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Abstract

Using risk-reducing properties of conditional expectations with respect to convex order, De-
nuit and Dhaene (2012) proposed the conditional mean risk sharing rule to allocate the total
risk among participants to an insurance pool. This paper relates the conditional mean risk
sharing rule to the size-biased transform when pooled risks are independent. A representa-
tion formula is first derived for the conditional expectation of an individual risk given the
aggregate loss. This formula is then exploited to obtain explicit expressions for the contribu-
tions to the pool when losses are modeled by compound Poisson sums, compound Negative
Binomial sums, and compound Binomial sums, to which Panjer recursion applies. Simple
formulas are obtained when claim severities are homogeneous. A couple of applications are
considered. First, to a peer-to-peer (P2P) insurance scheme where participants share the
first layer of their respective risks while the higher layer is ceded to a (re)insurer. Second,
to survivor credits to be shared among surviving participants in tontine schemes.

Keywords: conditional expectation, risk pooling, risk measures, compound distributions,
Panjer family of distributions.



1 Introduction and motivation

Initially developed in order to unify various sampling distributions when the chance of being
recorded by an observer varies, weighted distributions are closely related to weighted risk
measures and weighted capital allocation rules. Among these weighted distributions, this
paper considers the size-biased, or length-biased one corresponding to the identity weight
function. It refers to the situation where larger observations are more likely to be recorded.
Hence, the available data are of bigger size compared to the actual population values. Trans-
lated to an actuarial context, this means that claim amounts are made larger before perform-
ing actuarial calculations, which generates a safety loading. The size-biased transform has
been comprehensively reviewed by Aaratia et al. (2019). It can be traced back to the late
1960s in the statistical literature and has proven to be useful in the study of risk measures
after the pioneering work by Furman and Landsman (2005, 2008) and Furman and Zitikis
(2008a,b). The reader is referred to Denuit (2018) for an introduction to the size-biased
transform and its properties, with insurance applications.

This paper uses the size-biased transform to establish a useful representation for the
conditional mean risk sharing rule proposed by Denuit and Dhaene (2012). This result is
then applied to derive explicit expressions for the part of the total risk supported by each
participant in a pooling scheme when individual losses are represented by compound Poisson
sums, compound Negative Binomial sums, and compound Binomial sums. Panjer recursive
formula can be obtained to compute the respective contributions for each participant to the
pool, in function of the realized total loss retained by the pool.

As an application, the results are used to share the total loss among participants to a
peer-to-peer (P2P) insurance scheme. In such a scheme, participants agree to pool the first
layer of the risks they face, whereas the higher losses are still covered by a third party,
typically an insurance or reinsurance company. In general, the pool keeps individual claim
amounts up to a given threshold acting as a deductible and the part above the threshold is
covered by the (re)-insurer with the help of an excess-of-loss treaty. The main advantage for
participants to a P2P scheme is that they can access higher amounts of deductibles compared
to standard covers, thanks to the risk-reducing effect of pooling.

Additional guarantees can be added to make participation to P2P schemes attractive
compared to corresponding regular insurance covers. For instance, an upper bound to the
individual contributions to the pool can be specified, which often corresponds to the yearly
premium paid for the ordinary insurance policy covering the same peril. In such a way,
participants can only win if they adhere to the pool, compared to buying traditional insurance
(but of course, there is a price to pay and the amount allocated to cover the pooled losses is
reduced accordingly).

P2P insurance schemes generally include cash-back mechanisms when claim amounts do
not exceed premiums paid. In such a case, the contract operates as a participating policy:
participants pay the regular insurance premium and can only get refund at the end of the
period. This raises the following question: how to fairly share, in an understandable and
transparent way, that part of the premium that has not been used to cover the claims? As
everybody is well aware that insurance risks are heterogeneous, equally sharing the total
losses among participants appears to be unfair. To be successful, P2P insurance schemes
require an appropriate risk sharing mechanism recognizing the different distributions of the
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risks brought to the pool. Intuitively speaking, participants pooling smaller risks should
contribute less to the realized total loss. The present paper proposes a simple and mathe-
matically correct solution based on the conditional mean risk sharing rule proposed by Denuit
and Dhaene (2012). Being based on the concept of mean value, this sharing rule turns out
to be quite intuitive as most participants have at least a vague idea about averaging and its
risk-reducing effect. Since participants can be informed when they enter the pool about the
amount they will have to contribute as a function of the total realized loss, this approach
ensures full transparency.

As a second application, we study the way survivor credits are shared under mutual
inheritance rules. A tontine, or survival fund refers to a fixed-term fund that boosts the yield
of investments thanks to an agreed mutual inheritance rule among participants. According
to this rule agreed at inception, the initial contributions are lost in case of death during the
reference period. The way survivor credits are distributed must account for the possibly
unequal death probabilities and contributed amounts. In that respect, everyone intuitively
feels that the participants assuming more risk, because of higher death probability or higher
amount of contribution, must receive a higher share of these credits.

Often in the history of tontines, homogeneous groups of participants were created on the
basis of gender, age, health status, amount of contribution, etc. This ensures that one can
reasonably expect that the same death probability applies to all members inside each group.
However, if the tontine mechanism is operated in each group isolatedly, the reduced number
of individuals inevitably increases the volatility of the final payout to survivors. Allowing for
heterogeneity in death probabilities and contributed amounts avoids this drawback which
makes the participation in such investment more attractive (especially at old ages, if such
tontines are used as substitutes to more conventional pension insurances), provided the
survivor credits are shared in an understandable and transparent way. Again, the conditional
mean risk sharing rule appears to provide an effective solution in that respect.

The remainder of this paper is organized as follows. In Section 2, we first recall the
definitions of the conditional mean risk sharing rule as well as of the size-biased transform.
Then, we establish a useful representation theorem for the individual contributions to the
pool under conditional mean risk sharing rule. This result is applied in Sections 3-4-5 when
individual contributions to the pool are described by compound sums. Compound Poisson
sums are considered in Section 3, compound Negative Binomial ones in Section 4, and
compound Binomial ones in Section 5. The results are applied in Section 6, first to a P2P
insurance scheme and then to a tontine. The final Section 7 briefly concludes the paper.

2 Representation for conditional mean risk sharing rules

2.1 Conditional mean risk sharing rules

Consider n participants to an insurance pool, numbered i = 1, 2, . . . , n. Each of them
faces a risk Xi. By risk, we mean a non-negative random variable representing a monetary
loss. In the remainder of this paper, we assume that X1, X2, . . . , Xn are independent. This
application is not restrictive for applications to P2P insurance or tontines considered in this
paper and an extension to conditionally independent risks can be worked out following the
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lines of Denuit (2018). Henceforth, we use the notation S =
∑n

i=1Xi for the total risk of
the pool. In a risk pooling scheme, each participant contributes an amount hi(s) where
s =

∑n
i=1 xi is the sum of the observed realizations of X1, X2, . . . , Xn. In the design of

the scheme, it is important that the sharing rule represented by the functions hi is both
intuitively acceptable and transparent.

Denuit and Dhaene (2012) studied the conditional mean risk sharing (or allocation) h?i
defined as

h?i (S) = E[Xi|S], i = 1, 2, . . . , n. (2.1)

Clearly, the conditional mean risk sharing (2.1) allocates the full risk S as we obviously have

n∑
i=1

h?i (S) =
n∑
i=1

E[Xi|S] = S.

In words, participant i must contribute the expected value of the risk Xi brought to the pool,
given the total loss S. This rule appears to be fair as the expected contribution is equal to
the expected loss, that is,

E[h?i (S)] = E
[
E[Xi|S]

]
= E[Xi], i = 1, 2, . . . , n.

Every risk-averse decision-maker prefers h?i (S) over the initial risk Xi so that the conditional
mean risk sharing rule appears to be beneficial to all participants. As long as the volatility
of the contribution h?i (S) is in line with the risk appetite of participant i, pooling appears
to be an attractive alternative to conventional, fixed premium insurance.

Several situations where the functions s 7→ h?i (s) = E[Xi|S = s] are non-decreasing for
every i = 1, 2, . . . , n, making E[X1|S], . . . ,E[Xn|S] comonotonic, are considered by Denuit
and Dhaene (2012). A recent paper by Saumard and Wellner (2018) establishes general
conditions ensuring the non-decreasingness of h?i . Also, Furman et al. (2018) studied the
case where h?i (s) = βis for some βi depending on the means of the risks under consideration
(see Theorem 3.2 in that paper).

The conditional mean risk sharing rule can be justified by actuarial fairness in the long
run. Assume that the same rule is applied repeatedly over time among participants in a
stable pool. Formally, denote as X t = (X1t, X2t, . . . , Xnt) the experience for year t and
assume that the random vectors X1,X2, . . . are independent and identically distributed.
Participant i then pays E[Xit|St] in year t and in the long run, the average of E[Xit|St]
converges to E[Xit], that is, to the pure premium or fair price for the risk Xit.

2.2 Size-biased transform

Given a risk X (i.e. a non-negative random variable representing a monetary loss) with

distribution function FX , define the risk X̃ with distribution function

P[X̃ ≤ t] =
E
[
XI[X ≤ t]

]
E[X]

=
1

E[X]

∫ t

0

xdFX(x),

where I[·] denotes the indicator function (equal to 1 if the event appearing within the brackets

is realized, and to 0 otherwise). Then, X̃ is said to be a size-biased version of X, and the

3



operator mapping the distribution function FX of X to the distribution function FX̃ of X̃ is

called the size-biased transform. Clearly, the support of X̃ cannot be larger than the support
of X. Alternatively, we can also see that FX and FX̃ are related through the identity

FX̃(t) =
E
[
X
∣∣X ≤ t

]
E[X]

FX(t).

A detailed account of the properties of the size-biased transform can be found in Brown
(2006) and Arratia et al. (2019). Most parametric models used in actuarial applications
are closed under size-biasing. See e.g. Table 1 in Patil and Rao (1978). Also, we refer the
reader to Denuit (2018) for an introduction to the properties of the size-biased transform that
appear to be useful to insurance applications (with special emphasis to compound sums).

The size-biased version X̃ is larger compared to X, so that X̃ represents a worse loss than
X. In order to see why this is true, it suffices to notice that X̃ is distributed as max{X,Z}
where the random variable Z is independent of X and has distribution function

P[Z ≤ t] =
P[X̃ ≤ t]

P[X ≤ t]
=

E[X|X ≤ t]

E[X]
.

In fact, the stronger likelihood ratio order holds. We refer the reader to Denuit et al. (2005,
Chapter 3) for more details concerning this stochastic order relation expressing the idea of
“being larger than” for random variables. This is because the function p 7→ FX̃

(
F−1
X (p)

)
is

convex (see Proposition 3.3.50 in Denuit et al., 2005). This can be seen from the identity

FX̃
(
F−1
X (p)

)
=

E
[
XI
[
X ≤ F−1

X (p)
]]

E[X]

which shows that p 7→ FX̃
(
F−1
X (p)

)
is the Lorenz curve of X, which is known to be increasing

and convex.
Let us briefly discuss the zero-augmented case. Insurance risks generally have a large

probability of being 0. It is interesting to notice that even if P[X = 0] > 0, we have X̃ > 0
with probability 1. This can easily be deduced from

P[X̃ = 0] = P[X̃ ≤ 0] =
E
[
XI[X ≤ 0]

]
E[X]

=
E
[
XI[X = 0]

]
E[X]

= 0.

The next result uses the familiar representation of individual risk theory to show that
the probability mass at zero does not matter for the size-biased transform.

Property 2.1. Consider X of the form X = JZ where J is Bernoulli distributed with mean
q and Z is a positive random variable, J and Z being mutually independent and

P[Z ≤ t] = P[X ≤ t|X > 0], t ≥ 0.

Then, we have X̃ =d Z̃ where =d means “is distributed as”.
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Proof. Starting from E[X] = E[J ]E[Z] and

E
[
XI[X ≤ t]

]
= E

[
JZI[JZ ≤ t]

]
= 0× P[J = 0] + E

[
ZI[Z ≤ t]

]
× P[J = 1]

we can write

P[X̃ ≤ t] =
E
[
ZI[Z ≤ t]

]
E[Z]

= P[Z̃ ≤ t],

which ends the proof.

Consider X = JZ and Y = KZ where J , K, and Z are mutually independent, P[Z >
0] = 1, J and K Bernoulli distributed. By Property 2.1, we then have

X̃ =d Ỹ =d Z̃

whatever the means of J and K. Thus, we see that the probability mass at zero does not
matter for the size-biased transform. See also Lemma 2.6 in Arratia et al. (2019).

2.3 Representation in terms of size-biasing

The next result gives a representation formula for E[Xi|S] in case of independent individual
risks Xi. We consider the three situations most commonly encountered in insurance loss
modeling: (i) continuous losses, (ii) discrete losses, and (iii) zero-augmented losses.

Proposition 2.2. Consider independent risks X1, . . . , Xn and let X̃1, . . . , X̃n be their cor-
responding size-biased versions, assumed to be independent, and independent of X1, . . . , Xn.
The following results hold:

(i) if X1, . . . , Xn are continuous random variables with respective probability density func-
tions fX1 , . . . , fXn then for any s ≥ 0,

E[Xi|S = s] = E [Xi]
fS−Xi+X̃i(s)

fS(s)

=
E[Xi]

E[S]

fS−Xi+X̃i(s)

fS̃(s)
s

=
E[Xi]fS−Xi+X̃i(s)∑n
j=1 E[Xj]fS−Xj+X̃j(s)

s. (2.2)

(ii) if X1, . . . , Xn are valued in {0, 1, 2, . . .} with respective probability mass functions pX1 , . . . , pXn
then for any s ∈ {0, 1, 2, . . .},

E[Xi|S = s] = E [Xi]
pS−Xi+X̃i(s)

pS(s)

=
E[Xi]

E[S]

pS−Xi+X̃i(s)

pS̃(s)
s

=
E[Xi]pS−Xi+X̃i(s)∑n
j=1 E[Xj]pS−Xj+X̃j(s)

s.
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(iii) if X1, . . . , Xn are zero-augmented random variables with positive probability masses at
the origin and probability density functions over (0,∞) then

E[Xi|S = 0] = 0

and for any s > 0, (2.2) holds true.

Proof. The random vector (X1, . . . , Xi−1, X̃i, Xi+1, . . . , Xn) has joint distribution function

(x1, . . . , xn) 7→
E
[
XiI[Xi ≤ xi]

]
E[Xi]

∏
j 6=i

P[Xj ≤ xj].

For any measurable function g, we then have

E[g(X1, . . . , Xi−1, X̃i, Xi+1, . . . , Xn)] =

∫ ∞
0

. . .

∫ ∞
0

g(x1, . . . , xn)
xi

E[Xi]
dFX1(x1) . . . dFXn(xn)

= E

[
Xi

E[Xi]
g(X1, . . . , Xn)

]
. (2.3)

Let us apply (2.3) to the function g given by

g(x1, . . . , xn) = I

[
n∑
j=1

xj ≤ s

]
.

We then obtain the identity

P
[
S −Xi + X̃i ≤ s

]
=

E
[
XiI [S ≤ s]

]
E[Xi]

which is generally valid and applies to all cases (i), (ii), and (iii).
To establish the validity of statement (i), consider the identity

E
[
XiI[S ≤ s]

]
=

∫ s

0

E
[
Xi

∣∣S = t
]
fS(t)dt.

Taking the derivative of

E
[
XiI [S ≤ s]

]
= E[Xi]P

[
S −Xi + X̃i ≤ s

]
with respect to s gives the first equality in (i). The second statement is easily obtained from
the very definition of the size-biased transform of S. Summing the second identity over i
gives

n∑
i=1

E[Xi|S = s] = s =
n∑
i=1

E[Xi]

E[S]

fS−Xi+X̃i(s)

fS̃(s)
s

so that we get

fS̃(s) =
n∑
i=1

E[Xi]

E[S]
fS−Xi+X̃i(s). (2.4)
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Inserting this expression for fS̃ in the second equality gives the last one and ends the proof
of (i).

Turning to (ii), we can write

E
[
XiI [S = s]

]
= E

[
XiI [S ≤ s]

]
− E

[
XiI [S ≤ s− 1]

]
= E[Xi]P

[
S −Xi + X̃i = s

]
,

as announced. The other parts of the statement follow as for (i).
Finally, considering (iii), it is clear that S = 0⇒ Xj = 0 for all j so that E[Xi|S = 0] = 0.

Both Xi and S have a probability density function over (0,∞) so that we have for s > 0

E
[
Xi

∣∣S = s
]

=

∫ s

0

P[Xi > x|S = s]dx

=

∫ s

0

∫ s

x

f(Xi,S)(t, s)

fS(s)
dtdx

=
1

fS(s)

∫ s

0

∫ s

x

fXi(t)fS−Xi(s− t)dtdx

=
1

fS(s)

∫ s

0

tfXi(t)fS−Xi(s− t)dt

=
E[Xi]

fS(s)

∫ s

0

fX̃i(t)fS−Xi(s− t)dt

= E [Xi]
fS−Xi+X̃i(s)

fS(s)
.

This ends the proof.

Proposition 2.2(i) shows that

E[Xi|S = s] increases in s⇔
fS−Xi+X̃i(s)

fS(s)
increases in s

which means that S is smaller than S − Xi + X̃i in the likelihood ratio order. We know
that Xi is smaller than X̃i in the likelihood ratio order so that this requirement seems to
be reasonable. However, it is not always valid because the likelihood ratio order is not
closed under convolution, in general. We refer the reader to Section 1.C in Shaked and
Shanthikumar (2007) for more details. It turns out that the sum S is smaller than S−Xi+X̃i

in the likelihood ratio order when S − Xi has a log-concave probability density function
(Shaked and Shanthikumar, 2007, proof of Theorem 1.C.9 page 46).

In some of the applications considered in this paper, individual risks Xi are bounded. If
each Xi is valued in the interval [0, bi], so that their sum S is valued in the interval [0, b•]
with b• =

∑n
i=1 bi, then the function E[Xi|S = s] starts from 0 (for s = 0) and tends to bi as

s approaches b•.

2.4 Application to risk sharing

Assume that the conditions of Proposition 2.2(i) hold true (analogous expressions can be
derived in the discrete and zero-augmented cases). In relative terms, the respective contri-
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butions for individuals i and j satisfy

E
[
Xi

∣∣S = s
]

E
[
Xj

∣∣S = s
] =

E [Xi] fS−Xi+X̃i(s)

E [Xj] fS−Xj+X̃j(s)
.

The ratio of the respective contributions for agents i and j to the pool once it is known that
S = s is equal to the ratio of their a priori expectations E [Xi] /E [Xj] corrected by the ratio

of the densities of the sums S − Xi + X̃i and S − Xj + X̃j where their respective risks Xi

and Xj have been replaced with their size-biased versions.

Example 2.3. If Xi is infinitely divisible then we know from Pakes et al. (1996) that the

distributional equality X̃i =d Xi+∆i holds for some positive random variable ∆i, independent
of Xi. Hence, S −Xi + X̃i =d S + ∆i and we have

E
[
Xi

∣∣S = s
]

= E [Xi]
fS+∆i

(s)

fS(s)
.

Consider the particular case where independent Gamma losses are shared among partic-
ipants. Precisely, the probability density function of Xi is given by

fXi(x) =

{
xαi−1ταi exp(−xτ)

Γ(αi)
, if x ≥ 0,

0, otherwise.

Here, E[Xi] = αi/τ and V[Xi] = αi/τ
2. This is henceforth denoted as Xi ∼ Gam(αi, τ).

Then, S ∼ Gam(α•, τ) where α• =
∑n

i=1 αi. It is easy to see that

fX̃i(x) =
xαiταi exp(−xτ)

Γ(αi)
αi
τ

=
xαiταi+1 exp(−xτ)

Γ(αi + 1)
⇔ X̃i ∼ Gam(αi + 1, τ)

so that ∆i ∼ Gam(1, τ). Hence,

S −Xi + X̃i =d S + ∆i ∼ Gam(α• + 1, τ).

Also,
S̃ ∼ Gam(α• + 1, τ).

Thus, we finally obtain the following identity for independent Gamma losses from Proposition
2.2(i):

E[Xi|S = s] =
E[Xi]

E[S]
s =

αi
α•
s.

Participants pooling such independent Gamma losses and adopting the conditional mean risk
sharing rule then each pay a share αi/α• of the total realized loss s.
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3 Compound Poisson sums

3.1 Size-biased version of compound Poisson sums

Compound sums are often used to model individual insurance losses, making explicit the
frequency and severity components and accounting for the large probability mass at zero.
Henceforth, we consider compound sums of the form X =

∑N
k=1Ck where N is valued in

{0, 1, 2, . . .} and the claim severities C1, C2, . . . are identically distributed, distributed as C,
all these random variables being independent. By convention, X is set to zero when N = 0
so that P[X = 0] = P[N = 0]. Compound Poisson sums are particular cases where N is
Poisson distributed. The next result that can be found e.g. in Denuit (2018) shows that the
size-biased version of a compound Poisson sum possesses a particularly simple structure.

Property 3.1. Let N be Poisson distributed with mean λ, which is henceforth denoted as
N ∼ Poi(λ). Considering the compound sum X =

∑N
k=1Ck described above,

N ∼ Poi(λ)⇒ X̃ =d X + C̃.

Property 3.1 shows that size-biasing a compound Poisson sum consists in supplementing
it with the size-biased version of its generic term.

3.2 Conditional mean risk sharing rule for compound Poisson
sums

Assume that the loss Xi for participant i can be represented as

Xi =

Ni∑
k=1

Cik with Ni ∼ Poi(λi), (3.1)

where the claim severities Cik are positive, continuous or integer-valued, distributed as Ci, all
these random variables being independent. Notice that Cik is not necessarily the entire cost
of the kth claim, but only the amount shared among participants. Only minor losses remain
within the pool whereas larger ones are generally reinsured. This can be implemented with
the help of a straight deductible or of a disappearing, or franchise deductible applied to the
incurred loss, for instance.

When the shared losses Xi are of the form (3.1), Property 3.1 shows that

S −Xi + X̃i =d S + C̃i.

Considering Ci valued in {1, 2, 3, . . .}, we have in the compound Poisson case that

E[Xi|S = s] = E [Xi]
P[S + C̃i = s]

P[S = s]
,

with corresponding expressions for continuously distributed summands. The relative amounts
paid by two participants satisfy

E[Xi|S = s]

E[Xj|S = s]
=

E [Xi]

E [Xj]

P[S + C̃i = s]

P[S + C̃j = s]
.
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The ratio P[S + C̃i = s]/P[S + C̃j = s] can be effectively computed as follows:

- first, the distribution of S is obtained with the help of the Panjer algorithm giving the
values for P[S = s].

- then, convolution formulas can be used to get P[S + C̃i = s] and P[S + C̃j = s].

3.3 Alternative representation

Notice that S is also compound Poisson distributed. Precisely, S =d

∑M
k=1 Yk with M Poisson

distributed with mean λ• =
∑n

i=1 λi and independent Yk with common distribution function

FY (y) =
n∑
i=1

λi
λ•
FCi(y) = P[CJ ≤ y]

where the random variable J is valued in {1, 2, . . . , n} with probability mass function P[J =
i] = λi

λ•
. Invoking Property 3.1 together with the second identity in Proposition 2.2(i), we

then have

E[Xi|S = s] =
E [Xi]

E[S]

P[S + C̃i = s]

P[S + Ỹ = s]
s.

The random variable Y appears to obey a mixture of the claim severity distributions.
This is why we discuss the size-biased transform of mixture distributions. Consider a family
of non-negative random variables {Xθ, θ ≥ 0} indexed by a single, non-negative parameter
θ. Let Θ be a mixing parameter with distribution function FΘ. The corresponding mixture
XΘ has distribution function

P[XΘ ≤ x] =

∫ ∞
0

P[Xθ ≤ x]dFΘ(θ).

It can be shown (see e.g. Denuit, 2108) that the size-biased transform of the mixture XΘ

corresponds to the mixture of the random variables {X̃θ, θ ≥ 0} with mixing parameter Θ?

distributed according to

dFΘ?(θ) =
E[Xθ]

E[XΘ]
dFΘ(θ).

This general result allows us to derive the size-biased version of Y . Specifically, the
distribution function of Ỹ is given by

FỸ (y) = P[C̃I? ≤ y] where P[I? = i] =
E[Ci]∑n

j=1
λj
λ•

E[Cj]

λi
λ•

=
λiE[Ci]∑n
j=1 λjE[Cj]

.

Hence,

FỸ (y) =
n∑
i=1

λiE[Ci]∑n
j=1 λjE[Cj]

P[C̃i ≤ y].
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We then have

P[S̃ = s] = P[S + Ỹ = s]

=
n∑
i=1

λiE[Ci]∑n
j=1 λjE[Cj]

P[S + C̃i = s]

=
n∑
i=1

E[Xi]

E[S]
P[S + C̃i = s]

and

E[Xi|S = s] =
E[Xi]P[S + C̃i = s]∑n
j=1 E[Xj]P[S + C̃j = s]

s.

The calculation of E[Xi|S = s] then proceeds along the same lines as before. Panjer
algorithm is first used to obtain the probability mass function of S which is then convoluted
with C̃i and with Ỹ .

3.4 Homogeneous claim sizes

Assume that the heterogeneity is confined to claim frequencies, in the sense that C1, C2, . . . , Cn
are identically distributed, and distributed as C, say, where C is either integer-valued or con-
tinuously distributed. Then, C̃1, C̃2, . . . , C̃n are also identically distributed and we have

E[Xi|S = s]

E[Xj|S = s]
=

E [Xi]

E [Xj]
=
λi
λj
⇒ E[Xi|S = s] =

λi
λj

E[Xj|S = s]

Summing this identity over i yields

s =
λ•
λj

E[Xj|S = s]

so that we finally obtain

E[Xi|S = s] =
λi
λ•
s. (3.2)

Remark 3.2. The representation (3.2) can also be obtained from Theorem 4.1(1) in Furman
et al. (2018) since

lnLXi(t)

lnL∑
j 6=iXj

(t)
=

λi∑
j 6=i λj

is constant, where LZ(·) denotes the Laplace transform of the random variable Z.

4 Compound Negative Binomial sums

4.1 Size-biased version of compound Negative Binomial sums

Assume that the Poisson parameter λ is replaced with a random variable Λ obeying the
Gam(α, β) distribution. Then, the counting distribution is the Negative BinomialNBin(α, β)
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with probability mass function

P[N = k] =
βα

(1 + β)α+k

Γ(α + k)

k!Γ(α)
, k = 0, 1, 2, . . .

The next result that can be found e.g. in Denuit (2018) shows that the size-biased version
of a compound Negative Binomial sum possesses a particularly simple structure.

Property 4.1. Consider the compound sum X =
∑N

k=1Ck. Then,

N ∼ NBin(α, β)⇒ X̃ =d X + C̃ + Z

where Z =
∑M

k=1Dk, M ∼ NBin(1, β) and D1, D2, . . . are distributed as C, all the random
variables being independent.

Compared to the homogeneous Poisson case where size-biasing consists in adding C̃ to
the compound Poisson sum, we see that in the Negative Binomial case an extra term Z
enters the size-biased version. The random variable Z accounts for the heterogeneity in the
Poisson mean which increases the level of riskiness compared to the homogeneous Poisson
case.

4.2 Conditional mean risk sharing rule for compound Negative
Binomial sums

Assume that the loss Xi for participant i can be represented as

Xi =

Ni∑
k=1

Cik with Ni ∼ NBin(αi, β), (4.1)

where the claim severities Cik are positive, continuous or integer-valued, distributed as Ci,
all these random variables being independent. According to Property 4.1, we know that
X̃i =d Xi + C̃i +Zi, all the random variables entering the decomposition being independent.

When the shared losses Xi are of the form (4.1), Property 4.1 shows that

S −Xi + X̃i =d S + Zi + C̃i.

Considering Ci valued in {1, 2, 3, . . .}, we have

E[Xi|S = s] = E [Xi]
P[S + Zi + C̃i = s]

P[S = s]
,

with corresponding expressions for continuously distributed summands. The relative amounts
paid by two participants satisfy

E[Xi|S = s]

E[Xj|S = s]
=

E [Xi]

E [Xj]

P[S + Zi + C̃i = s]

P[S + Zj + C̃j = s]
.

The probability mass function of S+Zi can be effectively computed with the help of the
Panjer algorithm giving the values for P[S + Zi = s]. This is because S + Zi is a compound
Negative Binomial sum with a number of terms obeying the NBin(αi + 1, β) distribution.
Then, convolution formulas can be used to get the probability mass function of the sum of
S + Zi and C̃i.
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4.3 Homogeneous claim sizes

Let us now consider the conditional mean risk sharing of independent compound Negative
Binomial losses Xi =

∑Ni
k=1 Cik where Ni ∼ NBin(αi, β) and C1, . . . , Cn are identically

distributed. We then have

S + Zi + C̃i =d S + Zj + C̃j for all i and j

so that
E[Xi|S = s]

E[Xj|S = s]
=

E[Xi]

E[Xj]
=
αi
αj
.

Similarly to the Poisson case, we get

E[Xi|S = s] =
αi
α•
s.

Again, the homogeneity of claim severities allows us to obtain a very simple expression of
the conditional mean risk sharing.

5 Compound Binomial case

Let Bin(m, q) denote the Binomial distribution with size m and success probability q. In
order to solve the compound Binomial case, recall that any compound sum X =

∑N
k=1Ck

where N obeys the Bin(m, q) distribution can be equivalently represented as a sum of m
independent and identically distributed random variables with a probability mass at zero.
Precisely, defining Yk = JkCk where J1, J2, . . . , Jm are independent Bernoulli distributed
random variables with common mean q, we have

X =d

m∑
k=1

Yk (5.1)

in such a case. This equivalent representation is the key to the next result.

Property 5.1. Consider X =
∑N

k=1Ck where N ∼ Bin(m, q) and C1, C2, . . . , Cm are posi-
tive random variables distributed as C, all these random variables being independent. Then,

X̃ =d

Ñ−1∑
k=1

Ck + C̃ where Ñ − 1 ∼ Bin(m− 1, q).

Proof. As (5.1) involves a sum of independent random variables, the size-biased transform of
such a sum is of interest. Following the lines leading to (2.4), we deduce that the size-biased
version of X in (5.1) is

X̃ =d

m−1∑
k=1

Yk + Ỹm

because the random variables Yk are identically distributed. The announced result then
follows from the distributional equality (5.1), by noting that J̃C =d C̃ from Property 2.1.
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Now, the size-biased version of N ∼ Bin(m, q) has probability mass function pÑ given by
pÑ(0) = 0 and

pÑ(k) =
kpN(k)

E[N ]
=

(m− 1)!

(k − 1)!(m− k)!
qk−1(1− q)m−1−(k−1)

so that Ñ − 1 ∼ Bin(m− 1, q), as announced. This ends the proof.

6 Applications

6.1 P2P insurance scheme

Consider a P2P insurance scheme involving 4 participants (n = 4) bringing to the pool
compound Poisson losses described in the next table:

Participant i 1 2 3 4
Case 1
λi 0.08 0.08 0.1 0.1
Case 2
λi 0.04 0.08 0.1 0.14
P[Ci = 1] 0.1 0.15 0.1 0.15
P[Ci = 2] 0.2 0.25 0.2 0.25
P[Ci = 3] 0.4 0.3 0.3 0.3
P[Ci = 4] 0.3 0.3 0.4 0.3

Claim severities Ci expressed in some monetary unit are valued in {1, 2, 3, 4}. The claim
severities are larger for X2 and X4, compared to X1 and X3. We distinguish two cases
according to expected claim frequencies. In the first case, expected claim frequencies are
identical for participants 1 and 2 (and equal to 8%) whereas participants 3 and 4 have
higher expected claim frequencies (equal to 10% for both of them). In the second case,
expected claim frequencies increase for participants 1 to 4, from 4% to 14%.

The R package actur has been used to perform the calculations; see Dutang et al. (2008).
Panjer recursion is performed using the function aggregateDist, to obtain the distribution
of S = X1 + . . . + X4. Then, a direct convolution is achieved to obtain the distribution of
S + C̃i for i = 1, . . . , 4.

Figure 1 displays the share of the total loss s to be contributed by each participant i.
We display the results for s up to 15 (the 99.9% quantile of S is 11 in case 1). An horizontal
line is clearly visible on Figure 1, separating the shares of participants 1-2 from the share
of participants 3-4. In other words, participants 1-2 always contribute together the same
percentage of the total realized loss s. The respective shares of participants 1 and 2 differ
according to s, with a relatively lower share for participant 1 whose claim severity appears to
be somewhat smaller compared to participant 2. Let us explain the presence of this horizontal
separation in our example. Participants 1 and 3 have identical severity distributions, as well
as participants 2 and 4. Thus, X1 + X2 and X3 + X4 are compound Poisson sums with
identical claim severities so that we know that participants 1 and 2 together contribute to
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the pool a share (λ1 + λ2)/λ• of s whereas participants 3 and 4 together contribute to the
pool the remaining (λ3 + λ4)/λ• of s by virtue of (3.2).

The discreteness of claim severities produces some irregularities for the ratios E[Xi|S =
s]/s displayed in Figure 1. For s = 1, participant 1 contributes 0.178, participant 2 con-
tributes 0.267, participant 3 contributes 0.222, and participant 4 contributes 0.333. These
values are easily recovered as follows. If S = 1 then only one loss occurred. The probability
that it comes from participant 1 is obtained by dividing

P[N1 = 1]P[C1 = 1]
4∏
i=2

P[Ni = 0] = λ1 exp(−λ1)P[C1 = 1] exp

(
−

3∑
i=2

λi

)

by

P[S = 1] =
4∑
i=1

P[Ni = 1]P[Ci = 1]
∏
j 6=i

P[Nj = 0]

which gives 0.178. When the total realized loss s gets large, we see that the share of each
participant stabilizes, around 23% for participant 1, 21.5% for participant 2, 28.5% for
participant 3 and 27% for participant 4. This can be seen from

E[Xi|S = s]

s
=

E[Xi]

E[S]

P[S −Xi + X̃i = s]

P[S̃ = s]
=

E[Xi]

E[S]

P[S + C̃i = s]

P[S + C̃I = s]
.

Now,

lim
s→∞

P[S + C̃i = s] = lim
s→∞

4∑
k=1

P[C̃i = k]P[S = s− k] = lim
s→∞

P[S = s]

so that P[S+C̃i=s]

P[S+C̃I=s]
tends to 1 when s → ∞. We then finally get that the respective shares

E[Xi|S = s]/s converge to E[Xi]/E[S], which are respectively equal to E[X1]/E[S] = 22.81%,
E[X2]/E[S] = 21.63%, E[X3]/E[S] = 28.52%, and E[X4]/E[S] = 27.04% for participants 1
to 4.

Let us now turn to Case 2. Since participants 1 and 3 have identical severity distributions,
as well as participants 2 and 4, we can see there that the dominant effect comes from
the increasing expected claim frequency: participant 4 must contribute the most because
λ4 = 0.14 is larger compared to λ1 = 0.04, λ2 = 0.08, and λ3 = 0.1. As for case 1, the shares
all stabilize when the realization s of S becomes large enough.

6.2 Survivor funds

Assume that individual i contributes to a fund an amount ci at time 0, i = 1, 2, . . . , n. This
amount is invested until maturity m. Denoting as u the accumulation factor (i.e. the value at
time m of one monetary unit invested in the fund at time 0), the contributions accumulate
to u

∑n
i=1 ci. The accumulated factor u corresponds to a yield curve, to some reference

interest rate, like the 10-year treasury bond, or even to a given stock index (moving to a
unit-linked mechanism). Contrarily to regular investments, the terminal amount u

∑n
i=1 ci
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Figure 1: Respective shares E[Xi|S = s]/s of the total realized loss s contributed by each
participant i in Case 1 (left panel) and Case 2 (right panel). From bottom to top, shares of
participants 1 to 4.

is divided among participants or beneficiaries at maturity, according to some agreed mutual
inheritance rule.

The respective death probabilities before time m are denoted as q1, q2, . . . , qn. These
values are assumed to account for the effects of age, gender, socio-economic profile, etc. and
all participants agree about them. Let Ii denote the survival indicator for individual i, i.e.

Ii =


1 if individual i survives up to time m,

0 otherwise.

Thus,
P[Ii = 0] = qi = 1− P[Ii = 1].

Participants agree about a mutual inheritance scheme defining the final payout to each
of them or to their designated beneficiaries in case of death (beneficiaries receive an agreed
amount in case participants die). These beneficiaries can be members of participant’s family
or a charity. Survivors get back their initial contribution ci plus the interest it produced
until maturity, that is, si = ci × u. This is similar to a classical investment, for instance
a deposit on a bank account. The mutual inheritance agreement embedded in the survivor
fund provides participants with an extra return above the purely financial one, i.e. a share
of the accumulated amount

∑n
j=1(1− Ij)sj left by participants who died before time m.

Several proposals for mutual inheritance schemes have be made in the literature, including
Sabin (2010), Donnelly et al. (2014), Donnelly and Young (2017), and Chen et al. (2019).
As shown by Donnelly (2015), the notion of fairness is very relevant for this kind of mortality
pooling scheme. Fairness would here mean that the expected gain is zero for all participants.
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Donnelly and Young (2017) demonstrated that, to ensure fairness
∑n

j=1(1 − Ij)sj must be
shared among all participants, not only among the survivors.

Donnelly and Young (2017) proposed to distribute

S =
n∑
j=1

(1− Ij)sj

among all individuals according to their respective levels of risk taking, as reflected by the
products siqi. Precisely, the final payout for participant i is then equal to

Vi =


si + siqi∑n

j=1 sjqj
S if participant i survives

siqi∑n
j=1 sjqj

S if participant i dies,

with the understanding that payments for those participants who died during the reference
period are made to their beneficiaries. This can be equivalently rewritten as

Vi = siIi +
siqi∑n
j=1 sjqj

S.

This procedure can be regarded as fair because

E[Vi] = si(1− qi) +
siqi∑n
j=1 sjqj

n∑
j=1

qjsj = si.

This means that, on average, every participant recovers the accumulated value of his or her
initial contribution. There is no risk transfer, only risk sharing as

n∑
i=1

Vi = S +
n∑
i=1

siIi =
n∑
i=1

si.

This means that the entire accumulated value is distributed among participants.
Notice that no guarantee is offered with respect to the life table. Probabilities qi are

only used to distribute the amount S among all participants. It is worth to mention that
this mechanism allows for heterogeneity among participants as different probabilities qi and
contributions ci are permitted. Of course, the cash flows depend on the actual mortality
experience among the participants.

Even if the approach proposed by Donnelly and Young (2017) is effective, ensures fairness
and conforms with intuition, it lacks of a formal justification. Here, we propose to allocate
S according to the conditional mean risk sharing rule (2.1). Formally, denote as

Xi = (1− Ii)si

the accumulated contribution si lost in case of death. We then have to distribute

S =
n∑
i=1

Xi
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among the n participants according to some pre-defined rule. If we adopt the conditional
mean risk sharing rule then participant i receives an amount E[Xi|S] corresponding to his or
her expected share in mortality credits. Precisely, the terminal cash-flow Wi for participant
i is now equal to

Wi =


si + E[Xi|S] if participant i survives

E[Xi|S] if participant i dies.

This can be rewritten as
Wi = siIi + E[Xi|S].

Compared to the system proposed by Donnelly and Young (2017), the share siqi∑n
j=1 sjqj

S is

now replaced with the conditional mean E[Xi|S]. Notice that

siqi∑n
j=1 sjqj

S =
E[Xi]

E[S]
S.

Conditions under which E[Xi|S] admits this form have been studied in Furman et al. (2018).
As these conditions are not fulfilled in the present case, the conditional mean risk sharing
rule differs from the distribution mechanism proposed by Donnelly and Young (2017).

Clearly,

n∑
i=1

Wi =
n∑
i=1

E[Xi|S] +
n∑
i=1

siIi

=
n∑
i=1

(1− Ii)si +
n∑
i=1

siIi

=
n∑
i=1

si

so that the entire risk is pooled within the group. Moreover,

E[Wi] = (1− qi)si + E[Xi] = si

so that the gain is zero, on average, for each participant. The game is thus fair and does not
transfer money from some participants to other ones, on average.

Now, the representation derived in Proposition 2.2(ii) is still valid for general discrete
random variables valued in {a0, a1, a2, . . .} such that ak < ak+1. This is easy to see by
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substituting ak for k in the proof. We then have

E[Xi|S = s] = E[Xi]
P[S −Xi + X̃i = s]

P[S = s]

= siqi
P
[∑

j 6=iXj + si ˜(1− Ii) = s
]

P[S = s]

= siqi
P
[∑

j 6=iXj = s− si
]

P[S = s]
since ˜(1− Ii) = 1 by Property 2.1

= si
qiP
[∑

j 6=iXj = s− si
]

qiP
[∑

j 6=iXj = s− si
]

+ (1− qi)P
[∑

j 6=iXj = s
] . (6.1)

Initial anf terminal values for the conditional expectation E[Xi|S = s] can easily be calcu-
lated. Indeed,

E[Xi|S = s] = 0 for s < si.

For s = si, we get

E[Xi|S = si] = si
qi
∏

j 6=i(1− qj)
P[S = si]

.

If all participants dies, so that S =
∑n

i=1 si, we have

E[Xi|S = s1 + . . .+ sn] = si.

This means that every beneficiary receives the accumulated amount si. Formula (6.1) can
be used to calculate the conditional expectations for all s ∈ {si + 1, . . . , s1 + . . .+ sn}.

Several recursive methods have been proposed in the actuarial literature to obtain the
distribution of the yearly claim amount for life insurance portfolios. We refer the reader
to the comprehensive book by Sundt and Vernic (2009) for extensive details about these
recursive calculations of convolutions initiated by De Pril (1989) and Dhaene and Vandebroek
(1995). The distribution of

∑
j 6=iXj can be obtained in this way so that the final payout to

participants can be computed in function of the realized value of S, making the mechanism
transparent.

As an illustration, let us consider a group of 100 participants who agree about the mutual
inheritance rule described above, so that they receive a final payout Wi in exchange of an
initial contribution ci to the survivor fund. Participants are partitioned into 4 groups with
death probabilities q1 = 0.05 and q2 = 0.1 and accumulated contributions s1 = 1 and
s2 = 2. Precisely, njk participants are grouped in the cell (j, k) corresponding to qj and sk,
j, k ∈ {1, 2}. With njk = 25 for all j and k, we get the values E[Xi|S = s] displayed in
Figure 2. The four curves start from the origin and end at si, that is, at 1 for cells (1,1) and
(2,1), and at 2 for cells (1,2) and (2,2).

Figure 3 compares the survivor credits according to the linear sharing rule proposed by
Donnelly and Young (2017) and the conditional mean risk sharing rule. We can see that the
markedly non-linear behavior of the conditional mean risk sharing rule contrasts with the
linear sharing rule. For the most likely values of s, i.e. those below 20, both sharing rules
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Figure 2: Respective values of E[Xi|S = s] received by each participant i according to group
membership: solid line for cell (1,1), dashed line for cell (1,2), dotted line for cell (2,1) and
dot-dash line for cell (2,2).
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Figure 3: Comparison of E[Xi|S = s] (continuous line) with the share proposed by Donnelly
and Young (2017) (dotted line): from upper left to lower right, cells (1,1), (1,2), (2,1), and
(2,2).

nevertheless agree to a large extent. Larger differences arise when s increases, but some of
them are not really material as they appear for values of s with extremely low occurrence
probabilities.

Figure 4 compares the respective shares of the four groups in S for s ≥ 1. Precisely, we
plot there the shares

1

s

∑
i∈cell (j,k)

E[Xi|S = s], s = 1, . . . , 150,

for each cell (j, k) comprising 25 participants. When s = 1 we see that only cells (1,1) and
(2,1) receive some credits, as expected. Because of the larger death probabilities, participants
in cell (2,1) receive a higher share of S = 1. When s increases, we can see that the respective
shares vary in different ways. For instance, the share of cell (1,1) exhibits a U-shape whereas
the cumulative shares of cells (1,1) and (1,2) slowly increase in s. Considering values of s
with larger occurrence probabilities (displayed in the left panel of Figure 4), we see that the
shares for cells (1,1) and (2,1) dominate for small values of s but tend to decrease when s
gets moderately large, favoring the high-contributions cells (1,2) and (2,2).
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Figure 4: Respective shares of the total loss s contributed by the four groups. From bottom
to top: classes (1,1), (1,2), (2,1), and (2,2). Left panel: results for s in {1, . . . , 15}. Right
panel: results for all s up to 150.

7 Discussion

The size-biased transform is known to be relevant for actuarial applications, especially in
relation to risk measurement. In this paper, this transform is related to the conditional
mean risk sharing rule proposed by Denuit and Dhaene (2012). Precisely, the size-biased
transform is used to obtain simple expressions for contributions made by each participant
to the pool as a function of the total realized loss, under the conditional mean risk sharing
rule. The cases of compound Poisson, Negative Binomial and Binomial sums are studied in
details, given their relevance in insurance applications.

The conditional mean risk sharing rule has been shown to be particularly effective to de-
termine the respective contributions for participants to a P2P insurance scheme. It appears
to be intuitively appealing (as it is based on mean value, a familiar concept for most people,
at least to some extent) and computationally feasible. Full transparency is achieved as par-
ticipants can be informed about the amount of their contribution in function of the realized
total loss for the pool when they enter the P2P scheme. A certain degree of risk classification
remains desirable within P2P insurance communities, to prevent adverse selection. It can
also operate a posteriori, based on credibility corrections. In the Negative Binomial setting
for instance, past claim numbers can easily be taken into account to re-valuate next year
contributions to the pool.

The conditional mean risk sharing rule also offers a convenient solution to the distribution
of survivor credits under a mutual inheritance agreement within a survivor fund. The sharing
mechanism is particularly effective since the group remains open, so that each year new
participants are allowed to enter the survivor fund. Also, surviving participants are free to
leave the group at the end of the period because the operations are in equilibrium over each
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period.
Exactly as conventional life annuities can be decomposed into a sum of pure endowment

contracts with increasing maturities, tontine annuities can be created by assembling a se-
quence of survivor schemes, with maturities matching the desired payment schedule. At
some advanced age, the sponsor may replace the last payments with a regular annuity to the
survivors to avoid volatility. Or this annuity can be granted once the number of participants
falls below some specified threshold (but since the group is open, the number of participants
should not be an issue here).

In addition to providing pension-like benefits, survivor funds also offer long-term care
protections because payouts increase with the risk of dying. It is well documented that the
mortality risk becomes higher after the loss of autonomy. Hence, benefits paid to dependent
participants are increased if the one-year death probabilities recognize this extra risk. In
such a case, the survivor fund also covers loss of autonomy by providing life-care annuity-
like payouts, that is, increased payouts to dependent participants. Also, the extension to
multiple lives is straightforward by defining

Xi = siI[max{Ti,1, . . . , Ti,ki} ≤ m]

if the accumulated contribution si is lost only if all ki lives Ti,1, . . . , Ti,ki die within m years.
Longevity risk sharing offers a good compromise to retirees and meet real needs in our

aging societies. To end with, let us mention that tontine schemes are applied to long-term in-
vestments, for instance by Le Conservateur based in France (https://www.conservateur.fr/).
This mutual association was funded in 1844, with the help to promote and improve the ton-
tine mechanism intially proposed by Lorenzo Tonti.
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