
Transparent Speculation in
Geo-Replicated Transactional Data Stores

Zhongmiao Li
Université catholique de Louvain

Instituto Superior Técnico

Peter Van Roy
Université catholique de Louvain

Paolo Romano
Instituto Superior Técnico

ABSTRACT
This work presents Speculative Transaction Replication (STR), a pro-
tocol that exploits transparent speculation techniques to enhance
performance of geo-distributed, partially replicated transactional
data stores. In addition, we define a new consistency model, Spec-
ulative Snapshot Isolation (SPSI), that extends the semantics of
Snapshot Isolation (SI) to shelter applications from the subtle anom-
alies that can arise from using speculative transaction processing.
SPSI extends SI in an intuitive and rigorous fashion by specifying
desirable atomicity and isolation guarantees that must hold when
using speculative execution.

STR provides a form of speculation that is fully transparent for
programmers (it does not expose the effects of misspeculations to
clients). Since the speculation techniques employed by STR satisfy
SPSI, they can be leveraged by application programs in a trans-
parent way, without requiring any source-code modification to
applications designed to operate using SI. STR combines two key
techniques: speculative reads, which allow transactions to observe
pre-committed versions, which can reduce the ‘effective duration’
of pre-commit locks and enhance throughput; Precise Clocks, a
novel timestamping mechanism that uses per-item timestamps with
physical clocks, which together greatly enhance the probability of
successful speculation.

We assess STR’s performance on up to nine geo-distributed
Amazon EC2 data centers, using both synthetic benchmarks as well
as realistic benchmarks (TPC-C and RUBiS). Our evaluation shows
that STR achieves throughput gains up to 11× and latency reduction
up to 10×, in workloads characterized by low inter-data center
contention. Furthermore, thanks to a self-tuning mechanism that
dynamically and transparently enables and disables speculation,
STR offers robust performance even when faced with unfavourable
workloads that suffer from high misspeculation rates.

ACM Reference Format:
Zhongmiao Li, Peter Van Roy, and Paolo Romano. 2018. Transparent Spec-
ulation in Geo-Replicated Transactional Data Stores. In HPDC ’18: The
27th International Symposium on High-Performance Parallel and Distributed
Computing, June 11–15, 2018, Tempe, AZ, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3208040.3208055

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HPDC ’18, June 11–15, 2018, Tempe, AZ, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5785-2/18/06. . . $15.00
https://doi.org/10.1145/3208040.3208055

1 INTRODUCTION
Modern large scale storage systems are increasingly deployed over
geographically-scattered data centers [6, 16, 22]. Geo-replication
allows storage systems to remain available even in the presence of
outages affecting entire data centers and it reduces access latency
by bringing data closer to clients. On the down side, though, the
performance of geographically distributed data stores is challenged
by large communication delays between data centers.

To provide ACID transactions, a desirable feature that can greatly
simplify application development [34], some form of global (i.e.,
inter-data center) certification is needed to safely detect conflicts
between concurrent transactions executing at different data centers.
The adverse performance impact of global certification is twofold: (i)
system throughput can be severely impaired, as transactions need
to hold pre-commit locks during their global certification phase,
which can cripple the effective concurrency that these systems can
achieve; and (ii) client-perceived latency is increased, since global
certification lies in the critical path of transaction execution.

Transparent speculation. This work investigates the use of spec-
ulative processing techniques to alleviate both of the above prob-
lems. We focus on geo-distributed partially replicated transactional
data stores that provide Snapshot Isolation, a widely employed
consistency criterion [7, 11] (SI), and propose a novel distributed
concurrency control scheme, Speculative Snapshot Isolation (SPSI),
that supports a form of transparent speculative execution called
speculative reads.

Speculative reads allow transactions to observe the data item
versions produced by pre-committed transactions, instead of block-
ing until they are committed or aborted. As such, speculative reads
can reduce the “effective duration” of pre-commit locks (i.e., as
perceived by conflicting transactions), thus reducing transaction
execution time and enhancing the maximum degree of parallelism
achievable by the system — and, ultimately, throughput. We say
that speculative reads are a transparent speculation technique, as
misspeculations caused by it never surface to the clients and can
be dealt with by simply re-executing the affected transaction.

Avoiding the pitfalls of speculation. Past work has demon-
strated how the use of speculation, either transparently or requir-
ing source-code modification [13, 15, 20, 28, 37], can significantly
enhance the performance of distributed [20, 28–30, 37] and single-
site [13] transactional systems. However, these approaches suffer
from several limitations:

1. Unfit for geo-distribution/partial replication. Some ex-
isting works in this area [20, 30, 37] were not designed for partially
replicated geo-replicated data stores. On the contrary, they target

https://doi.org/10.1145/3208040.3208055
https://doi.org/10.1145/3208040.3208055

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA Zhongmiao Li, Peter Van Roy, and Paolo Romano

Read(B) ->B0

N1

N2
B

T1 Exec

N3

A

C

Prepare(C1)

Prepare(B1)

T2 Exec

Read(C) ->C1

Invariant: B!=C
Init: B=4, C=2
T1: B+=2
 C+=2
T2: c=read(C)
 b=read(B)
 d=1/(b-c)

(a) Atomicity violation — T2 observes T1’s pre-committed version of data item C, but not
of B. This breaks the application invariant (B,C), causing an unexpected division by zero
exception that could crash the application at node N3.

N1

N2
B

T1 Exec

N3

A

C

Prepare(B1)
Prepare(B2)

T2 Exec

Prepare(A1)
Prepare(A2)

Read(B)->B2

Read(A)->A1

T3 Exec

 Invariant:A=B*2
 Init: A=2, B=1
 T1: A=4, B=2
 T2: A=10, B=5
 T3: a=read(A)
 b=read(B)
 while (b!=a)
 ++b
 <Loop body>

(b) Isolation violation — T3 observes the pre-committed updates of two conflicting trans-
actions, namely T1 and T2. T3 enters an infinite loop, as the application invariant (A=B*2)
is broken due to the concurrency anomaly.

Figure 1: Examples illustrating possible concurrency anomalies
caused by speculative reads. T1, T2 and T3 are transactions; N1, N2
andN3 are three nodes that store data itemsA, B andC, respectively.

different data models (i.e., full replication [30, 37]) or rely on tech-
niques that impose prohibitive costs in WAN environments, such as
the use of centralized sequencers to totally order transactions [20].

2. Subtle concurrency anomalies. Existing partially repli-
cated geo-distributed transactional data stores that allow specula-
tive reads [13, 17, 29] expose applications to anomalies that do not
arise in non-speculative systems and that can severely undermine
application correctness. Figure 1 illustrates two examples of con-
currency anomalies that may arise with these systems. The root
cause of the problem is that existing systems allow speculative
reads to observe any pre-committed data version. This exposes ap-
plications to data snapshots that reflect only partially the updates of
transactions (Fig. 1a) and/or include versions created by conflicting
concurrent transactions (Fig. 1b). These anomalies have the fol-
lowing negative impacts: (i) transaction execution may be affected
to the extent to generate anomalous/unexpected behaviours (e.g.,
crashing the application or hanging it in infinite loops); and (ii)
they can externalize non-atomic/non-isolated snapshots to clients.

3. Performance robustness. If used injudiciously, speculation
can hamper performance. As we will show, in adverse scenarios
(e.g., large likelihood of transaction aborts and high system load)
misspeculations can significantly penalize both user-perceived la-
tency and system throughput.

Contributions. This paper presents the following contributions:

• Speculative Transaction Replication (STR), a novel specu-
lative transactional protocol for partially replicated geo-
distributed data stores (§5). STR shares several key de-
sign choices with state-of-the-art strongly consistent data
stores [6, 7, 31], which contribute to its efficiency and scal-
ability. These include: multi-versioning, which maximizes

efficiency in read-dominated workloads [4], purely decen-
tralized concurrency control based on loosely synchronized
physical clocks [6, 7, 32], and support for partial replica-
tion [6, 21]. The key contribution of STR is its innovative,
fully decentralized, concurrency control mechanism, which
aims not only to ensure (SPSI-)safe speculations in a light-
weight and scalable fashion, but also to enhance the chances
of successful speculation via a novel transaction timestamp-
ing mechanism that we called Precise Clocks.
• Speculative Snapshot Isolation (SPSI), a novel consistency
model that is the foundation of STR (§4). Besides guarantee-
ing the familiar Snapshot Isolation (SI) to committed trans-
actions, SPSI provides clear and rigorous guarantees on the
atomicity and isolation of the snapshots observed and pro-
duced by executing transactions. In a nutshell, SPSI requires
an executing transaction to read data item versions commit-
ted before it started (as in SI), but it also allows to atomi-
cally observe the effects of non-conflicting transactions that
originated on the same node and pre-committed before the
transaction started. This shelters programmers from having
to reason about complex concurrency anomalies that can
otherwise arise in speculative systems.
• A lightweight yet effective self-tuning mechanism, based on
a feedback control loop, that dynamically enables or disables
speculation based on the workload characteristics (§5.5).
• We evaluate STR on up to nine geo-distributed Amazon EC2
data centers, using both synthetic and realistic benchmarks
(TPC-C and RUBiS) (§6). Our experimental study shows that
the use of transparent speculation (speculative reads) yields
up to 11× throughput improvements and 10× latency reduc-
tion in a fully transparent way, i.e., requiring no compensa-
tion logic.

2 RELATEDWORK

Geo-replication. The problem of designing efficient mechanisms
to ensure strong consistency semantics in geo-replicated data
stores has been extensively studied. One class of geo-replicated
systems [8, 39] is based on the state-machine replication (SMR) [23]
approach, in which replicas first agree on the serialization order of
transactions and then execute them without further coordination.
Other recent systems [6, 7, 22] adopt the deferred update (DU) [19]
approach, in which transactions are first locally executed and then
globally certified. This approach is more scalable than SMR in up-
date intensive workloads [19, 41] and, unlike SMR, it can seamlessly
support non-deterministic transactions [33]. The main down side
of the DU approach is that locks must be maintained for the whole
duration of transactions’ global certification, which can severely
hinder throughput [38]. STR builds on the DU approach and tackles
its performance limitation via speculative techniques.

The property introduced in this work, SPSI, is related to PSI (Par-
allel Snapshot Isolation) [35], a consistency criterion that relaxes
SI in order to reduce latency in geo-distributed data stores. When
compared with SPSI, PSI specifies a weaker consistency criterion
for final committed transactions: PSI requires that transactions read
the most recent committed version of some data only if this is cre-
ated by a transaction that originated at the same site. This allows

Transparent Speculation in
Geo-Replicated Transactional Data Stores HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

for anomalies that are not possible in SI (called long forks [35]),
and that are also excluded by SPSI, which guarantees SI-semantics
for final committed transactions, i.e., they only observe the most
recent committed version independently from the site in which it
was originated. Further, PSI prohibits transactions from reading
any version that is not final committed, which represents one of the
key motivations underlying the definition of SPSI: sparing transac-
tions from waiting for pre-commit locks to be released, while still
providing rigorous consistency guarantees to shelter applications
from arbitrary concurrency anomalies.

Speculation. The idea of letting transactions “optimistically” bor-
row, in a controlled manner, data updated by concurrent transac-
tions has already been investigated in the past. SPECULA [30] and
Aggro [26] have applied this idea to local area clusters in which
data is fully replicated via total-order based coordination primi-
tives; Jones et. al. [20] applied this idea to partially replicated/dis-
tributed databases, by relying on a central coordinator to totally
order distributed transactions. These solutions provide consistency
guarantees on executing transactions (and not only on commit-
ted ones) that are similar in spirit to the ones specified by SPSI.
However, some of these systems [26, 30] adopt a full-replication
scheme, which requires all replicas to store the full dataset and
apply all updates. This significantly hinders their scalability. Other
systems, e.g., [20], instead, rely on the use of a global sequencer,
which can become a system bottleneck and imposes unacceptably
large latency in geo-distributed settings.

Other works in the distributed database literature, e.g., [13, 17,
29], have explored the idea of speculative reads (sometimes referred
to as early lock release) in decentralized transactional protocols
for partitioned databases, i.e., the same system model assumed by
STR. However, these protocols provide no guarantees on the con-
sistency of the snapshots observed by transactions (that eventually
abort) during their execution and may expose applications to subtle
concurrency bugs, such as the ones exemplified in Figure 1.

Another form of speculation that strives to reduce perceived-
latency by exposing preliminary results to external clients, i.e.,
speculative commits, has been explored by various works. Hel-
land et. al. advocated the guesses and apologies programming para-
digm [18], in which systems expose preliminary results of requests
(guesses), but reconcile the exposed results if they are different from
final results (apologies). A similar approach is adopted also in other
recent works, like PLANET [28] and ICG [15]. Unlike STR, which
is totally transparent to programmers, these approaches employ
a form of external speculation, which requires source-code mod-
ification to incorporate compensation logics. Furthermore, these
approaches are designed to operate on conventional storage sys-
tems, which do not support speculative reads of pre-committed data.
As such, although these approaches may reduce user-perceived
latency, they do not tackle the problem of reducing transaction
blocking time, as STR does. We will provide experimental evidence
supporting this claim in § 6.

Some of the speculative transaction processing systems men-
tioned above, e.g., SPECULA [30] and PLANET [28], rely on self-
tuning mechanisms aimed at autonomously determining whether
the use of speculation may be beneficial or not. As already men-
tioned, STR employs an ad-hoc self-tuning mechanism that aims at

pursuing an analogous goal, i.e., dynamically enabling or disabling
speculation based on the workload characteristics. More in general,
there exists a large literature on self-tuning of transactional sys-
tems [9, 25, 27], which has shown the feasibility of using automatic
techniques to predict and/or react timely to workload changes.

3 SYSTEM AND DATA MODEL
Our target system model consists of a set of geo-distributed data
centers, each hosting a set of nodes. In the following, we assume
a key-value data model. This is done for simplicity and since our
current implementation of STR runs on a key-value store. However,
the protocol we present is agnostic to the underlying data model
(e.g., relational or object-oriented).

Data and replication model. The dataset is split into multiple
partitions, each of which is responsible for a disjoint key range and
maintains multiple timestamped versions for each key. Partitions
may be scattered across the nodes in the system using arbitrary
data placement policies. Each node may host multiple partitions,
but no node or data center is required to host all partitions.

A partition can be replicated within a data center and across
data centers. STR employs synchronous master-slave replication
to enforce fault tolerance and transparent fail over, as used, e.g., in
[2, 6]. A partition has a master replica and several slave replicas.
We say that a key/partition is remote for a node, if the node does
not replicate that key/partition.

Synchrony assumptions. STR requires that nodes be equipped
with loosely synchronized, conventional hardware clocks, whichwe
only assume to monotonically move forward. Additional synchrony
assumptions are required to ensure the correctness of the synchro-
nous master-slave replication scheme used by STR in presence
of failures [12]. STR integrates a classic single-master replication
protocol, which assumes perfect failure detection capabilities [5].
We note, though, that it would be possible to replace the replica-
tion scheme currently employed in STR to use techniques, like
Paxos [10], which require weaker synchrony assumptions.

Transaction execution model. A transaction is executed, by a
process called its coordinator, in the node where it was originated.
When it requests to commit, it undergoes a local certification phase,
which checks for conflicts with concurrent transactions in the lo-
cal node. If the local certification phase succeeds, we say that the
transaction local commits and is attributed a local commit times-
tamp, noted LC . Next, it executes a global certification phase that
detects conflicts with transactions originated at any other node in
the system. Transactions that pass the global certification phase are
said to final commit and are attributed a final commit timestamp,
noted FC . Commit requests are confirmed to applications only if the
transaction is final committed, which guarantees that speculative
states never surface to clients. However, the versions created by a
local committed transactionT can be exposed to other transactions
via the speculative read mechanism. We say that these transactions
data depend on T .

4 THE SPSI CONSISTENCY MODEL
We introduce Speculative Snapshot Isolation (SPSI), a consistency
model that generalizes the well-known SI criterion to define a set

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA Zhongmiao Li, Peter Van Roy, and Paolo Romano

of guarantees that shelter applications from the subtle anomalies
(Fig. 1) that may arise when using speculative techniques. Before
presenting the SPSI specification, we first recall the definition of
SI [40]:

• SI-1. (Snapshot Read) All operations read the most recent
committed version as of the time when the transaction began.
• SI-2. (No Write-Write Conflicts) The write-sets of any com-
mitted concurrent transactions must be disjoint.

We now introduce the SPSI specification:

• SPSI-1. (Speculative Snapshot Read) A transaction T origi-
nated at a node N at time t must observe the most recent
versions created by transactions that i) final commit with
timestamp FC ≤ t (independently of the node where these
transactions originated), and ii) local commit with timestamp
LC ≤ t and originated at node N .
• SPSI-2. (No Write-Write Conflicts among Final Committed
Transactions) The write-sets of any final committed concur-
rent transactions must be disjoint.
• SPSI-3. (No Write-Write Conflicts among Transactions in a
Speculative Snapshot) Let S be the set of transactions included
in a snapshot. The write-sets of any concurrent transactions
in S must be disjoint.
• SPSI-4. (No Dependencies from Uncommitted Transactions) A
transaction can only be final committed if it does not data
depend on any local-committed or aborted transaction.

SPSI-1 extends the notion of snapshot, at the basis of the SI defini-
tion, to provide the illusion that transactions execute on immutable
snapshots, which reflect the execution of all the transactions that
local committed before their activation and originated on the same
node. By demanding that the snapshots over which transactions
execute reflect only the effects of locally activated transactions,
SPSI allows for efficient implementations, like STR’s, which can
decide whether it is safe to observe the effects of a local committed
transaction based solely on local information.

Note that property SPSI-1 is specified for any transaction, in-
cluding the ones that eventually abort (because some other SPSI
property is violated). Hence, SPSI-1 must hold throughout the exe-
cution of transactions. This has also another relevant implication:
assume that a transaction T , which started at time t , reads spec-
ulatively from a local committed transaction T ′ with timestamp
LC ≤ t , and that, later on,T ′ final commits with timestamp FC > t ;
at this point T violates the first sub-property of SPSI-1. Hence, T
must be aborted before T ′ is allowed to final commit. The same
applies in case T ′ aborts: since SPSI-4 prohibits developing data
dependencies from aborted transactions, also in this case, T must
be aborted before T ′ is.

SPSI-2 coincides with SI-2, ensuring the absence of write-write
conflicts among concurrent final committed transactions. SPSI-3
complements SPSI-1 by ensuring that the effects of conflicting
transactions can never be observed. Finally, SPSI-4 ensures that a
transaction can be final committed only if it does not depend on
transactions that may eventually abort.

Which anomalies does SPSI allow? SPSI provides identical guar-
antees to SI for final committed transactions. As for local commit-
ted and active transactions, SPSI allows for histories that would

be rejected by SI, e.g., observing a version locally committed by a
transaction that eventually aborts due to a conflict with some re-
mote transaction. However, we argue that these anomalies allowed
by SPSI are unharmful for applications designed to operate using
SI. This is easy to show if one considers that SPSI ensures that any
transaction T behaves like if it had executed under SI in a history
that includes only the transactions known by the node in which
T originated at the time in which T was activated. More formally,
the snapshot observable by T in any SPSI-compliant historyH is
equivalent to the one that T would observe in some SI-compliant
historyH ′, which differs fromH only becauseH ′ may omit some
remote transaction concurrent withT . In other words, any snapshot
observable with SPSI can be obtained via a (possible) history that
would be legal using SI. Clearly, if an application works correctly
with SI, i.e., it is correct with any SI-compliant history (including
historyH ′), the application will be also be correct when faced with
historyH ′ — and, thus, when executing the SPSI-compliant history
H .

Which anomalies does SPSI prevent? In Fig. 1 we have already
exemplified some of the concurrency anomalies that SPSI prevents,
and which could lead applications to hang or crash. Interestingly,
while analyzing the TPC-C and RUBiS benchmarks, we have identi-
fied several concurrency bugs that may arise and cause application
crashes, if SPSI’s guarantees are not enforced.

// New-Order
...
Order order;
storage->Put(order);
for (int i = 0; i < order.ol_count; i++) {
OrderLine order_line = create_ol(order, i);
storage->Put(order_line);
...

}

// Order-Status
...
Order order = storage->Read(customer.last_order);
for (int i = 0; i < order.ol_count; i++) {
OrderLine ol = storage->Read(order.ol, i)
// Parse throws a Null Pointer Exception if ol is null
parse(ol);
...

}

Listing 1: Potential anomaly prevented by SPSI in TPC-C.

Listing 1 illustrates one of the anomalies we spotted in TPC-C
benchmark, which involves the New Order (NO) and Order Status
(OS) transactions. NO inserts a new order for a customer and then
creates some number of corresponding order lines. OS fetches the
identifies of the last order of a given customer, and the retrieves the
corresponding order lines. In a partially-replicated setting, the order
record may be stored in the node where the NO transaction was
activated, but the order lines may be stored in some different node.
An injudicious use of speculative reads may allow a OS transaction
to read the pre-committed order record of a concurrent NO, but then
allow the OS to miss the corresponding order lines (an atomicity
violation that is prevented by SPSI-1). In this case, the parse method
in OS would be fed with a null pointer and generate an unexpected
exception, which would never occur with SI (or SPSI) and could
lead to a crash of the application.

Transparent Speculation in
Geo-Replicated Transactional Data Stores HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

5 THE STR PROTOCOL
This section introduces the Speculative Transaction Replication
(STR) protocol. For reasons of clarity, we present the design of STR
incrementally. We first present a non-speculative base protocol that
implements a SI-compliant transaction system. This base protocol
is then extended with a set of mechanisms aimed to support specu-
lation in an efficient and SPSI-compliant way. Finally, we discuss
the fault tolerance of STR. Due to space constraints, we place the
correctness proof in our technical report [24].

5.1 Base non-speculative protocol
The base protocol is a multi-versioned, SI-compliant algorithm that
relies on a fully decentralized concurrency control scheme similar
to that employed by recent, highly scalable systems, like Spanner
or Clock-SI [6, 7]. In the following, we describe the main phases of
STR’s base protocol.

Execution. When a transaction is activated, it is attributed a read
snapshot, noted as RS, equal to the physical time of the node inwhich
it was originated. The read snapshot determines which data item
versions are visible to the transaction. Upon a read, a transaction T
observes the most recent version v having final commit timestamp
v .FC ≤ T .RS . However, if there exists a pre-committed version v ′
with a timestamp smaller thanT .RS , thenT must wait until the pre-
committed version is committed/aborted. In fact, as will become
clear shortly, the pre-committed version may eventually commit
with a timestamp FC ≤ RS — in which case T should include it in
snapshot — or FC > RS — in which case it should not be visible to
T .

Note that read requests can be sent to any replica that maintains
the requested data item. Also, if a node receives a read request with
a read snapshot RS higher than its current physical time, the node
delays serving the request until its physical clock catches up with
RS . Instead, writes are always processed locally and are maintained
in a transaction’s private buffer during the execution phase.

Certification. Read-only transactions can be immediately commit-
ted after they complete execution. Update transactions, instead, first
check for write-write conflicts with concurrent local transactions.
If T passes this local certification stage, it activates a, 2PC-based,
global certification phase by sending a pre-commit request to the
master replicas of any key it updated and for which the local node
is not a master replica. If a master replica detects no conflict, it
acquires pre-commit locks, and proposes its current physical time
for the pre-commit timestamp.

Replication. If a master replica successfully pre-commits a trans-
action, it synchronously replicates the pre-commit request to its
slave replicas. These, in their turn, send to the coordinator their
physical time as proposed pre-commit timestamps.

Commit. After receiving replies from all the replicas of updated
partitions, the coordinator calculates the commit timestamp as the
maximum of the received pre-commit timestamps. Then it sends a
commit message to all the replicas of updated partitions and replies
to the client. Upon receiving a commit message, replicas mark the
version as committed and release the pre-commit locks.

This protocol has a potential for high scalability. Unfortunately,
though, in geo-distributed settings, its throughput can be severely
limited by convoy effects caused by the pre-commit locks. These
locks are held throughout the transactions’ certification phase,
which in geo-distributed data stores entail the latency of at least one
inter-data center RTT —- or more if data partitions are replicated
in different data-centers to allow for disaster recovery. Through-
out this period, concurrent transactions attempting to read pre-
committed data are conservatively blocked, which inherently lim-
its the maximum degree of concurrency (and hence throughput)
achievable by the system.

As we mentioned, the idea at the basis of STR is to tackle this
problem by allowing transactions to observe pre-committed ver-
sions. Materializing this idea to build STR raised several technical
challenges: guaranteeing (SPSI-)safe speculations (§ 5.2), maximiz-
ing the likelihood of successful speculation (§ 5.3) and ensuring
robust performance even in adverse workload settings (§ 5.5) .

5.2 Enabling SPSI-safe speculations
Let us discuss how to extend the base protocol described above to
incorporate speculative reads, while preserving SPSI semantics. The
example executions in Fig. 1 illustrate two possible anomalies that
could lead transactions to observe non-atomic snapshots, which
violate property SPSI-1 (Fig. 1.a), or snapshots reflecting the execu-
tion of two conflicting transactions, which violate property SPSI-3
(Fig. 1.b).

STR tackles these issues as follows. First, it restricts the use of
speculative reads, as mandated by SPSI-1, by allowing to observe
only pre-committed versions created by local transactions. To this
end, when a transaction local commits, it stores in the local node
the (pre-committed) versions of the data items that it updated and
that are also replicated by the local node. This is sufficient to rule
out the anomalies illustrated in Fig. 1, but it still does not suffice
to ensure properties SPSI-1 and SPSI-3. There are, in fact, two
other subtle scenarios that have to be taken into account, both
involving speculative reads of versions created by local committed
transactions that updated some remote key.

The first scenario, illustrated in Fig. 2, is associated with the
possibility of including in the same snapshot a local committed
transaction, T 1 — which will eventually abort due to a remote con-
flict, say with T 2 — and a remote, final committed transaction, T 3,
that has read from T2. In fact, the totally decentralized nature of
STR’s concurrency protocol, in which no node has global knowl-
edge of all the transactions committed in the system, makes it
challenging to detect scenarios like the ones illustrated in Fig. 2
and to distinguish them, in an exact way, from executions that did
not include transaction T 2 — in which case the inclusion of T 1 and
T 3 in T 4 would have been safe.

The mechanism that STR employs to tackle this issue is based
on the observation that such scenarios can arise only in case a
transaction, like T4, attempts to read speculatively from a local
committed transaction, like T1, which has updated some remote
key. The latter type of transactions, which we call “unsafe” trans-
actions, may have in fact developed a remote conflict with some
concurrent final committed transaction (which may only be detected
during their global certification phase), breaking property SPSI-3.

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA Zhongmiao Li, Peter Van Roy, and Paolo Romano

N1

N2
C, D

T1 Local-commit
A, B

Write(A=A1)
Write(C=C1)

Write(C=C2)
Write(E=E2)
T2 Final Commit Prepare C1: Abort

T4 Exec

Read(A)->A1

Read(B)->B3

N3
E, F

T3 Final Commit

Read(E)->E2

Write(B=B3)

C= C2

E= E2

B= B3

Figure 2: History exemplifying indirect conflicts between a local
committed transaction, T 1, and a final committed transaction orig-
inated at a different node, T 3. If T 4 included both T 1 and T 3 in its
snapshot, it would violate SPSI property 3.

In order to detect these scenarios, STR maintains two additional
data structures per transaction: OLC (Oldest Local-Commit) and
FFC (Freshest Final Commit), which track, respectively, the read
snapshot of the oldest “unsafe” local committed transaction and
the commit timestamp of the most recent remote final committed
transaction, which the current transaction has read from (either
directly or indirectly). Thus, STR blocks transactions when they
attempt to read versions that would cause FFC to become larger
than OLC . This mechanism prevents including in the same snap-
shot unsafe local committed transactions along with remote final
committed transactions that are concurrent and may conflict with
them. For example, in Fig. 2, STR blocks T4 when attempting to
read B from T 3, until the outcome of T 1 is determined (not shown
in the figure).

The second scenario arises in case a transaction T attempts
to speculatively read a data item d that was updated by a local
committed transaction T ′, where d is not replicated locally. In this
case, if T attempted to remotely read d , it may risk to miss the
version of d created by T ′, which would violate SPSI-1. To cope
with this scenario, whenever an unsafe transaction local commits,
it temporarily (until it final commits or aborts) stores the remote
keys it updated in a special cache partition, tagging them with the
same local commit timestamp. This grants prompt and atomic (i.e.,
all or nothing) access to these keys to any local transaction that
may attempt to speculatively read them.

5.3 Promoting successful speculation via
Precise Clocks

Recall that, SPSI-1 requires that if a transactionT reads speculatively
from a local committed transaction T ′, and T ′ eventually final
commits with a commit timestamp that is larger than the read
snapshot of T , then T has to be aborted. Thus, in order to increase
the chance of success of speculative reads, it is important that the
commit timestamps attributed to final committed transactions are
“as small as possible”.

To this end, STR proposes a new timestamping mechanism, i.e.,
Precise Clocks, which is based on the following observation. The
smallest final commit timestamp, FC , attributable to a transaction
T that has read snapshot RS must ensure the following properties:
• P1. T .FC > T .RS , which guarantees that if T reads a data item
version with timestamp RS and updates it, the versions it generates
has larger timestamp than the one it read.
• P2. T .FC is larger than the read snapshot of all the transactions

T1, . . . ,Tn , which (a) read, beforeT final committed, any of the keys
updated by T , and (b) did not see the versions created by T , i.e.,
T .FC >max{T1.RS, . . . ,Tn .RS}. This condition is necessary to en-
sure thatT is serialized after the transactionsT1, . . . ,Tn , or, in other
words, to track write-after-read dependencies among transactions
correctly.

Ensuring property P1 is straightforward: instead of proposing
the value of the physical clock at its local node as pre-commit times-
tamp, the transaction coordinator proposes T .RS + 1. In order to
ensure property P2, STR associates to each data item an additional
timestamp, called LastReader , which tracks the read snapshot of
the most recent transaction that has read that data item. Hence,
in order to ensure property P2, the nodes involved in the global
certification phase of transaction T propose, as pre-commit times-
tamp, the maximum among the LastReader timestamps of any key
updated by T on that node.

It can be easily seen that the Precise Clocks mechanism allows
to track write-after-read dependencies among transaction at a finer
granularity than the timestamping mechanism used in the base
protocol — which, we recall, is also the mechanism used by non-
speculative protocols like, e.g., Spanner [6] or Clock-SI [7]. Indeed,
as we will show in §6, the reduction of commit timestamps achiev-
able via Precise Clocks does not only increase the chances of suc-
cessful speculation, but also reduces abort rate for non-speculative
protocols.

5.4 Algorithmic definition
The pseudocode of the STR protocol is reported in Algorithms 1
and 2, which describe, respectively, the behavior of transaction
coordinators and of data partitions.

Start transaction. Upon activation, a transaction is assigned a
read snapshot (RS) equal to the current value of the node’s physical
clock. Its FFC is set to 0 and its OLCSet, i.e., the set storing the
identifiers and read timestamps of the unsafe transactions from
which the transaction reads from, to {< ⊥,∞ >} (Alg1, 1-6).

Speculative read. Read requests to locally-replicated keys are
served by local partitions. A read request to a non-local key is
first served at the cache partition to check for updates from pre-
vious local-committed transactions. If no appropriate version is
found, the request is sent to any (remote) replica of the partition
that contains this key (Alg1, 8-12). Upon a read request for a key, a
partition updates the LastReader of the key and fetches the latest
version of the key with a timestamp no larger than the reader’s
read snapshot (Alg2, 6-7). If the fetched version is committed, or
it is local-committed and the reader is reading locally, then the
partition returns the value and id of the transaction that created
the value; otherwise, the reader is blocked until the transaction’s
final outcome is known (Alg2, 8-14). The reader transaction up-
dates its OLCSet and FFC, and only reads the value if the minimum
value in its OLCSet is greater than or equal than its FFC. If not, the
transaction waits until the minimum value in its OLCSet becomes
larger than its FFC (Alg1, 13-15). This condition may never become
true if the transaction that created the fetched value conflicts with
transactions already contained in the reader’s snapshot. In that
case, the reader will be aborted after this conflict is detected and
stop waiting.

Transparent Speculation in
Geo-Replicated Transactional Data Stores HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Algorithm 1: Coordinator protocol
1 function transaction startTx()
2 Tx.RS←current_time()
3 Tx.Coord←self()
4 Tx.OLCSet← {< ⊥, ∞ > }
5 Tx.FFC←0
6 return Tx

7 function value read(transaction Tx, key Key)
8 if Key is locally replicated or in cache then
9 <Value, Tw>← local_partition(Key).readFrom(Tx, Key)
10 else
11 send {read,Tx,Key}to any p ∈ Key.partitions()
12 wait receive <Value, Tw>
13 Tx.OLCSet.put(Tw, min_value(Tw.OLCSet)}
14 Tx.FFC←max(Tx.FFC, Tw.FFC)
15 return Value when min_value(Tx.OLCSet) >= Tx.FFC

16 function result commitTx(transaction Tx)
// Local certification

17 LCTime←Tx.RS+1
18 for P, Keys ∈ Tx.WriteSet
19 if local_replica(P).prepare(Tx) = <prepared, TS>
20 LCTime← max(LCTime, TS)
21 else
22 abort(Tx)
23 if Tx updates non-local keys
24 Tx.OLCSet.put(self(), Tx.RS)
25 send local commit requests to local replicas of updated partitions

// Global certification
26 send prepare requests to remote master of updated partitions
27 wait receive [prepared, TS] from Tx.InvolvedReplicas
28 wait until all dependencies are resolved
29 CommitTime←max(all received TS)
30 commit(Tx, CommitTime)
31 return committed
32 wait receive aborted
33 abort(Tx)
34 return aborted

34 function void commit(transaction Tx, timestamp CT)
35 Tx.FFC←CT
36 Tx.OLCSet← {< ⊥, ∞ > }
37 for Tr with data dependencies from Tx
38 if Tr.RS >= CT then
39 remove Tx from Tr’s read dependency
40 Tr.OLCSet.remove(Tx)
41 Tr.FFC←max(Tr.FFC, CT)
42 else
43 abort(Tr)
44 atomically commit Tx’s local committed updates

and remove Tx’s cached updates
45 send commit requests to remote replicas of updated partitions

46 function void abort(transaction Tx)
47 abort transactions with dependencies from Tx
48 atomically remove Tx’s local committed updates
49 send abort requests to remote replicas of updated partitions

Local certification. After the transaction finishes execution, its
write-set is locally certified. The local certification is essentially a
local 2PC across all local partitions that contain keys in the trans-
action’s write-set, including the cache partition if the transaction
updated non-local keys (Alg1, 18-22). Each partition prepares the
transaction if no write-write is detected, and proposes a prepare
timestamp according to the Precise Clocks rule (Alg2, 15-24). Upon
receiving replies from all updated local partitions (including the
cache partition), the coordinator calculates the local-commit times-
tamp as the maximum between the received prepare timestamps
and the transaction’s read snapshot plus one. Then, it notifies all
the updated local partitions. A notified partition converts the pre-
committed record to local-committed state with the local commit
timestamp (Alg1, 25 and Alg2, 25-29). If the transaction updates
non-local keys, the transaction is an ‘unsafe’ transaction, so it adds
its snapshot time to its OLCSet (Alg1, 23-24).

Global certification and replication. After local certification,
the keys in the transaction’s write-set that have a remote master
are sent to their corresponding master partitions for certification
(Alg1, 26). As for the local certification phase, master partitions
check for conflicts, propose a prepare timestamp and pre-commit
the transaction (Alg2, 15-21). Then, a master partition replicates the
prepare request to its slave replicas and replies to the coordinator
(Alg2, 22-24). After receiving a replicated prepare request, the slave
partition aborts any conflicting local-committed transactions and
stores the prepare records. As slave replicas can be directly read by-
passing their master replica, slave replicas also track the LastReader
for keys; so, each slave also proposes a prepare timestamp for the
transaction to the coordinator (Alg2, 31-35).

Final commit/abort. A transaction coordinator can final commit
a transaction, if (i) it has received prepare replies from all repli-
cas of updated partitions, and (ii) all data dependencies and flow
dependencies are resolved. The commit decision, along with the
commit timestamp, is sent to to all non-local replicas of updated
partitions.T ’s FFC is updated to its own commit timestamp, and its
OLCSet is set to infinity (Alg1, 35-45). Upon abort, the coordinator
removes any local-committed updated version, triggers the abort
of any dependent transaction and sends the decision to remote
replicas (Alg1, 46-49).

5.5 Dynamically tuning speculation
Speculative reads are based on the optimistic assumption that local-
committed transactions are unlikely to experience contention with
remote transactions. Although our experiments in §6 show that
this assumption is met in well-known benchmarks such as TPC-C
and RUBiS, this is an application-dependent property. In fact, the
unrestrained use of speculation in adverse workloads can lead to
excessive misspeculation and degrade performance.

In order to enhance the performance robustness of STR, we cou-
pled it with a lightweight self-tuning mechanism that dynamically
decides whether to enable or disable the speculative mechanisms,
depending on the workload characteristics. The tuning scheme
takes a black-box approach that is agnostic of the data store imple-
mentation and also totally transparent to application developers. It
relies on a simple feedback-driven control loop, steered by a central-
ized process that gathers measurements from all nodes in a periodic
fashion, compares the throughput achieved with speculative reads
enabled and disabled, and accordingly configures the system.

We opted for a simple and quickly converging scheme, instead
of more complex approaches (e.g., based on off-line trained clas-
sifiers or more sophisticated on-line search strategies [36]), since
our experimental findings confirm that, for a given workload, the
decision whether or not to use speculation has a straightforward
effect on throughput (no jitterlike behavior).

Our current implementation allows system administrators to
initiate the self-tuning process periodically or upon request. The
current self-tuning scheme could thus be naturally extended to
detect statistically meaningful changes of the average input load
via robust change detection algorithms, like CUSUM [3], and react
to these events by re-initiating the self-tuning mechanism.

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA Zhongmiao Li, Peter Van Roy, and Paolo Romano

Algorithm 2: Partition protocol
1 upon receiving [read, Tx, Key] by partition P
2 reply P.readFrom(Tx, Key)

3 upon receiving [prepare, Tx, Updates] by partition P
4 reply P.prepare(Tx, Updates)

30 upon receiving [replicate, Tx, Updates]
31 abort all conflicting pre-committed transactions

and transactions read from them
32 PT←max(K.LastReader+1 for K ∈ Updates)
33 for <K, V> ∈ Updates do
34 KVStore.insert(K, <Tx, pre-committed, PT, V>)
35 reply [prepared, PT]to Tx.Coord

5 function <value, transaction> readFrom(tx Tx, key Key)
6 Key.LastReader←max(Key.LastReader, Tx.RS)
7 <Tw, State, Value>←KVStore.latest_before(Key, Tx.RS)
8 if State = committed
9 return <Value, Tw>
10 else if State = local-committed and local_read()
11 add data dependence from Tx to Tw
12 return <Value, Tw>
13 else
14 Tw.WaitingReaders.add(Tx)

15 function <state, timestamp> prepare(tx Tx, set Updates)
16 if exists any concurrent conflicting transaction
17 return <aborted, ⊥ >
18 else
19 PT←max(K.LastReader+1 for K ∈ Updates)
20 for {K, V} ∈ Updates do
21 KVStore.insert(K, <Tx, pre-committed, PT, V>)
22 if P.isMaster() = true
23 send <replicate, Tx> to its replicas
24 return <prepared, PrepTime>

25 function void localCommit(transaction Tx, timestamp LCT,
set Updates)

26 for <K, V> ∈ Updates do
27 KVStore.update(K, <Tx, local-committed, LCT, V>)
28 unblock waiting preparing transactions
29 reply to waiting readers

5.6 Fault tolerance
With respect to conventional/non-speculative 2PC based trans-
actional systems, STR does not introduce additional sources of
complexity for the handling of failures. Like any other approach,
e.g., [6, 7, 31, 32], based on 2PC, some orthogonal mechanism (typ-
ically based on replication [14]) has to be adopted to ensure the
high availability of the coordinator state.

6 EVALUATION
This section presents an extensive experimental study aimed at
answering the following key questions:

(1) What performance gains can be achieved by STR by allowing
transactions to speculatively read pre-committed data?

(2) How does STR compare with systems, like PLANET [28],
which employ external speculation techniques and that, un-
like STR, require programmers to develop compensation
logics to deal with possible misspeculations?

(3) Which workload characteristics have the strongest impact
on the performance of STR?

(4) How relevant is the Precise Clocks technique, when used
in conjunction with both speculative and non-speculative
protocols?

(5) How effective is STR’s self-tuning mechanism to ensure
robust performance in presence of workloads that are not
favourable to speculative techniques?

Baselines. The first baseline protocol we consider is Clock-SI [7],
which we extended to support replication, as explained in §5.1. We
refer to this protocol as ClockSI-Rep. ClockSI-Rep is representative
of state of the art transactional protocols based on decentralized
physical clocks and it provides Snapshot Isolation, namely the con-
sistency guarantee that SPSI extends to accommodate speculation.
Thus, ClockSI-Rep is an appropriate baseline to evaluate the per-
formance gains achievable by STR thanks to the use of speculative
reads and Precise Clocks.

The second baseline we consider is representative of recent ap-
proaches [15, 18, 28] that propose programming models aimed to
support external speculation techniques (in contrast to STR’s inter-
nal/transparent speculation), i.e., exposing uncommitted results to
clients. Supporting it comes at the cost of extra complexity for the
programmers, who are forced to identify the possible concurrency
anomalies that may affect their programs and develop the corre-
sponding compensation logics (which is not needed for STR). We
build this baseline, which we call Ext-Spec, by developing a variant
of ClockSI-Rep that externalizes to client the results of a transaction,
once it passes its local certification phase and is still undergoing
its global certification phase. Note that no compensation logic is
executed when using Ext-Spec: this is done for simplicity and since
in the considered benchmarks, speculation can lead only to the
production of incorrect replies to clients, but does not compro-
mise the internal consistency of the server-side of the application.
It should be noted that this choice actually favors Ext-Spec, as it
spares this baseline from the additional overheads associated with
the execution of potentially complex compensation logic.

Since Ext-Spec and ClockSI-Rep share the same (distributed)
concurrency control mechanism, as we will see, they deliver very
similar peak throughput, final latency and abort rate. However,
Ext-Spec’s use of external speculation can reduce speculative (but
not final) latency, with respect to ClockSI-Rep.

Experimental setup.We implemented the baseline protocols and
STR in Erlang, based onAntidote1, an open-source platform for eval-
uating distributed consistency protocols (such as the one in [1]).
More precisely, the in-memory backend of Antidote (which pro-
vides a key-value store interface) has been extended to develop
fully-fledged prototypal implementations of STR and of the afore-
mentioned baselines. The code of all protocols used in this study is
publicly accessible at https://github.com/marsleezm/STR.

Our experimental testbed is deployed across nine DCs of Amazon
EC2 spanning 4 continents. We use a replication factor of six, so
each partition has six replicas, and each instance holds one master
replica of a partition and slave replicas of five other partitions.

Load is injected by spawning one thread per emulated client
in some node of the system. Each client issues transactions to a
pool of local transaction coordinators and retries a transaction if
it gets aborted. We use two metrics to evaluate latency: the final
latency of a transaction is calculated as the time elapsed since its
first activation until its final commit (including possible aborts and
retries); for Ext-Spec, we report also the speculative latency, which is
defined as the time since the first activation of a transaction until its
last speculative commit, i.e., the one after which it is final committed.
Besides reporting abort rate, for Ext-Spec we also report the rate

1https://github.com/SyncFree/antidote

https://github.com/marsleezm/STR
https://github.com/SyncFree/antidote

Transparent Speculation in
Geo-Replicated Transactional Data Stores HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

0.0

0.5

1.0

1.5

C
o
m

m
it

s
(K

 t
x
s/

s)
ClockSI-Rep Ext-Spec STR

0.0
0.2
0.4
0.6
0.8

A
b
o
rt

 r
a
te

0 5 10 15 20 25 30 35 40

Number of clients per server

102

103

La
te

n
cy

 i
n
 l
o
g
(m

s)

(a) Synth-A.

0.0
0.2
0.4
0.6
0.8
1.0

C
o
m

m
it

s
(K

 t
x
s/

s)

ClockSI-Rep Ext-Spec STR

0.0
0.2
0.4
0.6
0.8

A
b
o
rt

 r
a
te

0 5 10 15 20 25 30 35 40

Number of clients per server

102

103

La
te

n
cy

 i
n
 l
o
g
(m

s)

(b) Synth-B.

Figure 3: The performance of different protocols for two syn-
thetic workloads, representative of a favourable (Synth-A) and an
unfavourable (Synth-B) scenario for internal speculation. In the la-
tency plot, we use solid lines for final latency and dashed lines for
speculative latency; in the abort rate plot, we report total abort rate
with solid lines and misspeculation rate with dashed lines.

of external misspeculation, i.e., the percentage of transactions that
were speculatively committed but finally aborted triggering the
activation of some compensation logic (which we do not implement
in this study, for simplicity). Each reported result is obtained from
the average of at least three runs. As the standard deviations are
low, we omit reporting them in the plots to enhance readability.

Unless otherwise specified, STR uses the self-tuning mechanism
described in §5.5 to enable and disable the use of internal specu-
lation. The self-tuning process gathers throughput measurements
with a 10 seconds frequency. The reported results for STR refer to
the final configuration identified by the self-tuning process.

6.1 Synthetic workloads
Let us start by considering a synthetic benchmark, which allows
for generating workloads with precisely identifiable and very het-
erogeneous characteristics. The synthetic benchmark generates

transactions with zero “think time”, i.e., client threads issue a new
transaction as soon as the previous one is final committed.

Transaction and data access. A transaction reads and updates 10
keys. When accessing a data partition, 10% of the accesses goes to
a small set of keys in that data partition, which we call a hotspot,
and we adjust the size of the hotspot to control contention rate.
Each data partition has two million keys, of which one million are
only accessible by locally-initiated transactions and the others are
only accessible by remote transactions. This allows adjusting in an
independent way the likelihood of contention among transactions
initiated by the same local node (local contention) and among
transactions originated at remote nodes (remote contention).

We consider two workloads2, which we obtain by varying the
size of the hotspot sizes in the local and remote data partitions
in order to synthesize two extreme scenarios that can be seen as
representative of best and worst cases for internal speculation:

(1) the “best case" workload, noted Synth-A, generates very high
local contention, by using a single key in the hot spots of
local partitions, but very low remote contention, by using
800 keys in the hot spots of remote partitions. Due to high
likelihood of local contention, transactions are very likely
to speculatively read versions that were local committed by
some concurrent local transaction. Since remote contention
is very low, though, internal speculation is very likely to
succeed.

(2) the “worst case” workload, noted Synth-B, has both very high
local and remote contention, by using 10, resp. 3, keys in the
hot spots of local, resp. remote, partitions. Like in workload
Synth-A, transactions frequently use speculative reads, but,
in this case, internal speculation is almost certainly doomed
to fail due to the high remote contention.

Synth-A. Fig. 3.(a) clearly highlights the potential benefits that
internal speculation can provide in favourable workload conditions.
Both ClockSI-Rep and Ext-Spec fail to achieve any scalability and
thrash, due to high abort rates (see middle plot), as soon as the
degree of concurrency in the system grows to more than 2 clients.
Conversely, STR scales almost linearly up to 20 clients and through-
put saturates only at around 40 clients, achieving a 11.5× gain with
respect to both baselines (which achieve very similar throughput
levels). Also, the abort rate of STR is significantly lower than for the
two baseline protocols. This is explicable considering that, with the
baselines, any transactionT that read a key pre-committed by some
concurrent transaction T ′ is forced to block; when T ′ commits,
it is very likely that T ′ generates a commit timestamp larger the
read snapshot of T , which causes T to abort. In the same scenario,
though, STR would allow T to speculatively read from T ′; also, the
commit timestamp attributed to T ′ by Precise Clocks is likely to be
smaller in absolute terms, and, with a higher probability than for
the baselines, also smaller than the read timestamp ofT . In this case,
STR spares T from aborting, as well as from blocking — this allows
STR not only to minimize the wasted work due to transactions’
rollbacks, but also to enhance the degree of parallelism sustainable
by the system.

2The evaluation results of additional workloads can be found in [24].

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA Zhongmiao Li, Peter Van Roy, and Paolo Romano

Techniques
of keys

10 20 40 100

Physical 1/59% 1/60% 1/60% 1/72%
Precise 1.07/38% 1.07/38% 1.1/35% 1.41/48%

Physical SR 0.68/84% 0.57/83% 0.59/77% 0.97/75%
Precise SR 1.22/47% 1.21/44% 1.31/36% 1.59/49%

Table 1: Normalized throughput/abort rate of different techniques,
varying a transaction’s number of keys to update. Physical/Precise
denotes the use of Physical Clocks/Precise Clocks; SR denotes that
speculative reads are enabled. Throughputs reported in each col-
umn are normalized according to the throughput of ‘Physical’ in
that column.

It should be noted that since local contention dominates in this
workload, most of the aborts occur during the local certification
phase of transactions. Also, if transactions pass local certification,
they are likely to avoid conflicts with remote transactions and,
hence, commit with high probability. These considerations explain
why Ext-Spec incurs an abort rate that is very similar to the one of
ClockSI-Rep and to incur a very small external misspeculation rate.

As for the latency, the bottom plot shows about one order mag-
nitude smaller final latency for STR compared to the baselines with
more than 2 clients. This is due to the fact that both ClockSI-Rep
and Ext-Spec are thrashing due to high contention in this load
range. For analogous reasons, the speculative latency of Ext-Spec is
only lower than the final latency of STR at very low load (2 clients),
where the abort rate is still relatively low.

Synth-B. Fig. 3.(b) shows that, even in such an unfavourable work-
load for internal speculation, STR can provide robust performance
that is at par with the baseline protocols. Thanks to its self-tuning
capabilities, in fact, STR automatically disables the use of specula-
tive reads for 30 or more clients, which correspond to load levels in
which internal speculation has an adverse effect on performance.

This is illustrated in Fig. 4, which reports the performance
achieved by STR when statically configured to enable or disable
speculative reads, as well as when using the self-tuning mecha-
nism to select between these two configurations. More in detail,
the y-axis of this figure reports the throughput of each variant of
STR normalized with respect to the throughput of the variant that
achieves best performance for the considered workload and number
of clients (on the x-axis).

By Fig. 4, we can observe that, indeed, the use of speculative
reads reduces throughput by around 40% in workload Synth-B with
40 clients and that the proposed self-tuning scheme can correctly
identify the optimal configuration. By this plot, we can also observe
that the choice of enabling/disabling internal speculation is not
only affected by the workload type — as expected, speculative reads
are beneficial in Synth-A but they are not in Synth-B — but also by
the level load, fixed a given workload — speculative reads do not
actually penalize throughput in Synth-B with 2 clients. Moreover,
Figure 4 shows that without enabling speculative techniques, STR
achieves similar throughput as the non-speculative baseline. This
represents an experimental evidence supporting the efficiency of
the proposed mechanism.

Workload configurations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 t

h
ro

u
g
h
p
u
t

No SR
SR
Auto

Synth-A, 2 clients Synth-A, 40 clients Synth-B, 2 clients Synth-B, 40 clients

Figure 4: Normalized throughput with respect to the best perform-
ing static configuration. No SR/SR denote enabling/disabling stat-
ically speculative reads in STR; Auto denotes the use of the self-
tuning technique presented in § 5.5.

Benefits and overhead of Precise Clocks. This experiment aims
at quantifying the benefits stemming from the use of the Precise
Clocks mechanism, when used in conjunction with both specu-
lative and non-speculative protocols. To this end, in Table 1, we
consider four alternative systems obtained by considering ClockSI-
Rep (noted Physical) and extending it to use Precise Clocks (noted
Precise) and/or speculative reads (noted SR). In this study we vary
the transactions’ duration, and hence the corresponding abort cost,
by varying the number of keys updated by a transaction. To main-
tain the contention level stable when increasing the number of keys
accessed by transactions, the key space is increased by the same
factor.

Table 1 shows that Precise Clocks significantly reduces abort rate
and can achieve as much as 38% of throughput gain over Physical
Clock for a non-speculative protocol. Generally, the more keys
transactions update, the larger is the abort cost and the larger the
throughput gain achieved by Precise Clocks. Another interesting
result is that enabling speculative reads with Physical Clock actually
has negative effects on abort rate and throughput. In fact, as we
have discussed in 5.3, physical clock based protocols, like Clock-SI
or Spanner [6, 7], tend to generate large commit timestamp, which
reduces the chances that speculative reads succeed. Finally, the
collective use of Precise Clocks and speculative reads results in the
best throughput gain (59% for transactions updating 100 keys).

We also assessed the additional storage overhead introduced by
the use of Precise Clocks, which, we recall, requires maintaining
additional metadata (a timestamp) for each accessed key. Our mea-
surement shows that for the TPC-C and RUBiS benchmarks (§6.2),
Precise Clocks requires about 9% of extra storage.

6.2 Macro benchmarks
Next, we evaluate the performance of STR by implementing two
realistic benchmarks, namely TPC-C 3 and RUBiS 4. Unlike the
previous synthetic benchmarks, TPC-C and RUBiS specify several
seconds of “think time” between consecutive operations issued by
a client. Hence, we need to use a much larger client population to
saturate the system.
3http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
4http://rubis.ow2.org/

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://rubis.ow2.org/

Transparent Speculation in
Geo-Replicated Transactional Data Stores HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

0.0
0.5
1.0
1.5
2.0
2.5

C
o
m

m
it

s
(K

 t
x
s/

s)

ClockSI-Rep Ext-Spec STR

0.0
0.2
0.4
0.6
0.8

A
b
o
rt

 r
a
te

0 200 400 600 800 1000 1200

(a) 5% new order, 83% payment

102

103

104

La
te

n
cy

(m
s)

 i
n
 l
o
g

0 200 400 600 800 1000 1200 1400 1600

(b) 45% new order, 43% payment

0 200 400 600 800 1000 1200

(c) 5% new order, 43% payment
Number of clients per server

Figure 5: The performance of different protocols for three TPC-C workloads. In the latency plot, we use solid lines for final latency and
dashed lines for speculative latency; in the abort rate plot, we report total abort rate with solid lines and misspeculation rate with dashed
lines.

TPC-C. Our TPC-C workload consists of three representative
transactions: the payment transaction, which has very high lo-
cal contention and low remote contention; new-order transaction,
which has low local contention and high remote contention; and
order-status, a read-only transaction. We consider three workload
mixes: 5% new-order, 83% payment and 12% order-status (TPC-C A,
Fig. 5.(a)); 45% new-order, 43% payment and 12% order-status (TPC-
C B, Fig. 5.(b)) and 5% new-order, 43% payment and 52% order-status
(TPC-C C, Fig. 5.(c)). Each server is populated with five warehouses,
of which it is the master replica.

Figure 5 shows that speculative reads bring significant through-
put gains, as all three workloads have high degree of local con-
tention. Compared with the baseline protocols (ClockSI-Rep and
Ext-Spec), STR achieves significant speedup especially for the TPC-
C A (6.13×), which has the highest degree of local contention due to
having large proportion of payment transaction. For TPC-C B and
TPC-C C, STR achieve 2.12× and 3× of speedup respectively. We see
that the use of external speculation in this case barely brings any im-
provement on throughput over ClockSI-Rep. We also observe that
the use of external speculation can significantly reduce the (specu-
lative) latency perceived by clients, but only in low load conditions.
This can be explained by looking at the abort rate plots, which
clearly show that, as load increases, the likelihood that external
speculation is successful quickly decreases.

In fact, with larger number of clients (more than 1000 clients per
server), the latency of Ext-Spec and ClockSI-Rep is on the order of
5-8 seconds, as a consequence of the high abort rate incurred by
these protocols. Conversely, STR still delivers a latency of a few
hundred milliseconds.

RUBiS. RUBiS models an online bidding system and encompasses
26 types of transactions, five of which are update transactions.
RUBiS is designed to run on top of a SQL database, so we performed
the following modifications to adapt it to STR’s key-value store
data model: (i) we horizontally partitioned database tables across
nodes, so that each node contains an equal portion of data of each
table; (ii) we created a local index for each table shard, so that some

0

5

10

15

20

C
o
m

m
it

s
(K

 t
x
s/

s)

ClockSI-Rep
Ext-Spec
STR

0.0
0.2
0.4
0.6
0.8

A
b
o
rt

 r
a
te

0 500 1000 1500 2000 2500 3000 3500 4000
102

103

104

La
te

n
cy

(m
s)

 i
n
 l
o
g

Number of clients per server

Figure 6: The performance of different protocols for RUBiS. In the
latency plot, we use solid lines for final latency and dashed lines for
speculative latency; in the abort rate plot, we report total abort rate
with solid lines and misspeculation rate with dashed lines.

insertion operations that require a unique ID can obtain the ID
locally (instead of updating a table index shared by all shards by
default). We run RUBiS’s 15% update default workload and use its
default think time (from 2 to 10 seconds for different transactions).

Also with this benchmark (see Figure 6) STR achieves remark-
able throughput gains and latency reduction. With 4000 clients
(level at which we hit the memory limit and were unable to load
more clients), STR achieves about 43% higher throughput. The fi-
nal latency gains of STR over the considered baselines extends up
to 10× latency reduction over ClockSI-Rep and Ext-Spec. Also in
this case, external speculation is effective in reducing speculative
latency only at very low load levels, before loosing effectiveness
and collapsing to the same performance of ClockSI-Rep.

7 CONCLUSION AND FUTUREWORK
This paper proposes STR, an innovative protocol that exploits spec-
ulative techniques to boost the performance of distributed transac-
tions in geo-replicated settings. STR is based on a novel consistency

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA Zhongmiao Li, Peter Van Roy, and Paolo Romano

criterion, which we call SPeculative Snapshot Isolation (SPSI). SPSI
extends the familiar SI criterion and shelters programmers from
subtle anomalies that can arise when adopting speculative trans-
action processing techniques. Furthermore, using STR requires no
source-code modification, and for both of these reasons it is fully
transparent to programmers.

STR builds on recent, highly scalable transactional protocols
based on physical clocks (like Clock-SI and Google’s Spanner) and
extends them with a novel item-based timestamping mechanism
(Precise Clocks), speculative reads and a self-tuning mechanism.
Via an extensive experimental study, we show that STR can achieve
striking gains (up to 11× throughput increase and 10× latency
reduction) in workloads characterized by low inter-data center
contention, while ensuring robust performance even in adverse
settings.

We identify two main avenues for future research. The first re-
search direction opened by this work is how to adapt both the
STR protocol and its underlying speculative correctness criterion
to cope with alternative consistency semantics, like Serializability
or Strict Serializability. Another interesting research opportunity
raised by this work is related to the design and evaluation of al-
ternative self-tuning mechanisms, e.g., based on different model-
ing methodologies (e.g., relying on white-box analytical models),
aimed at optimizing multiple KPIs (e.g., external mispeculation and
throughput) or supporting diverse speculation degrees for different
transactions’ types or at different nodes in a heterogeneous cluster.

ACKNOWLEDGEMENT
We are grateful to our shepherd Ali R. Butt and the anonymous re-
viewers, who providedmuch useful feedback that helped to improve
the paper. This work is partially funded by the LightKone project in
the European Union Horizon 2020 Framework Programme under
grant agreement 732505, by the Erasmus Mundus Doctorate Pro-
gramme under grant agreement 2012-0030 and by FCT via projects
UID/CEC/50021/2013 and PTDC/EEISCR/1743/2014.

REFERENCES
[1] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa, N. Preguiça,

and M. Shapiro. Cure: Strong semantics meets high availability and low latency.
In ICDCS ’16, pages 405–414. IEEE, 2016.

[2] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson, J.-M. Leon, Y. Li,
A. Lloyd, and V. Yushprakh. Megastore: Providing scalable, highly available
storage for interactive services. In CIDR ’11, volume 11, pages 223–234, 2011.

[3] M. Basseville and I. V. Nikiforov. Detection of Abrupt Changes: Theory and
Application. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and
recovery in database systems. 1987.

[5] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. JACM, 43(2):225–267, 1996.

[6] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, et al. Spanner: Google’s globally distributed
database. ACM TOCS, 31(3):8, 2013.

[7] J. Du, S. Elnikety, andW. Zwaenepoel. Clock-SI: Snapshot isolation for partitioned
data stores using loosely synchronized clocks. In SRDS ’13, pages 173–184. IEEE,
2013.

[8] J. Du, D. Sciascia, S. Elnikety, W. Zwaenepoel, and F. Pedone. Clock-RSM: Low-
latency inter-datacenter state machine replication using loosely synchronized
physical clocks. In DSN ’14, pages 343–354. IEEE, 2014.

[9] S. Duan, V. Thummala, and S. Babu. Tuning database configuration parameters
with iTuned. PVLDB ’09, 2(1):1246–1257, 2009.

[10] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. JACM, 35(2):288–323, 1988.

[11] S. Elnikety, F. Pedone, andW. Zwaenepoel. Database replication using generalized
snapshot isolation. In SRDS ’05, pages 73–84. IEEE, 2005.

[12] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. JACM, 32(2):374–382, 1985.

[13] G. Graefe, M. Lillibridge, H. Kuno, J. Tucek, and A. Veitch. Controlled lock
violation. In SIGMOD ’13, pages 85–96. ACM, 2013.

[14] J. Gray and L. Lamport. Consensus on transaction commit. ACM TODS, 31(1):133–
160, 2006.

[15] R. Guerraoui, M. Pavlovic, and D.-A. Seredinschi. Incremental consistency guar-
antees for replicated objects. In OSDI ’16, GA, 2016. USENIX Association.

[16] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan, K. Lai, S. Wu, S. G. Dhoot, A. R.
Kumar, A. Agiwal, et al. Mesa: Geo-replicated, near real-time, scalable data
warehousing. PVLDB ’14, 7(12):1259–1270, 2014.

[17] J. R. Haritsa, K. Ramamritham, and R. Gupta. The prompt real-time commit
protocol. IEEE TPDS, 11(2):160–181, Feb. 2000.

[18] P. Helland andD. Campbell. Building on quicksand. arXiv preprint arXiv:0909.1788,
2009.

[19] R. Jiménez-Peris, M. Patiño Martínez, B. Kemme, and G. Alonso. Improving the
scalability of fault-tolerant database clusters. In ICDCS ’02, pages 477–484. IEEE,
2002.

[20] E. P. Jones, D. J. Abadi, and S. Madden. Low overhead concurrency control for
partitioned main memory databases. In SIGMOD ’10, pages 603–614. ACM, 2010.

[21] R. Kotla, M. Balakrishnan, D. Terry, and M. K. Aguilera. Transactions with
consistency choices on geo-replicated cloud storage. Technical report, September
2013.

[22] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete. MDCC: Multi-data
center consistency. In Eurosys ’13, pages 113–126. ACM, 2013.

[23] L. Lamport. The part-time parliament. ACM TOCS, 16(2):133–169, May 1998.
[24] Z. Li, P. Van Roy, and P. Romano. Speculative transaction processing in geo-

replicated data stores. Technical Report 2, INESC-ID, Feb. 2017.
[25] J. Paiva, P. Ruivo, P. Romano, and L. Rodrigues. Autoplacer: Scalable self-tuning

data placement in distributed key-value stores. ACM TAAS, 9(4):19, 2015.
[26] R. Palmieri, F. Quaglia, and P. Romano. Aggro: Boosting STM replication via

aggressively optimistic transaction processing. In NCA ’10, pages 20–27. IEEE,
2010.

[27] R. Palmieri, F. Quaglia, P. Romano, and N. Carvalho. Evaluating database-oriented
replication schemes in software transactional memory systems. In IPDPSW ’10,
pages 1–8. IEEE, 2010.

[28] G. Pang, T. Kraska, M. J. Franklin, and A. Fekete. PLANET: making progress with
commit processing in unpredictable environments. In SIGMOD ’14, pages 3–14.
ACM, 2014.

[29] A. Pavlo, E. P. Jones, and S. Zdonik. On predictive modeling for optimizing
transaction execution in parallel oltp systems. PVLDB ’11, 5(2):85–96, 2011.

[30] S. Peluso, J. Fernandes, P. Romano, F. Quaglia, and L. Rodrigues. SPECULA:
Speculative replication of software transactional memory. In SRDS ’12, pages
91–100, 2012.

[31] S. Peluso, P. Romano, and F. Quaglia. Score: A scalable one-copy serializable
partial replication protocol. In Middleware ’12, pages 456–475. Springer-Verlag
New York, Inc., 2012.

[32] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and L. Rodrigues. When scalabil-
ity meets consistency: Genuine multiversion update-serializable partial data
replication. In ICDCS ’12, pages 455–465. IEEE, 2012.

[33] K. Ren, A. Thomson, and D. J. Abadi. An evaluation of the advantages and
disadvantages of deterministic database systems. PVLDB ’14, 2014.

[34] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins, M. Oancea,
K. Littlefield, D. Menestrina, S. Ellner, et al. F1: A distributed sql database that
scales. PVLDB ’13, 6(11):1068–1079, 2013.

[35] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage for geo-
replicated systems. In SOSP ’11, pages 385–400. ACM, 2011.

[36] R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edition, 1998.

[37] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H.
Hauser. Managing update conflicts in bayou, a weakly connected replicated
storage system. SOSP ’95, pages 172–182, New York, NY, USA, 1995. ACM.

[38] A. Thomson and D. J. Abadi. The case for determinism in database systems.
PVLDB ’10, 3(1-2):70–80, 2010.

[39] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi. Calvin:
fast distributed transactions for partitioned database systems. In SIGMOD ’12,
pages 1–12. ACM, 2012.

[40] G. Weikum and G. Vossen. Transactional information systems: theory, algorithms,
and the practice of concurrency control and recovery. Elsevier, 2001.

[41] P. T. Wojciechowski, T. Kobus, and M. Kokocinski. State-machine and deferred-
update replication: Analysis and comparison. IEEE TPDS, PP(99):1–1, 2016.

	Abstract
	1 Introduction
	2 Related Work
	3 System and data model
	4 The SPSI consistency model
	5 The STR protocol
	5.1 Base non-speculative protocol
	5.2 Enabling SPSI-safe speculations
	5.3 Promoting successful speculation via Precise Clocks
	5.4 Algorithmic definition
	5.5 Dynamically tuning speculation
	5.6 Fault tolerance

	6 Evaluation
	6.1 Synthetic workloads
	6.2 Macro benchmarks

	7 Conclusion and future work
	References

