Conflict-free Partially Replicated Data Types

Iwan Briquemont”, Manuel Bravo™f, Zhongmiao Li*f and Peter Van Roy"
“Université catholique de Louvain, Belgium
TInstituto Superior Técnico, Universidade de Lisboa, Portugal

Abstract—Designers of large user-oriented distributed ap-
plications, such as social networks and mobile applications,
have adopted measures to improve the responsiveness of their
applications. Latency is a major concern as people are very
sensitive to it. Geo-replication is a commonly used mechanism
to bring the data closer to clients. Nevertheless, reaching the
closest datacenter can still be considerably slow. Thus, in order
to further reduce the access latency, mobile and web applications
may be forced to replicate data at the client-side. Unfortunately,
fully replicating large data structures may still be a waste of
resources, specially for thin-clients.

We propose a replication mechanism built upon conflict-free
replicated data types (CRDT) to seamlessly replicate parts of
large data structures. We define partial replication and give an
approach to keep the strong eventual consistency properties of
CRDTs with partial replicas. We integrate our mechanism into
SwiftCloud, a transactional system that brings geo-replication to
clients. We evaluate the solution with a content-sharing appli-
cation. Our results show improvements in bandwidth, memory,
and latency over both classical geo-replication and the existing
SwiftCloud solution.

I. INTRODUCTION

Globally accessible web applications, such as social net-
works, aim to provide low-latency access to their services.
Thus, data locality is a fundamental property of their systems.
Geo-replication is a common solution where data is replicated
in multiple datacenters [1]—[3]. In this scenario, user requests
are forwarded to the closest datacenter. Therefore, the latency
is reduced. Unfortunately, the latency, even when accessing the
closest datacenter, may still be considerable. [4], [5] argue that
clients are sensitive to even small increases of latency.

Systems such as [6], [7] use caching techniques to yet
reduce latency even more. However, this can be challenging
and expensive. For instance, one could simply use client caches
for reading purposes. Nevertheless, in order to keep some
consistency guarantees and freshness of data, mechanisms,
such as cache invalidation, need to be used. Scaling these kinds
of techniques is difficult and directly affects the performance.
Moreover, one could let clients apply write operations locally
and eventually propagate them. However, this can cause con-
flicts between replicas and potential rollbacks.

The recently formalized CRDTs [8], [9] can serve to dimin-
ish the impact of some of the previously mentioned problems.
These data types are conflict-free by default; therefore, no
conflict resolution mechanisms need to be written by appli-
cation developers. SwiftCloud [10], a geo-replicated storage
system that ensures causal consistency, benefits from CRDT
semantics. It replicates CRDTs not only across datacenters,
but it also replicates them in clients. It allows read and
write operations to be directly executed in clients caches. In

consequence, SwiftCloud reduces latency, and enables off-line
mode during disconnection periods.

The current specifications of CRDTs do not allow par-
titioning. Thus, a CRDT replica is assumed to contain the
full data structure. We believe partitioned CRDTs may pose
several benefits for current applications. First, CRDTs can
easily become heavy data structure, such as a set CRDT that
contains the posts of a user wall in a Facebook-like application.
In many cases, users are simply interested in the most relevant
posts, according to some criterium. For instance, one may be
interested in reading the top-ten most voted posts of a Reddit-
like application. Thus, replicating the whole CRDT is a waste
of resources, of both storage and bandwidth. The former can be
critical when thin devices, such as smartphones, are considered
as clients. These types of clients have limited memory re-
sources; therefore, it is convenient to avoid storing unnecessary
data. On the other hand, bandwidth is one of the most costly
resources offered by cloud providers such as Amazon S3 [11],
Google Cloud Storage (GCS) [12], and Microsoft Azure [13];
therefore, it is beneficial to use it efficiently. Second, the full
replication of CRDTs in clients may arise security concerns.
By partitioning CRDTs, applications could precisely decide
which data each client stores. This could keep malicious clients
from storing sensitive data. Finally, they can also be used to
provide multiple fidelity requirements for data accommodated
in resource-limited devices, while keeping consistency between
fidelity levels [14]. This could be achieved by not replicating
less important information on mobile devices.

In this paper, we propose a new set of CRDTs that allows
partitioning. We call them “Conflict-free Partially Replicated
Data Types” (hereafter CPRDTs). We study how partitions
of the same CRDT can interact among each other and still
maintain its consistency guarantees. Furthermore, we revise
previously defined CRDT specifications and propose new
specifications that consider partitioning. One could claim that
developers could simply re-format their data structures to
obtain similar benefits; nevertheless, this adds complexity to
application development and, in some cases, optimal results
can be difficult to achieve. We propose to better integrate
CPRDTs into the system. Thus, developers will benefit from
them transparently, without being aware of their existence.

The major contributions of this paper are the following: (i)
definition of the new CPRDTs, which includes revisiting the
specifications of previously defined CRDTs; (ii) extension of
SwiftCloud to integrate CPRDTs; and (iii) extensive evaluation
of the performance improvements of CPRDTSs in SwiftCloud.
The latter includes the implementation of a Reddit-like [15],
[16] application, called SwiftLinks, on top of SwiftCloud.

The remainder of the paper is organized as follows: Section



IT presents a formal definition of the partitioned CRDTs; Sec-
tion III discusses some practical issues of CPRDTs; Section IV
presents an extensive evaluation of the SwiftCloud extension
that includes CPRDTs; Section V briefly describes preceding
related work; finally, Section VI concludes the paper.

II. CONFLICT-FREE PARTIALLY REPLICATED DATA TYPES

Allowing partitioning poses new challenges: all operations
are not enabled on partial replicas, which means new pre-
conditions must be added to ensure correctness. However,
these preconditions must not compromise the convergence of
replicas. Plus, a partial replica could vary the parts it keeps,
by choosing to replicate more, or less, parts. This has to be
done without losing data and still achieving convergence.

A. Example of use

Let us use an example to illustrate the advantages of
CPRDTs: the user wall of a social network. We can model
a user’s wall as a set. In this example, there are four users that
interact: Alice, Bob, Charlie and an anonymous user. Bob is
a friend of Alice, while Charlie is a friend of Bob, but not of
Alice. Participating users may want to read or post something
in Alice’s wall. We make two assumptions: (i) users maintain
a full replica of their wall; and (ii) a user X that reads or posts
in user Y’s wall replicates user Y’s wall locally.

Each post contains a date, an author, and a message. Each
user is allowed to read a subset of other users’ walls, depending
on their friendship and posts visibility (private or public). For
instance, Bob can read all the posts of Alice’s wall because
of their friendship. Nevertheless, Charlie can only read public
and Bob’s posts (friends of friends). Finally, any other user
can only read public posts.

We can assume that Alice has been using the social network
for a few years and there are a considerable number of posts
on her wall. It seems natural that a user should not have
to replicate the whole wall to simply read the latest posts.
Nevertheless, this is what presumably may occur in a fully-
replicated scenario (CRDT-like), where the data structures
cannot be partitioned and we still want to replicate data in
clients-side. One solution is to manually split the data structure
according to some criteria (e.g. by date, author or privacy
setting). However, developers then need to anticipate how users
will use the application. While possible in some cases, it seems
to make the application cumbersome to write.

In this scenario, CPRDTs have two applications. On the one
hand, CPRDTs abstract the partitioning from the application.
Thus, from the point of view of programmers, there will
only be one logical data structure per wall. We strongly
believe this may ease developers task. Moreover, this allows
a more efficient and fine-grained partitioning adapted to the
needs of a particular client in a specific point of time, which
may be impossible if the partitioning is done manually by
developers. The second application of CPRDTs is related to
the enforcement of security policies. We may want users to
only replicate posts that they are allowed to see. This could
keep malicious users from storing sensitive data locally.

B. Definitions

Before defining CPRDTs, we have to clarify some concepts
that we will use throughout the paper. An object is a named
instance of a CRDT or CPRDT in our case. Each participating
process replicates a set of objects. A process that replicates an
object is called replica of the CRDT (or CPRDT) instantiated
by the object. Objects can be read using query operations and
modified by update operations. Query operations return the
abstract state of the object, that we call the data of the object.
Nevertheless, additional data, which we refer as meradata, is
kept internally to ensure convergence.

An update operation can have preconditions that capture
its safety requirements. In consequence, an operation is said
to be enabled at a replica, if it satisfies its preconditions. For
instance, the remove operation of a set is enabled only if the
element to be removed is present in the set.

Previous definitions fit into both CRDTs and CPRDTs.
Nevertheless, for CPRDTs, we further consider that a process
might replicate an object partially: it only has access to a part
of data, thus the process only keeps the metadata required for
that given part. Intuitively, this means that only part of the data
structure is replicated: some elements of a set, a subgraph of
a graph, or a slice of a sequence. CRDTs that only have one
element, such as counters and registers, can not be partitioned
and therefore do not need to be specified as CPRDTs.

particle We define a particle as an element of a collection.
For instance, a particle in a set would be any element that can
be added to the set.

Apart from the definition of particle, we introduce three
new concepts: shard set, required, and affected.

shard set Each replica of a CPRDT z; has associated a set of
particles, namely shard set in analogy to the databases concept.
Respectively, shard(z;) is a function that returns the shard set
of x;. A replica z; only knows the state of the particles in
shard(z;); therefore, it can only enable query operations that
require those particles. Furthermore, a replica x; only needs to
receive update operations that affect the particles in shard(x;).

There are two special cases: a full replica and a hollow
replica. We use 7 to represent the full set of possible particles a
CPRDT may be interested in. Thus, we say that a full replica’s
shard set is equal to mw. Notice that a full replica CPRDT
is equivalent to a normal CRDT. On the other hand, when
shard(z;) = @, then x; is a hollow replica (as named in [17]).
A hollow replica does not maintain any state. Nevertheless, it
can still handle updates (section II-C2).

required For an operation op with its arguments, required(op)
is the set of particles needed by op to be properly executed.
This means that, for replica x;, an operation op is enabled
only if required(op) C shard(z;). For instance, for the lookup
operation of a set, required(lookup(e)) = {e} where e is an
element of the set. In case e ¢ shard(z;), the replica x; does
not know whether e is in the set because it has not kept a
state for it. This implies that updates affecting e have not been
necessarily seen by x;.

affected The function affected(op) returns a particle that may
have its state affected after executing an update operation. We
assume that an update can only affect one particle. This may



not be true for complex data structures, however it is always
possible to split an operation into several ones that each only
affects one particle. For example, for a graph, an operation
for removing a vertex will remove the vertex as well as all
its edges. It can be split into several sub-operations that firstly
remove all edges of the vertex and then remove the vertex.

C. Replication

As for the original CRDTs, we consider two equivalent
replication techniques: state- and operation-based. Allowing
partitioning introduces changes in the way these replication
techniques work. Furthermore, concepts such as causal history
and convergence have to be revisited. The following definitions
are based on the ones in [8] for fully-replicated CRDTs.

To simplify our definitions, we assume that the shard set
of a CPRDT is fixed. However, in practice, it can be necessary
to dynamically change it. Nevertheless, definitions apply if
we consider that changing the shard set is equivalent to the
creation of a new CPRDT replica.

Since the abstract state of a CPRDT may change after
applying an update, we denote the abstract states of a CPRDT
replica (x;) by an increasing numbered sequence as si(x;),
such as so(z;), s1(x;)... sk(x;)...

Now we define when two replicas are equivalent.

Definition 1 (Equivalence). x; and x; have equivalent abstract
states if all query operations q, for which required(q) C
(shard(z;) Nshard(z;)), return the same values.

Different replicas of the same CPRDT might have different
shard sets. Thus, we define intersecting abstract state as the
abstract state for the particles in the intersection of shard sets.

Definition 2 (Intersecting abstract state). For a replica x; with
its current state sy(x;), sy(x;|x;) denotes the sy state for
particles € shard(x;) N shard(z;).

The requirement for replicas to converge is that they apply,
directly or indirectly, the same update operations. We can
informally define the causal history of a replica, denoted by
Ck(z;), as a set containing the applied update operations.
As z; applies each operation, its causal history goes through
a sequence of states Cop(z;), C1(x;), ..., Cr(x;),.... We also
define the intersecting causal history as Cy(z;|z;) = {f €
Ci(z;)| affected(f) € (shard(xz;) N shard(z;))}. Intuitively,
it includes updates from Cy(z;) that affect the particles of x;.

Now, we are ready to formally define convergence in the
context of CPRDTs:

Definition 3 (Eventual Convergence of Partial Replicas). Two
partial replicas x; and x; of an object x converge eventually
if the following conditions are met:

o Safety: Vi, j : Yk, K, if Ci(z;|xj) = Cpr(xj|x;), then
sk(wi|xy) = spr(xj|2;).

o Liveness: Yi,j : Yk, if [ € Ci(x;) and affected(f) €
shard(x;), then 3k’ that f € Cy/(x;).

1) State-based partial replication: In this replication tech-
nique, a replica ships its whole internal state to the rest.
Upon arrival, replicas merge both the local and the received
states. The merge method is an idempotent, commutative and
associative operation that has two replicas internal states as
arguments. In the CPRDTs context, the merge method used by
a replica must only merge the state of the particles belonging
to the intersection between local and remote replicas shard
sets, and ignore the rest.

State-based replication is an interesting propagation mech-
anism since it poses almost no communication requirements.
Nevertheless, it may be expensive to always ship the full
internal state. CPRDTs can optimize this technique since only
parts of the state need to be sent and received. We define
the causal history of a replica for state-based replication as
follows:

Definition 4 (Causal History on Partial Replicas - state-based).
For any replica x; of x:

e [nitially, Co(z;) = @.

e  Before executing update operation f,
if affected(f) € shard(x;) then execute f and
Cr1(xi) = Cp(x:) U{f}
otherwise Cii1(x;) = Cr(z;).

o After executing merge against states T; Tj,
Crt1(zs) = Crlx) U{f € Cp(x;)|affected(f) €
shard(z;)}

To achieve convergence with state-based replication on
partial replicas, updates operations cannot be applied if it
affects a particle that is not in that replica’s shard set. This
would violate the liveness property of convergence as that
update might not be added to the causal history of another
replica when merging. Thus, an operation f is disabled if
affected(f) ¢ shard(z;). On the other hand, since the replicas
only converge on their common parts, a replica x; just needs
to send to another, x;, the state of the intersection of their
shards (shard(z;) N shard(z;)).

2) Operation-based partial replication: As with classical
CRDTs, the update operations are divided into two phases:
prepare and downstream phase. The former is done at the
source replica and does not have any side-effect. The latter
is applied at all replicas and it affects the state of the replica.
We define the causal history of a replica for operation-based
replication as follows:

Definition 5 (Causal History on Partial Replicas - op-based).
For any replica x; of x:

o Initially, Cy(z;) = @.

e After executing the downstream phase of operation
f at replica x;,
if affected(f) € shard(x;) then Cyy1(x;) = Ci(a;)U
{r}

otherwise Cyi1(x;) = Cr(z;).

In contrast to CRDTs, CPRDTSs only have to broadcast
updates to the replicas interested in the particles affected by
the update. Therefore, an update u is broadcasted to x; if
affected(u) € shard(z;). This poses an interesting situation.



A CPRDT replica can sometimes complete the first phase of
the update operation without necessarily completing the second
phase. For instance, a replica x;, whose shard(z;) are particles
a and b, receives an update operation that affects particle c. In
this situation x; may complete the prepare phase, broadcast the
downstream operation to the interested replicas, and discard it
locally. We name this scenario blind updates. This can only
happen in operation-based replication. Hollow replicas, whose
shard is empty, can only do blind updates.

D. Specification of CPRDTs

In this section, we present the specifications of an
operation-based observed-remove set (OR-set) CPRDT. We
resort into this example in order to better illustrate how to
integrate the newly defined concepts into a CRDT (original
specifications in [8]); and thus, transform it into a CPRDT.
More examples of CPRDTs and generic specification tem-
plates, for both operation- and state-based, are found in [18].

An OR-set works as follows: (i) elements are uniquely
tagged by the source replica when added to the set. The
source replica is the one receiving the client operation. (ii)
concurrent additions of the same element are all reflected in
the set internal state by storing them with different tags. (iii)
a remove operation is transformed into the list of unique tags
related to the element to be removed that are present in the
source replica. Since causal delivery is assumed, this ensures
convergence of replicas even in the presence of concurrent
adds and removes of the same element.

The specifications incorporate (i) the particle definition
(line 1); (ii) the required and affected preconditions (lines
11, 15 and 19); and (iii) a new function called fraction. The
fraction operation allows us to create new partial replicas from
a subset of a given replica. The subset we want to copy in the
new replica is defined by a set of particles. More formally,
fraction can be defined as follows:
xj = fraction(x;, Z), where Z is the set of particles to repli-
cate. The operations ensures that shard(x;) = shard(z;) N Z.

Specification 1 Op-based OR-set with Partial Replication

1: particle definition A possible element of the set.
2: payload set S

3 initial @

4: query lookup(element e) : boolean b
5: required particles {e}

6: let b=3u: (e,u) €S

7: update add(element e)

8 prepare (e) : «

9: let a = unique()

10: effect (e, o)

11: affected particles {e}

12: S :=SU{e a}

13: update remove(element e)

14: prepare (e) : R

15: required particles {e}

16: pre lookup(e)

17: let R = {(e,u)|Fu: (e,u) € S}

18: effect (R)

19: affected particles {e}

20: pre V(e,u) € R : add(e, u) has been delivered
21: S:=5\R

22: fraction (particles Z) : payload D
23: let D.S = {(e,u) € Slec Z}

III. PRACTICAL ISSUES

In this section, we discuss (i) shard queries, and (ii) the
implications of allowing dynamic shard sets. Both issues are
relevant for making CPRDTs practical.

A. Shard queries

The operation fraction, introduced in II-D, is the canonical
form to define the shard set of a replica. Nevertheless, fraction
is not practical. In practice, applications will transform their
semantics into a high-level query language. For instance, an
application could issue a query in the form of “give me the first
10 elements of your sorted set”. We name this type of queries
shard queries. They bridge the gap between the application
semantics and the function fraction adding expressiveness to
the usage of CPRDTs.

There are two types of shard queries: version-independent
and version-dependent. The former only depends on the prop-
erties of the particles, and not in the version of the CPRDT.
In contrast, the latter depends on the current version of the
CPRDT. Let us use a CPRDT set whose domain is the set
of integers as example. A version-independent query could be
“integers greater than 0”. This shard query will always return
the same shard set ((0,+0o0)) independently of the queried
CPRDT version. On the other hand, a version-dependent query,
such as “the 10 highest integers in the set”, will return a
different shard set depending on which elements have been
already added, and removed, on the version being queried.

Version-independent queries are easier to work with: they
are comparable. One could determine which query is more spe-
cific without knowing the version of the CPDRT they apply to.
While with version-dependent queries, one can only compare
queries if they apply to the same version. Nevertheless, both
types are needed in order to make CPRDTs practical.

B. Dynamic shard set

Dynamic shard set refers to the capability of a partial
replica to modify, either shrink or expand, its shard set. We
believe this capability is useful in practice, e.g. a client may
become interested in new parts. Having dynamic shard set, a
replica does not need to be re-created, only the missing state
needs to be grabbed. Nevertheless, maintaining convergence in
some scenarios can become challenging.

On the one hand, a partial replica can easily shrink its
shard set without compromising convergence in the operation-
based scenario. A replica only needs to take two things into
consideration: (i) updates prepared locally have been already
broadcasted, and (ii) the data to be dropped is replicated by
some other replica; therefore, data is not lost. On the other
hand, expanding a partial replica is more tricky. For instance,
in an operation-based scenario, the following situation can
easily occur: (i) a replica’s (x;) shard set is a,c; therefore,
x; does not receive updates that affect b; (ii) suddenly, x;
becomes interested in b and starts accepting updates on b; (iii)
unfortunately, z; will not converge since updates have been
missed. In order to ensure convergence, extra communication
between replicas would be needed to recover dropped updates.
This would add complexity to the underlying protocols.



In state-based replication, shrinking or expanding the shard
set is simpler. On the one hand, a replica only needs to
broadcast its state before shrinking its shard set. On the other
hand, a replica that wants to expand its shard set only needs to
merge its current state with the state of a replica that contains
new particles.

IV. EVALUATION

In this section, we report the results of our experimental
evaluation. This study aims at evaluating the benefits of
CPRDTs in terms of memory, bandwidth and latency.

SwiftLinks In order to evaluate our solution, we implemented
an application, namely SwiftLinks, on top of SwiftCloud.
SwiftLinks is a vote-based content-sharing application based
on Reddit. In short, the application allows users to create fo-
rums where they can publish posts. Then, users can vote posts
positively or negatively. As a consequence, posts get ranked.
In addition, users can comment posts and other comments.
Users can also vote comments, and consequently, comments
get ranked (more information [15], [16]).

SwiftLinks is modeled with three types of data structures:
(i) OR-Set for each forum, (ii) a novel Remove-once Tree for
each tree of comments, and (iii) Last-Writer-Wins Registers
for each vote associated to a post/comment. The application
uses both types of queries: version-independent and version-
dependent. The former is mostly used for reading single
comments or posts. The latter is used for reading ranking of
posts and comments.

Warm-up We used Reddit’s API to fetch data to warm up our
system. For each benchmark, we create 10000 posts over 20
forums (so an average of 500 posts per forum). Each post has
20 comments on average. Moreover, each post has an average
of 170 votes, while comments an average of 13 votes.

Workload Our workloads are composed by read and update
operations. Read operations are executed over posts and com-
ments. On the other hand, there are three types of update
operations: (i) new post, (i) new comment, and (iii) new vote.

For most of the experiments, 20% of the operation are
updates and 80% are read operations. Furthermore, 90% of
the operations are biased to previously accessed objects. This
means that they are likely to hit the cache. The rest (10%) is
done on randomly selected posts and comments.

A. Integration of CPRDTs into a real system

We chose SwiftCloud [10] to integrate CPRDTs. Swift-
Cloud is a geo-replicated cloud storage system written in Java
that stores CRDTs and caches data at clients. It consists of
several datacenters that fully replicate the key-space. Clients
indirectly communicate through the datacenters. In absence of
failures, a client always interacts with its closest datacenter
and caches accessed data in its local cache. SwiftCloud pro-
vides transactional causal+ consistency. Transactions are first
executed and committed on the client side, then propagated
to the datacenters. For fault tolerance purposes, committed
transactions are only visible after they have been seen by K
datacenters.

In our version of SwiftCloud, datacenters store full replicas
as in the original implementation. Nevertheless, clients only

cache partial replicas. Having full replicas coexisting with the
partial replicas considerably simplifies the management of the
latter. This poses several advantages in comparison to an ad-
hoc architecture where no full replicas, namely authorities, are
assumed. Firstly, clients can discard their (partial) replicas at
will as long as their updates have been reliably sent to an
authority. Secondly, a client can request any fraction from an
authority in order to either get a new partial replica, or to
expand its own shard set. Notice that having an authority also
simplifies the integration of state-dependent shard queries in
the system, very difficult and costly otherwise. Finally, the
authority could store which particles each partial replica has
in his shard set. Thus, it could only propagate operations to
the interested replicas, saving bandwidth.

B. Experimental setup

SwiftLinks was evaluated using three Amazon EC2 servers
as datacenters: one in Ireland and two in the USA (east and
west coast). The EC2 instances are equivalent to a single core
64-bit 2.8 GHz Intel Xeon virtual processor (4 ECUs) with 7.5
GB of RAM. The clients run in 15 PlanetLab nodes located
near the DCs. These nodes have heterogeneous configurations
with varying processing power and RAM. We set up five
SwiftLinks users running concurrently per node, a total of 75.
Each client performs an operation per second.

Throughout the evaluation, we use three different modes:

e  Cloud: This mode simulates a typical geo-replicated
system. Clients do not cache any data. Operations
are applied synchronously at one datacenter and asyn-
chronously replicated to the rest of datacenters.

e  Partial. This is the mode that integrates the CPRDTs.
Thus, clients only fetch and cache parts of the data
structures (CRDTs) as needed.

e  Full. This is the SwiftCloud approach. Clients cache
whole CRDTs even when only part of it is needed.

We limit the capacity of the cache in our experiments
to simulate memory restrictions on thin clients, such as a
mobile phone. Nowadays, a mobile phone can have up to
several gigabytes of memory, but it can easily have tens of
applications running simultaneously. An application needs to
cohabit with many other applications with limited memory.
Therefore, we use 64MB as the default size for cache. If the
cache size exceeds this limit, the least recently used object is
dropped. In this configuration, full and partial, if the cache
contains the required data, the operations are run locally, and
asynchronously propagated to the closest datacenter.

The difference between full and partial is that the latter
benefits from the partial replication mechanism described in
the paper. This means that objects are fetched in parts as
needed, so the cache can hold parts of an object. For instance,
a query for the top ten posts of a forum would only replicate
those ten posts in clients cache. On the other hand, for the full
mode, the objects are only fully replicated in clients side, as
in SwiftCloud. Therefore, the same top ten posts query would
replicate the whole forum.



C. Latency

We evaluated the perceived latency for various operations
with and without partial object replication. Figure 1 shows
the cumulative distribution functions of different operations’
latency. These results are obtained after a warm-up phase for
the cache. This means that the cache is pre-filled with objects
that will be used by the operations present in the workload.
For the full and partial mode, there are always a percentage
of operations with a very low latency. We can conclude that it
is the percentage of operations that hit the cache.

Read operations Figure la shows that the full mode has
greater cache hit rate (35%) than the partial mode. Never-
theless, the hit rate is not optimal due to the limit in the cache
size: the cache cannot hold full replicas of all the forums and
thus sometimes need to fetch them again. Figure lc shows
the results of a similar experiment but without any cache size
limit. In that case, the cache hit rate, for the full mode, is
90%, which corresponds to our ratio of biased operations,
and it confirms the previous results with a social network
application of the SwiftCloud paper [10]. On the other hand,
in partial mode, the cache hit rate is lower, with only 20% in
both experiments (figures la and 1c), because the cache only
holds partial replicas which gives it less chance of having all
the parts needed for hitting the cache in subsequent operations.
However, it has the advantage of a lower maximum latency: if
an operation does not hit the cache, it only needs to fetch some
parts, instead of the full object. In that scenario, it induces a
delay similar to the cloud solution, around 200 to 300 ms,
while without partial replication, the delay is increased to
around 500 to 700 ms by having to replicate a full object. This
poses a trade-off between the cache hit rate and the maximum
latency. While fully replicating an object will provide more
cache hits, a cache miss is more costly.

For the latency of reading comments of a post, shown in
Figure 1b, the situation is a bit different. Clients are less likely
to read the same comment tree multiple times; therefore, this
affects the cache hit ratio. As the figure shows, the hit ratio
is less than 5% in both partial and full replication. But again,
partial replication has the advantage of reducing the impact of
a cache miss as it only replicates the comments required by
the operation instead of the full comment tree. In consequence,
the partial approach has a slightly better latency, close to the
cloud mode. The cloud mode performs better because it does
never need to fetch any extra metadata, which means that the
returned messages are considerable smaller. Notice that the
difference between full and partial mode has been reduced in
this experiment because the involved objects are smaller.

Update operations Caching modes (full and partial) are more
beneficial with update operations. The reason is that update
operations are typically applied on objects, or parts of objects,
that have already been read by the client. In addition, the
update operations only use version-independent queries to
fetch their missing parts, which substantially simplifies the
comparison of partial objects in the cache. Figure le proves
experimentally our reasoning. While the cloud mode has an
almost constant latency for all operations of a round-trip time,
with caching modes, most of the operations (almost 90%)
have no latency. Again, the parfial mode has the advantage
of reducing the latency when the cache is not hit, as it only
needs to fetch the parts of the object that need to be updated,
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Fig. 1: CDF of SwiftLinks operation latencies

instead of the full object. Moreover, some updates can be done
blindly, therefore, they are completed locally.

In particular, Figure 1d shows the benefit of updates when
posting comments, which almost always only requires particles
already present in the cache. One can see that with partial
replication, all the operations have almost no latency, as they
can be done completely asynchronously. In contrast, in full
mode, there can be a large delay when the tree of comments
is not in the cache, as it needs to be fetched from the store.
As in previous scenarios, even if an operation cannot be done
completely locally in partial mode, the client only has to fetch
part of the tree to complete the update.

D. Impact of cache size limit

In this section we look at how the application performance
changes with various cache size limits (16, 64, and 128MB).

1) Impact on latency: We have empirically demonstrated
that the partial mode performs better without cache limit when
reading links. We run the same experiments showed in figures
la, 1b and le setting the cache size limit to 16MB and 128MB.
The experiments show that a smaller cache (16MB) size limit
has a big latency impact on reading links and updates in
full mode. Nevertheless, its impact is considerable smaller in
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partial mode. With a small cache, the cache hit rate of full
mode of reading links becomes worse than in partial mode.
This is because only a few objects can fit in the cache at a given
time; therefore, clients need to fetch objects more frequently.
This results in a lower fraction of operations having no latency,
about 5% against the 35% obtained with a 64MB cache. There
is also an impact for the partial mode, but it is considerable
lower: it only drops to 13% from 20%. The same applies for
update operations. Nevertheless, reads of comments are almost
not impacted by the cache size limit: the operations have a low
cache locality, so most operations need to fetch an object from
the datacenter.

With a 128MB cache size limit, the full mode has a large
portion of zero latency operations when reading posts, as more
are kept in the cache. It however still performs worse than
partial fetching for operations that do not hit the cache. The
latency of updates also improves for the full mode with larger
cache size, but the partial mode still outperforms it.

2) Impact on cache miss rate: The size limit imposed on
the cache also has an impact on the cache hit rate. Figure
2a shows that the partial mode is less impacted by the cache
size limit than the full mode. With the three cache limits, the
partial mode shows a rather stable number of cache misses,
about 180. Nevertheless, this does not apply to the full mode,
where the number of caches misses increases as the cache size
is reduced. As in previous experiments, the cache miss rate is
greater in the partial mode. Nevertheless, we have shown that
latency in partial mode, is always smaller in average.

3) Impact on number of objects in the cache: The cache
size also impacts the number of objects that can be kept in
the cache. Notice that for partial replication, only one object
is counted even if multiple parts of it have been fetched over
time. Figure 2b shows the difference between both modes:
partial and full. In the partial mode, many more objects can fit
in the cache at any moment, since only parts are kept. 64MB is
enough to keep all the objects needed by the application, while
in the full mode, even 128MB is not enough. This, depending
on the workload, may increase the cache hit rate.

E. Bandwidth usage

In partial mode, when a client accesses an object, only the
needed part of that object is fetched. This can result in saving
bandwidth usage compared to full mode. In this experiment,
we compare the bandwidth usage of partial mode and full
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Fig. 3: Average bandwidth usage to fetch objects with a 128MB cache
limit, with the cache already warmed up.
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mode. We measure the average bandwidth usage of one client
for both over one minute, with the cache already warmed up.
Figure 3 shows that the partial mode uses only about 12% of
bandwidth compared to the full mode.

F. Cache warm up

The following experiments compare both partial and full
modes latencies when the cache is still cold, i.e. no objects
are stored in the client side. Figure 4 shows the latency of
operations during the first 10 seconds of running the applica-
tion, with a cold cache. In this case, the partial mode produces
lower latencies as it does not need to replicate the full object.
The difference is more noticeable for post reading operations,
as shown in Figure 4a, as the set of posts (forums) are large
objects. But even for smaller objects, such as comment trees,
the partial mode outperforms the full one (Figure 4b). Notice
that the cache size limit does not impact these experiments,
since after 10 seconds, the cache does not get full.

G. Discussion

We have seen that partial replication has advantages over
full replication of objects. First, it sets an upper bound on the
latency of operations by limiting the amount of data that is
fetched from the store. Plus, blind update operations gain the
additional benefit of being applied locally even if the object is
not cached. Second, the cache is more efficiently used, which
allows more objects to be kept locally even with a small cache
size limit. This is useful for memory-thin devices, and to work
on very large data structures with a low memory usage. Third,
partial replication also reduces the bandwidth usage of the
application by a factor of 8, which is especially valuable on
mobile wireless connections, such as EDGE and 3G. Finally,
the last advantage is a lower cost of filling the cache when



starting the application. When the cache is empty all operations
induce a cache miss, which is especially costly if a large object
has to be fetched. Partial replication limits this issue by only
replicating the parts of the object that are actually needed.

Unfortunately, partial mode limits the cache hit rate, as
objects are not fully replicated right away, and non-replicated
parts may be needed by subsequent operations. Thus, its use
may depend on the workload and the cost of a cache miss.
However, a tradeoff is possible between the two: instead of
only fetching the parts needed by the operations, one could
fetch extra parts of the object. This would however increase
bandwidth and cache size utilisation. Latency could be kept
low by asynchronously fetching the additional parts.

V. RELATED WORK

PRACTI [19] allows clients to select a subset of objects
to replicate. Clients only receive updates on objects of their
selected subset. However, clients are forced to keep some
metadata about objects that they are not interested. Polyjuz [20]
stores objects consisting of a set of fields. Clients can decide
which fields of each object to replicate. Each subset of fields
is denoted as fidelity level. Clients can select different fidelity
levels according to the space or network limitations of the
device where the objects are replicated. Polyjuz transparently
handles the replication of an object in different fidelity levels.
In Cimbiosys [21], objects are grouped into collections. Users
can use filter expressions to only replicate objects that satisfy
some criteria. For example, a user can group his emails in
a collection and choose only to replicate emails from his
university in his phone. While in the first two systems, users
choose the object or fields to replicate based on their name or
type, in Cimbiosys user can define replication criteria based
on the value of some properties of objects.

VI. CONCLUSION AND FUTURE WORK

We have introduced and formalized a new set of CRDTs
called Conflict-free Partially Replicated Data Types, an exten-
sion of CRDTs which allows replicas to hold parts of data
structures. Our extensive evaluation has shown that CPRDTs
can improve the bandwidth and memory usage of replicas
by only replicating parts needed by clients, specially in the
presence of large data structures under limited cache sizes.
Although cache sizes may be larger in the future, we believe
that our reasoning will still apply and future applications will
still benefit from the CPRDTSs approach. The experimental
study has also shown that CPRDTs reduce latency in average
in comparison to the full mode. However, CPRDTs have a
negative impact on the cache hit rate, which has to be weighted
against the upper bound on the latency provided.

We plan to extend this work in several directions. First,
partial replication can be used as a security mechanism to
avoid replicating sensitive data by restricting access with
finely grained rules. We believe it is an interesting way of
exploiting CPRDTs. Second, we want to study how predictive
caching techniques could still improve bandwidth usage and
consequently reduce latency even more.
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