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Analysis of the existence of equilibrium profiles in
nonisothermal axial dispersion tubular reactors

A. Hastir1, F. Lamoline1, J.J. Winkin1 and D. Dochain2

Abstract—This paper deals with the analyis of the nonisothermal
axial dispersion tubular reactor. The existence of equilibrium
profiles is investigated. In particular, for equal Peclet numbers, it
is shown that one or three equilibria can be exhibited, depending
on the parameters of the system, especially on the diffusion
coefficient. In addition, different and close Peclet numbers are
also considered. In these cases, it is also shown that the reactor
has one or three equilibrium profiles. Some numerical simulations
support the theoretical results.

Index Terms—Nonisothermal tubular reactor - Equilibrium pro-
file - Positive semigroup - Nonlinear infinite-dimensional systems

I. INTRODUCTION

The dynamics of tubular reactors are governed by nonlinear
partial differential equations (PDEs) derived from mass and
energy balance equations. This includes plug flow and axial
dispersion reactor models. Nonlinearities in the dynamics are
typically located in the kinetic terms and are based notably on
the Arrhenius law for nonisothermal reactors, see [1].
From [2], tubular reactors are known to be well-posed, i.e.
there exist unique state trajectories describing the temperature
and the reactant concentration’s evolution. Some results of [2]
are recalled here and some further remarks are made. The
well-posedness analysis relies on the semigroup approach; see
e.g. [3] or [4] for an overview.
The multiplicity and the stability of equilibrium profiles have
been widely studied over the years, see for instance [5]
and [6]. More particularly, for biochemical reactor distributed
parameter models, a study of the existence and the multiplicity
of equilibria was performed in [7].
It is also important to note that many control problems for
tubular reactors have also been studied over the years. Even
though a majority of works was devoted to lumped parameters
systems (see [8] and references therein), one observes an in-
creasing number of contributions for PDE models over the last
decades. This includes the challenging issues of controlling
and stabilizing PDE models of tubular reactors around unstable
equilibrium profiles. For instance, the sliding mode control
approach was developed in [9] and applied to the stabilization
of both plug flow and tubular reactors, backstepping was
studied in [10] and adaptive extremum-seeking control in [11].
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An optimal Linear Quadratic (LQ) regulation problem has also
been investigated in [1].
More recently, in [13] an analysis of the multiplicity of
equilibrium profiles of a tubular reactor with equal energy and
mass Peclet numbers was performed. These are dimensionless
numbers representing the ratio between the convection transfer
and the conduction transfer (thermal Peclet number) or the
ratio between the convection transfer and the diffusion transfer
(mass Peclet number). The main contribution of this paper is
to extend this study to the case of different or close Peclet
numbers.
The aim of this paper is to study the existence of equilib-
rium profiles for nonisothermal tubular reactors and to derive
multiplicity criteria for these equilibrium profiles. It is shown
that such reactors can exhibit different numbers of equilibrium
profiles depending on parameters of the system, particularly
on the diffusion coefficient. A further contribution is to give a
clarification of the analysis developed in [13] for equal Peclet
numbers.
The paper is organized as follows. In Section II the system
under study is introduced together with the reduced model
(dimensionless model). Section III is devoted to the study
of the well-posedness. In Section IV three different cases,
based on the Peclet numbers, for the study of existence
of equilibrium profiles in such reactors are analyzed. The
approach used here is purely qualitative and consists of an
an extension of the analysis developed in [13, Section 3]. The
theory is illustrated by some numerical simulations. Note that
all the parameter values that are used in the simulations are
based on conditions that were used in previous works, see e.g.
[10], [7], [12], [11], [14], [9], [5].

II. MODEL DESCRIPTION

We are interested in tubular reactors involving a chemical
reaction of the form

A→ B

where A denotes the reactant and B the product. In the model,
the state components are defined as the temperature (T [K])
and the concentration of reactant (C [mol/l]).
The equations of a nonisothermal tubular reactor are directly
deduced from mass and energy balances on a slice of infinites-
imal thickness dz during an infinitesimal time dt as depicted
in Figure 1. They are given by

∂T
∂ t =−v ∂T

∂ z +
λea
ρCp

∂ 2T
∂ z2 − ∆H

ρCp
k0Ce−

E
RT + 4h

ρCpd (Tw−T ),

∂C
∂ t =−v ∂C

∂ z +Dma
∂ 2C
∂ z2 − k0Ce−

E
RT ,

(1)
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Fig. 1. Profile view of a tubular reactor.

where T (t,z) and C(t,z) denote the temperature in the reactor
and the concentration of the reactant respectively in the reactor
at time t and position z. Such equations are usually called
diffusion-reaction-convection equations. The meaning and the
units of the parameters are summarized in Table I.

To the PDEs (1), we associate specific boundary conditions,
known as the Danckwerts’conditions [15], which are given by

λea

ρCp

∂T
∂ z

(t,0) = v(T (t,0)−Tin),
∂T
∂ z

(t,L) = 0

and

Dma
∂C
∂ z

(t,0) = v(C(t,0)−Cin),
∂C
∂ z

(t,L) = 0.

Observe that Equations (1) together with the above bound-
ary conditions describe a system of controlled PDEs. We
distinguish two types of control actions : on one hand, the
model takes distributed control into account, symbolized by
the variable Tw, which is due to a heat exchanger that acts
along the whole spatial domain. On the other hand, the
boundary control variables Tin(t) and Cin(t) can be fixed at
the inlet of the reactor.In order to introduce the corresponding
dimensionless model, we consider the following change of
coordinates

t̃ = t
v
L
, z̃ =

z
L
.

Applying this change of coordinates to (1) yields the following
equivalent PDEs:

∂T
∂ t̃ =− ∂T

∂ z̃ +
1

Peh

∂ 2T
∂ z̃2 − ∆H

ρCp

k0L
v Ce−

E
RT + 4hL

ρCpdv (Tw−T ),

∂C
∂ t̃ =− ∂C

∂ z̃ +
1

Pem
∂ 2C
∂ z̃2 − k0L

v Ce−
E

RT ,
(2)

where Peh and Pem denote the thermal and mass Peclet
numbers respectively, which are given by

Peh =
vLρCp

λea
, Pem =

vL
Dma

.

The corresponding boundary conditions are given by

∂T
∂ z̃

(t̃,0) = Peh (T (t̃,0)−Tin) ,
∂T
∂ z̃

(t̃,1) = 0

and
∂C
∂ z̃

(t̃,0) = Pem (C(t̃,0)−Cin) ,
∂C
∂ z̃

(t̃,1) = 0.

TABLE I
SYSTEM PARAMETERS.

Constant Unit Description
L m Reactor length
v m

s Fluid superficial velocity
λea

kJ
msK Axial energy dispersion coefficient

Dma
m2

s Axial mass dispersion coefficient
∆H kJ

kg Heat transfer coefficient

ρ
kg
m3 Fluid density

Cp
kJ

kgK Specific heat

k0
1
s Kinetic constant

E kJ
kg Activation energy

R kJ
kgK Gaz constant

h kJ
m2 K s Wall heat transfer coefficient

d m Reactor diameter
Tw K Coolant temperature
Tin K Input temperature

Cin
kg
m3 Input reactant concentration

Finally, assuming that Tw, Tin and Cin are constant, we consider
the further change of variables

x1 =
T −Tin

Tin
, x2 =

Cin−C
Cin

, xw =
Tw−Tin

Tin
,

which yields the following PDEs with their associated bound-
ary conditions

∂x1
∂ t̃ =− ∂x1

∂ z̃ + 1
Peh

∂ 2x1
∂ z̃2 +αδ (1− x2)e

µx1
1+x1 + γ(xw− x1),

∂x2
∂ t̃ =− ∂x2

∂ z̃ + 1
Pem

∂ 2x2
∂ z̃2 +α (1− x2)e

µx1
1+x1 ,

∂x1
∂ z̃ (t̃,0) = Pehx1(t̃,0),

∂x2
∂ z̃ (t̃,0) = Pemx2(t̃,0),

∂x1
∂ z̃ (t̃,1) = 0, ∂x2

∂ z̃ (t̃,1) = 0,
(3)

where

µ =
E

RTin
,α =

k0L
v

e−µ ,δ =
−∆H
ρCp

Cin

Tin
,γ =

4hL
ρCpdv

.

For a matter of convenience, the notation t := t̃,z := z̃ is
adopted hereafter.
Remark 2.1: Observe that the description of the dynamics
of the product concentration requires an additionnal PDE.
However, following the approach of [1], the latter is not con-
sidered here, since the evolution of the product concentration
is fully determined by the knowledge of the temperature and
the reactant concentration.

III. WELL-POSEDNESS

By well-posedness, we mean that (3) has a unique mild
solution on [0,∞). In this section we assume that Tw = Tin,
which entails that xw = 0. Let us define the linear unbounded
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operator

Ax =

(
1

Peh

d2

dz2 − d
dz − γI 0

0 1
Pem

d2

dz2 − d
dz

)(
x1
x2

)
=

(
A1 0
0 A2

)(
x1
x2

)
(4)

on the domain

D(A) =
{

x = (x1,x2)
T ∈ H :

dx
dz
∈ H a.c. ,

d2x
dz2 ∈ H

βi
dxi

dz
(0)− xi(0) = 0 = βi

dxi

dz
(1), i = 1,2

}
in the Hilbert state space H = L2 (0,1)×L2 (0,1), where the
notation

β1 =
1

Peh
and β2 =

1
Pem

is adopted. Moreover, the nonlinear operator N : D → H is
defined as

N(x) := (αδ (1− x2)e
µx1

1+x1 ,α (1− x2)e
µx1

1+x1 )T

on the domain

D := {x ∈ H :−1≤ x1(z),0≤ x2(z)≤ 1, for a.e. z ∈ [0,1]}.
Using these operators, the system (3) with initial condition can
be described equivalently by the following abstract differential
equation:

ẋ(t) = Ax(t)+N (x(t)) , x(0) = x0. (5)

The following result is stated in [2].

Theorem 3.1: For every x0 ∈ D, the Cauchy problem (5)
admits a unique mild solution x(t) = S(t)x0 for all t ≥ 0 and
x0 ∈ D, where S(t) is the nonlinear semigroup on D whose
infinitesimal generator is the operator A+N.
Furthermore, the C0-semigroup (T (t))t≥0 generated by A is
positive.

Proof: See [2], where arguments based on [16] and [3,
Theorem 2.3.5] are used to prove that A is the infinitesi-
mal generator of a C0-semigroup (T (t))t≥0. The posivity of
(T (t))t≥0 is established in [2, Proposition 5.1]. Furthermore,
the fact that A+N generates a nonlinear semigroup on D is
proved by means of [17, Theorem 5.1].

Remark 3.1:

1) Instead of using the Riesz-spectral property of A as in
[16], note that the generation of a C0-semigroup by A
can also be obtained by a straightforward application of
Lumer-Philipps Theorem separately to both operators A1
and A2, see [18, Theorem 6.1.7].

2) One can show that operators A1 and A2 describe first
order port-Hamiltonian systems with dissipation, see
[19, Chapter 6]. Thus the generation of a C0-semigroup
can also be easily deduced by applying [19, Theorem
6.9]. See also [18].

IV. EXISTENCE AND MULTIPLICITY OF EQUILIBRIUM
PROFILES

In this section, the existence and the multiplicity of equilibrium
profiles are investigated in three different cases depending
on the link between the Peclet numbers. As in [13], we
consider adiabatic reactors, i.e. we assume that there is no
energy exchange with the environment (h = 0, or equivalently
γ = 0). The main idea is to use perturbation theory, see [20,
Regular Perturbation Theorem]. Firstly, we consider the case
Peh = Pem

not.
= Pe for which the analysis of [13, Section 3] is

revised and consolidated. The two other cases are Peh 6= Pem
and Peh =Pem+η , where η is a small parameter. To do so, we
write equations (3) at the equilibrium, which read as follows

1
Peh

d2x1
dz2 − dx1

dz +αδ (1− x2)e
µx1

1+x1 = 0,

1
Pem

d2x2
dz2 − dx2

dz +α(1− x2)e
µx1

1+x1 = 0,

dx1
dz (0)−Pehx1(0) = 0 = dx1

dz (1),
dx2
dz (0)−Pemx2(0) = 0 = dx2

dz (1).

(6)

A. Case 1 : Peh = Pem
not.
= v

D

Considering the change of variables

y1 = x1, y2 = x1−δx2, (7)

it follows from the second equation and the last boundary
conditions of (6) that y2 ≡ 0 (y2 formally corresponds to a
reaction invariant, see [21] and [22]). Moreover, by using the
functions u and w defined by

u(z) = y1(1− z), w(z) =
dy1

dz
(1− z), (8)

the first equation of (6) with the associated boundary condi-
tions takes the form

du
dz =−w,
dw
dz =− 1

D (vw−g(u)) ,

u(0) = a,w(0) = 0,w(1) = v
D u(1),

(9)

where a is a real parameter and g is the nonlinear function
defined by g(−1) = 0 and, for x ∈ (−1,∞), by

g(x) = vα (δ − x)e
µx

1+x .

Calculation details are provided in Appendix A. Note that,
since α = k0L

v e−µ , the function g is equivalently given by

g(x) = k0L(δ − x)e
µx

1+x−µ = k0L(δ − x)e
−µ

1+x .

Lemma 4.1: For some values of the parameters µ and δ , there
exist D∗ large enough, v∗1 > 0 and v∗2 > 0 such that for all
D≥ D∗, the set of equations (9) has either
• at least three solutions, if v∈ (min{v∗1,v∗2} ,max{v∗1,v∗2}),

or
• at least one solution, otherwise.

Remark 4.1: We are not interested in finding a solution to (9)
but in finding a function v(a,D) such that the final condition
w(1) = v

D u(1) is satisfied. Whereas, from the modeling point
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of view, v is a (fixed) parameter, in the proof of Lemma 4.1
below, it is interpreted as a function for analysis purposes. It
is indeed well known in chemical engineering [14] that the
convection-diffusion-reaction model is an intermediate model
between the plug flow reactor model (when the diffusion
coefficients are equal to zero) and the CSTR (Continuous
Stirred Tank Reactor) model (described by ODEs) (when these
coefficients tend to +∞). As it was already pointed out in [5],
it is obvious that the plug flow reactor can generate only one
equilibrium profile since the latter is the solution of a set of
first-order differential equations with fixed initial values. And,
at the other extreme, it is well known that the CSTR can
exhibit three different equilibrium points. Therefore one could
conclude intuitively that there should be a value of the dif-
fusion coefficients above which the tubular reactor model can
exhibit multiple equilibrium profiles (and below which there is
only one equilibrium profile). In this context it is important to
note that the (dimensionless) Peclet numbers allow to evaluate
the relative importance of convection (characterized by v)
versus diffusion (characterized by D). Thus, if there are a1 6= a2
and D> 0 such that v(a1,D) = v(a2,D), the equations (9) have
at least two solutions. To reach this goal, we use pertubation
theory [20, Regular Perturbation Theorem], which consists of
disturbing the equations with a small parameter ε . Then if a
solution can be found to the disturbed equations with ε = 0
(see [20, Section 5.2.1., Hypothesis H2]), perturbation theory
guarantees that the system has a solution for small ε (this is
the reason why we consider a large diffusion coefficient (D∗

large enough)), under a few assumptions, especially continuity
conditions (see [20, Section 5.2.1., Hypothesis H3]). Further-
more, the solution can be identified to its Taylor expansion of
powers of ε .

Proof: Let us introduce the following notations:

ε =
1
D
, uε = u, wε =

1
ε

w, (10)

where D satisfies D≥D∗ for D∗ sufficiently large such that ε

is small enough. Equations (9) can be rewritten as
duε

dz =−εwε ,

dwε

dz =−(vεwε −g(uε)) ,

uε(0) = a,wε(0) = 0,wε(1) = vuε(1),

(11)

where v is now interpreted as a function of a and ε , denoted
by v(a,ε). These equations have the trivial solution

uε(z) = a, wε(z) = g(a)z

for ε = 0, provided that, using the boundary conditions,

g(a) = v(a,0)a.

Hence, the analytical expression of the function v is given for
ε = 0 by

v(a,0) =
g(a)

a
=

k0L(δ −a)e
−µ

1+a

a
. (12)

In order to determine how many values of a can reach a given
value of function v, one has to look at the extrema of v. Hence,
let us search if v has minima and/or maxima by computing its

first and second order derivatives. They are given by1

dv
da

(a,0) = k0Le
−µ

1+a

[
−(µ +δ )a2 +δ (µ−2)a−δ

a2 (1+a)2

]
(13)

and

d2v
da2 (a,0) =

k0Le
−µ

1+a

a3 (1+a)4 [(2δ +2µ)a4 +
(
2µ−µ

2−4δ µ +8δ
)

a3

+
(
12δ +δ µ

2−6δ µ
)

a2 +(8δ −2δ µ)a+2δ ],

respectively. The stationary points of v(a,0) (found by setting
its first order derivative equal to 0) are thus characterized by
the following equation:

−(µ +δ )a2 +δ (µ−2)a−δ = 0. (14)

The discriminant of (14) is given by

ρ = µδ (µδ −4δ −4) (15)

and is first considered to be positive. The roots of (14) are
then given by

a∗1 =
δ (µ−2)
2(µ +δ )

− 1
2(µ +δ )

√
µδ (µδ −4δ −4)

and

a∗2 =
δ (µ−2)
2(µ +δ )

+
1

2(µ +δ )

√
µδ (µδ −4δ −4).

Note also that the function v(a,0) has two singularities in −1
and 0 (Observe that −1 is actually a removable singularity).
So, we have to find an interval in which a∗1 and a∗2 are both
located and which does not contain any singularity. Combining
this constraint with the assumption that ρ is positive, one gets
that the only possibility is a∗1 > 0 and a∗2 > 0. In this case, µ

and δ must satisfy either

δ > 0, µ > 4, δ (µ−4)> 4

or

δ <−2, µ > 2, µ +δ < 0, δ (µ−4)< 4.

Let us denote v(a∗1,0) and v(a∗2,0) by v∗1 and v∗2, respectively.
On one hand, for δ > 0,µ > 4 and δ (µ−4) > 4, the point
(a∗1,v

∗
1) corresponds to a minimum of v(a,0) and (a∗2,v

∗
2) to

a maximum. On the other hand, for δ < −2,µ > 2,µ + δ <
0 and δ (µ−4) < 4, we get the opposite. Considering both
cases, it follows that, if one takes any value v∗ in the interval
(min{v∗1,v∗2} ,max{v∗1,v∗2}) , we are sure that there are at least
three values of a such that v(a,0) = v∗. Otherwise, we are
only sure that there exists at least one value of a at which v∗

is reached by v(a,0). The only assumption that remains to be
checked is

lim
ε→0

v(a,ε) = v(a,0).

From [23, Theorem 17.3, p. 192], the functions uε and wε are

1Further calculation details about the first order derivative are available in
Appendix A.
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both continuous with respect to ε . Observe also that the last
boundary condition in (11) is equivalent to

v(a,ε) =
wε(1)
uε(1)

.

So v(a,ε) is continuous with respect to ε , and thus specifically
in 0. We shall now develop the cases where ρ is either negative
or equal to 0.

When ρ is negative, the first order derivative of v has no
real root. So, the function v is strictly decreasing or strictly
increasing since the coefficient −(µ + δ ) of a2 in (13) is
either negative or positive. Hence, a chosen value of v can be
reached by at most one value of a (on any interval where v
is continuous).

When ρ is zero, the first order derivative of v has one root,
namely

a∗ =
δ (µ−2)
2(µ +δ )

.

In addition, il follows from (15) that

δ =
4

µ−4
,

which yields

a∗ =
2

µ−2
. (16)

Moreover, the polynomial factor in the second order derivative
of v can be written as

2(µ−2)2

µ−4
a4 +

(2−µ)
(
µ2−4µ +16

)
µ−4

a3

+
4µ2−24µ +48

µ−4
a2−8a+

8
µ−4

.

See Appendix A for further details. Using (16), this polyno-
mial can be factorized as[

2(µ−2)2

µ−4
a3 +

(2−µ)
(
µ2−4µ +12

)
µ−4

a2

+
2µ2−16µ +24

µ−4
a+
−4µ +8

µ−4

]
(a−a∗) .

This means that a∗ is also a root of the second order derivative
of v. The point (a∗,v(a∗,0)) is neither a minimum nor a
maximum, but a saddle point of v(a,0). By choosing a value
of v denoted by v∗, one can find at most one point in the
domain of v at which the value v∗ is reached by v(a,0) (on
any interval where v is continuous).
An illustration of Lemma 4.1 can be found in Figure 2 for
ρ = 0 and in Figure 3 for ρ > 0.
We present now a corollary of Lemma 4.1 that provides
approximated solutions to equations (11). Moreover, with
these solutions, one can also find solutions of equations (6)
for equal Peclet numbers using the appropriate change of
variables. The method used is based on perturbation theory
[20, Regular Perturbation Theorem].
Corollary 4.1: Taking into account the existence of equilibrium
profiles under the conditions of Lemma 4.1, approximated

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

v(a∗)v∗

a

v
(
a
,
0
)

Fig. 2. Illustration of Lemma 4.1 with µ = 6 and δ = 2 (ρ = 0).

solutions of equations (11) are given by

uε(z) = a− εg(a)
2

z2,

wε(z) = g(a)z− εvε g(a)
2

z2,

that correspond to the approximated form vε of function v
given by

vε =
g(a)

a
=

k0L(δ −a)e
−µ

1+a

a
.

Proof: According to Perturbation theory (see [20, Regular
Perturbation Theorem]), a function fε(z) that depends on the
disturbing parameter ε has always the form

fε(z) =
+∞

∑
n=0

fn(z)εn (17)

for sufficiently small ε . Applying the same decomposition to
the functions uε(z) and wε(z), both depending on ε , yields the
following identities:

uε(z) = u0(z)+u1(z)ε +O(ε2), (18)

wε(z) = w0(z)+w1(z)ε +O(ε2), (19)

where O(ε2) includes all the polynomial terms of the form
un(z)εn,n≥ 2. By using similar arguments for function vε (also
depending on ε), one finds

vε = v0 + v1ε +O(ε2). (20)

In the sequel of the proof, note that all the terms including
ε2 or higher order of ε are considered to be negligible. By
plugging (18) and (19) in equations (11), one gets

du0
dz + du1

dz ε =−ε (w0 +w1ε) ,

dw0
dz + dw1

dz ε =−vε w0ε− vε w1ε2 +g(u0 +u1ε) ,

u0(0)+u1(0)ε = a,w0(0)+w1(0)ε = 0.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
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·10−3

v∗
1

v∗
2

v∗ v∗ v∗

a

v
(a

,
0)

Fig. 3. Illustration of Lemma 4.1 with µ = 10 and δ = 1 (ρ > 0).

By identification2, and by using the approximation
g(u0 +u1ε)≈ g(u0) for sufficiently small ε , we have

du0
dz = 0,

du1
dz =−w0,

dw0
dz = g(u0),

dw1
dz =−vε w0,

u0(0) = a,u1(0) = 0,w0(0) = 0,w1(0) = 0.

A simple integration yields the desired forms for uε and
wε . The last step is to find the form of v to reach the
boundary condition wε(1)= vε uε(1). Knowing the expressions
of functions uε and wε and using the decomposition of vε ,
provided by (20), one has the relation

g(a)− v0g(a)
2

ε− v1g(a)
2

ε
2 = (v0 + v1ε)

(
a− g(a)

2
ε

)
.

By identification, the function vε is given by g(a)
a , which

corresponds to the same expression as function v for ε = 0,
see (12) (because v1 is identically zero).
To estimate the form of solutions of equations (6), one has to
consider Corollary 4.1, relations (7), (8) and (10). This leads
to

x1(z)' a− g(a)
2D

(1− z)2 ,

x2(z)'
a
δ
− g(a)

2δD
(1− z)2 ,

which are approximated solutions to equilibrium equations for
equal Peclet numbers3. The equality assumption between Peh

2Two polynomials are equal if they have the same coefficients (the variable
of the polynomials is ε).

3The change of variables (10) allows to write u and w as functions of uε ,wε

and ε (which is replaced by 1
D ). Furthermore, the other changes of variables

(7) and (8) make the link between u,w and x1,x2.

and Pem appears to be too restrictive. Indeed, the equality
entails the following condition:

Dma =
λea

ρCp
,

which seems to be physically unrealistic since Dma and λea
are diffusion coefficients that model two completely different
kinds of diffusion, namely axial mass dispersion (Dma), that
is related to the diffusion of the reactant, and axial energy
dispersion (λea), that is linked to the diffusion of temperature
in the reactor. This leads us to consider the case Peh 6= Pem in
the next section.

B. Case 2 : Peh 6= Pem

The methodology that is followed for this case is quite similar
to the one used in the previous section. However, the analysis
and the computation are more involved in view of the fact that
there are two interconnected sets of equilibrium equations of
type (9) with a two variable auxiliary function g : see (22)
below. Considering that Peh and Pem are different, a change
of variables as (7) is no more possible. In the following, the
notations D1 for λea and D2 for Dma, respectively, will be
used. We introduce also the notation kp := ρCp. Defining a
new function g for (x1,x2) in R2 such that −1 < x1 and 0 ≤
x2 ≤ 1, by g(x1,x2) = vα (1− x2)e

µx1
1+x1 = k0L(1− x2)e

−µ

1+x1 ,
and g(−1,x2) = 0, the equilibrium equations become

D1
d2x1
dz2 − vkp

dx1
dz + kpδg(x1,x2) = 0,

D2
d2x2
dz2 − v dx2

dz +g(x1,x2) = 0,

D1
dx1
dz (0)− vkpx1(0) = 0 = dx1

dz (1),

D2
dx2
dz (0)− vx2(0) = 0 = dx2

dz (1).

(21)

We use now the functions

u1(z) = x1(1− z), w1(z) =
dx1

dz
(1− z),

and
u2(z) = x2(1− z), w2(z) =

dx2

dz
(1− z)

to rewrite (21) as a system of four first order differential
equations. Taking the boundary conditions into account, we
find 

du1
dz =−w1,

dw1
dz =− kp

D1
(vw1−δg(u1,u2)) ,

du2
dz =−w2,

dw2
dz =− 1

D2
(vw2−g(u1,u2)) ,

u1(0) = a1,w1(0) = 0,w1(1) =
vkp
D1

u1(1),

u2(0) = a2,w2(0) = 0,w2(1) = v
D2

u2(1).

(22)

Once again we have to find v(a1,a2,D1,D2) such that w1(1) =
vkp
D1

u1(1) and w2(1) = v
D2

u2(1) hold. A similar argument as for
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the one-dimensional case is developed. If there are (a1,a2) 6=
(a3,a4), D1 > 0 and D2 > 0 such that

v(a1,a2,D1,D2) = v(a3,a4,D1,D2),

then the system (22) has at least two solutions. In order to
find the function v, Perturbation theory is applied to (22). To
do so, we introduce

ε1 =
1

D1
, uε1 = u1, wε1 =

1
ε1

w1

and
ε2 =

1
D2

, uε2 = u2, wε2 =
1
ε2

w2,

where D1 and D2 verify D1 ≥ D∗1 and D2 ≥ D∗2 respectively
with D∗1 and D∗2 sufficiently large such that ε1 and ε2 are small
enough. These conditions come once again from Perturbation
theory (see [20, Regular Perturbation Theorem]). Thus, the
system (22) takes the form

duε1
dz =−ε1wε1 ,

dwε1
dz =−(kpvε1wε1 − kpδg(uε1 ,uε2)) ,

duε2
dz =−ε2wε2 ,

dwε2
dz =−(vε2wε2 −g(uε1 ,uε2)) ,

uε1(0) = a1,wε1(0) = 0,wε1(1) = vkpuε1(1),

uε2(0) = a2,wε2(0) = 0,wε2(1) = vuε2(1),

(23)

whose solution with ε1 = ε2 = 0 is given by

uε1(z) = a1, wε1(z) = kpδg(a1,a2)z

and
uε2(z) = a2, wε2(z) = g(a1,a2)z.

Taking the difference of the boundary conditions for z = 1, it
follows that

v(a1,a2,0,0) = (1−δ )k0L
(1−a2)e

−µ

1+a1

a2−a1
, (24)

which is a necessary form for the function v. The reader is
referred to Appendix B for further calculation details. The
continuity assumption described by

lim
ε1,ε2→0

v(a1,a2,ε1,ε2) = v(a1,a2,0,0)

holds since
v =

wε1(1)
kpuε1(1)

and v =
wε2(1)
uε2(1)

(25)

are both continuous with respect to ε1 and ε2. This is a
consequence of the theorem of dependence of the solutions of
differential equations on parameters (see [23, 17.3, p. 192]).
Keeping in mind that our study of equilibrium is qualitative,
we first give the gradient of function v:
−→
∇ v(a1,a2,0,0)

= (1−δ )k0Le
−µ

1+a1

 (1−a2)((1+a1)
2+µ(a2−a1))

(a2−a1)
2(1+a1)

2

a1−1
(a2−a1)

2

 .
(26)

Observe also that the entries of the Hessian matrix of function
v, denoted by ∇2v(a1,a2,0,0)

not.
= H(a1,a2), are given by

H11(a1,a2) =
1−a2

a2−a1
(1−δ )k0Le

−µ

1+a1 H̃11,

H12(a1,a2) =H21(a1,a2) = (1−δ )k0Le
−µ

1+a1 H̃12,

H22(a1,a2) =
−2(a1−1)

(a2−a1)
3 (1−δ )k0Le

−µ

1+a1 ,

where

H̃12 =
1

(a2−a1)
2 +

2(a1−1)

(a2−a1)
3 +

µ (a1−1)

(a2−a1)
2 (1+a1)

2

and

H̃11 =
2

(a2−a1)
2 +

2µ

(a2−a1)(1+a1)
2 −

2µ

(1+a1)
3

+
µ2

(1+a1)
4 .

Setting (26) to 0, we find that the only possibility is

(a1,a2) =

(
1,

µ−4
µ

)
:= (a∗1,a

∗
2) . (27)

Plugging (27) in H, we obtain that

H
(

1,
µ−4

µ

)
= k0L(1−δ )e

−µ

2

(
− µ2

16 + µ

16
µ2

16
µ2

16 0

)
.

Therefore, the point (a∗1,a
∗
2) is a saddle point.

Observe that we are dealing with equilibrium curves and no
more discrete set of points. A level v∗ of function v satisfies
equation

v∗ = (1−δ )k0L
1−a2

a2−a1
e
−µ

1+a1 .

The set of equilibrium points for a level v∗ of function v is
given by

Cv∗ =

(a1,a2) ∈ R2 : a1 6= a2,a2 =
(1−δ )k0Le

−µ

1+a1 +a1v∗

v∗+(1−δ )k0Le
−µ

1+a1

 .

We now present a preliminary result related to the existence
of equilibrium profiles in this case. To expand this analysis,
we focus on a specific direction, namely, an affine direction
of the form a2 = αa1 +β with α,β ∈ R.

Lemma 4.2: For some values of the parameters µ and δ , taking
an affine direction of the form a2 = αa1 +β with α,β ∈ R,
there exist D∗1 and D∗2 sufficiently large, v∗1 > 0,v∗2 > 0 such
that for D1 ≥ D∗1,D2 ≥ D∗2 the system (22) has either

• at least three solutions if v ∈ (min{v∗1,v∗2} ,max{v∗1,v∗2}),
or

• at least one solution otherwise.

Proof: Function v (see (24)) in the direction a2 = αa1 + β

becomes

v(a1,αa1 +β ,0,0) =
(1−δ )k0L(1−β −αa1)e

−µ

1+a1

(α−1)a1 +β
(28)
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and its first order derivative is given by

dv
da1

(a1,αa1 +β ,0,0) =

(1−δ )k0Le
−µ

1+a1

((α−1)a1 +β )2 (1+a1)
2 (−(αµ (α−1)+(α−1)+β )a2

1

+(α (−2+µ−2β µ)+(−1+β )(−2+µ))a1

+(−α− (−1+β )(1+β µ))).

The discriminant of the polynomial factor in this first order
derivative has the form

−(−1+α +β )µ

[
−4+4(α−β )2 +µ− (α +β )µ

]
and is considered to be positive here. In this case, the first
order derivative of v has two real roots, which are denoted by
a∗11 and a∗12. Furthermore, let us denote

v∗1 = v(a∗11,αa∗11 +β ,0,0) and v∗2 = v(a∗12,αa∗12 +β ,0,0) .

Applying the same method as in the proof of Lemma 4.1, the
result follows.

Lemma 4.2 is illustrated in Figure 4, where a zoom on the
first extremum of the function is provided for the sake of
readability.

Remark 4.2: Note that Lemma 4.2 provides necessary con-
ditions for the existence of equilibrium profiles. To have
necessary and sufficient conditions, one has to adapt the form
of function v. By considering equations (25) for ε1 = ε2 = 0,
one finds that a2 has to be equal to 1

δ
a1. This implies that

the affine direction is described by αa1 +β with α = 1
δ

and
β = 0.

Taking Remark 4.2 into account, a theorem is now stated
which gives necessary and sufficient conditions for the multi-
plicity of equilibrium profiles for distinct Peclet numbers.
Theorem 4.1: For some values of the parameters µ and δ ,
there exist D∗1 and D∗2 sufficiently large, v∗1 > 0,v∗2 > 0 such
that for D1 ≥ D∗1,D2 ≥ D∗2 the system (22) has either

• at least three solutions if v ∈ (min{v∗1,v∗2} ,max{v∗1,v∗2}),
or

• at least one solution otherwise.

Proof: Based on Remark 4.2, the function v has to be restricted
in the direction a2 = αa1 + β with α = 1

δ
and β = 0. By

injecting α = 1
δ

and β = 0 in (28), this leads to

v
(

a1,
1
δ

a1,0,0
)
=

(1−δ )k0L
(
1−0− 1

δ
a1
)

e
−µ

1+a1( 1
δ
−1
)

a1 +0

=
(1−δ )k0L

(
δ−a1

δ

)
e
−µ

1+a1(
1−δ

δ

)
a1

=
k0L(δ −a1)e

−µ

1+a1

a1
.

The conclusion follows by Lemma 4.2 and by noting that
function v has the same expression as in Lemma 4.1 (see
equation (12)).

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.5

0

0.5

1

1.5

2

2.5
·10−2
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v∗2 v∗
v∗

v∗

a1

v
(a

1
,
α
a
1
+
β
,
0
,
0
)

−0.29 −0.28 −0.27

2.26

2.27

2.28

2.29

2.3
·10−4

v∗ v∗

v∗2

a1

v
(a

1
,
α
a
1
+
β
,
0
,
0
)

Fig. 4. Illustration of Lemma 4.2 with µ = 10,δ = 4,α = 0.7 and β =−0.1.

Similarly as in Case 1, approximated solutions of equations
(23) are given in the following corollary.
Corollary 4.2: Taking into account the existence of equilibrium
profiles under the conditions of Theorem 4.1, approximated
solutions of equations (23) are given by

uε1(z) = a1−
ε1kpδg

(
a1,

1
δ

a1
)

2
z2,

uε2(z) =
1
δ

a1−
ε2g
(
a1,

1
δ

a1
)

2
z2,

wε1(z) = kpδg
(

a1,
1
δ

a1

)
z−

ε1k2
pvε1,ε2δg

(
a1,

1
δ

a1
)

2
z2,

wε2(z) = g
(

a1,
1
δ

a1

)
z− ε2vε1,ε2g

(
a1,

1
δ

a1
)

2
z2,

that correspond to the approximated form vε1,ε2 of function v
given by

vε1,ε2 =
k0L(δ −a1)e

−µ

1+a1

a1
.

Proof: The method used to find these approximated functions
is exactly the same as the one used in the case of equal Peclet
numbers. Just note for example that uε1(z) is developed as
u01(z) + u11(z)ε1 and also that g(u01 +u11ε1,u02 +u12ε2) is
approximated by g(u01 ,u02) for ε1,ε2 small enough.

As in Case 1, approximated solutions of equilibrium equa-
tions (21) are obtained by applying Corollary 4.2. These are
expressed as

x1(z)' a1−
kpδg

(
a1,

1
δ

a1
)

2D1
(1− z)2 ,

x2(z)'
a1

δ
− g

(
a1,

1
δ

a1
)

2D2
(1− z)2 .

The last case considered is Peh = Pem + η with η small
enough.



9

C. Case 3 : Peh = Pem +η

The approach used here is similar to the one used for Peh 6=
Pem. Writing the equations (6) again with Pem +η and Pem,
we get

d2x1
dz2 − (Pem +η) dx1

dz +(Pem +η)αδ (1− x2)e
µx1

1+x1 = 0,

d2x2
dz2 −Pem

dx2
dz +Pemα(1− x2)e

µx1
1+x1 = 0,

dx1
dz (0)− (Pem +η)x1(0) =

dx1
dz (1) = 0,

dx2
dz (0)−Pemx2(0) =

dx2
dz (1) = 0.

Since Pem = v
D , the equilibrium equations are given by

D d2x1
dz2 − (v+ηD) dx1

dz +(v+ηD)αδ (1− x2)e
µx1

1+x1 = 0,

D d2x2
dz2 − v dx2

dz + vα(1− x2)e
µx1

1+x1 = 0,

D dx1
dz (0)− (v+ηD)x1(0) =

dx1
dz (1) = 0,

D dx2
dz (0)− vx2(0) =

dx2
dz (1) = 0.

Let us introduce the coefficient kη , that verifies v+ηD = vkη ,
i.e. kη = 1+ η

Pem
. Then the equilibrium equations take the form

D d2x1
dz2 − vkη

dx1
dz + kη δg(x1,x2) = 0,

D d2x2
dz2 − v dx2

dz +g(x1,x2) = 0,

D dx1
dz (0)− vkη x1(0) =

dx1
dz (1) = 0,

D dx2
dz (0)− vx2(0) =

dx2
dz (1) = 0.

(29)

where the function g is defined as

g(x1,x2) = vα(1− x2)e
µx1

1+x1

for −1 < x1 and 0 ≤ x2 ≤ 1 and g(−1,x2) = 0. Observe that
equations (29) have the same form as the equations (21).
Hence, the analysis is the same as in Section IV-B. Note also
that if one lets η → 0, then one recovers the case Pem = Peh.

V. PERSPECTIVES

This section is essentialy dedicated to an overview of the
stability analysis for nonisothermal axial dispersion tubular
reactors. This question is discussed notably on the basis of the
relation between the thermal and the mass Peclet numbers.
Addressing stability for infinite-dimensional systems is quite
challenging when one deals with nonlinear operators. Here,
some results are highlighted, that can be derived for an
appropriate linearization of the system around an equilibrium
profile.

As pointed out in [5, Section 2.5.2.1.] and in [24, Lemma
15, Corollary A, Corollary B] for equal Peclet numbers, in
the case of only one equilibrium profile, the latter is always
asymptotically stable and, when three equilibria are exhibited,
they are alternatively asymptotically stable and unstable with
the pattern stable – unstable – stable. Moreover, a result

first shown in [25, Theorem p. 52] and then recalled in [5,
Section 2.5.2.1.] provides us with necessary and sufficient
conditions for an equilibrium profile to be asymptotically
stable or unstable.

The case of different Peclet numbers is much less understood
and less studied in the literature. To the best of our knowledge,
no systematic pattern as the one described above has been
established. However, a similar theorem as [25, Theorem p.
52] can be found in [26, Theorem 3], that presents some
sufficient conditions to adress stability for different Peclet
numbers.

Another method has been developed in [27], which is called
the Galerkin Residuals Method. It is based on the parabolicity
of the PDEs. This property allows one to write the solution
as an infinite serie of product of functions that are only
depending on time and on the spatial variable. The key point
of the method consists in truncating the solution up to a finite
order N and then to write the system as ẋ = Ax where the
N−th order vector x contains the functions that depend on
time only. Hence, (local) stability is deduced by evaluating
the dominant eigenvalue of matrix A, i.e. the eigenvalue with
the largest real part.

Further analysis could lead to the consolidation and/or the
extension of the either theoretical or numerical results above to
different or close Peclet numbers. Tools like Lyapunov indirect
method or LaSalle’s invariance principle could be used to
achieve these goals. An extension of the Galerkin Residuals
Method to different Peclet numbers can be found in [28,
Chapter 5] where the results of some numerical simulations
are given and commented.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper an analysis of multiple equilibrium for non-
isothermal tubular reactors is performed. It was shown that,
beyond a certain value for the diffusion coefficient D, tubular
reactors can have at least three different equilibria. A similar
result on the multiplicity was exhibited for Peh 6= Pem by
considering a specific direction for the analysis. Moreover, for
close enough Peclet numbers, i.e. Peh =Pem+η , it was proved
that by letting η tend to 0, the equality case is recovered.

It is worth noting that, in this analysis, the equilibrium profiles
of the plug-flow and continuous stirred tank reactor (CSTR)
models are retrieved as expected.

As already mentioned, a large part of the contributions con-
cerns the analysis of the dynamics of tubular reactors. While
many references concerning control problem considerations
are on lumped parameters systems CSTR, see [8] and refer-
ences therein, few literature consider PDEs model for tubular
reactors, see for instance [10]. Future works may be to study
the linearised system around a well-chosen equilibrium. As-
pects like the well-posedness of this system or the exponential
stability anaysis of the operator describing this system for each
equilibrium profile can then be considered. It is expected that
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this preliminary analysis is a first important step towards the
solution of the LQ-optimal control problem for nonisothermal
tubular reactors.

APPENDIX

In this section, more detailed arguments are provided to the
reader for the derivation of the main results in Section IV.

A. Case 1 : Peh = Pem

First at all, we will develop only once the transition from
Equations (6) to Equations (9). Note that we denoted Peh
and Pem by Pe for simplicity of notation. The first change
of variables is

y1 = x1, y2 = x1−δx2.

Then the first equation of (6) takes the form

1
Pe

d2y1

dz2 −
dy1

dz
+α (δ − y1 + y2)e

µy1
1+y1 = 0

and the second one becomes

d2y2

dz2 −Pe
dy2

dz
= 0.

The related boundary conditions are

dy1

dz
(0)−Pey1(0) =

dy1

dz
(1) = 0

and
dy2

dz
(0)−Pey2(0) =

dy2

dz
(1) = 0.

Using these conditions, it follows that y2 is the null function.
Therefore4,

1
Pe

d2y1

dz2 −
dy1

dz
+α (δ − y1)e

µy1
1+y1 = 0. (30)

Now let us introduce the functions

u(z) = y1(1− z), w =
dy1

dz
(1− z),

with a view to rewrite (30) as a system of two first order
differential equations. Using the relation Pe = v

D , one gets

du
dz

=−dy1

dz
=−w

and

dw
dz

=−d2y1

dz

=− v
D

dy1

dz
+

v
D

α (δ − y1)e
µy1

1+y1

=− 1
D
(vw−g(u)) ,

where the function g is defined by

g(x) = vα (δ − x)e
µx

1+x .

4Since y2 ≡ 0, the variables x1 and x2 are related by x1 = δx2. Hence, we
have to deal with only one second order differential equation instead of two.
Obviously this makes the analysis simpler.

In addition, the boundary conditions are derived as follows:

u(0) = y1(1) := a,

w(0) =
dy1

dz
(1) = 0,

w(1) =
dy1

dz
(0) = Pey1(0) =

v
D

u(1).

Note that the role of y2 is paramount and the key of the
study of the existence of equilibrium profiles for equal Peclet
numbers. Actually, as mentioned above, the introduction of y2
allows us to cancel one of the two second order ordinary differ-
ential equations (Equations (6)). Furthermore, y2 corresponds
to the concept of reaction invariant which is fundamental in
the dynamics of reaction systems, see e.g. [22].
In the proof of Lemma 4.1, we first give some details about the
calculation of the first order derivative of the function v(a,0).

Since v(a,0) is given by k0L(δ−a)e
−µ

1+a

a , it holds

d
da

v(a,0)

= k0L
d
da

[
(δ −a)e

−µ

1+a

a

]

= k0L
d
da

[
(δ −a)e

−µ

1+a

]
a− (δ −a)e

−µ

1+a

a2

= k0L

(
−e

−µ

1+a +(δ −a) µ

(1+a)2 e
−µ

1+a

)
a− (δ −a)e

−µ

1+a

a2

= k0Le
−µ

1+a

(
−(1+a)2+µ(δ−a)

(1+a)2

)
a− (δ−a)(1+a)2

(1+a)2

a2

= k0Le
−µ

1+a
−(1+a)2 a+µ (δ −a)a−δ (1+a)2 +a(1+a)2

a2 (1+a)2

= k0Le
−µ

1+a

[
−(µ +δ )a2 +δ (µ−2)a−δ

]
a2 (1+a)2 .

Hence (13) holds. In the sequel of the same proof, in the case
when ρ > 0, for a matter of simplicity, an interval where the
extrema are located is considered in order to avoid the study
of the second order derivative of the function v. This entails
three possibilities:

• a∗1 <−1 and a∗2 <−1;
• −1 < a∗1 and a∗2 < 0;
• 0 < a∗1 and 0 < a∗2.

Developing each of these inequations, it can be deduced that
the two first possibilities lead to a contradiction, and thus
the only possibility is the third one. To find the sets of
feasible parameters, we combine this double inequality with
the positivity of ρ . Two cases should be distinguished:

• µδ > 0 and µδ −4δ −4 > 0;
• µδ < 0 and µδ −4δ −4 < 0.

This leads to the fact that µ (which should be positive, see
Section II) and δ have to satisfy either

δ > 0,µ > 4,δ (µ−4)> 4 (31)
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or
δ <−2,µ > 2,µ +δ < 0,δ (µ−4)< 4. (32)

Noting that the coefficient of a2 in the first order derivative
of v is −(µ +δ ), it is obvious that, in the case (31), a∗1
corresponds to a minimum and a∗2 to a maximum and
vice-versa for the case (32).

Now we take a look at the last part of the proof of Lemma
4.1 concerning the case ρ = 0. Since the product µδ cannot
be zero from a physical point of view, it follows that

µδ −4δ −4 = 0,

which is equivalent to

δ =
4

µ−4
. (33)

Putting the identity (33) into the polynomial factor in the
second order derivative of v yields the following expression:

2(µ−2)2

µ−4
a4 +

(2−µ)
(
µ2−4µ +16

)
µ−4

a3

+
4µ2−24µ +48

µ−4
a2−8a+

8
µ−4

.

B. Case 2 : Peh 6= Pem

The arguments for deducing a necessary form of function v
are similar to the case Peh = Pem. We take the solutions

uε1(z) = a1, wε1(z) = kpδg(a1,a2)z,

uε2(z) = a2, wε2(z) = g(a1,a2)z

and we used the boundary conditions

wε1(1) = vkpuε1(1),
wε2(1) = vuε2(1).

We find {
kpδg(a1,a2) = vkpa1,
g(a1,a2) = va2.

Taking the difference of these equations, we have

(1−δ )g(a1,a2) = v(a2−a1) .

Therefore, the function v satisfies

v(a1,a2,0,0) = (1−δ )
g(a1,a2)

a2−a1
.

Note that this expression is a necessary form of function v.

The last point we discuss is related to the Hessian matrix of
function v. This matrix is symmetric, therefore its eigenvalues
are real and its determinant satisfies

detH=
2

∏
i=1

λi, (34)

where {λi}2
i=1 denotes the set of eigenvalues of H. Since the

matrix H evaluated at (a∗1,a
∗
2) is given by

H
(

1,
µ−4

µ

)
= k0L(1−δ )e

−µ

2

(
− µ2

16 + µ

16
µ2

16
µ2

16 0

)
,

we deduce that

detH
(

1,
µ−4

µ

)
=−k2

0L2 (1−δ )2 e−µ

(
µ2

16

)2

< 0.

Using (34), we find that λ1λ2 < 0, which means that H is
indefinite. The point (a∗1,a

∗
2) is therefore a saddle point.
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88 and 1990-92. He has been with the FNRS
(Fonds National de la Recherche Scientifique, Na-

tional Fund for Scientific Research), Belgium since 1990. Since September
1999, he is Professor at the CESAME (Center for Systems Engineering
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