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Abstract—As the wealth of information available on the web
keeps growing, being able to harvest massive amounts of data has
become a major challenge. Web crawlers are the core components
to retrieve such vast collections of publicly available data. The
key limiting factor of any crawler architecture is however its
large infrastructure cost. To reduce this cost, and in particular
the high upfront investments, we present in this paper a geo-
distributed crawler solution, UniCrawl. UniCrawl orchestrates
several geographically distributed sites. Each site operates an
independent crawler and relies on well-established techniques
for fetching and parsing the content of the web. UniCrawl splits
the crawled domain space across the sites and federates their
storage and computing resources, while minimizing thee inter-site
communication cost. To assess our design choices, we evaluate
UniCrawl in a controlled environment using the ClueWeb12
dataset, and in the wild when deployed over several remote
locations. We conducted several experiments over 3 sites spread
across Germany. When compared to a centralized architecture
with a crawler simply stretched over several locations, UniCrawl
shows a performance improvement of 93.6% in terms of network
bandwidth consumption, and a speedup factor of 1.75.

Keywords—web crawler, geo-distributed system, cloud federa-
tion, storage, map-reduce.

I. INTRODUCTION

Over the last thirty years, publicly available digital data has
grown exponentially, and it will continue to do so. Volumes
are projected to reach around 40 zettabytes by 2020, or
equivalently a few gigabytes per person [29].1 This data
contains very rich and valuable information, and its mining
and exploitation will drive growth in all sectors. Consequently,
many data-oriented companies have recently emerged and more
are expected to come to the market in the coming years.
Interest for extracting intelligence from data goes beyond
traditional Internet applications, such as search engines and
recommendation systems, to areas like business planning,
marketing analysis, etc.

Most publicly available digital data on the web is in an
unstructured, or loosely structured, format. Thus, some pro-
cessing is necessary in order to extract meaningful information.
The very first step of this processing, that is constructing the
data collection, is usually achieved using a web crawler. A
web crawler accesses remote servers on the Internet in order
to fetch, process and store web pages. The crawler starts from
some initial seed URLs, store the corresponding web pages for
later processing, and then extracts links to other web pages.
Those links are themselves subsequently crawled. This process

1 A zettabyte corresponds to one thousand exabytes, that is 1021 bytes.

can be repeated until a given depth, and pages are periodically
re-fetched to discover new pages and to detect updated content.

Due to the size of the web, it is mandatory to make the
crawling process parallel [23] on a large number of machines
to achieve a reasonable collection time. This requirement
implies provisioning large computing infrastructures. Existing
commercial crawlers, such as Google or Bing rely on big data
centers. However, this approach imposes heavy requirements,
notably on the cost of the network infrastructure. Furthermore,
the high upfront investment necessary to set up appropriate
data centers can only be made by few large Internet companies,
leaving smaller ones out of the market.

Although public crawl repositories exist, such as Common
Crawl [3], using them for processing requires externalizing
computation and data hosting to a commercial cloud provider.
For a data-driven company, this also poses the problem of
data availability in the mid-long term. Moreover, the lack of
selectivity in the public crawling process may require post-
processing large amounts of data, whereas only a small subset
would be necessary.

A solution to the above problems is to distribute the crawling
effort over several geographically distributed locations. The
use of multiple sites can reduce both capital and operating
expenses, for instance by allowing several small companies to
mutualize their crawling infrastructures. In addition, such an
approach leverages data locality as sites can crawl web servers
that are geographically nearby. Finally, multiple sites can act
as replicas to be resilient to local disasters; collected data is
then safe even if a whole site disappears. On the other hand,
geo-distributed crawling requires synchronization between the
crawlers at the different sites, which imply communicating over
a wide area network. A careful system design for a distributed
crawler aims at reducing such communication costs, as the
costs and delays are higher than for intra-site communication.

In this paper, we present UniCrawl, an efficient geo-
distributed crawler that aims at minimizing inter-site commu-
nication costs. UniCrawl orchestrates multiple geographically
distributed sites. Each site uses an independent crawler and
relies on well-established techniques for fetching and parsing
the content of the web. UniCrawl partitions the crawled domain
space across the sites and federates their storage and computing
resources. Our design is both practical and scalable. We assess
this claim with a detailed evaluation of UniCrawl in a controlled
environment using the ClueWeb12 dataset, as well as in geo-
distributed setting using 3 distinct sites located in Germany.



Outline The rest of the paper is organized as follows. We
survey related work in Section II. Section III introduces the
crawler architecture, refining it from existing well-founded
central designs. Details about the implementation internals
are given in Section IV. Section V presents the experimental
results, both in-vitro, and in-vivo over multiple geographical
locations in Germany. We discuss our results and future work
in Section VI. We conclude the paper in Section VII.

II. RELATED WORK

While the amount of information available on the web is
certainly finite, the number of pages on which that information
resides is too large to be easily managed. At core, this comes
from the fact that the web is a huge, ever growing, and dynamic
media. As identified by Olston and Najork [33], this poses
several key challenges that every crawler (sometimes referred
to as a web spider) needs to solve: (i) since the amount
of information to parse is huge, a crawler must scale; (ii) a
crawler should select which information to download first, and
which information to refresh over time; (iii) a crawler should
not be a burden for the web sites that host the content; and
(iv) adversaries, e.g., spider traps, need to be avoided with care.

There exists a large number of web crawler designs and
implementations. Mercator [28] is an extensible web crawler
written in Java. The authors give a blueprint web crawler design
and several experimental results where they cover 891 million
pages in a period of 17 days. Polybot [34] is a distributed
system, consisting of a crawl manager, multiple downloading
processes, and a DNS resolver. IBM WebFountain [26] is an
industrial-strength design that relies on a central controller to
operate several multi-threaded crawling agents. Ubicrawl [17]
uses consistent hashing to partition URLs across crawling
agents, leading to graceful performance degradation in the
event of failures. It was shown to be able to download about
10 million pages per day using five crawling machines at a
single site.

The IRLbot system [31] is a single-process web crawler able
to scale to large web data collections with small performance
degradation. Lee et al. [31] describe a crawl that ran on a quad-
CPU machine over a two months period, and downloaded nearly
6.4 billion web pages. The Internet Archive uses the Heritrix
crawler [6] whose design is similar to Mercator. Recently, the
Lemur project employed Heritrix to gather the ClueWeb12 data
set [2] which we use for our in-vitro experiments. Nutch is a
popular open-source web crawler that relies on the map-reduce
paradigm [25]. It was notably used by Baldoni et al. [15]
to analyze online communities (e.g., news, blogs, or Google
groups). We also used the Nutch code base to implement
UniCrawl.

All of the previous architectures we described operate
several crawling agents. Cho and Garcia-Molina [23] are among
the first to study the principles of distributed crawler design.
They advocate the use of a set of independent agents and
propose several classifying parameters. The assignment of
URLs to agents can be either static or dynamic. Agents might
operate either in firewall, cross-over, or exchange mode when
communicating each other. Our design is in line with the
conclusion of this work: we favor the exchange of newly
discovered URLs and their static partitioning among agents.

After fetching a page, the crawler needs to check whether
discovered URLs were previously crawled or not. As a
consequence, caching is a cornerstone mechanism of every
web spider. Broder et al. [20] study how to efficiently cache
URLs for the purpose of crawling the web. They ran several
simulations over a trace containing 26 billions of URLs. Their
main conclusion is that a cache of roughly 50,000 entries can
achieve a hit rate of almost 80% (even when relying on a
random eviction policy).

All the pages on the web do not have the same importance.
Due to the scale of the Internet, important pages should be
fetched first and refreshed more often. Page importance is thus
a core property that guides the discovery and refreshing of
pages [24]. Ranking algorithms determine what is the most
significant information at the frontier of the crawl, i.e., the set
of pages whose existence is known but that are not fetched yet.
A large literature exists on ranking algorithms starting from the
seminal work of Google founders on PageRank [19]. Following
the Nutch architecture, UniCrawl may adapt various ranking
strategies at each site. During our experiments, we make use
of the Opic algorithm of Abiteboul et al. [10]. This algorithm
requires a single pass over existing fetched data per crawling
round, and is thus arguably more scalable than a full PageRank
computation [12, 31].

Baeza-Yates and Castillo [11] study the depth at which a
crawl should stop. They introduce three stochastic models of
web surfing, fit their models with information extracted from
web server logs, and measure the amount of information a
surfer retrieves at each level. Their conclusions are that most
surfers stopped before depth 5 due to the fact that 80% of the
best pages are in these first levels.

Several researchers recently studied the complex challenges
posed by geographically distributed web retrieval. Baeza-Yates
et al. [14] focus on the feasibility of geo-distributed search
engines. This question is also addressed in a series of paper
by Cambazoglu et al. [21, 22]. In particular, these studies
assess analytically the performance and interest of a web search
architectures distributed over multiple sites. They also show
that this question is of practical importance. We can quote from
their text: “it is critical to have a system design that can cope
with the growth of the web, and that is not constrained by the
physical limitations of a single data center”. Exposto et al. [27]
show that, with an appropriate multi-criteria partitioning, it is
very beneficial to split the crawling process across multiple geo-
distributed agents. Baeza-Yates et al. [12] compare analytically
several crawling strategies to crawl geo-distributed web sites.
They show that without historical information, strategies such
as largest web site first and Opic perform well (i.e., they gather
the most important pages first). Baeza-Yates et al. [13] identify
several open problems regarding geo-distributed web retrieval:
(crawling) how to properly prioritize the crawling frontier and
exchange URLs between distributed agents; (indexing) how
to partition the index and balance the load across sites; and
(querying) routing and data replication matters as the cross-
site network bandwidth is a scarce resource. We explain in the
remainder of this paper how UniCrawl answers those challenges,
both theoretically with its design, and practically with our
evaluation.



III. DISTRIBUTED CRAWLER ARCHITECTURE

The general algorithmic sequence used by a web crawler
is quite simple. It can be seen as the continuous execution of
the following four phases. In the generate phase, the crawler
extends the crawl frontier by determining the next set of URLs
that it needs to fetch. These URLs are downloaded from web
hosts in the fetch phase. The crawler analyzes the content
retrieved during the parse phase and refreshes appropriately
the crawl database in the update phase.

However, the size of the web and its rate of change
(estimated at 7% per week [18]) introduce some serious system
design issues. This section presents how the design of UniCrawl
addresses those problems, describing first the internals of a
site, then cross-site operations.

A. Single site Design

At each site, we build UniCrawl upon the well-established
architecture of Apache Nutch [9], more specifically its version
2.x. We contribute to Nutch the necessary improvements and
novel features that we shall cover next.

Figure 1 depicts an overview of the architecture. UniCrawl
makes use of the map-reduce paradigm and persists the content
of the crawl in a distributed key-value store. This design choice,
inherited from Nutch, ensures that the system is able to process
large amount of data. In what follows, we recall how map-
reduce works, detail the storage internals, then explain how we
combine the two to implement the various phases of a crawling
round.

1) Map-reduce: Map-reduce is a paradigm for processing
large data sets in parallel on a cluster of workers. Schematically,
map-reduce executes three steps, each step operating over a
set of key-value pairs. In the map step, each worker applies
a map() function to its local split of the pairs, and spills the
output to some temporary storage. During the shuffle step,
workers distributes pairs stored in temporary storage among
them, ensuring that all data corresponding to the same key is
located on a single worker. Then, workers in the reduce step
process output data grouped per key, applying to it a reduce()
function.

2) Site storage: Every web spider needs to persist a large
amount of information over time: the fetched pages themselves,
but also other data structures that maintain the state of the
crawling process. To that end, a crawler uses a crawl database.
In UniCrawl, the crawl database of a site is implemented as a
single distributed map structure. This map contains for each
page its URL, content, and outlinks (i.e., the URLs of pages
linked from it). In addition, it also contains several additional
metadata fields used during the crawl. In particular, the crawl
database stores the page status (generated, fetched, moved, etc.)
and its score attributed by the ranking algorithm. Notice that
the score of two pages are always comparable, and that this
order defines the ranking of a page.

To implement the crawl database, UniCrawl makes use of
INFINISPAN [32], a distributed key-value store that supports
the following features: (Routing) Nodes are organized in a
ring. INFINISPAN uses a one-hop routing design, i.e., every
node knows all the other nodes. (Elasticity) INFINISPAN is
elastic, meaning that storage nodes can be added or removed

(a) Site architecture (b) Crawling phases

Fig. 1. Overview of UniCrawl at a site.

on the fly. Upon joining, a node chooses a random identifier
along the ring and fetches the ring structure from some other
INFINISPAN node. It then informs its neighbors that it is
joining. (Storage) INFINISPAN uses consistent hashing [30]
to assign blocks to nodes with a replication factor ρ: a
data block with a key l is stored at the ρ nodes whose
identifiers follow l on the ring. (Reliability) INFINISPAN is
built upon the JGroups communication library [16]. This
library use failure detectors to maintain a consistent view of
the system. The repair mechanisms of consistent hashing are
triggered upon a lack of response of a storage node within
a timeout. (Interface) INFINISPAN offers to the end-user a
concurrent map interface that provides the classical put , get ,
remove and putIfAbsent operations. (Consistency) INFINISPAN
implements strongly consistent operation on the distributed map
using a primary-backup replication scheme. (Querying) Every
INFINISPAN node maintains a configurable index of the data
it stores. This index is purely local, and based on Apache
Lucene [8]. It allows to execute SQL-like queries over the
indexed content of the node.

3) Crawling phases: In Figure 1, we present the different
crawling phases of UniCrawl. UniCrawl executes one map-
reduce job per phase. Schematically, a job first fetches data
from INFINISPAN with an appropriate query, executes some
computation upon it, then stores the corresponding results
during the reduce phase.

Following the map-reduce paradigm, for each phase, we
execute one instance of the input query per storage node. In
addition, we rely on pagination to further increase parallelism.
To that end, we compute tentatively the amount of results at
each storage node, then split the original query according to
some pagination level. This leverages the fact that multiple
mappers can process in parallel the data available from the
same local INFINISPAN node.

We now detail each of the phases which compose a crawling
round.

(Generate) The goal of the generate phase is to select a set of
pages to process during the round. To that end, the map
step computes the subset of pages in the crawl database
which were not previously fetched during the previous
rounds. These pages are grouped by host in the reduce
phase, and each reducer outputs the k top ranked pages. In
total, r reducers generates rk pages, and thus rk defines



Fig. 2. Multisite architecture of UniCrawl.

the crawl width at a site. In UniCrawl, the query at each
storage node retrieves only the rk top ranked pages. This
improvement, not present in the original Nutch design,
ensures that at each round the complexity of the generate
phase is bounded by the crawl width.

(Fetch) During the fetch phase, the map step first groups by
host the pages that were generated in the previous phase.
In the reduce step, each worker receives a set of hosts
together with the list of web pages it needs to retrieve
from those hosts. A reducer is multi-threaded, yet in order
to maintain politeness it uses a single queue per host. This
queue is subject to a configurable wait policy. Moreover
for each host, the reducers follow the instructions given
in /robots.txt.

(Parse) Once the pages are fetched, they are analyzed during
the parse phase. This phase consists solely of a map step.
During this step, the mapper extracts from the fetched
pages stored locally the set of outlinks it contains and add
them to the crawl database.

(Update) The goal of the update phase is to refresh the scores
of pages that belong to the frontier in order to prioritize
them. To that end, we use the OPIC algorithm of Abiteboul
et al. [10]. This scoring method is less expensive than a full
PageRank computation and suitable for on-line crawling.
Moreover, as shown by Baeza-Yates et al. [12], it quickly
converges toward pages of importance. At the beginning
of the update phase, the map step retrieves both the score
and outlinks of each fetched page. Then, it splits the score
evenly across outlinks, and outputs for each outlink its
URL together with the shard of the score. In the reduce
step of the update phase, each reducer sums the scores
obtained by pages located at the frontier. Pages that are
among the top l > k ranked ones are then added to the
crawl database. Depending on the crawl width, part or all
of these pages will then be generated at the beginning
of the next crawling round. In Nutch, the update phase
process all the pages in the crawl database. On the contrary,
UniCrawl executes the map step only on the fetched pages
and adds solely rl new pages to the crawl database.

B. Multi-site Operations

Figure 2 depicts the architecture of UniCrawl when we
deploy it across multiple geographical locations. In a typical
set-up, UniCrawl is composed of several sites interconnected
with a wide-area network, and each site is equipped with a
few dozen of machines communicating through a low-latency
network.

Fig. 3. Lifetime of the update phase.

Several key ideas allow UniCrawl to be practical in this
setting: (i) Each site is independent and crawls the web
autonomously; (ii) We unite all the site data stores. At each
site, the map-reduce jobs of UniCrawl access transparently the
federated storage which can provide dependability through geo-
replication; and (iii) Sites exchanges dynamically the URLs
they discover over the course of the crawl.

In the sections that follow, we cover the multi-site operations
of UniCrawl in detail. Furthermore, we discuss the crawl quality
in regard to the amount of communication between sites.

1) Federating the storage: One of the key design concerns
of UniCrawl is to bring small modifications to the site code
base in order be usable over multiple geographical locations.
To achieve this, we rely on ENSEMBLE, a storage layer able
to federate transparently multiple INFINISPAN deployments.

ENSEMBLE offers the same concurrent map interface to the
map-reduce jobs of UniCrawl as INFINISPAN. An ENSEMBLE
map is built upon a set of INFINISPAN maps and it can be
either replicated or distributed. If the map is replicated, all
the underlying INFINISPAN maps replicate its content. On
the other hand, if the ENSEMBLE map is distributed, each
INFINISPAN map stores a distinct part of the content. In this
case, a partitioner defines how the content is split between the
INFINISPAN maps.

A distributed map can operate in normal or frontier mode. In
normal mode, put and get operations access the exact locations
of the content, possibly on another site than the one where the
call was made. When using the frontier mode, put operations
behave correctly and may be remote, but get operations and
queries are local to the site that call them. We use this later
mode to implement the crawl database. The next section covers
with more details how we proceed.

2) Collaboration between sites : Following the approach
advocated by Cho and Garcia-Molina [23], UniCrawl exchanges
newly discovered URLs over time. This exchange occurs at the
end of the update phase. We depict the lifetime of this phase
in Figure 3.

In detail, we implement the crawl database as a distributed
ENSEMBLE map that span all the sites. This map operates in
frontier mode with a replication factor of one. As a consequence
of this setting, (i) in the reduce step of the update phase, the



reducers write the kn top ranked pages across all sites, while
(ii) all the keys accessed by the generate, fetch and parse phases
are local to the site. This allows sites to operate independently.
Moreover, it reduces communication to the bare minimum of
newly discovered URLs.

We can tune the partitioner which assigns each key in the
ENSEMBLE map to an underlying INFINISPAN site map. In our
current setting, we use two approaches to that end: consistent
hashing and distance-based. The first solution is similar to
the initial proposal of Boldi et al. [17]. The distance-based
partitioner is more involved but reduces the distance between
a web server and its corresponding fetching site, thus lowering
the network cost associated to it. This partitioner relies on an
ENSEMBLE map D replicated at all sites which associates a
domain to its geographical coordinates. For some page p having
URL u, when a put(u, p) operation occurs on the ENSEMBLE
map implementing the crawl database, the partitioner first
extracts the domain d of u, then it executes a get(d) operation
on D. If the coordinates do not exist, the partitioner retrieves
them using the IP address of the domain. Once the coordinates
of d are present in D, the partitioner computes the closest
geo-graphical site and returns the associated INFINISPAN map.

Notice that in UniCrawl, sites operates independently and
execute their update phases at different times. As a consequence,
a site that finds a new URL uses a putIfAbsent operation when
it accesses a distant site storage. This avoid race condition in
case this URL was already crawled. Furthermore, during the
update phase, each reducer (i) outputs at most l

m URLs where
m is the number of participating sites, and (ii) stops after it
has retrieved l URLs local to its site. The former modification
avoids to overwhelm a site, whereas the latter preserves them
from starvation.

3) Crawl quality and cost: The quality of the crawling
operation is not only measured by means of pure web-graph
exploration but also by the rounds it takes to discover the most
interesting pages. This is important because web crawling and
web searching are two algorithms that are executed concurrently.
Due to the massive size of the web, state-of-the-art crawlers
focus on finding the most relevant portion of the internet as
quickly as possible [10]. As we pointed out previously, they use
to that end a scoring algorithm that estimates the importance
of each page. The crawler prioritizes its crawling effort on the
URLs with the highest scores.

Recall that parameter k determines the crawl width, and
r the total amount of reducers during the generate phase.
The generate phase outputs the rk most ranked pages in
its frontier. This rank is attributed to pages from the OPIC
algorithm computation that occurs during the update phase.
As a consequence, when UniCrawl operates a single site, it
fetches the rk most ranked pages in the frontier, and with good
probability these pages are the most important ones (according
to their PageRank [10, 12]).

In a geo-distributed setting, sites executing UniCrawl
exchange URLs between them at the end of the update phase. In
case a site A retrieves an URL u assigned to some site B, it calls
the putIfAbsent primitive (see Figure 3). This primitive has
no effect if u is already stored at site B. As a consequence, the
score at site B might not take into account all the contributions
of pages stored at site A. Thus, UniCrawl may not always

prioritize the most important pages in a geo-distributed setting.
On the other hand, such an approach reduces the volume of
data exchanged between sites.

When UniCrawl spans several locations, the key cost
parameter is the amount of communication exchanged between
sites. Section V assesses that UniCrawl reduces this cost to
the bare minimum. In Section VI, we discuss a variation of
UniCrawl whose crawl quality is instead optimal.

IV. IMPLEMENTATION

We implemented UniCrawl in Java, starting from the code
base of Nutch version 2.3. Nutch relies on the Apache Hadoop
framework [5]. To leverage the recent improvements in the
map-reduce components of Hadoop [35], we modified Nutch
to use the latest version (2.5.3).

Nutch makes use of Apache Gora [4], an open-source
framework that provides an in-memory and persistent data
model for big data. Gora offers generic hooks to substitute
any Cloud storage system to HDFS in the Hadoop map-reduce
eco-system. We implemented a Gora interface for ENSEMBLE
that allows UniCrawl to execute geo-distributed operations. Our
geo-distributed storage ENSEMBLE was itself developed as a
module of the industrial-grade key-value store INFINISPAN [32].

In total, our contribution accounts for about a dozen
thousands lines of code (LOC) split as follows: 9.4 kLOC
for Ensemble, 1.1 kLOC for Gora and a 2.3 kLOC patch for
Nutch.

A. Merging Phases

In Yarn, each new map-reduce job creation is expensive
as it requires to start a dedicated Java virtual machine, and
deploy the appropriate jars.2 To lower this cost, we merge the
fetch and parse phases in our UniCrawl implementation. This
means that whenever a reducer fetches a new page, it parses its
content and extract the out-links. These links are then directly
inserted in the crawl database together with the fetched page.

B. Caching

To avoid sending out an URL multiple times across sites,
we use a distributed caching solution. In more details, this
cache is a bounded ENSEMBLE map C local to each site and
replicated at all nodes in a site. During the update phase, when
a reducer selects a URL in the frontier that is associated to
a remote site, it first check locally with C if this URL was
previously sent. If this is the case, the reducer simply skips the
call to putIfAbsent . Since C is replicated at all nodes, every
map-reduce node is co-located with an INFINISPAN node, and
C is in memory, this inclusion test costs less than a millisecond.

V. EVALUATION

In this section, we evaluate the performance of UniCrawl
along several key metrics such as the page processing rate, the
memory usage and the network traffic across sites. We split this
evaluation in two parts. First, we evaluate our approach in-vitro,
by running UniCrawl against the ClueWeb12 benchmark in
an emulated multi-site architecture and crawling from a local

2 Distributed caching of various files is hopefully possible.



repository. Then, we report several experimental results where
we deploy UniCrawl at multiple locations in Germany and
access actual web sites.

A. In-vitro validation

This set of experiments evaluates the performance of
UniCrawl in a controlled environment. To that end, we first
assess the scalability of our approach in the case of a single
site. Then, we present several experimental results that were
conducted in an emulated multi-site architecture.

Our experiments take place on a cluster of virtualized 8-
core Xeon 2.5 Ghz machines with 8GB of memory. Nodes
are running Ubuntu 14.04 64bits, and are connected with a
virtualized 1 Gbps switched network. Network performance,
as measured by ping and netperf, is 0.3ms for the round-trip
delay and a bandwidth of 117 MB/s. We set-up Yarn to use
4 GB of the total node memory; the other half being used by
INFINISPAN. A mapper (or a reducer) can use up to 1 GB
of memory. Each node is equipped with a virtual hard-drive
whose read/write (uncached) performance, as measured with
hdparm and dd, is 97/91 MB/s.

Our in-vitro evaluation uses the ClueWeb12 B13 dataset [2].
This dataset contains around 52 millions documents, which
were gathered by the Lemur project [7] in February 2012.
In total, this dataset weights 1.95 TB and we serve it via a
dedicated Python server. During all our experiments, we start
by injecting around 1 million URLs in the crawl database, then
we execute several crawling rounds with a width of 50,000
pages.

1) Single site performance: Figure 4(a) present the average
length of each crawl phase at a site, when we deploy UniCrawl
on 1 to 4 nodes. As indicated in Section IV-A, UniCrawl merges
the fetch and parse phases. Consequently, we only report the
average time a fetch phase takes to execute.

In Figure 4(a), we can observe that the total time of a
round decreases from 1,337 to 312 seconds when UniCrawl
scales out from 1 to 4 nodes. In term of pages per second, this
translates into a 3.79 multiplicative factor, 4 nodes being able
to process around 160 pages/s. In this figure, we also observe
that the time required to execute the fetch phase with 3 and
4 nodes is close. This comes from the fact that our Python
server hosting the ClueWeb12 dataset saturates at around 380
pages/s. Besides, with a crawl width of 50,000 pages, the time
to execute both the generate phases does not change much,
even with 4 nodes. This cost corresponds essentially to the
time the map-reduce framework takes to propagate the jobs
across workers and start the Java VMs.

2) Emulating multiple sites: Next, we evaluate how
UniCrawl behaves in a multi-site environment. To that end,
we emulate the long-distance routing between geo-distributed
locations with the help of the Linux traffic shaping tools.
Our experiment makes use of 3 sites, each site containing
3 UniCrawl nodes. We fix to 6 the number of reducers per
site. Besides, to avoid saturating the Python server hosting
the ClueWeb12 benchmark, we also set the number of fetcher
threads per reducer to 20.

In Figure 4(b), we vary the ping distance between any two
locations, from 20 to 80 ms. When the ping distance equals
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Fig. 4. Performances in-vitro

20ms, this corresponds to a deployment at the scale of an
European country. In the case of 80 ms, we emulate a cross-
continent deployment. Figure 4(b) reports on the left y axis
(in black) the average throughput of UniCrawl in number of
pages per second, aggregated over all sites. The right y axis
(in gray) reports the average length of the update phase during
a crawling round.

As expected, we observe in Figure 4(b) that the more
distant the sites are, the slower UniCrawl is. Peeking from 334
pages/s when the sites are geo-graphically close, performance
deteriorates to 278 pages/s when the ping distance equals
80ms. Moreover, we notice in Figure 4(b) that UniCrawl
performance is linearly correlated with the time it takes to
execute an update phase. Such a correlation is expected from
the design of UniCrawl, as only the update phase necessitates
some collaboration between the sites.

B. UniCrawl in the wild

To further assess the design of UniCrawl, we measure its
performance in various real-world scenarios. We use several
clouds provided by the Cloud & Heat company [1], and deploy
UniCrawl at different locations in Germany. A cloud operates
3 instances (VMs) of medium size (4 GB RAM, 4 virtual CPU
and 120 GB disk), connected via a gigabit ethernet and running
Ubuntu Linux 14.04 64 bits. Figure 5(a) indicates the clouds’
locations.

In all the experiments that follow, we start our crawl from
a seed list of 30 US universities. We fix to 6 the number of
reducers per site and use the default Nutch value of 10 fetcher
threads per reducer. Our evaluation consists then in a sequence
of 50 crawling rounds. Below, we first comment on the benefits
of our caching mechanism. Then, we compare UniCrawl to
an out-of-the-box Nutch deployment. We close our evaluation
with an assessment of the scalability of our design.
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Fig. 5. Evaluation in a geo-distributed setting

1) URL Exchange: In Figure 5(b), we evaluate the URLs
exchange rate at Hamburg, when UniCrawl spans both this
location and Münster. We observe that on average the Hamburg
site finds 2,981 duplicate URLs per round, with an average
hit rate of 92%. After 50 crawling rounds, this translates into

a memory usage of around 3 MB for the URLs cache. This
performance, inline with the simulation results of Broder et al.
[20], shows the benefits of the caching mechanism.

2) Comparison with Nutch: Our second experiment aims at
assessing the advantages of our design in comparison to a naive
deployment of Nutch with a Cassandra3 backend over multiple
geographical locations. To that end, we deploy UniCrawl and
Nutch at both Hamburg and Münster, and measure the traffic
consumption between sites. Figure 5(c) details our results in a
semi-log scale. Notice that in this experiment we fix the crawl
width in such a way that both systems harvest in total a similar
amount of pages (respectively 184K and 190K for UniCrawl
and Nutch).

We observe in Figure 5(c) that UniCrawl is around 1.75
times faster than the Nutch deployment. Such a gap comes
from the fact that Nutch executes the map-reduce steps of
the crawling phase over the two locations, which implies a
large penalty in term of processing time. In addition, this
figure tells us that our approach reduces the inter-site traffic
by 93.6%. This last point is of importance as WAN bandwidth
is notoriously expensive. For instance, the very same Nutch
deployment across two Amazon clouds would require around
3000 GB/month and costs 30 USD/month.4 On the other hand,
UniCrawl requires only around 192 GB/month (corresponding
to 1.92 USD/month).

3) Scalability: Our last experiment consists in scaling-up
UniCrawl over multiple locations. Figure 5(d) reports the
average time of each phase when we deploy our system on
two and three locations. We also show a comparison with a
naive Nutch deployment at two sites. In all experiments, we
fix the global crawl width to a constant factor of 400.

In this figure, we first observe that the key issue with
the naive Nutch deployment comes from the update phase.
Indeed, this phase is an order of magnitude slower than with a
deployment of UniCrawl over the two same locations. We can
explain this difference by the fact that the map-reduce steps are
geo-distributed and that the update phase is the most demanding,
both in terms of storage and processing power. Figure 5(d)
also tells us that the total time to execute a crawling round
improves when we scale UniCrawl from two to three sites. This
improvement comes from the fact that the global crawl width
is constant in both cases. In this setting, UniCrawl displays a
scale-up factor of 1.42 from two to three sites.

VI. DISCUSSION

Recall that in UniCrawl the decision of fetching some page
p is taken at several locations. First, at some site A the URL
of p is detected as the outlink of some crawled page. Second
at some site B (which can also be site A), the crawler decides
to fetch page p when p belongs to the highly ranked pages
in the frontier. Section III-B3 points out that the score of p
at site B might not reflect all the contributions stored at the
other sites. Below, we sketch a variation of UniCrawl ensuring
that the score at the crawling location represents this time the
global contribution:

3http://cassandra.apache.org
4At the time of this writing, and according to http://calculator.s3.amazonaws.

com/index.html.

http://calculator.s3.amazonaws.com/index.html
http://calculator.s3.amazonaws.com/index.html


(Construction) We add a link database L, implemented as
a distributed ENSEMBLE cache over all the sites. This
database consists in triples of the form (u, i, s). During
the reduce step of the update phase, for each new non-
local URL u having an inlink i with score s, we add
a triple (u, i, s) to L. Then, we add an additional map-
reduce round after the update phase. In this round, the
map step fetches all the tuples in L and grouped them
by URL. For each such URL, the reduce step retrieves
the original score from the crawl database then updates it
accordingly with the aggregated score.

Notice that even if we clean-up L after each update phase,
its size is linear in the amount of non-local discovered URLs.
Without a large map-reduce cluster at each site, such a size
tends to be intractable after several crawling rounds. As a
consequence, and in our experience, we believe that this
approach is inherently expensive in terms of storage and
computation time. Nevertheless, we left a detailed evaluation
and comparison with our current design as future work.

VII. CONCLUSION

In this paper, we propose a new crawling system for multiple
geographically distributed sites, UniCrawl. At each site, we base
UniCrawl on a well-founded design consisting in a sequence of
a map-reduce jobs executed atop an industrial-grade distributed
key-value store. Then, we extend this design to a geo-distributed
environment with ENSEMBLE, a novel layer that federates the
storage available at each site.

UniCrawl is both practical and scalable. We assess this claim
with a detailed evaluation in a controlled environment using the
ClueWeb12 dataset, as well as in a geo-distributed setting with 3
remote sites located in Germany. In comparison with a baseline
technique where a central crawler is simply stretched over
several locations, UniCrawl shows a performance improvement
of 93.6% in terms of network bandwidth consumption, as well
as a speedup factor of 1.75.
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