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Marine organisms are able to produce light using either their own luminous system, called intrinsic biolumi-
nescence, or symbiotic luminous bacteria, called extrinsic bioluminescence. Among bioluminescent vertebrates,
Osteichthyes are known to harbor both types of bioluminescence, while no study has so far addressed the po-
tential use of intrinsic/extrinsic luminescence in elasmobranchs. In sharks, two families are known to emit light:
Etmopteridae and Dalatiidae. The deep-sea bioluminescent Etmopteridae, Etmopterus spinax, has received a par-

ticular interest over the past fifteen years and its bioluminescence control was investigated in depth. However,
the nature of the shark luminous system still remains enigmatic. The present work was undertaken to assess
whether the light of this shark species originates from a bioluminescent bacterial symbiosis. Using fluorescent in
situ hybridization (FISH) and transmission electron microscopy (TEM) image analyses, this study supports the
conclusion that the bioluminescence in the deep-sea lanternshark, Etmopterus spinax, is not of bacterial origin.

1. Introduction

Bioluminescence is a widespread phenomenon, ranging from bac-
teria to vertebrates (Haddock et al., 2010). The emission of visible light
through biochemical reaction is referred to as (i) intrinsic biolumines-
cence, when the animal is able to produce its own light, and to (ii)
extrinsic bioluminescence, when the light is produced by symbiotic
bacteria (Haneda and Tsuji, 1971; Haddock et al., 2010; Widder, 2010).
Some fish families possess the ability to emit their own light like the
Myctophidae or Stomiidae (Barnes and Case, 1974; Case et al., 1977;
Mallefet et al., 2019), while others display extrinsic bioluminescence as
for the Anomalopidae, Monocentridae or Ceratiidae (Nealson and
Hastings, 1979). Approximately 460 fish species are known to establish
a symbiosis with bioluminescent bacteria (Dunlap, 2014), mainly with
Aliivibrio (Vibrio) fischeri, Photobacterium kishitanii, Photobacterium
leiognathi, Photobacterium mandapamemsis, Candidatus Enterovibrio
luxaltus, Candidatus Enterovibrio escacola, Candidatus Photodesmus
katoptron or Candidatus Photodesmus blepharon (Boettcher and Ruby,
1990; Ast et al., 2007; Dunlap et al., 2007; Kaeding et al., 2007; Hendry
et al., 2014, 2018). Within a luminous symbiosis, the host likely con-
trols the bacterial population within a luminous organ, called
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photophore. It provides the bacterial population with nutrients and
oxygen they need to grow and emit light. In return, the host uses the
light produced by the symbiotic bacteria (Haygood, 1993; Claes and
Dunlap, 2000). In most extrinsic bioluminescent fish, the bacteria are
extracellular and inhabit tubules of the fish photophore (Herring,
1982). In addition, these luminous organs are mainly associated with
either the gastro-intestinal tract, or a subocular (Anomalopidae) or
mandibular (Monocentridae) pocket or a modified dorsal fin ray (Cer-
atiidae) (Pietsch, 2009; Dunlap and Urbanczyk, 2013). In some cases,
the fish photophore is connected to the environment through a small
duct allowing the release of bacterial surplus due to the bacterial
multiplication within the fish organ (Dunlap, 1984).

Nowadays, about 1064 fish species are able to produce their own
light in photophores (Herring, 1982; Paitio et al., 2016) that resemble
the following general structure : (i) a deep cup-shape pigmented sheet
sometimes internally covered by (ii) a reflecting layer of guanine cris-
tals that direct light produced by (iii) photocytes (luminous cells) to-
ward a (iv) lens equipped or not with (v) filter; bioluminescence being
directed outward (Herring, 1985). Although evolutionary convergent,
the intrinsic photophore lack tubules, ducts or any pores such as those
found in symbiotic light organs. Intrinsic photophores are mainly under
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cathecholamines nervous control with numerous modulations
(Kronstrom et al., 2005; Zaccone et al., 2011; Mallefet et al., 2019)
except in sharks where a hormonal control has been described (Claes
and Mallefet, 2009a,c, 2010; Claes et al., 2010b, 2012).

Among Chondrichthyes, two families are known to contain species
able to emit light: the Etmopteridae and the Dalatiidae (Claes and
Mallefet, 2009a; Straube et al., 2015). Over the last 15 years, the deep-
sea bioluminescent Etmopteridae, Etmopterus spinax has received some
interest for its particular bioluminescence. This deep-sea shark is indeed
able to emit blue-green light at 486 nm thanks to organs, called pho-
tophores, spread mainly into the ventral epidermis (Claes and Mallefet,
2009a,b; Renwart et al., 2014). These photogenic organs (150 um dia-
meter on average for E. spinax), are composed of emitting cells, the
photocytes, embedded in a cup-shaped pigmented cell sheath, covered
by a reflective layer containing guanine crystals, and capped by one or
several lens cells (Renwart et al., 2014). A multilayer cell zone, called
the iris-like structure (ILS), is present between the lens cells and the
photocytes, and is used as shutter of the light organ (Claes and Mallefet,
2009a; Renwart et al., 2015). Multiple bioluminescence functions have
been highlighted for these species as counter illumination, aposematism
and intraspecific communication (Claes and Mallefet, 2008, 2009a;
Claes et al., 2010a, 2013; Duchatelet et al., 2019b). To achieve their
biological functions, Etmopteridae exhibit a hormonal control of the
light output: melatonin and prolactin triggering the light emission
while inhibition occurs thanks to a-melanocyte stimulating hormone
(Claes and Mallefet, 2009c). Nitric oxide and the y-aminobutyric acid
are also able to modulate the E. spinax light emission (Claes et al.,
2010b, 2011). Despite the increasing collection of data about the lu-
minous control and the ultra-structure description of the photophore
(Claes and Mallefet, 2009¢c; Renwart et al., 2014), no evidence has been
put forward to clearly discriminate the extrinsic vs. intrinsic light
emission in luminous sharks (Renwart and Mallefet, 2013) even though
some authors have suggested bacterial luminescence for the shark
Megachiasma pelagos (Taylor et al., 1983; Herring, 1985; Nakaya, 2010).

In this paper, using transmission electron microscopy (TEM) ob-
servation of the light organ ultrastructure, and fluorescent in situ hy-
bridization (FISH) technique with bioluminescent bacteria probes, the
existence of extrinsic bioluminescence in E. spinax was ruled out.

2. Material and methods
2.1. Specimen collection

Adult E. spinax were captured during field collections in August
2014 by longlines lowered at 250 m depth in the Raunefjord, Norway
(60°15’54” N; 05°07’46” E) (Claes and Mallefet, 2009¢; Renwart et al.,
2014, 2015). Six living specimens were kept in a 1 m® tank filled with
running fresh cold seawater (6 °C) and placed in a dark cold room at
Bergen University Marine Station (Espegrend, Norway). At the same
location, three specimens of Galeus melastomus were captured and kept
in the same condition in order to provide non-bioluminescent shark
control. Sharks were sexed, measured, weighed then euthanized
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following the local rules for experimental vertebrate care. Animals were
treated according to the European regulation for animal research
handling. Skin patches of 3 cm? were dissected from the ventral lumi-
nous zone, bathed in 4% paraformaldehyde phosphate buffer saline
(PBS) for 12h at 4°C, rinsed and stocked in PBS at 4 °C until use.
Controls were performed on two species of luminous fish known to host
symbiotic bacteria (Dunlap et al., 2014; Yasaki, 1928; Ruby and
Nealson, 1976; Tebo et al., 1979). Three specimens of Coelorinchus
kishinouyei (Gadiformes: Macrouridae) and two Monocentris japonica
(Beryciformes: Monocentridae), obtained as bycatch in Taiwan, were
processed as for E. spinax.

2.2. Section preparation

Photogenic shark skin patches preserved in PBS were bathed in
sterilized PBS with increasing concentrations of sucrose (10% for 1h,
20% for 1h and 30% overnight). The tissues were then embedded in
optimal cutting temperature compound (O.C.T. compound, Tissue-Tek,
The Netherlands) and rapidly frozen at —80 °C. Cryostat microtome
(CM3050 S, Leica, Solms, Germany) was used to obtain 10 um sections
that were laid on coated Superfrost slides (Thermo Scientific) and left
overnight to dry under sterile conditions.

2.3. FISH bacterial detection

E. spinax slides were immersed in successive ethanol solutions (50,
80 and 100%, 3 min each) to permeabilized cells and left to dry. 10 pL
of the hybridization buffer (900 mM sodium chloride, 200 mM Tris/
HCl, 40% Formamide and 0.01% SDS in ultrapure water) containing the
RNA probes at a final concentration of 5ng ul~ ! were applied per slides
in the dark at 4 °C. An equimolar mix of three RNA probes coupled with
Cy3 fluorochrome (EUB 338 I-cy3; EUB 338 II-cy3 and EUB 338 III-
cy3), complementary to a 16S rRNA region highly conserved among
bacteria, was tested in order to cover a highest range of bacteria domain
and highlight the potential presence of bacteria within photophores
(Table 1). NON EUB-Texas red probe, an oligonucleotide com-
plementary to the EUB 338 probe, was use as negative control for
nonspecific binding. After the probe application, the slides were in-
cubated in wet conditions for 2 h at 46 °C, rinsed and incubated with a
washing solution (46 mM NaCl, 20 mM Tris/HCl, 5mM EDTA and
0.01% SDS in ultrapure water) for 25 min at 50 °C. Slides were let to
dry, coated with Cityfluor (AF1) allowing the limitation of photo-
bleaching and cover with coverslips. A first positive control was rea-
lized using samples incubated with luminous bacteria. In brief, before
cryo-sections and after PBS-sucrose baths, skin samples were placed in
fresh V. fischeri suspension (ATCC 7744; American Type Culture Col-
lection, PO Box 1549 Manassas, VA 20108 USA) for 4h at 25°C in a
marine medium with constant stirring. The V. fischeri suspensions were
prepared by inoculating 100 ml of marine medium followed by in-
cubation for 24 h at 25 °C. The second series of controls was performed
on G. melastomus (non-bioluminescent shark), C. kishinouyei and M.
japonica (two extrinsic luminous fish). C. kishinouyei is known to host P.

Table 1

DNA probes used in the FISH experiments.
Probes Targets Sequences (5’ — 3") References
EUB 3381 90% of bacteria GCT GCC TCC CGT AGG AGT Amann et al. (1990), Loy et al. (2003)
EUB 338 11 69% of Planctomycetales GCA GCC ACC CGT AGG TGT Daims et al. (1999), Loy et al. (2003)
EUB 338 III 93% of Verrucomicrobiales GCT GCC ACC CGT AGG TGT Daims et al. (1999), Loy et al. (2003)
NON EUB Complementary to EUB 338 ACT CCT ACG GGA GGC AGC Wallner et al. (1993), Loy et al. (2003)
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kishitanii to produce light (Dunlap et al., 2014), while M. japonica dis-
plays a symbiotic association with V. fischeri (Ruby and Nealson, 1976).

All sections were observed with an inverted microscope DMI 6000B
(Leica) equipped with a DFC 365 FX camera coupled with LAS AF 3.1.0
software (Leica).

2.4. TEM photophores analysis

Fresh ventral skin patches with photophores from E. spinax were
fixed at 4 °C in 3% glutaraldehyde in cacodylate buffer (100 mM sodium
cacodylate, 270 mM sodium chloride, pH 7,8) during 3 h, rinsed in the
same buffer, and immersed at room temperature in a decalcifying so-
lution (OsteoRAL R fast decalcifier, RAL diagnostics) during at least 10
days. Sections were then post-fixed in an osmium tetroxide solution
(1% osmium tetroxide, 100 mM sodium cacodylate, 270 mM sodium
chloride, pH 7.8) for 45min, and dehydrated gradually in ethanol.
Tissues were embedded in Spurr’s resin, thin section of 100 nm were
made via ultramicrotome and placed on copper grids following Renwart
et al. (2014). Uranyl acetate (18 mM uranyl acetate solution: ethanol
(2:1) for 45 min) and lead citrate solution (80 mM lead citrate, 120 mM
sodium citrate, 160 mM sodium hydroxide for 4 min) were used for
contrasting the slides. Sections were let to dry and observed in a
transmission electron microscope Zeiss Leo 906E.

3. Results and discussion
3.1. Intrinsic luminescence

The general features of photophore could be observed on the lan-
ternshark cryosections and TEM images, i.e. autofluorescent photocytes

A
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embedded in a pigmented sheath, capped by a multilayer cell zone with
pigmented cells (ILS) and topped by one or two lens cells (Fig. 1A-C).
Specific tubular structures hosting bacteria classically observed in ex-
trinsic light organs has never been observed in E. spinax photophore
(Fig. 1A, C). Shark photophores are of epidermal origin; ontogenic
development studies have never shown any association with either
gastro-intestinal tract or subocular or mandibular pocket (Claes and
Mallefet, 2008, 2009b; Duchatelet et al., 2019a)

Using TEM, we were unable to detect the presence of bacteria in the
photophore structure, and around or within the light emitting cells.
Moreover, no duct leading to the external environment was observed
within photophores (Fig. 1C). Internal structure of photocytes, revealed
three distinct zones: nuclear, granular and vesicular zones (Fig. 1D, E):
the granular inclusions represent the intracellular luminescence source
called “glowons” (Renwart et al., 2015). Also, the size of inclusions
( + 400 nm) within the vesicular and granular zones of photocytes does
not match with the one of luminous bacteria (1-3 um) (Nealson and
Hastings, 1979).

In term of FISH labeling, no bacterial signal was detected at the
level of photophore, neither in the photocytes, nor in the multilayer cell
zone (ILS) or in the lens (Fig. 1F-G), while a strong signal was ob-
servable in the placoid scales (Fig. 1F). As a negative control, the ab-
sence of any red fluorescence using NON EUB-Texas red probe ruled out
the possibility of unspecific hybridization (Fig. 1H). Positive control,
consisting of slides pre-incubated with V. fischeri, displays a very strong
labeling at the level of the epidermis corresponding to bacteria agglu-
tination at the skin surface and a weak signal in the connective tissue
surrounding the light organ (Fig. 11).

Sections of C. kishinouyei (Fig. 2A-D) and M. japonica (Fig. 2E-G)
luminous organ displayed bacterial labeling at the level of specific

Fig. 1. E. spinax luminous organ histology,
cytology and FISH labeling. E. spinax with grey
shaded luminous zones and insert showing
where ventral tissues were sampled. (A)
Histological cryosection. (B) DAPI blue
staining section showing green auto-
fluorescence of photocytes. (C-E) Photophore
transmission electron microscopy micro-
graphy. FISH labeling (F, G) with EUBI, II, III
probes, (H) with NON EUB probe, (I) pre-
incubated photophore with vibrio fischeri, with
EUBI, II, III probes. Green color corresponds to
autofluorescence of photocytes (G-I). White
arrow head: bacterial red labelling. C: con-
nective tissue; D: dermal denticule; E: epi-
dermis; GA: granular area; GI: granular inclu-
sions; I: iris-like structure cells; L: lens cells; Lo:
light organ; N: nucleus; Ph: photocytes; Ps:
pigmented sheath; Pv: pigmented vesicules; R:
reflective guanine layer; VA: vesicular area.
Scale bars: 50 um (except D, E) (For inter-
pretation of the references to colour in this
figure legend, the reader is referred to the web
version of this article.).
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Fig. 2. Control experiments perform on (A-D)
Coelorinchus kishinouyei, (E-G) Monocentris ja-
ponica, (H-J) Galeus melastomus. (A) Lateral
and dorsal schematic view of C. kishinouyei (B)
schematic transversal section of the gastro-in-
testinal linked ventral light organ. Control FISH
experiment with EUBI, II, III probes on (C) in-
ternal bacterial tubules, (D) ventral pigmented
layer. (E) Lateral and dorsal schematic view of
M. japonica. (F) Schematic transversal section
of the mandibular light organ. (G) Control FISH
experiment with EUBI, II, III probes. (H)
Schematic lateral view of G. melastomus. (I)
schematic cross section of epidermis showing a
placoid scale. (J) Control FISH experiment with
EUBI, II, III probes. White arrow head: bacterial

red labelling. C: connective tissue; Ca: cartila-

ginous tissue; D: placoid scale; E: epidermis; P: dermal papillae; Pl: pigmented layer; Mb: mandibular bone; MI: muscular layer; T: bacteria-filled tubules. Scale bars:
100 um (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).

tubules (Fig. 2C, D, G) with EUB probes, confirming their specificity.
Finally, sections of G. melastomus (Fig. 2H-J) did not show any labeling
in the epidermis or connective tissue except at the level of placoid scales
(Fig. 2J) suggesting an unspecific placoid scale probe trapping as it has
also been observed for E. spinax (Fig. 1F).

The number of luminous bacteria present in symbiotic light organs
is typically high, reaching concentration of 10'! bacteria per mL
(Dunlap, 1984). Observed FISH labeling for both extrinsic luminous
fishes highlight a high density of bacteria within specific tubules
(Fig. 2C, D, G), while the absence of labeling in E. spinax photophores
indicate a very low bacterial density. These FISH results strongly sug-
gest that light production of E. spinax is unlikely to be of bacterial
origin.

A last intrinsic luminescence evidences come from ontogeny and
development of juveniles. Most of juvenile bioluminescent fishes and
cephalopods using bacterial symbiosis do not have light capacity at
birth, but must obtain it by recruiting luminous bacteria from sur-
rounding waters through duct or connection openings. The luminous
bacteria colonize the light organ during the post-hatching juvenile stage
of these organisms (Ruby and McFall-Ngai, 1992; Ruby and Asato,
1993; Wada et al., 1999; Fukui et al., 2010; Dunlap et al., 2014; Gould
et al., 2016). Conversely, in Etmopteridae, embryonic development takes
place in the uterus and embryos are already able to produce light in
utero before birth (Claes and Mallefet, 2008; Duchatelet et al., 2019a).

4. Conclusion

Based on (i) ultrastructural and histological descriptions, (ii) FISH
labeling, (iii) embryonic bioluminescence observations, it can be con-
cluded that bacteria, or structures that can host symbiotic luminous
bacteria, are absent from the photophores of E. spinax. Taken together,
these data strongly support an intrinsic bioluminescence in the deep-sea
lanternsharks and highlight the importance of studying the nature of
this light emission system in these enigmatic organisms.
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