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Abstract An important task in mathematical sciences is to make quantitative
predictions, which is often done via the solution of differential equations. In this
paper, we investigate why, to perform this task, scientists sometimes choose to
use numerical methods instead of analytical solutions. Via several examples, we
argue that the choice for numerical methods can be explained by the fact that,
while making quantitative predictions seems at first glance to be facilitated
with analytical solutions, this is actually often much easier with numerical
methods. Thus we challenge the widely presumed superiority of analytical
solutions over numerical methods.
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1 Introduction

An important task in mathematical sciences is to make quantitative predic-
tions, which are often done by solving differential equations.1 In physics, chem-
istry or biology, differential equations are used to describe the behavior of tar-
get systems. These equations need to be solved to get quantitative predictions,
which are expressed with numbers. They are solved either analytically or nu-
merically. Analytical methods can be used to express, when possible, solutions
as functions of variables. Then, quantitative predictions are drawn from these
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1 Quantitative predictions should be understood in a broad sense. They are not limited
to predictions about the future states of the target systems. They also include numerical
results of the variables that describe a behavior or a property of the target systems.
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analytical solutions. Numerical methods can also be applied to solve equa-
tions on computer and provide numerical results. For the purpose of making
quantitative predictions, analytical solutions are generally considered the most
valuable choice. One of the main reasons is that analytical solutions are exact
solutions. This seems to guarantee that the resulting quantitative predictions
are accurate. On the other hand, numerical methods generate errors, which
may produce results that can deviate too much from the exact solutions.

However, in some cases, scientists use numerical methods even though an-
alytical solutions are available. For example, the Schrödinger equation is gen-
erally solved numerically although its analytical solutions are known:

[I]n contemporary research almost all the manipulation of the Schrö-
dinger equation is done not analytically but rather by computers using
numerical methods. [...] [S]ome professionals will use computer methods
for all problems where accurate wave functions or numerical values
of energy are required, even for those special cases for which analytic
solutions exist. (French and Taylor, p. 174, we emphasize)

This choice is very surprising. Scientists opt for approximate methods although
they actually know the exact solutions. Why do scientists leave out exactness
of solutions?

In this paper, we tackle the question why scientists sometimes choose nu-
merical methods rather than analytical solutions in order to make quantitative
predictions. While the epistemological consequences of computer simulations
in mathematical sciences have been extensively studied in the literature (e.g.
Barberousse et al. 2009; Hartmann 1996; Humphreys 2004, 2009; Morisson
2009), the more specific question of how good numerical methods are in making
quantitative predictions has not received much philosophical attention until
very recently (Fillion and Corless 2014, Fillion and Bangu 2015). Yet answer-
ing this question may lead to important claims about applied mathematics.

Most philosophical discussions about mathematics in empirical modelling
have centered on the representational function of the mathematical part of
models may have. In such a perspective, technical issues related to the ap-
plication of mathematics might seem of little philosophical interest. However
making predictions, confirming or falsifying models crucially depend on how
quantitative results are obtained from models. Therefore attention to issues
of applied mathematics are crucial and, in particular, it is worth studying
how quantitative results are obtained in practice. Going from mathematically
formalized theories to quantitative predictions, if possible, is far from being
straightforward. It generally requires complex mathematical operations that
may introduce approximations and errors, known or unknown, controllable or
uncontrollable. In this paper, we make a series of points about the application
of mathematics in empirical modelling. By doing so, we aim at questioning
the presumed superiority of analytical solutions over numerical methods, and
more broadly at investigating scientific practices that form part of the oper-
ating knowledge of applied mathematicians.
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In order to explain why scientists sometimes choose to use numerical meth-
ods rather than analytical solutions, we rule out the obvious cases for which
analytical solutions are not available. This includes cases where the equations
are intractable per se, i.e when mathematical results state the impossibility
of expressing analytical solutions. This is for example the case of Bruns and
Poincaré’s results on the impossibility to solve the three-body problem with al-
gebraic functions (Diacu 1996, p. 68). This also includes cases where scientists
ignore whether the equations are analytically solvable (see Barberousse and
Imbert 2014, p. 267). Instead, we focus on the most problematic cases where
analytical solutions are available, but scientists still use numerical methods.
Via several examples, we argue that their choice can be explained by the fact
that, while making quantitative predictions seems at first glance to be facil-
itated with analytical solutions, this task is actually often much easier with
numerical methods. In other words, ease of making quantitative predictions
sometimes prevails over exactness of solutions.

The paper is organized as follows. We first emphasize that analytical so-
lutions are exact solutions whereas numerical methods provide approximate
solutions (Section 2). We then outline three main reasons why numerical meth-
ods can nevertheless be superior to analytical solutions for the purpose of
making quantitative predictions: (i) some analytical solutions make numeri-
cal applications difficult or impossible (Section 3); (ii) analytical solutions are
sometimes too sophisticated with respect to the problem at stake (Section 4);
(iii) analytical methods do not offer a generic approach for solving equations
like numerical methods do (Section 5). We finally challenge the presumed su-
periority of analytical solutions in mathematical sciences (Section 6).

2 Analytical solutions and numerical methods

One of the main reasons why analytical solutions are commonly considered
superior to numerical methods is that analytical solutions are exact solutions
while numerical methods yield approximate solutions. In this section, we first
make clear the distinction between exact and approximate solutions (Section
2.1) before investigating the notion of “analytical solution” (Section 2.2). We
then discuss in what sense numerical methods yield approximate solutions
(Section 2.3).

2.1 Exact and approximate solutions

Let us begin to make clear the notion of exact solution by contrasting it with
the notion of approximate solution. An exact solution x of an equation E
can be defined as a mathematical object that makes true the equation E.
For example, the equation “dx/dt = x” is true if x refers to the exponential
function x(t) = et. As a consequence, a solution is exact if, put it into the
equation, identity is obtained. If the function x(t) = et is put into the equation
dx/dt = x, the identity 1 = 1 is obtained, meaning that it is its exact solution.
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By contrast, an approximate solution is a mathematical object that does
not make true the equation E. The difference between an exact and an ap-
proximate solution can be expressed with a notion of error. Let us consider
y(t) an approximate solution of the equation E and x(t) its exact solution that
are two functions defined within a domain of values D. In this case, y is an
approximate solution in the sense that the error e(t) = |x− y| is non-zero for
at least one value of the variable t within the domain D. However, in order
that y be considered as an approximate solution, and not only an arbitrary
function, the error has to be small enough compared with the exact solution.
An acceptable approximate solution will depend on the modelling context.
But, if the error is too large, it seems there is no sense in considering y as an
approximate solution of the equation. For example, y(t) = 1 + t+ t2/2 can be
viewed as an approximate solution of the equation dx/dt = x when t is close
to zero but not if t is too large.2

With this distinction in mind between an exact and an approximate so-
lution, let us now turn to the difference between analytical solutions and nu-
merical methods used to solve differential equations.

2.2 Analytical solutions

Analytical solutions are few but important in mathematical sciences. For ex-
ample, well-known analytical solutions in physics are the solutions of the har-
monic oscillator in classical mechanics, the Poiseuille equation in hydrodynam-
ics, and the Schrödinger equation for a particle in an infinite potential well in
quantum mechanics. However, there is no detailed discussions about what an
“analytical solution” is. Following Humphreys, analytical solutions are exact
solutions which are expressed with closed-forms or infinite series (2004, p. 64).
The aim of this section is to explicate this definition.

First, let us make clear that there are different forms of analytical solutions,
i.e closed-forms and infinite series. A solution expressed as an infinite series
corresponds to an infinite sum of functions with the form y(x) =

∑∞
ckf

(k)(x)
where f(x) is a function – e.g x or cos(x) – ck are algebraic coefficients, and
the symbol “(k)” corresponds, for example, to the kth derivative or the kth

power. In order to be meaningful, infinite series have to be convergent, which
means that, once applied to a particular value of x, the series leads to a finite
number. However, the blind spot in this definition is the function f , for which
we suggest that it has to be expressed as a closed-form.

The notion of closed-form function is more controversial (Borwein and
Crandall 2013, p. 50-51). Closed-form functions are expressed with a finite
number of algebraic operations from a given accepted set of functions, such
as rational functions (i.e fractions of polynomial functions). However different
kinds of closed-form functions can be distinguished depending on the accepted
algebraic operations. Thus closed-form functions can be algebraic functions,

2 This is justified by the fact that y(t) is the first terms of Taylor series of the exponential
function at t = 0.
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elementary functions, liouvillian functions, and special functions. 3 For exam-
ple, x(t) = et is an elementary function, which is the solution to the differential
equations dx/dt = x, and x(t) = J0(t) is a special function, which is a Bessel
function of the first kind of order zero and the solution to the differential
equation t2d2x/dt2 + tdx/dt+ t2x = 0.

It has to be stressed that the frontier between closed-form functions and
infinite series is somewhat arbitrary. As Eric Weisstein points out “the choice of
what to call closed-form and what not is rather arbitrary since a new “closed-
form” function could simply be defined in terms of the infinite sum” (quoted
in Borwein and Crandall 2013, p. 50). In other words, closed-form functions
can be seen as just a proper subset of infinite series. But, although closed-
form functions can be rewritten as convergent infinite series (like the special
function J0(t)), it is still unclear why some infinite series are classified by
mathematicians as not having a possible corresponding closed-form. There are
indeed some infinite series that are generally considered as not being closed-
form functions. In Section 3.3, we will discuss such an example (the solution
of the N-body problem), from which we will argue that the often presumed
superiority of analytical solutions over numerical methods has to be mitigated.

Secondly, analytical solutions are exact solutions in the sense previously
discussed (Section 2.1): they are mathematical objects that make true the
equation. We point out that there are different ways to find exact solutions.
The exact solutions can be obtained in following mathematical transforma-
tions to solve the equation. Even if there is no general recipe for solving a given
differential equation, there are different techniques to derive the solutions de-
pending on the form of differential equations (like the method of “separation of
variables” or the use of canonical forms for some linear differential equations).
A solution can also be found by accident. Whatever the way they are found,
analytical solutions are exact solutions, and, because of it, analytical solutions
are generally considered as the best option for getting quantitative predic-
tions. This is a central reason why analytical solutions seem to be the best
option for getting quantitative predictions, especially as numerical methods
are approximate, as we will now see.

3 Algebraic functions are built from rational functions with the following operations: ad-
dition, subtraction, multiplication, division, and exponentiation with integral and fractional
exponents. Elementary functions are built in admitting in addition the operations of expo-
nentiation in general and derivation. Liouvillian functions admit in addition the operation
of integration (Goriely 2001, pp. 38-40 and Zoladek 1998, pp 2-3). Closed-form functions
admit in addition special functions like the non-liouvillian Airy and Bessel functions. Special
functions are functions that are purposely defined as the solutions of some differential equa-
tions. For a detailed discussion on the role of special functions in physics, see (Batterman
2007). We borrow this list from Fillion and Bangu (2015, p. 4) to which we add liouvillian
functions (Singer 1990, p. 66). Liouvillian functions play indeed an important role in clas-
sical mechanics: they are the solutions of integrable systems like the Kepler problem or the
one-dimension simple pendulum (Babelon et al. 2003, chap. 2).
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2.3 Numerical methods

There are numerous numerical methods used to solve differential equations.
The most famous methods may be the Euler methods and the Runge-Kutta
methods. From a general point of view, numerical methods can be classified
into two main families: one-step methods and multi-steps methods (Hairer et
al. 1992, Ortega 1992 among others). The aim of this section is to make clear in
what sense numerical methods are approximate. More generally, this section
may also be a first attempt to remedy the lack of philosophical discussion
about numerical methods in mathematical sciences.

Numerical methods are methods that transform differential equations into
difference equations. They provide a recursive algorithm for making calculation
that is then carried out on a computer.4 Let us illustrate this by introducing
a simple one-step method: the forward Euler method. Let us consider the
ordinary differential equation dx/dt = f(x, t) with the initial condition x0.
The forward Euler method leads to the following difference equation (xk+1 −
xk)/h = f(xk, tk). The derivative dx/dt is approximated by the ratio (xk+1 −
xk)/h, and the variables x and t of the function f(x, t) are both evaluated
at the step k. This numerical method thus defines the series (xk) following
the recursive rule xk+1 = hf(xk, tk) + xk where h is a discrete time step
and tk = hk. For example, starting from the initial condition x0, one has
x1 = hf(x0, t0) +x0. Then, x2 = hf(x1, t1) +x1, and so on until the last term
of the series xN = hf(xN−1, tN−1) + xN−1.

Let us now introduce another series (x(tk)) for which x(t) is the exact
solution to the previous differential equation. This series corresponds to the
sampling of the exact solution at the N instants t1, t2, ... tk, ... tN . This
series, even discrete, is exact in the sense that each term x(tk) is a certain
point of the exact function x(t). Under these conditions, one can state that
the numerical method is approximate since the series (xk) and (x(tk)) are not
identical. In other words, for each k, one has in general xk 6= x(tk). One can
thus define an error for each step – often called consistency error or local error
– that is |x(tk)− xk| and a global error max1<k≤N |x(tk)− xk|, which depend
on time step h. This shows in what sense numerical methods are approximate:
they lead to discrete series that differ from the discrete sampling of the exact
solution. In addition, we shall emphasize that the function f has generally to
be approximated by another function that can be computed in a finite number
of operations. For example, the function f can be replaced by its truncated
Taylor series, which leads to an additional source of error called truncation

4 We emphasize that these algorithms are not doomed to be implemented on a computer
since numerical methods (e.g Euler methods) have been used long before the development
of computers. Numerical calculations were made by hand. However, in this paper, we are
interested in the current use of numerical methods in mathematical sciences, which is based
on computers.
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error. As we have seen, numerical methods are approximate before even being
implemented on a computer.5

In Section 2, we have seen that analytical solutions are exact whereas nu-
merical methods yield approximate solutions. However, as the quotation from
French and Taylor (in the Introduction) illustrates, scientists sometimes choose
to use numerical methods rather than analytical solutions. This is very sur-
prising since, here, scientists make the choice to sacrifice exactness. In the
remainder of the paper, we explain this choice: we argue that numerical meth-
ods provide quantitative predictions more easily than analytical solutions. In
other words, ease of making quantitative predictions sometimes prevails over
exactness of solutions. The first reason that we will now present is that some
analytical solutions make numerical application difficult or impossible.

3 Risk of cumulative errors

At first glance, we might think that numerical methods are not as good as
analytical solutions in yielding quantitative predictions. Numerical computa-
tions generate errors that can accumulate and thereby can deviate too much
from the theoretically exact values. Analytical solutions seem to avoid such a
risk in that they are ready-to-use solutions: it is commonly thought that, once
they have been expressed, one has in principle only to replace the parameters
and the variables of the solutions with numerical values in order to obtain
quantitative predictions. However this view is misleading. In this section we
show that, like numerical computations, numerical application with analyti-
cal solutions sometimes encounters the risk of accumulating errors. Thus, we
argue that numerical methods can be preferable when the risk is higher in
analytical methods.

We first present the risk of accumulating errors in numerical computations
(Section 3.1) and we explain why this risk is also present in numerical appli-
cation with analytical solutions (Section 3.2). Then we present cases for which
there might be no hope to overcome this risk with analytical solutions and the
only remaining option is to use numerical methods for making quantitative
predictions (Section 3.3).

3.1 Error accumulations in numerical computations

We have contented (Section 2.3) that numerical methods, before even being
implemented on a computer, are approximate. We now show that, once imple-
mented, the corresponding numerical computations generate errors that can
make quantitative predictions inaccurate. These errors are round-off errors
that are generated at each step of the numerical computations and which can
accumulate.

5 Additional errors are produced all along numerical computations though, as we will see
in Section 3.
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In order to see this, let us introduce the series (x̃k). It differs from both
previous series (x(tk)) and (xk) in that it corresponds to the computed values
at each step of the numerical computations. For example, let us consider the
previous Euler method, and let 0.1 be the value of the discrete time step h̃
and x̃0 = 9.7 the initial condition. The first step in this series is obtained from
the numerical computation: x̃1 = h̃f(x̃1, t̃1) + x̃0 = 0.1× f(9.7, 0.1) + 9.7. One
can then compute x̃2, x̃3, etc. At each step, x̃k differs from the theoretical
value of the variable xk in the series (xk) obtained from the numerical meth-
ods; this difference |x̃k − xk| corresponds to the round-off errors generated by
numerical computation. Finally, the error that scientists are interested in is
ek = |x̃k − x(tk)| between the computed value and the exact solution of the
differential equation.

At each step k, the errors ek accumulate. If the sum of these errors becomes
high, the numerical results would deviate too much from the exact solution,
therefore producing numerical artefacts. For instance, this can be the case
of the equations of motion for conservative mechanical systems. Because er-
rors accumulate, the numerical computations of these equations can lead to
artificial dissipation or artificial forcing, which is in contradiction with en-
ergy conservation. Let us consider the case of the simple pendulum, which is
described by the differential equation d2θ/dt2 = −g/l sin (θ). Stern and Des-
brun (2008) showed that numerical instabilities occur when the forward Euler
method is used, leading to artificial forcing. Although the theoretical trajecto-
ries in the phase-space are closed curves – as the system is conservative – the
numerical trajectories are increasing spirals, which correspond to an artificial
forcing (Figure 1, on the left).

Fig. 1 Numerical computations of the simple pendulum equation with forward Euler
method (on the left) and symplectic Euler method (on the right). On the left, the trajecto-
ries are increasing spirals because of numerical instabilities. On the right, the trajectories are
closed curves, in agreement with the theoretical behaviour of conservative systems (Stern
and Desbrun 2008).

Even if error accumulation in numerical computations is a risk, we would
like to stress that numerical computations are not doomed to be useless. On
the one hand, there are many cases where error accumulation does not occur.
For instance, the numerical computations of the simple pendulum with the
symplectic Euler method lead to closed trajectories in the phase space (Figure
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1, on the right). On the other hand, even if there is artificial forcing due to cu-
mulative errors, this artificial forcing may be small enough for the predictions
to still be useful.

One could think that error accumulation is specific to numerical computa-
tions. In what follows, we want to argue that this risk also concerns numerical
applications with analytical solutions.

3.2 Generated errors with numerical applications

One might think that numerical applications are easily derived from analytical
solutions. It is indeed commonly thought that, once analytical solutions have
been expressed, one has in principle only to replace the parameters and the
variables of the solutions with numerical values in order to obtain quantitative
predictions. Thus, the error between the exact solution and its calculated value
|x(t)− x̃(t)| could be arbitrarily small depending on the number of decimals.
For example, if x(t) = et, then x(1) ≈ 2.718 , or x(1) ≈ 2.718281, or x(1) ≈
2.718281828459 depending on where truncation occurs.

However this view is misleading. The fact that analytical solutions are
ready-to-use does not imply that one can easily derive numbers from them.
The physicist T. L. Einstein suggests that having analytical solutions is not
all of it:

While the discovery of exact solutions is always intellectually exciting
and captivating, they are often of little use in confronting experiments
– physical or numerical – unless the formulas are numerically tractable.
Thus, even when a problem is formally solved, neither theoreticians or
funding agencies should view it as completed until the formalism can
be rendered in a way that allows the extraction of numbers, even if
approximately. (Einstein 2003, p. 820)

As this quotation suggests, another difficulty arises with analytical solutions,
which concerns what Einstein here calls the “extraction of numbers”. This is
the process of going from the analytical solutions to the quantitative predic-
tions. This process is rarely a mere and direct replacement of the parameters
and the variables in the solutions with numerical values, as commonly thought.
Instead, this process sometimes involves doing several numerical operations,
each of them generating round-off errors.

Having an analytical solution to a differential equations does not guar-
antee accurate quantitative predictions. As Fillion and Bangu (2015) claim,
“contrary to a persistent myth, [...] having an exact solution is not generally
more epistemologically beneficial than lacking one” (abstract). This is because
the numerical application, from the analytical solution to the numerical value,
may require numerous numerical computations that all generate errors, and
the summation of these errors may accumulate. The “myth” is actually a mis-
leading generalization of the wide use of elementary functions (e.g rational
functions, exponential functions, sine functions). However, for other functions,
numerical application does not always lead to accurate numerical results:
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When there is an exact solution, but no elementary solution, it is neces-
sary to rely in some way on infinite series representation of the solution
to evaluate it at some time. With respect to calculations, the difficulty
with infinite series representations is that we cannot sum an infinite
number of terms. It then seems that we can evaluate the solution to
arbitrary accuracy by using increasingly long (but finite) truncated se-
ries. An interesting situation arises when we have a perfectly good an-
alytic solution in the form a uniformly convergent Taylor series, which
converges so slowly that it ends up being of no practical use for com-
putation. (Fillion and Bangu 2015, p. 6)

Infinite series are not always convenient for numerical application. The reason,
as Fillion and Bangu claim, is that one cannot sum an infinite number of terms.
In such a case, one can only sum the terms of a truncated version of the series.
But such finite summation may lead to an inaccurate numerical result. Fillion
and Bangu (2015) illustrate this with the Taylor series of the Airy function
(a special function). They write “[n]umerically, even if the series converges for
all x, it might be of little practical use, since the theoretical uniform conver-
gence might not translate to success in numerical contexts”(p. 6). Ai(−t) is
the analytical solution to d2x/dt2 = −tx. The equation describes an harmonic
oscillator whose stiffness increases over time. Fillion and Corless (2014) insist
that, although the infinite Taylor series of Airy function “converges uniformly,
the floating-point computation diverges” (p. 1461). This means that a numer-
ical computation of the Taylor series of the function – e.g. Ai(−12.82) – with
floating-point arithmetic does not necessary tend to the exact value while the
numerical computation include more and more terms of the series.6 Such a
numerical computation thus seems to be useless for the purpose of making
quantitative predictions.

Another example is given by Forsythe (1970, p. 934), which is quoted by
Corless and Fillion (2014, p. 14). It is shown that the calculation of e−5.5

based on Taylor series is not numerically accurate. More precisely, the use of
the Taylor series – i.e x(t) =

∑∞
0 tn/n! – to evaluate the number e−5.5 in a

floating-point system with a 5-digit precision leads to an inaccurate numerical
result. Summing up the first twenty-five terms of the corresponding Taylor
series gives a number with 37% relative error, which is obviously too high to
be useful. Nevertheless there are in this case other ways to evaluate e−5.5. For
instance, the inverse function can be used to give a better approximation of
the value of e−5.5: one computes e5.5 and then the inverse of it. Thus, in this
case, the numerical issue can be overcome by using mathematical properties of
the exponential function, which is possible since it is a closed-form function,
and more precisely an elementary function.

Thus, making quantitative predictions with analytical solutions might be
not so different than with numerical methods, from both epistemic and method-

6 This phenomenon is an example of a catastrophic cancellation. This series is indeed an
alternating series in which differences between big numbers with finite significant figures are
used to evaluate small numbers. For details, see (Corless and Fillion 2014, p. 15).
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ological points of view. Numerical applications with analytical solutions also
generate errors that can occur and thus make quantitative predictions inac-
curate. Nevertheless, the parallel between applying analytical solutions and
numerical methods should not be overstated. There are differences between
both ways of making numerical applications.

First, unlike analytical solutions, round-off errors in numerical computa-
tions occur over the evolution time of the system. The reason is that, in order to
calculate numerically x̃(t), the calculated numerical values of previous points,
e.g. x̃(t−1), x̃(t−2), x̃(t−3)..., are required. In other words, long-term predic-
tions are less accurate than short-term ones, and the approximated trajectory
can deviate arbitrarily far from the true one. For analytical solutions, this
does not happen because the calculation of x̃(t) with analytical solutions is
not based on calculated values of the previous points (each term of the series
used to calculate x̃(t) deals with functions of the same instant t). Provided
that the analytical solution offers a means of calculating each trajectory point
with arbitrary accuracy (independent of the accuracy of other points), long-
term predictions can be made just as accurate as short-term ones, so that the
calculated trajectory stays close to the true one.7

There is a second difference between numerical applications with analytical
solutions and numerical methods. In the case of analytical solutions, there is
sometimes the option to express infinite series with closed-form solutions and,
in this way, to overcome the problem of generating errors. For calculating
e−5.5, one can overcome this problem by using the inverse function. Similarly,
one can suppose that scientists could use the Airy function without using its
Taylor series. Thus, there might be hope to make quantitative predictions from
the closed-form version of the Airy function.

However, in what follows, we present cases for which numerical applica-
tion is impossible: some analytical solutions are only expressed with slowly
convergent infinite series and thus make impossible to avoid the problem of
generating errors in numerical applications.

3.3 Impossible numerical applications

Here we present a case where having the analytical solution does not help at all
in making quantitative predictions and numerical methods are used instead.
Such a case is exemplified by the N-body problem of celestial mechanics that
we now discuss.

In the N-body problem of celestial mechanics, N particles interact with
each other gravitationally. mi, ri are the mass and the position of the ith

particle, respectively, and t is time. The equations of motion are:

mid
2ri/dt

2 =
∑
i 6=j

Gmimj (ri − rj) / |ri − rj |3 (1)

7 We are in debt with one of our anonymous reviewers for making this clear.
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There are analytical solutions to the N-body problem (Sundman 1907, 1909;
Wang 1991), which are perfectly general and have been viewed as theoreti-
cal successes. However, these solutions remain useless for physicists: neither
Sundman’s solution nor Wang’s solution can be used to compute the trajecto-
ries of an N-body system. This failure is intrinsically due to the form of these
solutions, which are infinite convergent series in powers of t1/3, and thus have
no practical use to make quantitative predictions. As Wang himself writes:

Although the conclusion given here provides a way to integrate the N-
body problem, one does not obtain a useful solution in series expansion.
The reason for this is because the speed of convergence of the resulting
solution is terribly slow. One has to sum, for example, an incredible
number of terms, even for an approximate solution of first order in q,
p, t. (Wang 1991, p. 87)8

Sundman’s solution and Wang’s solution are infinite series that are mathemat-
ically perfectly acceptable in that they are not divergent series. But the reason
for the failure of these solutions is that they both converge too slowly. Slow
convergence makes it impossible to obtain quantitative predictions from the
solutions. In order to make quantitative predictions from the infinite series,
the sum has to be truncated and only the first terms of the series are summed.
However, if the speed of convergence is too low, summing the first terms leads
to inaccurate numerical results. To get a sufficiently good approximation from
slowly convergent infinite series, it would require summing a considerable num-
ber of terms, which is not possible in practice. As Florin Diacu asserts about
Sundman’s solution and Wang’s solution:

One would have to sum up millions of terms to determine the motion
of the particles for insignificantly short intervals of time. The round-off
errors make these series unusable in numerical work. From the theoret-
ical point of view, these solutions add nothing to what was previously
known about the n-body problem. (1996, p. 70).

In other words, in the case of Sundman’s and Wang’s solutions, slow conver-
gence makes these infinite series useless since summing up millions of terms
would only give satisfying quantitative predictions for very short periods of
time. That is why the available analytical solution here is useless for the pur-
pose of making quantitative predictions. More than that, it seems to make
numerical application impossible because, contrary to the case of the Airy
function, one does not know any closed-form solution to the N-body prob-
lem (for N > 2).The problem does not admit elementary solutions, and more
generally does not have liouvillian solutions because it does not contain con-
served quantities enough for the equation to be solved under some mathemati-
cal transformations that are action-angle variables (Babelon et al. 2003, p. 10;
Masoliver and Ros 2011) 9. Thus one cannot overcome the problem of generat-
ing errors. That is why, in order to study the trajectories of N-body systems,

8 q, p are coordinates of phase space and t is time.
9 Action-angles variables are conjugate variables (I, θ) – sometimes written (J , ω) – such

as the action variables I (J) are constant with time (Babelon et al. 2003, p. 10; Goldstein
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scientists have to use numerical methods. According to Malte Henkel, “the
speed of convergence [of Sundman’s series] is so low that a mere numerical
computation with numerical methods directly applied to (eq. 1) [i.e. the equa-
tions of motion], without using infinite series, is more reliable”(2001, p. 175).
Despite numerical errors occurring with numerical methods, they are much
more reliable than analytical solutions to obtain the trajectories of bodies.

From a general point of view, speed of convergence is a key property of
infinite series since, depending on this speed, solutions can or cannot be used to
make quantitative predictions. Infinite series solutions with slow convergence
cannot be used to provide sufficiently accurate numerical results. In such a
case, numerical methods are more valuable than analytical solutions in order
to make quantitative predictions. There are other reasons to choose numerical
methods rather than analytical solutions. As we will now argue, analytical
solutions can be inadequate for the type of problem to which they are the
exact solutions. More precisely, analytical solutions may require mathematical
techniques that are too sophisticated to be appropriate for the problem at
stake.

4 Excessively sophisticated analytical solutions

Analytical solutions are sometimes an excessively sophisticated mathematical
machinery for the problem at stake. In this case, analytical solutions, although
they are available, are inadequate for the type of problem to which they are the
exact solutions. In order to illustrate this, let us go back to the example of the
simple pendulum, which is one of the simplest model in classical mechanics.

The simple pendulum is composed of a mass point (with mass m) attached
to a massless rob (with length l) under the gravity acceleration g. Without any
friction, the angle θ with the vertical is described by the following equation:

d2θ/dt2 = −g/l sin (θ) (2)

This problem is often misconceived as being analytically unsolvable and there-
fore as requiring a numerical method to be solved. For instance, Gallant writes
in a textbook that “there is no exact solution to this equation, so you have to
solve it numerically” (2012, p. 70). Hiestand similarly writes that the simple
pendulum equation “is nonlinear and cannot be solved in closed form though
an approximate solution can be obtained for small values of θ” (Hiestand
2009, p. 2). However, an analytical solution to the simple pendulum equation
is available (Belendez et al. 2007, p. 647), and therefore numerical methods
are in principle not required to solve the problem.

How can we explain that the analytical solution to the simple pendulum
equation is not much recognized in the scientific literature while the simple

et al. 2001, p. 452). We point out that the N-body problem with N = 2 is an exception
though, as, in this case, there are conserved quantities enough like energy, linear momentum
and angular momentum to make this change of variables, and give a liouvillian solution. In
this case, the system is said “integrable”.
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pendulum is a very well known model in physics? We suggest the following
reason: the analytical solution to the simple pendulum requires sophisticated
mathematics, excessively sophisticated given the simplicity of the system. The
analytical solution to the simple pendulum equation is indeed a closed-form
solution expressed with special functions, which are the complete elliptic in-
tegral of the first kind K(m), the incomplete elliptic integral of the first kind
u(φ;m), and the Jacobi elliptic function sn(u;m) with:

K(m) =

∫ 1

0

dz√
(1− z2) (1−mz2)

(3)

u(φ;m) =

∫ φ

0

dz√
(1− z2) (1−mz2)

(4)

sn (u;m) = sin (φ) (5)

It seems to be preferable for scientists to use numerical methods instead
of the exact analytical solution in order to study the behavior of the simple
pendulum system. In order to see this, let us introduce the analytical solution
to the simple pendulum equation. The analytical solution of the simple pen-
dulum is the following closed-form solution based on special functions with
initial conditions θ(0) = θ0 and θ̇(0) = 0:

θ(t) = 2 arcsin
{

sin (θ0/2) sn
[
K
(
sin2 (θ0/2)

)
− ω0t; sin2 (θ0/2)

]}
(6)

Unlike the solution to the N-body problem, the solution of the simple pendu-
lum equation can be used to make quantitative predictions. In particular, it
can be used to get quantitative predictions about the motion of the pendu-
lum. As shown in Figure 2, the analytical solution can indeed be computed
over time from initial conditions. Thus, contrary to the case of the N-body

Fig. 2 The solution of the simple pendulum for initial conditions θ0 = 0.9π and θ̇0 = 0
(bold line) computed with the software Mathematica. The thin line corresponds to a solution
of the equation when θ0 is sufficiently small (Belendez et al. 2007, p. 647).

problem, one can derive accurate quantitative predictions from the analytical
solution to the simple pendulum. However numerical methods are used instead



On the presumed superiority of analytical solutions over numerical methods 15

for the purpose of making quantitative predictions. To explain this, we suggest
that the analytical solution is considered by scientists as too complex for the
problem at stake. The system of the simple pendulum is already a simple and
elementary model. The model is highly idealized since, for example, it does not
take into account air friction and represents the weight as a mass point. So,
there is no point to use a very sophisticated computational tool for having ex-
act solutions to already very idealized equations. Here, approximate numerical
results are considered as satisfying. Thus, in our view, when a model is highly
idealized, its analytical solution is expected to not require excessively sophisti-
cated mathematics for the purpose of making quantitative predictions. If it is
not the case, numerical methods are preferred, at least, if scientists considered
them as more convenient to make quantitative predictions.

The reason for choosing numerical methods (when the analytical solution is
available) can be generalized insofar as numerical errors generated by numer-
ical methods are small enough. This is based on an assessment of numerical
errors compared to modelling and experimental errors. This way of assessing
numerical errors has been promoted by Fillion and Corless when they write
that numerical errors “should be analyzable in the same terms as modelling
and experimental errors. By that we mean that if truncation, discretization,
and roundoff errors are small compared to modelling and experimental er-
ror, then for all we know, our approximate numerical answer can be the right
one”(2014, p. 1459). It is not meant that, in such cases, scientists are doomed
to make only qualitative predictions. Quantitative predictions are often (if not
always) made from mathematical models which are idealized representations
of target systems. We only stress that, as far as the order of magnitude of
computational errors – e.g 10−7 – is smaller than the one of modelling and
experimental errors – e. g. 10−4 – computational errors can be neglected.
Thus, in such cases, one can give up on exactness of the analytical solution for
the simplicity of the computational tool. In other words, the ease of making
quantitative predictions with a numerical method (involving small numerical
errors) prevails over the exactness of the analytical solution of the equation
(which represents a highly idealized systems and thus involves large modelling
errors).

The case of the simple pendulum contrasts in the scientific literature with
the case of another mechanical system: the harmonic oscillator system. Unlike
the analytical solution of the simple pendulum, the analytical solution of the
harmonic oscillator is well known and well used. Our explanation of this differ-
ence derives from the previous one: both the model of the harmonic oscillator
and its analytical solution are simple. The harmonic oscillator system is highly
idealized and its analytical solution requires only elementary and well-known
functions, i.e. the sine function.

The Lotka-Volterra model is another example that illustrates that an an-
alytical solution must not be too complicated. The Lotka-Volterra model de-
scribes the idealized dynamics of prey and predator populations, e.g fishes
and sharks, or hares and lynx. It is built on simple hypotheses about popula-
tion growth and predation (cf. Murray 2002, p. 79-80). The system of model
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equations is then:

dN/dt = N (a− bP ) and dP/dt = −P (c− dN) (7)

where N(t) and P (t) are the respective numbers of prey and predators at time
t; a, b, c and d are positive constants. The constant a is the growth rate of the
prey population; b is the rate of the prey eaten by predators; c is the death
rate of predators; and d is the rate of eaten prey that allows for the birth of
predators.10

Like the case of the simple pendulum, the analytical solution to the Lotka-
Volterra model is not often used although it is available (Dutt 1976; Evans
and Findley 1999)11:

N(t) =
1

d
(cω(t) + ω̇) and P (t) =

1

b
(aω(t)− ω̇) (8)

with

t = t0 +

∫ ω

ω0

dω′c (eρ − ω′)−1 (9)

where eρ satisfies a particular algebraic equation (Evans and Findley 1999, p.
182).

Equations (7) have thus an analytical solution, which however cannot be
expressed as an elementary solution since equation (9) is not reducible to el-
ementary functions. Therefore this solution has a complicated form while the
model is highly idealized. By contrast, it is relatively easy to explore the dy-
namics numerically. Thus numerical methods could be preferred. For instance,
the simplest forward Euler method (see Section 2) can be used to solve both
equations (7) and thus to make quantitative predictions about the rate of
populations and to show that the population trajectories oscillate. Here again
exactness is sacrificed for ease of getting quantitative predictions.

As we will now see, there is another reason that makes numerical methods
preferable to analytical solutions: analytical methods do not offer a systematic
approach for solving equations of different kinds as numerical methods do.

5 Analytical methods as non-generic approaches for solving
equations

It may be more convenient for scientists to use numerical methods for another
reason. Solving equations analytically seems to require specific mathematical

10 First, in the absence of any predation, the prey grows unboundedly in a Malthusian
way; this is the aN term. Second, the effect of the predation is to reduce the prey growth
rate by the term b and by the number of predators; this is the −bNP term. Third, the prey
contribute to the predators’ growth; this is the dNP term. Fourth, in the absence of any
prey to eat, the predators die following an exponential decay, that is, the −cP term.
11 In (Evans and Findley 1999, p. 181-182), the equations of the Lotka-Volterra model

are slightly different and written in function of the variables x1(t) and x2(t). We get the
equations (7) with the mathematical transformations N(t) = (b/d)x1(t) and P (t) = x2(t).
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techniques depending on the equation at stake. On the contrary, numerical
methods are more generic techniques for solving differential equations. The
same numerical method can be used to solve very different kinds of differential
equations. This property is very important in the context of scientific modelling
that requires modifying the equations by adding new parameters and variables
or, for example, by changing the power of an exponent.

Therefore, even if scientists know or could know the analytical solutions to
the equations, the use of numerical methods could be more convenient. This
is suggested in a quantum mechanics textbook:

The solution of differential equations constitutes an entire subdiscipline
of mathematics. Unfortunately each different potential substituted into
the Schrödinger equation typically yields a different problem, requir-
ing a different method of solution. No single method suffices for all
potentials. [...] In contrast to analytic methods, the computer solution
procedures for one-dimensional potentials can be standardized. (French
and Taylor, p. 174)

According to French and Taylor, solving equations analytically requires specific
mathematical techniques depending on the equation at stake. For example, the
mathematical techniques to solve linear differential equations are not the same
as to solve non-linear equations. Similarly the way to solve first order equa-
tions is not the same as to solve second order differential equations. Solving
equations analytically is sensitive to small modifications in the equations: a
small change in an analytically solved equation may lead to an analytically
unsolvable equation. For instance, the solution to the equation of the harmonic
oscillator d2x/dt2 − ωx = 0 is an elementary function. However, if the con-
stant ω is replaced by a linear function of the time ω(t) = t, the equation
is not solvable with liouvillian functions (and consequently not solvable with
elementary functions) but, as we have seen, with the Airy special function.

On the other hand, numerical methods are generic techniques for solving
differential equations. The same numerical method can be used to solve very
different kinds of equations. For example, the Runge-Kutta methods can be
used to solve first-order differential equations as well as second-order and more
generally n-order differential equations. Similarly, they can be used to solve
linear as well as non-linear differential equations. Therefore, the same numer-
ical methods can be used to solve an equation or a modified version of it. For
example, as French and Taylor emphasize, the same numerical method can be
used to solve Schrödinger’s equation with different potential functions.

We suggest here a possible explanation why numerical methods are generic
methods to solve differential equations: the mathematical conditions required
to solve differential equations with numerical methods are weak. Therefore,
the family of numerically solvable differential equations is large. Let us take
again the case of the forward Euler method applied for solving the family of
differential equations dx/dt = f(x, t). As we have seen, this means that the
following recursive algorithm xk+1 = f(xk, tk)h+xk is used to build the series
(xk). The more kinds of functions for f(x, t) are admitted, the more generic the
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Euler method is. At first glance, f(x, t) can be polynomial functions, trigono-
metric functions, and so on. Yet it turns out that the required conditions for
f(x, t) to use the Euler numerical method are weak: Euler method is conver-
gent if f(x, t) is lipschitzian in x (Stoer and Bulisch 2002, p. 478-480; Süli and
Mayers 2003, p. 322). This means that there is a positive constant M such as
|f(x1, t)− f(x2, t)| ≤ M |x1 − x2|, which corresponds to a criterion of regu-
larly. Many functions satisfy this criterion and the Euler function can thus be
applied in principle to all of them. 12 In addition, since problems of differential
equations of order n can be rewritten with n differential equations of order 1,
one can suppose that the generality of numerical method for greater orders
can be explained the same way.

One can thus understand why, even if analytical solutions can be known,
scientists may choose numerical methods. They are generic techniques, which is
a particularly useful way to find solutions in the context of scientific modelling.
Now that we have presented three main cases where numerical methods are
preferred to analytical solutions, let us examine what they tell us about the
often presumed superiority of analytical solutions.

6 Ease of making quantitative predictions

It is commonly accepted that analytical solutions are superior to numerical
methods. Sometimes the reasons for such a claim concern the mathematical
elegance of analytical solutions or the talent a mathematician needs to have in
order to find them. In this paper, we focus rather on objective criteria. Analyt-
ical solutions can be useful in providing information about several properties
of the target system like its symmetry, periodicity, linearity or non-linearity. In
addition, analytical solutions are general solutions. As functions of variables,
they are solutions for potentially many cases depending on the numerical val-
ues assigned to the variables. These criteria may play an explanatory role, and
therefore be important for scientific theorizing. But they are not relevant for
assessing analytical solutions and numerical methods in making quantitative
predictions because this task concerns specific cases. In particular, we agree
with Humphreys’ claim that the loss of generality in numerical methods “is
not a great loss, for applications are ordinarily to specific cases” (Humphreys
2004, p. 65).

We have thus suggested that exactness is an important criterion. But, on
the other hand, we have shown that scientists might prefer numerical methods
to analytical solutions when making quantitative predictions is easier with
numerical methods. We have found three main instances where this is the
case: First, some analytical solutions have no practical use when they can only
be expressed as infinite series and have slow convergence. Second, analytical
solutions are sometimes an excessively sophisticated mathematical machinery

12 We emphasize how close are the conditions that guarantee that the numerical Euler
method is convergent, and the conditions that guarantee that there exists a unique solution
to a differential equation dx/dt = f(x, t) with an initial condition (Picard-Lindelöf theorem).
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for the problem at stake. Third, analytical methods do not offer a generic
approach for solving equations of different kinds.

In this way, we suggest that there is another criterion for assessing value of
mathematical solutions. This criterion might be called ease of making quanti-
tative predictions. Because, as we have seen, this criterion sometimes prevails
over exactness of solutions, we claim that analytical solutions cannot be con-
sidered superior to numerical methods.

One could think that ease of making quantitative predictions is a lesser
criterion than exactness in that it is a practical criterion and therefore can-
not threaten the absolute superiority of analytical solutions. Indeed, ease of
getting numerical results is important because scientists are cognitively lim-
ited agents. So long and tedious tasks – that getting numerical results from
analytical solutions may involve – constrain the choice of scientists between
different computational tools. But the practical aspects make a great differ-
ence as soon as we endorse the distinction between science in principle and
science in practice (Humphreys 2004).

Science in principle includes the epistemic activities that an ideal agent
could conduct; an ideal agent having unlimited cognitive capacities. This def-
inition does not take into account the concrete operations that an agent with
limited capacities could actually do, nor the relative difficulty of the opera-
tions required in the different epistemic activities. On the other hand, science
in practice takes into account the perspective of the agent and therefore in-
cludes the epistemic activities that real agents – i.e. cognitively limited agents
– can actually perform.

In the context of science in practice, ease of making quantitative predictions
becomes a criterion as important as exactness of solutions. In science in prac-
tice, there seems to be no rational argument that allows one to assign a higher
epistemic value to exactness than to ease of getting numerical results. Besides,
while preferring ease of getting numbers to exactness is a matter of pragmatic
choice, the reasons for this choice are based on the very mathematical prop-
erties of analytical solutions. The three above-studied reasons for preferring
numerical methods are inherent to the mathematical forms of analytical so-
lutions. In other words, some mathematical properties of analytical solutions
(like requiring complicated special functions or exemplifying slow convergence
for infinite series) make the task of making quantitative predictions difficult
and sometimes impossible.

In the context of science in principle, ease of making quantitative predic-
tions is not, by definition, a criterion for the superiority of analytical solutions.
This criterion is irrelevant since agents are considered as ideal. Therefore, one
could think that analytical methods are still superior to numerical methods.
However science in principle is an ideal picture that is far from what scientists
can really predict or describe. Furthermore, the frontier between science in
principle and science in practice is sometimes thin. For instance, slow con-
vergence of infinite series might still be a case that threatens the superiority
of analytical solutions in science in principle (e.g the N-body problem). All
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of this suggests that, in the context of science in practice, the superiority of
analytical solutions over numerical methods has to be mitigated.

7 Conclusion

We argued that numerical methods are sometimes preferable to analytical ones
for the purpose of making quantitative predictions because: (i) some analytical
solutions make numerical applications difficult or impossible; (ii) analytical
solutions are sometimes an excessively sophisticated mathematical machinery
for the problem at stake; (iii) analytical methods do not offer a systematic
approach for solving equations of different kinds like numerical methods do.

These three reasons result from the more general fact that analytical solu-
tions are exact but do not always facilitate getting numerical results. Numerical
methods are thus sometimes better in making quantitative predictions. Even
though opting for ease of getting numerical results over exactness of solutions
is a matter of pragmatic choice, this choice is nevertheless meaningful. It sug-
gests that, in the context of science in practice, the often presumed superiority
of analytical solutions must be mitigated.
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