-650.

Goodman, L. (1985), The analysis of cross-classified data having ordered and/or unordered categories:
association models, correlation models, and asymmetry models for contingency tables with or without
missing entries. Annals of Statistics 13: 10-69.

17



Govaert, G. (1977), Algorithme de classification d’un tableau de contingence. In INRIA: 487-500.
Govaert, G. (1995), Simultaneous clustering of rows and columns. Control and Cybernetics 24, No. 4.
Govaert, G. and Nadif, M. (2008), Block clustering with bernoulli mixture models: comparison of

different approaches. Computational Statistics and Data Analysis 52: 3233-3245.
Govaert, G. and Nadif, M. (2010), Latent block model for contingency tables. Communications in

Statistics, Theory and Methods 3: 416-425.
Govaert, G. and Nadif, M. (2013), Co-Clustering. Hoboken: John Wiley & Sons.
Greenacre, M.J. (1984), Theory and Applications of Correspondence Analysis. London: Academic Press.
Greenacre, M.J. (1988), Clustering the rows and columns of a contingency table. Journal of Classification

5: 39-51.
Greenacre, M.J. (1993), Multivariate generalizations of correspondence analysis. In C.M. Cuadras and

C.R. Rao (eds.), Multivariate Analysis: Future Directions 2. Amsterdam: North-Holland.
Greenacre, M.J. (2007), Correspondence Analysis in Practice. Boca Raton, FL: Chapman & Hall/CRC.
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