
Dynamic Visualisation of Features and Contexts for
Context-Oriented Programmers

Benoît Duhoux
Université catholique de

Louvain
Louvain-la-Neuve, Belgium

benoit.duhoux@uclouvain.be

Bruno Dumas
Université de Namur

Namur, Belgium
bruno.dumas@unamur.be

Hoo Sing Leung
Université catholique de

Louvain
Louvain-la-Neuve, Belgium

hoo.leung@student.uclouvain.be

Kim Mens
Université catholique de

Louvain
Louvain-la-Neuve, Belgium

kim.mens@uclouvain.be

ABSTRACT
Context-oriented programming languages allow programmers
to develop context-aware systems that can adapt their be-
haviour dynamically upon changing contexts. Due to the
highly dynamic nature of such systems and the many pos-
sible combinations of contexts to which such systems may
adapt, developing such systems is hard. Feature-based context-
oriented programming helps tackle part of this complexity by
modelling the possible contexts, and the different behavioural
adaptations they can trigger, as separate feature models. Tools
can also help developers address the underlying complexity
of this approach. This paper presents a visualisation tool
that is intricately related to the underlying architecture of a
feature-based context-oriented programming language, and
the context and feature models it uses. The visualisation con-
fronts two hierarchical models (a context model and a feature
model) and highlights the dependencies between them. An ini-
tial user study of the visualisation tool is performed to assess
its usefulness and usability.

CCS Concepts
•Human-centered computing → Empirical studies in visu-
alization; •Software and its engineering → Integrated and
visual development environments; Abstraction, modeling
and modularity; Object oriented languages;

Author Keywords
Software visualisation; context-oriented programming;
feature-oriented software development; dynamic software
adaptation

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

EICS ’19 June 18–21, 2019, Valencia, Spain

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6745-5/19/06. . . $15.00

DOI: https://doi.org/10.1145/3319499.3328240

INTRODUCTION
Having information about the surrounding environment and
conditions in which a software system operates, enables the
creation of systems that can adapt their behaviour dynamically
to changing contexts. This information can take the form of
user preferences (a user’s age, habits, (dis)abilities), informa-
tion from external services (weather conditions), or internal
data about the device on which the system runs (remaining
battery level or other sensor information). We refer to any
such information as ‘contexts’ and to systems that adapt their
behaviour dynamically to such contexts as ‘context-aware
systems’ [1].

Developing such systems is not straightforward, due to the ex-
ponential combination of contexts, their possible behavioural
variations, and the high dynamicity of such systems. To build
such systems, ‘context-oriented programming’ [12, 24] pro-
poses dedicated programming languages and abstractions,
to implement context-specific behavioural adaptations that
can temporarily adapt existing system functionality upon the
(de)activation of certain contexts. The notion of context has
also been explored in the field of software modelling, and
feature modelling and software product lines in particular [7,
11, 14, 4, 3, 21].

Recent work on context-oriented programming proposes a
runtime software architecture [22] where contexts and fea-
tures are handled by separate architectural layers, with explicit
dependencies from one layer to the next. The selection and
activation of contexts in earlier layers can trigger the selection
and activation of their corresponding features.

Nevertheless, keeping track of all possible contexts, features
and their intra- and inter-dependencies remains a daunting task
for developers of context-oriented systems. It is not easy for a
developer to know what contexts or features are available, are
currently active, what the impact of activating or deactivating
them is, or whether the system exhibits the intended behaviour
in a particular situation.

https://doi.org/10.1145/3319499.3328240


We therefore developed a visualisation tool that can help de-
velopers keep an overview of all existing contexts and features,
by displaying the context and feature models and their depen-
dencies. For that, we propose a visual strategy to examine how
a hierarchical model (the context model) can statically or dy-
namically interact with another hierarchical model (the feature
model). The tool offers more than a mere static visualisation
of the context and feature models. It also depicts dynamically
at runtime what context and features are active or get activated,
and what program code this affects.

We conducted an initial user study with master-level students
in software engineering to assess whether the current version
of the visualisation tool helps understanding the programming
paradigm and programs written in it. We can conclude that
our tool helps the comprehension of the underlying approach
despite its complexity for programmers developping context-
oriented applications.

The remainder of this paper is structured as follows. Section 2
introduces the case study of a context-oriented system that will
be used as running example throughout this paper. Section 3
then introduces the feature-based context-oriented program-
ming approach upon which we build. Our visualisation tool
is presented in Section 4. Section 5 discusses the initial user
study we conducted and discusses its results. Related work
is exposed in Section 6. Section 7 concludes the paper and
presents avenues of future work.

CASE STUDY
Before introducing our visualisation tool and the underlying
context-oriented software architecture upon which it relies, in
this section we briefly describe the case study that will serve as
running example throughout the paper. Rather than reinventing
our own, we decided to revisit a case study introduced by
Duhoux et al. [9], who implemented a context-oriented version
of a ‘risk information system’.

The system provides instructions to citizens on what to do in
case of certain emergency situations or risks, like earthquakes
or floods. The actual instructions given to a citizen may depend
on a variety of contexts, such as the user’s age, location or
vicinity, weather conditions, or the status of an emergency
(the emergency has been announced but has not yet affected
the user, the emergency is actually occurring, or being in the
aftermath of an emergency situation).

The instructions issued by the context-aware risk information
system can be either static or dynamic. Static instructions are
just instructions that a user can consult about what to do in case
of certain risks 1. The system can also display information and
characteristics about actual emergencies as they occur. For
example, when an earthquake is detected, its severity would
be computed on the Richter scale and its location shown to
citizens as a circular impact zone determined by its epicentre
and its radius.

When an actual emergency is observed, the authorities will
actively issue instructions specific to the emergency at hand,

1https://www.risico-info.be/en/hazards/naturals-hazards/
floods, for example.

and specific to the current situation and user profile (e.g. the
user’s age, the current weather, the status of the emergency).
For instance, if an earthquake warning has been issued, and a
citizen is stuck at home, an adult may get a specific instruction
to “Hide under a table, desk, bed or any other sturdy piece of
furniture”, while a child may just see a pictogram representing
this specific instruction instead.

FEATURE-BASED CONTEXT-ORIENTED APPROACH
Our feature-based context-oriented approach is built on top of
the context-oriented software architecture of Mens et al. [22]
and the multiple-product-line-feature modelling approach of
Hartmann and Trew [11]. Fig. 1 depicts an overview of
our approach. Context-oriented programming helps program-
mers build context-oriented systems. In Mens et al.’s frame-
work [22], based on contextual information sensed from the
surrounding environment, contexts are selected and activated
(CONTEXT HANDLING). Appropriate features correspond-
ing to these activated contexts are then selected and activated
(FEATURE HANDLING) and deployed in the system (CODE
ADAPTATION), to make the system’s behaviour more specific
to the context of use. Combining this framework with the work
of Hartmann and Trew [11], contexts and features explicitly
represent in terms of runtime features models. This overall
approach has been shown to be powerful, however due to its
intrinsic dynamicity, tools are needed to let developers under-
stand the inter-dependencies and influences between contexts
and features.

Context
Handling

Feature
Handling

Code
AdaptationSensors

Context Model Feature Model

Class

Class

Class

Class

1*

Class Diagram

Figure 1: Overview of our feature-oriented context-aware
programming approach.

VISUALISATION TOOL
Our visualisation tool, depicted in Fig. 2, lets users inspect
the context and feature models with their intra- and inter-
dependencies, as well as the classes of the system that get
affected by the selected features. The visualisation is parti-
tioned in different parts, corresponding to the different layers
of the underlying implementation architecture (Fig. 1). In the
tool snapshot shown in Fig. 2, an earthquake emergency is
currently occurring, so the system must inform citizens about
the characteristics of the ongoing earthquake and the actions
they need to take to protect themselves.

In this section, we focus on the different design requirements
we followed when creating this tool, according to different
usage scenarios focused on a programmer building a context-
oriented system using this approach. All these functionalities
are also illustrated in a demonstration video provided as sup-
plementary source material.

https://www.risico-info.be/en/hazards/naturals-hazards/floods
https://www.risico-info.be/en/hazards/naturals-hazards/floods


Figure 2: Snapshot of our visualisation tool applied to the risk information system. Three widgets compose this tool: Context and
feature model, Filters and Configuration. Red (resp. green) rectangles represent inactive (resp. active) contexts, features or classes
in the Context and feature model widget. To keep the picture readable, we deliberately hid some information like for example all
child contexts of the UserProfile context, all inactive features and all non-impacted classes.

Static visualisation of the context and feature models
A first important usage scenario for a programmer is to get
a global overview of the system, in terms of the different
contexts, features and classes of which it is composed. Fig. 2
shows what such a visualisation looks like in the tool’s Context
and feature model widget. This static snapshot can show all
contexts, features and classes of interest, regardless of whether
they are currently active or not: the context model shown in
Fig. 2 contains both active contexts (colored in green) and
inactive ones (colored in red). The idea of including classes in
the visualisation as well is inspired by the Feature Visualiser of
Duhoux et al. [9]. Furthermore, our tool allows a programmer
to inspect in more detail the actual behaviour of features and
classes, as illustrated by yellow boxes inside some features
(e.g. Richter) and classes (e.g. Earthquake) in Fig. 2.

Exploring the dynamics of a context-oriented system
In addition to providing a static overview of a context-oriented
system, the tool should support programmers in understanding
and exploring the dynamic aspects of such a system. The
tool should help them inspect what contexts and features are
currently active and how that affects the behaviour, in terms
of what classes are currently being adapted. For example,
suppose that during testing and simulation of the system a
programmer discovers that, when an earthquake warning is
issued, the system starts displaying instructions related to a
flood instead of an earthquake. To understand such undesired
behaviour he needs to explore what contexts are currently ac-
tive, what features were triggered in response to that, and how
the classes were then adapted by those features. A possible

cause of this bug may be for example a wrong dependency
between the earthquake context and its corresponding features.

Filtering and predefined views
To help programmers manage the complexity of understanding
big systems consisting of many different context and features,
the tool should also come with a set of filters and predefined
views that a programmer can select to focus on particular
concerns, as depicted in the bottom left of Fig. 2. These filters
(called ‘Customized views’ in the widget) allow a programmer
to indicate whether he is more interested in the contexts, the
features, the code, or the dependencies between them, and
whether he is currently more interested in exploring the active
or inactive entities or dependencies.

Highlighting specific elements of interest
As the number of possible contexts, features, classes and de-
pendencies can become quite large, in addition to filtering the
diagrams to only show certain elements of interest, highlight-
ing is another interesting way to help programmers navigate
through the diagrams, letting a developer trace the behaviour
of a particular feature.

Hiding and collapsing information
Finally, a programmer should be able to customise his vi-
sualisation at an even more fine-grained level through the
actions of hiding and collapsing particular elements. For ex-
ample in Fig. 2, if the programmer wants to focus his interest
on the Emergency context, he can hide the subtrees of the
UserProfile context.



VALIDATION
In this section, we describe and analyse the user study we
conducted to get an initial assessment of the usability and use-
fulness of our visualisation tool and underlying approach. The
subjects of our study were 34 master-level students in com-
puter science or engineering following a software engineering
course. They were aged 20 to 27 years old and 4 of them were
female. To evaluate the tool, we asked them to play the role
of programmers working on a context-oriented system. To
initiate them to the different technologies used in the project,
they participated in two preparatory sessions before the actual
user study, so as to train them in using the Ruby language and
the approach. Since the study was carried out during a course,
we made it clear to the students that this user study would
not be related to the course evaluation and would be entirely
dedicated to our research and performed anonymously so as
to limit any potential bias. In the remainder of this section, we
first describe the user study itself, and then present and discuss
the results we gathered from the study.

User study
We performed the user study during a two-hour session where
our students were asked to assess the usability and usefulness
of our visualisation tool. They had to perform two tasks.
These tasks aimed to extend the earthquake-specific variant
of the risk information system with a new kind of risk and
emergency: that of floods. Task 1 concerned the characteristics
of a flood. In this task, they had to implement the fine-grained
features to manage and display the ‘standard severity’ feature
and the ‘polygon impacted zone’ feature needed to represent a
flood emergency. Task 2 was about implementing the flood-
specific instructions (either static or dynamic) that citizens
must follow before, during or after a flood. We conducted the
user study as follows. Students were first asked to report some
information about themselves: their age, general background
in programming, knowledge of object-oriented programming,
context-oriented programming and so on. Then we split the
programmers in two separate groups (A and B) to perform
their assigned task during a 25-minute time slot. Group A had
to start implementing Task 1 whereas group B had to develop
Task 2. During this first task, they were not allowed to use
the visualisation tool. Afterwards they were asked to answer
three questions about the task they performed, to verify if they
understood well what was asked of them. Next, they received
a quick introduction to the visualisation tool as a preparation
for their second task. For this second task, we switched the
tasks. Group A now had to develop Task 2 while group B had
to implement Task 1. Again, both groups received at most 25
minutes to finish their assigned task and then had to answer
two new questions to verify their understanding of the task.
Finally, all subjects were asked to answer some questions
regarding how they perceived the usability and usefulness of
our visualisation tool.

Results and discussion
In this section we analyse the results of this user study. De-
spite the complexity of our feature-oriented context-aware
programming approach, the participants in our study seemed

to agree that our visualisation tool is useful for developers
when learning our approach or during debugging.

-100 -80 -60 -40 -20 0 20 40 60 80 100

Modes in percentage

Programming in general

Object-oriented programming

Feature Modelling

Ruby programming language

Context-oriented programming

Feature-oriented context-aware p…

Q
u
e
st
io
n
s

Figure 3: Divergent stacked bar diagram summarising the re-
sults of our closed questions about the background knowledge
of our participants.

Fig. 3 illustrates the background knowledge of our participants
at the beginning of our user study. We can observe that our
students have quite a good knowledge of programming and
object-oriented programming in particular. But they did not
feel as comfortable with more dynamic programming tech-
nologies such as the context-oriented programming paradigm
or our feature-oriented context-aware approach. Their weak
knowledge of the Ruby programming language can be justified
by the fact that only a few of the students had prior experience
(beyond what they saw in a two-hour preparatory session) in
Ruby. From these results we may infer that the preparatory
phase of this user study was not sufficient for the complexity
of this new context-oriented programming technology. To
improve this preparation in the future, we should probably add
additional courses and practical experience to help participants
understand how to program systems using the feature-based
context-oriented programming approach.

Nevertheless, despite the difficulty of our approach, our partic-
ipants did seem to be interested by the visualisation tool when
they must develop a context-oriented system. Fig. 4 depicts
their opinions about the tool. The first two questions concern
whether they believe the static or dynamic representation of
the models and their dependencies are easy to understand. The
five values ranged from hard to understand to easy to under-
stand. For each representation, more or less 58% (taking into
account only the positive values) of our participants consid-
ered the representation as understandable. For the question
about which aspect (static or dynamic) is most interesting in
this tool, 50% (considering only the positive values) of our
participants consider the dynamic view as more interesting
than the static view, as opposed to only 20% (computing only
the negative values) who believed the static view to be more
interesting. 30% liked the dynamic aspect as much as the static
one. In addition, almost 56% of our participants agreed that
our visualisation tool is helpful to learn the approach. The ease
to use our tool is more mitigated however. Whereas almost
40% of the participants believed our tool to be easy to use,
more or less 26% of them did not. Finally, in the open question
about which functionality is most useful, several participants
answered that the ability to replay changes dynamically using
the Next step button is really useful.



We can conclude that our visualisation tool seems useful for
developers of feature-based context-oriented systems. Users
think that the representations of the models are understandable.
In addition they consider that this tool helps in learning and
understanding the underlying approach. But they do not have
a clear opinion concerning the ease of use. However this
can be explained by the high complexity of the underlying
approach. Indeed, assessing the usability of a visualisation
tool such as the one described in this paper is intrinsically
linked to the understandability of the underlying programming
approach. In the feedback received from our participants, two
main requests may be noted: the addition of a previous step
button to step back in the dynamic visualisation and better
support for visualising larger context and feature models.

-100 -80 -60 -40 -20 0 20 40 60 80 100

Modes in percentage

Static representation

Dynamic representation

Static vs. Dynamic

Better understanding

Easy to use

Q
u
e
st
io
n
s

Figure 4: Divergent stacked bar diagram presenting the results
of our closed questions about the usability and the usefulness
of our visualisation tool.

RELATED WORK
In this section we briefly explore related work on the strong
relation between contexts and features. Then we discuss other
visualisation tools similar or related to ours.

Context versus feature
While contexts are characteristics of the surrounding envi-
ronment in which a system runs [1], features can be defined
as "any prominent or distinctive user-visible aspect, quality,
or characteristic of a software system" [15]. Contexts and
features are complementary notions when building context-
oriented systems that can adapt their behaviour (described
in terms of features) dynamically whenever changes (reified
as contexts) are detected in the surrounding environment.
Notwithstanding their complementarity and differences, their
similarities have been observed in the modelling domain [7,
11, 14, 4, 3, 21] and the programming field [5, 23, 6, 22, 17].

Visualisation tools
Several visualisation tools have been created for visualising
different aspects of context- and feature-oriented modelling or
programming approaches. Many of these works state that such
visual support is essential especially when trying to understand
and manage large and complex feature or context models.

To visualise feature models, programmers can use a tool like
FeatureIDE [16], which is an open-source visualisation frame-
work integrated in the Eclipse development environment. For
dealing with larger feature models, programmers may prefer to
use S.P.L.O.T. [20], a web-based system that represents feature
models in a much more compact tree-like structure. Illescas et

al. [13] propose four different visualisations that focus on fea-
tures and their interactions at source code level, and evaluate
them with four case studies. Urli et al. [25] present a visual
and interactive blueprint that enables software engineers to
decompose a large feature model in many smaller ones while
visualising the dependencies among them. Apel and Beyer [2]
present a visual clustering tool that clusters program elements
(like methods, fields and classes) based on the features they
belong to, as a way to assess the cohesiveness of the features.
Features whose elements form clusters are more cohesive than
features whose elements are scattered across the layout.

Nieke et al. created a tool suite for integrating modelling in
context-aware software product lines [19]. This tool helps
developers to model the three dimensions (spatial, contextual
and temporal) of the variabilities of such approaches.

Dedicated to the development of adaptative user interfaces,
Quill is a web-based development approach in which sev-
eral stakeholders can work together to create a cross-platform
model-based design of a user interface [10].

Duhoux et al. built a Feature Visualiser tool on top of Mens
et al.’s context-oriented software architecture [22] to visualise
the interaction between the active contexts and features of the
system [9]. In addition to that tool, Duhoux also developed
a COP simulator [8] to simulate context-oriented systems
implemented with this architecture.

CONCLUSION
Managing different models as well as their dependencies in
a context-oriented approach is a daunting task, due to the po-
tentially high number of contexts and features, as well as the
high dynamicity of such systems. To address this issue, we
suggest the use of two linked hierarchical models (illustrating
the context model and feature model) with highlights of the
dependencies between them. We created a dedicated visualisa-
tion tool based on this concept which also shows at runtime
the dependencies from the feature model to the code (i.e., the
classes of the system).

To assess the usefulness and usability of our approach, we con-
ducted a user study on the visualisation tool with 34 master-
level students in the context of a software engineering course.
The participants of this study considered that our tool was
easy to understand in terms of the different representations it
provides. They felt in particular that the dynamic representa-
tion of the models helped them understand how the system
adapted over time. However, the participants were less con-
vinced when it came to usability of the tool. However, this can
be explained by the fact that the tool is strongly linked to the
(complex) underlying approach.

As future work we will first integrate the useful comments
and feedback received from the participants in our study. To
deal with the scalability problem of large models, we intend
on relying on other visualisations such as for example a more
compact tree-like view à la S.P.L.O.T. [20] or alternatively
hyperbolic trees [18] or 3D representations [26].



ACKNOWLEDGMENTS
We are grateful to Jean Vanderdonckt for the many fruitful
discussions on this topic.

REFERENCES
1. Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel

Davies, Mark Smith, and Pete Steggles. 1999. Towards a
Better Understanding of Context and Context-Awareness.
In Handheld and Ubiquitous Computing. Springer,
304–307.

2. Sven Apel and Dirk Beyer. 2011. Feature Cohesion in
Software Product Lines: An Exploratory Study. In Proc.
of ICSE 11. ACM, 421–430.

3. Rafael Capilla, Mike Hinchey, and Francisco J. Díaz.
2015. Collaborative Context Features for Critical
Systems. In Proc. of VaMoS 15. ACM, Article 43, 8
pages.

4. Rafael Capilla, Óscar Ortiz, and Mike Hinchey. 2014.
Context Variability for Context-Aware Systems.
Computer 47, 2 (Feb. 2014), 85–87.

5. Nicolás Cardozo, Sebastian Günther, Theo D’Hondt, and
Kim Mens. 2011. Feature-Oriented Programming and
Context-Oriented Programming: Comparing Paradigm
Characteristics by Example Implementations. In Proc. of
ICSEA 11. IARIA, 130–135.

6. Nicolás Cardozo, Kim Mens, Pierre-Yves Orban,
Sebastián González, and Wolfgang De Meuter. 2014.
Features on Demand. In Proc. of VaMoS 14. ACM,
Article 18, 8 pages.

7. Brecht Desmet, Jorge Vallejos, Pascal Costanza,
Wolfgang De Meuter, and Theo D’Hondt. 2007.
Context-Oriented Domain Analysis. In Modeling and
Using Context. Springer, 178–191.

8. Benoît Duhoux. 2016. L’intégration des adaptations
interfaces utilisateur dans une approche de
développement logiciel orientée contexte. Master’s thesis.
UCLouvain, Belgium.

9. Benoît Duhoux, Kim Mens, and Bruno Dumas. 2018.
Feature Visualiser: An Inspection Tool for
Context-Oriented Programmers. In Proc. of COP 18.
ACM, 15–22.

10. Vivian Genaro Motti, Dave Raggett, Sascha
Van Cauwelaert, and Jean Vanderdonckt. 2013.
Simplifying the Development of Cross-platform Web
User Interfaces by Collaborative Model-based Design. In
Proc. of SIGDOC 13. ACM, 55–64.

11. Herman Hartmann and Tim Trew. 2008. Using Feature
Diagrams with Context Variability to Model Multiple
Product Lines for Software Supply Chains. In Proc. of
SPLC 08. IEEE, 12–21.

12. Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz.
2008. Context-Oriented Programming. JOT 7, 3 (2008),
125–151.

13. Sheny Illescas, Roberto E. Lopez-Herrejon, and
Alexander Egyed. 2016. Towards Visualization of Feature
Interactions in Software Product Lines. In Proc. of
VISSOFT 16. IEEE, 46–50.

14. Zakwan Jaroucheh, Xiaodong Liu, and Sally Smith. 2010.
Mapping Features to Context Information: Supporting
Context Variability for Context-Aware Pervasive
Applications. In Proc. of WIIAT 10, Vol. 1. 611–614.

15. Kyo C. Kang, Sholom G. Cohen, James A. Hess,
William E. Novak, and A. Spencer Peterson. 1990.
Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report. CMU.

16. Christian Kastner, Thomas Thum, Gunter Saake, Janet
Feigenspan, Thomas Leich, Fabian Wielgorz, and Sven
Apel. 2009. FeatureIDE: A Tool Framework for
Feature-oriented Software Development. In Proc. of ICSE
09. IEEE, 611–614.

17. Alexandre Kühn. 2017. Reconciling Context-Oriented
Programming and Feature Modeling. Master’s thesis.
UCLouvain, Belgium.

18. John Lamping, Ramana Rao, and Peter Pirolli. 1995. A
Focus+Context Technique Based on Hyperbolic
Geometry for Visualizing Large Hierarchies. In Proc. of
CHI 95. ACM, 401–408.

19. Jacopo Mauro, Michael Nieke, Christoph Seidl, and
Ingrid Chieh Yu. 2016. Context Aware Reconfiguration in
Software Product Lines. In Proc. of VaMoS 16. ACM,
41–48.

20. Marcilio Mendonca, Moises Branco, and Donald Cowan.
2009. S.P.L.O.T.: Software Product Lines Online Tools.
In Proc. of OOPSLA 09. ACM, 761–762.

21. Kim Mens, Rafael Capilla, Herman Hartmann, and
Thomas Kropf. 2017. Modeling and Managing
Context-Aware Systems’ Variability. IEEE Software 34, 6
(Nov. 2017), 58–63.

22. Kim Mens, Nicolás Cardozo, and Benoît Duhoux. 2016.
A Context-Oriented Software Architecture. In Proc. of
COP 16. ACM, 7–12.

23. Thibault Poncelet and Loïc Vigneron. 2012. The
Phenomenal Gem: Putting Features as a Service on Rails.
Master’s thesis. UCLouvain, Belgium.

24. Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella.
2012. Context-oriented programming: A software
engineering perspective. JSS 85, 8 (Aug. 2012), 1801 –
1817.

25. Simon Urli, Alexandre Bergel, Mireille Blay-Fornarino,
Philippe Collet, and Sébastien Mosser. 2015. A visual
support for decomposing complex feature models. In
Proc. of VISSOFT 15. IEEE, 76–85.

26. Jens von Pilgrim and Kristian Duske. 2008. Gef3D: A
Framework for Two-, Two-and-a-half-, and
Three-dimensional Graphical Editors. In Proc. of SoftVis
08. ACM, 95–104.


	Introduction
	Case study
	Feature-based context-oriented approach
	Visualisation tool
	Validation
	User study
	Results and discussion

	Related work
	Conclusion
	Acknowledgments
	References 

