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Abstract 

In airtightness measurements using the fan pressurization method, the calculation of uncertainties 

does not take into account the zero-flow pressure approximation. It was recently suggested that 

neglecting the uncertainties related to zero-flow pressure approximation could be an unrealistic 10 

hypothesis. In this study, a method for quantifying this source of uncertainty is proposed, illustrated 

and discussed. The method is applied to a series of 31 zero-flow pressure tests performed on a newly-

constructed apartment within a period of 15 days in Brussels, Belgium. For each test, 32 different zero-

flow pressure approximations were compared. Since the data had a nested structure, multiple multi-

level models were used for their analysis. The results show that, for the tested building, the zero-flow 

pressure approximation uncertainty is 0.45, 0.91 and 1.52 Pa respectively under low-, medium- and 

large-wind conditions. These uncertainties can be reduced to 0.42, 0.80 and 1.39  Pa when using 

longer zero-flow pressure measurement periods. As a comparison, uncertainty in pressure 

measurement at 50 Pa due to the equipment is 0.25 Pa. The uncertainty of zero-flow approximation 

makes the envelope pressure uncertainty non-negligible, therefore having an impact on the regression 20 

technique used to determine the building airtightness.  

 

Key words: airtightness measurement, fan pressurization test, uncertainties, zero-flow pressure 

approximation, multi-level modelling, envelope pressure. 
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1 INTRODUCTION 

The measurements of air tightness and infiltration in buildings is an issue of major concern. Kalamees 

[1] and Jokisalo et al. [2] showed that, in cold climates, air infiltration could be responsible for up to 

30% of heating loads. Air infiltration has also been shown to have an impact on the efficiency of 

ventilation systems, on occupant comfort, and on acoustic insulation [3]. In 2014, Sadauskiene et al. 30 

observed that actual building energy use can significantly differ from the value calculated with 

regulation methods when airtightness is ignored [4]. In this context, however, there is a general 

consensus that no predictive model can currently replace airtightness measurements [5, 6], this leaving 

a gap to fill in terms of the availability of reliable and easily implemented modelling methods. 

Although fan pressurization tests (also called blower door tests) have been used for almost 50 years 

[3], there is an important lack of knowledge when dealing with the uncertainties related to these 

procedures. Several studies have analyzed total uncertainties in repeatability (i.e., successive 

measurements carried out under the same conditions) and reproducibility (i.e., successive 

measurements under changing conditions) testing [7-11]. Research has also focused on multiple 

sources of uncertainty [12-16] among which wind is likely the most challenging, since it can cause 40 

precision and bias errors in both envelope pressure and airflow measurements [14]. 

In envelope pressure measurements, the impact of wind – and more generally of weather conditions 

– is taken into account through the calculation of zero-flow pressure. The pressure difference 

measured during a fan pressurization test is the combination of the differential in pressure induced by 

the fan and that induced by climatic conditions (hence, the zero-flow pressure). One important step in 

the evaluation of envelope pressure difference is the separation of these two induced pressures. In 

practice, the measurement of zero-flow pressure is not possible during the fan pressurization test since 

this requires the fan to be stopped and sealed. The European standard EN ISO 9972:2015 [17] suggests 

to measure the zero-flow pressure before and after the test, and to assume that the zero-flow pressure 

during the test is the average of these measurements (Equation 1).  50 
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Equation 1 

∆𝑝0 =
∆𝑝0,1𝑚 + ∆𝑝0,2𝑚
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Where: ∆𝑝0 is the zero-flow pressure approximation; ∆𝑝0,1𝑚 and ∆𝑝0,2𝑚 are the averages of zero-flow 

pressure measurements during a given measurement period, respectively before and after the fan 

pressurization test; ∆𝑝0,1𝑖 and ∆𝑝0,2𝑖 are the zero-flow pressures measured at each point during these 

periods; and, 𝑁 and 𝑀 are the number of measurements made within these periods. Standard EN ISO 

9972:2015 requires that at least 10 measurements are made during a period of minimum 30 seconds 

[17]. 60 

This method leads to an important source of uncertainty because, in reality, the weather conditions, 

and therefore the zero-flow pressure, are not constant during the fan pressurization test. Uncertainties 

in zero-flow pressure have been studied by other authors [15], but Delmotte was the first to raise the 

issue of uncertainties due to zero-flow pressure approximation, although the sources of such 

uncertainties were not quantified [13].  

In this paper, we propose and illustrate a new method for the quantification of uncertainties in zero-

flow and envelope pressure, and we discuss the findings from its application to a series of 31 tests 

performed on a single apartment in Brussels, Belgium, within a period of 15 days in October 2017. The 

paper is structured as follows. In the Methodology section, we illustrate the tests performed, drive a 

comparison between different approximation techniques, and describe the statistical approach behind 70 

the newly-proposed quantification method. In the Results section, we provide the outcomes of the 

tests, the uncertainties quantified by the application of the new method, and the impact of the zero-

flow pressure approximation uncertainties on envelope pressure uncertainties. In the Discussion 

section, we highlight the impact of our findings against the relevant literature and illustrate critically 
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the limitations of this study. Finally, in the Conclusions, we summarize the outcomes of this work, 

describing the further research needed in the field of airtightness measurement uncertainties. 

 

2 METHODS 

This section is divided in three parts. The first describes the weather data, the equipment used for the 

series of tests, and the apartment where measurements took place. The second offers a comparison 80 

between different zero-flow pressure approximation techniques and the indicator used for the 

evaluation. The last part focuses on the statistical analysis and on the justification of methodological 

choices. 

 

2.1 MEASUREMENT METHOD 

2.1.1 Zero-Flow Pressure Test 

A zero-flow pressure test consists in the measurement of zero-flow pressure every second during three 

successive periods. In this paper, the initial and last periods have been respectively labelled the first 

and second “approximation periods”, while the second period (i.e., the middle one) has been called 

the “fictitious period” (Figure 1). The approximation periods correspond to the times when 90 

measurements are used to perform zero-flow pressure approximations. The fictitious period 

corresponds to the duration that a typical fan pressurization test would take in practice. 
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Figure 1 – Zero-flow pressure measured during a period of 840 seconds (one measurement every second), illustrating the 
three successive periods of a zero-flow pressure test  

 

The paper by Delmotte [13] described for the first time a zero-flow pressure test. To remain consistent 

with his work, the present study adopted a fictitious period of 600 seconds. The duration of the 

fictitious period has a strong impact on the uncertainty. Indeed, a longer duration of the fictitious 100 

period might imply greater likelihood of weather variations of higher degree. 600 seconds correspond 

to the measurement of 10 couples with 30-second duration and 30-second delay between 

measurements. These three values (i.e., number of couples, measurement duration, and delay 

between measurements) could vary depending on the operator, equipment and weather conditions. 

Approximation periods of 120 seconds were selected instead of the 30 seconds used in [13]. This is 

because Delmotte was interested in the uncertainties related to minimum standard requirements, 

while the present study focuses on the impact of approximation period duration on zero-flow pressure 

uncertainty. 
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2.1.2 Measurement Equipment and Weather Data 110 

A DG-700 pressure gauge (last calibration in June 2017) from The Energy Conservatory (TEC) measured 

the pressure difference between inside and outside the apartment. According to the manufacturer, 

the standard uncertainty (i.e., the expected standard deviation for a large number of repeated 

measures) of the DG-700 is the greatest between ± 0.5% of the reading and ± 0.1 Pa, and it has a 

resolution of 0.1 Pa [18]. For the DG-700 pressure gauge, this uncertainty takes into account the 

uncertainty of the pressure reference used to calibrate the gauge, the uncertainty of the gauge itself 

(including hysteresis effect), the temperature effect on the sensor, and the drift of the sensor over 

time [19]. 

During the tests, a weather station (Ahlborn FMD 760) placed on the roof above the apartment 

measured the outside air temperature, the wind speed and the wind direction every 10 seconds. The 120 

weather station provided 10-minute averages for the outside air temperature (𝑇𝑒𝑥𝑡), the mean wind 

speed (𝑣𝑤̅̅̅̅ ) and the mean wind direction. It also provided the maximum wind speed measured during 

these 10-minute periods. A thermometer (Testo 417) was used to measure the inside air temperature 

(𝑇𝑖𝑛𝑡) before each test with an accuracy of ± 0.5°C and a resolution of 0.1 °C. Table 1 shows, for each 

weather variable, the minimum, maximum, mean (M) and standard deviation (SD) of all the values 

recorded by the weather station (10-minute samples) and the thermometer (before each test) during 

the 15 days. Wind direction was mostly from west and southwest. 

 

 Min Max M SD 

𝑇𝑒𝑥𝑡 [°C] 8.8 24.3 14.2 2.77 
𝑇𝑖𝑛𝑡 [°C] 20.5 22.0 21.3 0.57 
𝑣̅𝑤 [m/s] 0 3.8 1.3 0.75 
max(𝑣𝑤) [m/s]  0.3 8.3 3.3 1.57 

Table 1 – Minimum, maximum, mean (𝑀) and standard deviation (𝑆𝐷) of weather-related data measured during the 15-day 
testing period 130 
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2.1.3 Measured Apartment 

The 31 tests were performed on a newly constructed (2017) apartment within a period of 15 days in 

October 2017. A short testing period was chosen to avoid impacts of ageing and seasonal variations 

on airtightness. Since no previous research has defined an appropriate sample size for the statistical 

analysis of data, a large number of tests were repeated during this period. The apartment was a 

masonry construction of 228 m³ with a floor area of 90 m² located on the second floor of a 3-storey 

building in Brussels. Only two perimetraI walls were exposed to the outside (Figure 2). Over recent 

years, masonry apartments have represented a large share of new residential constructions in 

Brussels. 140 

 

 

Figure 2 – Schematic plan of the tested apartment, including separation type (with adjacent heated apartment or with 
outside) and pressure gauges location 

 

In the absence of a fan, if parts of the envelope are in underpressure others are in overpressure [13]. 

Pressure gauges placed at different locations undergo different zero-flow pressure. Therefore, the 

pressure gauge location is expected to have an influence on the uncertainty due to zero-flow pressure 

approximation. In this study, the pressure gauges were placed at the southeast façade because of the 
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exposed surroundings of the building. Conversely, the northwest façade opens to an enclosed space 150 

surrounded by high buildings that could induce an undesirable wind effect. 

There were no airtightness requirements for the apartment itself, but the whole building (i.e., all the 

apartments pressurized simultaneously) had to reach a maximum air change rate of 0.6 h-1 at 50 Pa. 

The preparation of the apartment during the tests was consistent with method 1 described in ISO 

9972:2015 [17]. 

 

2.2 APPROXIMATIONS TECHNIQUES 

2.2.1 Different Approximations 

The different approximation techniques compared in this study are obtained by varying three 

parameters: the duration of approximation periods, the time step between measurements, and the 160 

distribution of the approximation value over time. Except for the change in the distribution, whatever 

the values of the duration and the time step, the approximation always fits within the requirements of 

the European standard ISO 9972:2015 (i.e., at least 10 measurements made during a minimum of 30 

seconds) [17]. 

The duration of the approximation periods takes four different values: 30, 60, 90 and 120 seconds. The 

time step between measurements is either 1 or 3 seconds. These values were selected to cover the 

minimum requirements (i.e., 30 seconds with a time step of 3 seconds). The longest period of 120 

seconds was chosen to avoid greater approximation periods that might have had two drawbacks. First, 

it would have increased the testing period. Second, it would have inflated the probability to record a 

weather variation during the approximation period, hence not reflecting the conditions during the 170 

fictitious period. 

For each combination of parameters and for each test, the same conditions (duration period and time 

step) are applied on approximation periods 1 and 2. The variation of the parameters taken for these 
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two conditions affects the value of zero-flow pressure before and after the fictitious period, but not 

during it. The third parameter is the zero-flow pressure distribution, i.e. the variation of the 

approximation value during the fictitious period.  

Figure 3 graphically represents the four different distributions compared in this study. 

 

 

Figure 3 – Graphical representation of the four distributions (black) for a typical zero-flow pressure test compared to the real 180 
zero-flow pressure (light grey) 

 

The distribution 0 (constant distribution – dotted black line) is the distribution imposed by the 

standards. In distribution 0, the zero-flow pressure approximation is constant during the fictitious 

period and its value (∆𝑝0,𝑚 ) is the mean of the zero-flow pressure measurements made before 

(Δ𝑝01,𝑚) and after (Δ𝑝02,𝑚) the fictitious period. In distribution 1 (linear distribution – dashed black 

line), the approximation value during the fictitious period goes from Δ𝑝01,𝑚 at time 0 to Δ𝑝02,𝑚 at time 

600. Distribution 2 (bi-linear distribution – dashed and dotted black line) goes from Δ𝑝01,𝑚 at time 0 
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to a peak at time 300 and then to Δ𝑝02,𝑚 at time 600. The peak is defined as a percentage (𝛼1 on the 

figure) of the maximum (if ∆𝑝0,𝑚 is positive) or the minimum (if it is negative) of the zero-flow pressure 190 

measurements made before and after the fictitious period. Distribution 3 (tri-linear distribution – solid 

line) starts from Δ𝑝01,𝑚 at time 0 and goes to Δ𝑝02,𝑚 at time 600, but it has two peaks at time 200 and 

time 400. These peaks are also percentages (𝛼2) of maximum (or minimum, if negative values) of 

Δ𝑝01,𝑚 at time 200 and Δ𝑝02,𝑚 at time 400, respectively. Even if the two peaks are different, the same 

𝛼2 is applied for both. The values of 𝛼1 and 𝛼2 were chosen to provide the best quality indicator (see 

section 2.2.2) when averaging the 31 tests. No specific distribution relevant to all the zero-flow 

pressure tests was observed. Therefore, the linear distribution was chosen to take into account 

possible changes in steady wind pressure. Such change between the beginning and the end of the 

fictitious period is expected to be better approximated using a linear rather than a constant 

distribution. The choice of bi-linear and tri-linear distributions follows the same logic, yet considering 200 

that changes in steady wind pressure work in steps instead of progressive variations. However, it 

should be considered that these distributions were chosen to test the research hypotheses, while 

other distributions might be more suitable to verify other hypotheses. 

In this study, each distribution (0, 1, 2 and 3) was applied to each time step (1 and 3), within each 

measurement period (30, 60, 90 and 120) and for each test (1 to 31), leading to a total of 992 

approximations (32 for each test). 

 

2.2.2 Quality Indicator 

In his study [13], Delmotte compared the average of zero-flow measurement during the fictitious 

period with the average of zero-flow approximation during the same period (∆𝑖𝑗𝑘𝑙 ), according to 210 

Equation 2: 
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Equation 2 

∆𝑖𝑗𝑘𝑙=
∑ ∆𝑝0,𝑖𝑡

600
𝑡=1

600
−

∑ ∆𝑝̃0,𝑖𝑡𝑗𝑘𝑙
600
𝑡=1

600
 

 

Where, ∆𝑝0,𝑖𝑡  is the real zero-flow pressure measurement at time 𝑖  of test 𝑡 , and ∆𝑝̃0,𝑖𝑡𝑗𝑘𝑙  is the 

approximation of zero-flow pressure at time 𝑖  of test 𝑡  using the measurement period 𝑗 . The 

parameter 𝑘 represents the time step and 𝑙 is the distribution. 

The ∆𝑖𝑗𝑘𝑙 indicator gives information about the ability of an approximation technique to fit, in average, 

the real zero-flow pressure. However, no information is provided as to how the approximation fits 220 

locally the zero-flow pressure. For example, a linear approximation (distribution 1) with ∆𝑝0,1𝑚 = −1 

Pa and ∆𝑝0,2𝑚 = 1 Pa would have the same ∆ than a constant approximation (distribution 0) with 

∆𝑝0,𝑚 = 0, while the difference between approximation and real measurement at every point would 

be different. 

Since this study focuses on the uncertainties of envelope pressure evaluation at each measurement, 

there is a strong interest in the ability of an approximation to fit the real zero-flow pressure at each 

measurement point. This was addressed by calculating the average of the differences between 

approximation and real measurement at every measurement point during the fictitious period (𝜀𝑖𝑗𝑘𝑙). 

From this point, the “approximation quality” refers to this average, based on Equation 3:  

 230 

Equation 3 

𝜀𝑖𝑗𝑘𝑙 =
∑ |∆𝑝0,𝑖𝑡 − ∆𝑝̃0,𝑖𝑡𝑗𝑘𝑙|600

𝑡=1

600
 

 

It should be noted that the square of the difference could be used instead of the absolute value if the 

evaluation aimed to penalize huge gaps between approximation and real measurement. However, this 



12 
 

study was interested in 𝜀𝑖𝑗𝑘𝑙  values since it could be used for the quantification of uncertainties (see 

paragraph 3.3.2). 

 

2.3 STATISTICAL ANALYSIS 

In this study, four different durations of approximation period are considered within each test, two 240 

time steps are tested within each duration, and four distributions are evaluated within each time step. 

This methodology leads to hierarchically structured data, hence requiring appropriate tools to perform 

a rigorous statistical analysis. 

Traditional statistical tests (e.g., parametric tests such as a Student t-test or ANOVA) assume the data 

being independent from each other. This is not the case here since the results of different 

approximation techniques highly depend on the set of data used. When tests assuming independence 

are used to analyze dependent sets of data, there is a risk to inflate the occurrence of Type I errors. A 

Type I error occurs when a true null hypothesis is incorrectly rejected (i.e., an effect is statistically 

observed while in fact there isn’t) [20]. This introduces biases in the estimation of parameters [20, 21]. 

In addition, the use of tests dealing with dependent data, but ignoring their clustered structure, can 250 

cause an underestimation of standard errors [22]. Conversely, the statistical tool used for the analysis 

should consider the dependency of results and the nested structure of data. In this study, this was 

addressed by using multi-level modelling (MLM) [23]. 

 

2.3.1 Multi-Level Modelling 

Multi-level modelling is a method of analysis that deals with complex structures of data and recognizes 

their hierarchical structure by allowing for residuals at multiple levels in the hierarchy [22]. Indeed, 

MLM partitions the variance of the results into between-level (e.g., the variance of approximation 

quality between different tests) and within-level variance (e.g., the variance of approximation quality 



13 
 

between different approximation techniques within the same test). This partition is made at each step 260 

of the hierarchy and is mathematically expressed in Equation 4: 

Equation 4 

𝜀𝑡𝑗𝑘𝑙 = 𝛾0 + 𝑒𝑙 + 𝑒𝑘 + 𝑒𝑗 + 𝑒𝑡 

Where 𝛾0 is the grand mean (i.e., the mean when considering all the results) and terms 𝑒𝑙, 𝑒𝑘, 𝑒𝑗 and 

𝑒𝑡  are deviations from the grand mean specific to the type of distribution, the time step, the 

measurement period and the test, respectively. 

Besides its ability to deal with nested data, MLM allows to decide whether a model parameter can be 

specified as a fixed or random effect. A fixed effect is a factor that does not change over time and that 

is applied equally on each unit at every level in the hierarchy, regardless of the level under which it is 

nested [20, 24]. For example, the possible values of measurement periods remain the same (i.e., 30, 270 

60, 90 and 120 seconds) whatever test is considered. On the contrary, random effects are expected to 

change within a level (i.e., from test to test) [24, 25]. For example, weather conditions are likely to vary 

between different tests. One main difference between fixed and random effects is in the calculation 

of standard errors. In MLM, other sources of uncertainties can be added by the inclusion of further 

random effects into the model. As a result, fixed-effect models might underestimate the standard error 

and increases the Type I error rate [24, 26]. When designing an experiment, it is good practice for the 

experimenter to decide in advance whether an effect is fixed (i.e., experimentally controlled) or 

random (i.e., occurs by chance). 

 

2.3.2 MLM Comparison 280 

The comparison of models with and without a given effect allows determining if this effect has an 

impact on the approximation quality. If a model with an effect has a significantly better fit than the 

same model without it, then it can be assumed that the effect has an impact on the approximation 

quality. Table 2 shows the four different models that have been compared in this study. Since the 
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goodness-of-fit of each model depends on the effect chosen, the order of addition of the effects has 

an impact on the results. In this use of MLM, the logical order is not as obvious as in other domains 

(e.g., the hierarchy in educational research is straightforward: country, district, school, classroom, 

students). The order was chosen as follows: duration of the period, number of measurements and 

distribution of the value computed. However, it was checked that the conclusions (i.e., the effects 

having a statistical and practical significance) remained the same whatever the order. 290 

 

Model Random effect Fixed effects 

Model 1 Test ID - 
Model 2 Test ID Measurement period 
Model 3 Test ID Measurement period and time step 
Model 4 Test ID Measurement period, time step and distribution 

Table 2 – Different models compared in the analysis with fixed and random effects successively added 

 

The simplest model, model 1, had only the test number (Test ID) as a random effect and no fixed effect. 

The other models (2, 3, and 4) were obtained by successively adding three fixed-effects: the 

measurement period, the time step, and the distribution. Hence: model 2 had two effects (test ID and 

measurement period); model 3 had three effects (test ID, measurement period and time step); model 

4 had four effects (test ID, measurement period, time step and distribution). 

The measurement period, time step and distribution were experimentally controlled and were then 

considered as fixed effects. On the contrary, different tests (i.e., test ID) experienced variable weather 300 

conditions and were, therefore, considered as a random effect. 

In the literature, researchers have mainly used the chi-square difference (𝜒𝑑
2) test to compare the 

goodness-of-fit of MLM [27]. This test compares the Log Likelihood (LL) values of the restricted (i.e., 

less parameterized) and unrestricted (i.e., more parametrized) models based on Equation 5: 
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Equation 5 

𝜒𝑑
2 = −2𝐿𝐿𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 − 2𝐿𝐿𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 

 

Other authors have recommended the use of the Bayesian Information Criterion (BIC) instead of the 

chi-square difference [27, 28]. This is because BIC adjusts the Log Likelihood value considering the 310 

number of parameters and the sample size. However, the interpretation of the BIC in model 

comparison is very subjective and the BIC should not be used in cases where the models differ only in 

fixed effects [28]. Therefore, in this study the 𝜒𝑑
2 test was used to test the statistical significance of the 

differences between the models.  

Since the 𝜒𝑑
2 test is a null hypothesis significance testing (NHST), other than calculating the statistical 

significance (p-value) of the differences detected, it is important to also estimate the practical 

relevance of their magnitude (effect size). In fact, one of the main limitations of NHST is that p-values 

depend both on the size of the sample and on that of the influence under investigation [29]. In fact, a 

result may be found to be statistically significant either if the effect is strong or the sample is large [30]. 

The effect size is a standardized measure of the difference between models [31]. Due to the nature of 320 

the data, in this study the effect size was calculated using the pseudo square partial correlation (𝑟𝑝
2, 

Equation 6), where 𝜎𝑖 is the variability explained by model 𝑖 [21, 25].  

 

Equation 6 

𝑟𝑝
2 = 1 −

𝜎𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

𝜎𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑
 

 

When interpreting the size of an effect, authors often refer to the benchmarks proposed by Cohen [32, 

33]. As recommended in the literature, these values are appropriate particularly in the absence of 

previous knowledge in the area [34]. Since this work is, to our knowledge, the first focusing on the 
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quantification of uncertainties in zero-flow pressure approximation, the benchmarks by Cohen have 330 

been used [33], hence defining effect sizes as small, medium or large, respectively for 𝑟𝑝
2 > 0.01, 𝑟𝑝

2 >

0.09 and 𝑟𝑝
2 > 0.25 [32].  

 

2.3.3 Assessing the Need for MLM 

One way of testing the need for MLM is by comparing the variance of the approximation quality 

between different tests (i.e., the between-test variance) with the variance of the approximation quality 

between different approximations using the same set of data (i.e., the within-test variance). This is 

done by computing the intra-class correlation (ICC) according to Equation 7: 

 

Equation 7 340 

𝐼𝐶𝐶 =
𝜏00

𝜏00 + 𝜎2
 

 

Where, 𝜏00 is the between-test variance and 𝜎2 is the residual variance (i.e., the within-test variance) 

[21, 25, 31].  

The ICC can be defined as the amount of variation occurring between tests. A value of zero would 

indicate that all the variation occurs between different approximations and none of it occurs between 

different tests (when the same approximation is compared). In such cases, traditional statistical tools 

(e.g., ANOVA) can be used and MLM is not needed. A value of ICC higher than zero indicates an increase 

in the variation between tests, leading to postulate a violation of the assumption of independence, 

and therefore the need to use statistical analysis tools that are not strictly based on assuming 350 

independence in the collection of data [21, 25].  
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In this paper, the variance of the approximation quality between tests was 0.672 while the residual 

variance was 0.098 (𝐼𝐶𝐶 = 0.873). According to Julian’s benchmarks [35], ICC values greater than 

0.45 correspond to large intra-class correlation. However, ICC values alone are not sufficient to assess 

the need for MLM. The design effect quantifies the violation of the assumption of independence on 

standard error estimates. It provides an estimate of the multiplier to apply on standard errors to take 

into account the bias resulting from a nested structure of the data [21]. The design effect can be 

calculated based on Equation 8: 

 

Equation 8 360 

𝐷𝑒𝑠𝑖𝑔𝑛 𝐸𝑓𝑓𝑒𝑐𝑡 = 1 + (𝑛𝑐 − 1)𝐼𝐶𝐶 

 

Where, 𝑛𝑐 is the number of approximations per test (32, in our data). 

The use of single-level modelling instead of MLM might not lead to misleading results when the design 

effect is smaller than 2 [21, 36, 37]. In this study, the computation of both ICC (0.873) and design effect 

(27.2) justified the need for MLM. 

 

2.3.4 Covariance Structure and Parameters Estimation 

One of the main advantages of MLM is the flexibility of the covariance matrix (i.e., the matrix that 

defines how the variances associated with each independent group are related to each other). In fact, 370 

multi-level modelling makes it is possible to specify direct assumptions regarding its structure [31]. 

Since the models used in our analysis featured only one random effect – and this was not a time-based 

study – an independent covariance matrix was used (that is, the variances of random effects are 

independent and have the same value) [20]. 



18 
 

MLM can be fitted using two different methods for parameter estimation: the full information 

maximum likelihood (FIML) and the restricted maximum likelihood (REML) method. However, REML 

can only be used to compare models differing in random effects, and not in fixed effects [38, 39]. 

Therefore, the use of FIML was preferred in this study.  

 

3 RESULTS 380 

The results are presented in three sections. The first section illustrates the issue of zero-flow pressure 

approximation by comparing the real zero-flow pressure with the reference case (i.e., minimum 

standard requirements) for the 31 tests. The second section describes and analyses the results of the 

model comparison. The third section uses these results to quantify the uncertainty of both zero-flow 

pressure approximation and envelope pressure. 

 

3.1 ZERO-FLOW PRESSURE IN FICTITIOUS TESTS AND REFERENCE CASE APPROXIMATION 

Table 3 gives the minimum, maximum, mean (M) and standard deviation (SD) of: the approximation 

quality for the reference case applied to the 31 tests; the mean; and, the standard deviation of zero-

flow pressure (∆𝑝0,𝑚𝑖) measured during the fictitious periods for the 31 tests. 390 

 

 Min [Pa] Max [Pa] M [Pa] SD [Pa] 

Approximation quality 0.27 2.79 1.26 0.72 
Mean average of zero-flow pressure -2.05 0.50 -0.73 0.53 
Standard deviation of zero-flow pressure 0.34 3.76 1.51 0.89 

Table 3 – minimum, maximum, mean and standard deviation for (1) the approximation quality using reference case, (2) the 
average value and (3) the standard deviation of zero-flow pressure measurements 

 

Comparing the mean average of zero-flow pressure and the approximation quality for the reference 

case illustrates the issue highlighted by Delmotte [13]. Indeed, the mean approximation quality (i.e., 
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the mean difference between approximation and real zero-flow pressure measurement) using the 

reference case (1.26 Pa) is of considerable magnitude. As a comparison, the absolute value of the mean 

average zero-flow pressure measured during fictitious periods is 0.73 Pa. Clearly, these values are case-

related and should not be generalized without further research. However, a large value of 400 

approximation quality can be expected whereas wind is known as one of the most important sources 

of uncertainty [14]. 

 

3.2 COMPARISON OF APPROXIMATION TECHNIQUES 

3.2.1 Model Comparison 

Table 4 reports the results of the chi-square difference (𝜒𝑑
2 𝑝

) – with the interpretation of its statistical 

significance (NHST) – and the estimation of the pseudo-square partial correlation ( 𝑟𝑝
2 ) in the 

comparison between models. The values of 𝜒𝑑
2 𝑝

 and 𝑟𝑝
2  are computed considering both quality 

indicators, 𝜀 and Δ, as discussed in paragraph 2.2.2. 

 410 

Model Comparison 𝜒𝑑
2  𝑝

(𝜀) 𝑟𝑝
2(𝜀) 𝜒𝑑

2  𝑝
(∆)NHST 𝑟𝑝

2(∆) 

1 vs 2 202.60 ** 0.10 14.45 ** < 0.01 
2 vs 3 0.844 N.S < 0.01 0.614 N.S. < 0.01 
3 vs 4 4.835 * < 0.01 4.295 * < 0.01 

N.S. Not significant (p > 0.05),* Significant (0.001 < p ≤ 0.05), ** Highly significant (p ≤ 0.001) 
𝑟𝑝

2 < 0.01: effect with non-substantive magnitude, 𝑟𝑝
2 ≥ 0.01: small effect , 𝑟𝑝

2 ≥ 0.09: moderate effect, 𝑟𝑝
2 ≥ 0.25: large effect 

 

Table 4 – Multi-Level Model comparison (statistical and practical significance) using 𝜀 and ∆ as quality indicators 

 

The comparison using 𝜀  as quality indicator shows that the difference between models with and 

without the measurement period (model 1 vs 2) is statistically significant and practically relevant (𝜒𝑑
2 =

202.60, 𝑝 < 0.01 and 𝑟𝑝
2 = 0.10). The difference between models with and without the time step 

(model 2 vs 3) is not statistically significant and its magnitude is non-substantive (𝜒𝑑
2 = 0.84, 𝑝 = 0.36 

and 𝑟𝑝
2 < 0.01), i.e. the influence detected is not practically relevant. The difference between models 

with and without distribution (model 3 vs 4) is statistically significant and with an effect of non-
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substantive size (𝜒𝑑
2 = 4.84, 𝑝 = 0.03 and 𝑟𝑝

2 < 0.01). The use of the ∆ quality indicator leads to the 

detection of differences between models whose magnitude is consistently not practically relevant 420 

(𝑟𝑝
2 < 0.01). 

The random effect Test ID was useful to assess the need for MLM, although this parameter has no 

physical meaning. Since zero-flow pressure is induced by weather factors (wind pressure and 

temperature difference), which varied during the test period, the Test ID is expected to hide a random 

effect related to differences in conditions (leading to a strong variation of zero-flow pressure 

measurements). However, in this study, the focus is on zero-flow pressure and not on weather 

conditions. Therefore, the standard deviation of zero-flow pressure measurements during the fictitious 

period was used to replace the Test ID as a random effect. The 31 tests were divided in three deviation 

classes: class 1 for calm wind (𝜎1 ≤ 1 𝑃𝑎); class 2 for moderate wind (1 𝑃𝑎 <  𝜎 ≤ 2 𝑃𝑎); and, class 3 

for strong wind (𝜎 > 2 𝑃𝑎). In the absence of guidelines in the literature for this classification, the 430 

boundaries were chosen to have equal pressure steps (1 Pa) and adequate sample sizes in each class 

(respectively 416, 192 and 348 for classes 1, 2 and 3) between classes. Further work could more 

thoroughly investigate how the wind affects the standard deviation of zero-flow pressure 

measurements. 

The model comparison allows determining how parameters affect the approximation quality. 

However, it gives no information about the quantification of their impact in terms of pressure 

difference. The next paragraph presents an in-depth analysis of the impact of deviation classes and 

measurement period on the zero-flow pressure approximation. 

 

3.2.2 Pairwise Comparisons 440 

Figure 4 shows the mean and 95% confidence interval of the approximation quality for 12 categories 

of approximations based on measurement period and grouped under the 3 standard deviation classes, 

hence providing a graphical overview of the results in terms of pressure difference. 
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Figure 4 – Mean approximation quality of different approximations grouped in 12 categories 

 

Due to the samples sizes being unequal, preliminary tests were performed on the data to verify 

eventual violations of the assumptions of normality and homogeneity of variance. In fact, when both 

the sizes of samples and their variances differ, there is a risk of inflating the occurrence of Type I errors 

(i.e., the probability of falsely rejecting the null hypothesis) [20, 40, 41]. Since the data were not 450 

normally distributed (Kolmogorov-Smirnov test = 0.13, 𝑝 < 0.001) [42], and the variances of the three 

deviation classes were significantly different (Levene’s test = 40.74 , 𝑝 < 0.001 ), non-parametric 

Wilcoxon rank-sum tests were adopted to calculate the statistical significance of the differences 

detected [20]. In addition, considering that multiple tests were performed on the same data under the 

same hypothesis, Bonferroni corrections were applied to counterbalance the increase in familywise 

error rate caused by the significance level inflating across multiple pairwise comparisons. The 

familywise error is the probability of making at least one Type I error, and is calculated as 1 − (0.95)𝑛, 
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with 𝑛 being the number of comparisons performed [20]. The probability of making a Type I error was 

respectively 26% and 14% for the within-class and the between-class comparisons. The Bonferroni 

correction ensures that the cumulative Type I error rate is kept below 0.05, although it is an adjustment 460 

method that is often considered as conservative and potentially vulnerable to Type II errors (i.e., the 

likelihood of failing to reject a false null hypothesis) [20]. 

Table 5 presents the results of the Wilcoxon tests with Bonferroni correction. For each comparison, 

the table provides the sample size of each group (𝑁1 and 𝑁2), the difference between means and the 

interpretation of its statistical significance ((𝜀1 − 𝜀2)𝑁𝐻𝑆𝑇 ), the lower and upper 95% confidence 

intervals for the mean difference (95% 𝐶𝐼𝐿and 95% 𝐶𝐼𝑈), and the effect size estimated by the Hedge’s 

g coefficient. This was preferred over other indicators of effect size (e.g., Cohen’s d and Glass’s ∆) since 

the standard deviation of independent groups were not the same and sample sizes were different. In 

the calculation of Hedge’s g, the standard deviation of each group is weighted with the sample size 

before pooling, according to Equation 9 [29]: 470 

 

Equation 9 

𝑔 =
ε1 − 𝜀2

𝜎𝑝𝑜𝑜𝑙𝑒𝑑
∗  

 

Where, 𝜎𝑝𝑜𝑜𝑙𝑒𝑑 is the weighted pooled standard deviation and 𝜀1 and 𝜀2 are the mean approximation 

qualities for both groups. Cohen’s benchmarks were used to infer small (𝑔 ≥ 0.2), moderate (𝑔 ≥ 0.5) 

and large (𝑔 ≥ 0.8) effect sizes [32]. 

 

 (𝑁1; 𝑁2) (ε1 − 𝜀2)𝑁𝐻𝑆𝑇 95% 𝐶𝐼𝐿 95% 𝐶𝐼𝑈 Effect size (𝑔) 

Between-class comparison 

Class 1 vs Class 2 
Class 1 vs Class 3 
Class 2 vs Class 3 
 

(416 ; 192) 
(416 ; 384) 
(192 ; 384) 

-0.53 ** 
-1.36 ** 
-0.82 ** 

 

-0.57 
-1.40 
-0.88 

-0.49 
-1.31 
-0.77 

-2.41 
-4.38 
-2.32 

 

Within-class comparison 
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Class 1 (𝑁 = 416) 
30 vs 60 
30 vs 90 
30 vs 120 
60 vs 90 
60 vs 120 
90 vs 120 

(104 ; 104) 
- 
- 
- 
- 
- 
- 

 
0.01 N.S 

0.03 * 

0.03 * 

0.02 N.S 

0.02 * 

0.01 N.S 

 
0.00 
0.01 
0.02 
0.00 
0.01 
0.00 

 
0.02 
0.04 
0.05 
0.03 
0.04 
0.02 

 
0.04 
0.12 
0.16 
0.08 
0.12 
0.05 

 

Class 2 (𝑁 = 192) 
30 vs 60 
30 vs 90 
30 vs 120 
60 vs 90 
60 vs 120 
90 vs 120 

 
(48 ; 48) 

- 
- 
- 
- 
- 
- 

 
 

0.14 ** 
0.14 ** 
0.15 ** 
0.00 N.S 

0.01 N.S 

0.01 N.S 

 
 

0.11 
0.11 
0.12 
-0.01 
-0.01 
0.00 

 
 

0.16 
0.17 
0.18 
0.02 
0.03 
0.01 

 
 

0.50 
0.52 
0.56 
0.01 
0.04 
0.03 

 
Class 3 (𝑁 = 384) 
30 vs 60 
30 vs 90 
30 vs 120 
60 vs 90 
60 vs 120 
90 vs 120 

 
(96 ; 96) 

- 
- 
- 
- 
- 
- 
 

 
 

0.08 * 

0.17 ** 
0.17 ** 
0.10 ** 

0.10 ** 

0.00 N.S 

 
 

0.03 
0.14 
0.13 
0.06 
0.06 
-0.01 

 

 
 

0.12 
0.21 
0.21 
0.13 
0.13 
0.01 

 
 

0.19 
0.50 
0.48 
0.23 
0.22 
0.00 

N.S. Not significant (p > 0.016), *Significant (0.00033 < p ≤ 0.016), ** Highly significant (p ≤ 0.00033), for between-class comparison 
N.S. Not significant (p > 0.008), *Significant (0.00017 < p ≤ 0.008), ** Highly significant (p ≤ 0.00017), for within-class comparison 
𝑔 < 0.2: effect with non-substantive magnitude, 𝑔 ≥ 0.2: small effect , 𝑔 ≥ 0.5: moderate effect, 𝑔 ≥ 0.8: large effect sizes 

Table 5 – Between-classes and within-classes comparisons based on Wilcoxon parirwise comparisons with Bonferroni 
correction (effect sizes were estimated by Hedge’s g coefficient) 480 

 

The results of the pairwise comparisons confirm the graphical observations from Figure 4. The 

differences in means between deviation classes are statistically significant and practically relevant. The 

results of the comparisons between measurement periods, however, depend on the deviation class. 

Within class 1, the comparison 30vs90, 30vs120 and 60vs120 are statistically significant but all the 

differences detected have non-substantive magnitudes. Within class 2, all the comparisons featuring 

measurement periods of 30 seconds (i.e., 30vs60, 30vs90 and 30vs120) are highly statistically 

significant with differences of moderate magnitude. Within class 3, all the comparisons featuring 

periods of 30 seconds are statistically significant (30vs60) and highly significant (30vs90 and 30vs120) 

with practically relevant effect sizes (small for 30vs60; moderate for 30vs90 and 30vs120). Within this 490 

class, the comparisons 60vs90 and 60vs120 are also highly statistically significant and have a practical 

effect of small magnitude.  
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3.2.3 Standard Deviation Measurements 

Since, in practice, the real zero-flow pressure cannot be measured during the fictitious period, its mean 

average and standard deviation cannot be computed. In order to check if the standard deviation of the 

measurements within approximation periods is a good indicator of the standard deviation within the 

fictitious period, a Spearman’s rho correlation test was performed. This was preferred to the classical 

Pearson’s r coefficient because the standard deviations were not normally distributed (Kolmogorov-

Smirnov test = 0.17, 𝑝 < 0.001 ) [29, 43, 44]. According to Cohen’s benchmarks, the correlation 500 

between standard deviation measurements during the approximation and fictitious periods had a 

practical association effect of strong magnitude (Spearman’s rho = 0.829, p < 0.001) [32].  

 

3.3 QUANTIFICATION OF UNCERTAINTIES IN ENVELOPE PRESSURE MEASUREMENTS 

3.3.1 Equation for Standard Uncertainty of Envelope Pressure 

There are two types of uncertainty evaluation methods: Type A is when uncertainties can be evaluated 

by statistical analysis of a series of observations; Type B is when an estimate cannot be obtained from 

repeated measurements and the uncertainty must be evaluated by scientific judgement (e.g., previous 

measurements or manufacturer’s specifications) [45]. In practice, the envelope pressure difference is 

obtained by averaging multiple measurements (𝑁) of the same pressure difference. According to the 510 

literature [45], in case of Type A evaluation methods, the standard uncertainty is the square root of 

the experimental variance of the arithmetic mean (Equation 10) [12]. 

 

Equation 10 

𝑢𝑐(∆𝑃𝑒𝑛𝑣) = √
𝑠2(∆𝑃𝑚𝑒𝑎𝑠)

𝑁
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Where, 𝑢𝑐(∆𝑃𝑒𝑛𝑣) is the standard uncertainty of the envelope pressure difference, 𝑠2(∆𝑃𝑚𝑒𝑎𝑠) is the 

experimental standard deviation of the envelope pressure measurement, and 𝑁  is the number of 

repeated measurements.  

When there are large wind fluctuations during a test, however, it might not always be appropriate to 520 

consider the envelope pressure measurement as a series of repeated independent measures. The left 

side of Figure 5 shows this issue by plotting 30 pressure-airflow couples measured within an interval 

of 30 seconds during a typical fan pressurization test with a target pressure of −40 Pa. The right side 

of the figure shows the results if envelope pressure measurements were perfectly independent. 

Delmotte discussed this issue when dealing with standard uncertainty propagation [12, 46].  

         

Figure 5 – 30 pressure-airflow couples measurements (one per second): when a -40 Pa target pressure is set during a typical 
fan pressurization test (left); if measurements were completely uncorrelated (right) 

 

 530 

When measurements are no longer independent, the type B evaluation method must be used. In such 

cases, the standard uncertainty is evaluated by scientific judgement based on the available information 

on the variability of the results [45]. In the development of the standard uncertainty calculation 

formula, Delmotte considered each measurement point separately, and therefore did not deal with 

propagation uncertainty when calculating the means [12]. Similarly, in this study the uncertainty on 

pressure envelope was considered at each measurement point and not on mean averages.  
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The envelope pressure is the difference between the pressure measured and the zero-flow pressure. 

Therefore, the standard uncertainty in envelope pressure difference can be computed with Equation 

11 [12, 45]: 

 540 

Equation 11 

𝑢𝑐(∆𝑃𝑒𝑛𝑣) = √𝑢𝑐
2(∆𝑃𝑢) + 𝑢𝑐

2(∆𝑝0) 

 

Where, 𝑢𝑐(∆𝑃𝑢) is the uncertainty related to the pressure measured at gauge location and 𝑢𝑐(∆𝑝0) is 

the uncertainty related to the zero-flow pressure estimation. 

This equation is only valid if ∆𝑃𝑢 and ∆𝑝0 are independent. In the calculation performed in this study, 

a constant distribution was considered for the zero-flow pressure approximation. Thus, ∆𝑝0 is constant 

over the test while ∆𝑃𝑢 values are scattered Figure 5; the assumption of independence is therefore 

satisfied. Since the hypotheses related to envelope pressure are considered acceptable (i.e., negligible 

uncertainty), the standard uncertainty of pressure measurement was deduced from the equipment 550 

described in paragraph 2.1.2 (i.e., the greatest between ± 0.5% and ± 0.1 Pa [18, 19]). 

 

3.3.2 Standard Uncertainty in Zero-Flow Pressure 

The standard uncertainty in zero-flow pressure is composed of two parts: the zero-flow pressure 

measurement and its approximation. The uncertainty of zero-flow pressure measurement depends on 

the approximation technique and on the pressure gauge used. The standard uncertainty of the 

equipment used to measure zero-flow pressure in this study was assumed constant (± 0.1 Pa) because 

the zero-flow pressure is always lower than 5 Pa (ISO 9972:2015 standard requirement [17]). Since the 

uncertainty of the measurement is constant, and it is independent of the approximation, Equation 12 

can be used to compute the standard uncertainty in zero-flow pressure: 560 
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Equation 12 

𝑢𝑐(∆𝑝0) = √𝑢𝑐,𝑚
2 (∆𝑝0) + 𝑢𝑐,𝑎

2 (∆𝑝0) 

 

Where, 𝑢𝑐,𝑚(∆𝑝0) is the standard uncertainty related to the zero-flow pressure measurement, and 

𝑢𝑐,𝑎(∆𝑝0) is the standard uncertainty related to the zero-flow pressure approximation.  

The standard uncertainty related to zero-flow pressure measurement is the standard uncertainty of 

the equipment divided by two, since the zero-flow pressure is given by the average between pre- and 

post-test measurements and both have the same standard uncertainty [12].  

The standard uncertainty in zero-flow pressure approximation cannot be evaluated by series of 570 

observations because the weather conditions cannot be kept constant between tests. Thus, it must be 

evaluated based on scientific judgement and available information on the variability of results. The 

indicator 𝜀 is defined as the mean of |∆𝑝0,𝑡𝑖 − ∆𝑝̃0,𝑡𝑖| and both ∆𝑃0 (Shapiro-Wilk test: 𝑊 = 0.94, 𝑝 =

0.08; Komolgorov-Smirnov test: 𝐷 = 0.16, 𝑝 = 0.37) and 𝜀 (Shapiro-Wilk test: 𝑊 = 0.94, 𝑝 = 0.06; 

Komolgorov-Smirnov test: 𝐷 = 0.16 , 𝑝 = 0.4) follow distributions not significantly different from 

normal. Therefore, it can be assumed that ∆𝑃0 − 𝜀/2 and ∆𝑃0 + 𝜀/2 are respectively the lower and 

the upper limit of the interval containing 50% of the zero-flow pressure. Since the Z-scores of the 

normal distribution are respectively 0.675 and -0675 when considering 75% and 25% of the results, 

Equation 13 can be used to find the standard deviation of the zero-flow pressure based on 

approximation quality. 580 

 

Equation 13 

± 0.675 =
(∆𝑝0,𝑎 ± 𝜀/2) − ∆𝑝0

𝜎(∆𝑝0)
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It is assumed that the zero-flow pressure approximation (∆𝑃0,𝑎) equals the average of the zero-flow 

pressure measurements made during the fictitious period (∆𝑃0). This hypothesis is acceptable since 

the difference between both is already considered in the term 𝜀  of the equation. Therefore, the 

standard uncertainty of the approximation method (𝑢𝑐,𝑎(∆𝑝0)) is given by the standard deviation of 

the zero-flow pressure around its mean value (= 𝜀/1.35) [45]. Table 6 provides 𝑢𝑐,𝑎(∆𝑝0) values 

obtained in this study for different deviation classes and measurement periods based on 𝜀 averages.  590 

 30 seconds 60 seconds 90 seconds 120 seconds 

Class 1 0.45 0.44 0.43 0.42 

Class 2 0.91 0.81 0.80 0.80 

Class 3 1.52 1.46 1.39 1.39 

Table 6 – Values for the uncertainty due to zero-flow pressure approximation for the 12 groups of approximations 
considered in the in-depth analysis of this study [Pa] 

 

The results presented in Table 6 confirm the observations made in the pairwise comparison (Figure 4, 

section 3.2.2). Indeed, increasing the approximation period to 60 seconds reduces the uncertainty 

within Class 2 and 3. Increasing the measurement period to 90 seconds reduces the uncertainty in 

Class 3. 

3.3.3 Standard Uncertainty in Envelope Pressure 

Since only a constant distribution has been considered, Equation 14 gives the total standard 

uncertainty of envelope pressure evaluation as a function of the measurement at the pressure gauge 600 

(∆𝑃𝑢): 

 

Equation 14 

𝑢𝑐(∆𝑃𝑒𝑛𝑣) = √max(0.005 ∗ ∆𝑃𝑢; 0.1)2 +
0.12

2
+ (

𝜀

1.35
)

2
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In the literature on uncertainties in airtightness evaluation, results are often given in terms of 

expended uncertainties [12, 15]. The expanded uncertainty is applied when dealing with a Type B 

evaluation method and is the equivalent to the confidence interval in a Type A evaluation method. The 

expanded uncertainty is obtained by multiplying the standard uncertainty by a coverage factor (𝑘). If 

the probability distribution is assumed normal, coverage factors of 2 and 3 correspond respectively to 610 

confidence intervals of ≈ 95% and ≈ 99% [45]. In this study, the envelope pressure was assumed 

normally distributed and a coverage factor of 2 was used to give an expanded uncertainty equivalent 

to a 95% confidence interval.  

Figure 6 represents the expanded uncertainty ( 𝑘 = 2 ) as a function of the pressure difference 

measured by pressure gauges (∆𝑃𝑢) with (solid lines) and without (dashed lines) consideration of the 

zero-flow pressure approximation component in the envelope pressure uncertainty. The results are 

plotted for the three different deviation classes, considering for each class a measurement period of 

30 seconds. The left part of the figure is the relative standard uncertainty (expressed in percentage of 

∆𝑃𝑢), while the right part is the absolute standard uncertainty (in Pa). 

 620 

Figure 6 – Results of the calculations for relative (left, in % of ∆𝑃𝑢) and absolute (right, in Pa) expanded standard uncertainty 
of the envelope pressure evaluation with (solid lines) and without (dashed line) considration of the approximation 

uncertainty component 
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These graphs show that the uncertainty due to zero-flow pressure approximation has a large impact 

on the envelope pressure uncertainty. Indeed, for a measurement at 50 Pa when using approximation 

periods of 30 seconds, the uncertainty due to zero-flow pressure approximation is 76%, 93% and 97% 

of the envelope pressure uncertainty for low-, medium- and high-wind conditions respectively. 

Table 7 shows the differences in uncertainty calculations without the uncertainty due to zero-flow 

pressure approximation and with it for three different deviation classes.  630 

 

 Low Pressure (10 Pa) Medium Pressure (50 Pa) High Pressure (100 Pa) 

[Pa] [%] [Pa] [%] [Pa] [%] 

No approximation 0.24 2.4 0.52 1.0 1.01 1.0 

Deviation class 1 0.93  9.3  1.04  2.1  1.35  1.4 

Deviation class 2 1.84  18.4  1.89  3.8  2.08  2.1  

Deviation class 3 3.05  30.5  3.08  6.2  3.20  3.2  
Table 7 – Results for the calculations of expanded standard uncertainty (k=2) of the envelope pressure in terms of % of ∆𝑃𝑢 

and in terms of Pa. Results are given for low-, medium- and high-pressure 

 

The ISO 9972:2015 European standard allows the first measurement to be made at a pressure of three 

times the zero-flow pressure [17]. Although that multiplier is applied on the zero-flow pressure value 

and not on the deviation class, it is reasonable to expect that, for deviation class 3, a measurement at 

10 Pa might be sometimes irrelevant.  

The value presented in Table 7 and in Figure 6 should be considered carefully in the calculations. 

Indeed, when performing a test, each airflow-pressure couple recorded is the average of multiple 640 

measurements. Furthermore, in practice the operator often tries to take a measurement when wind 

fluctuations are low. This reduces the impact of wind fluctuations and decreases this component of 

uncertainty. The values of uncertainties found might overestimate the uncertainty related to zero-flow 

pressure approximation encountered in practice. 
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4 DISCUSSION 

This study shows that the uncertainty due to zero-flow pressure approximation is substantial and can 

considerably increase the uncertainty in pressure measurements. Indeed, this uncertainty is 1.52 Pa 

for deviation class 3 when considering 30-second measurements for the approximation period, while 

at 50 Pa the uncertainty due to the equipment is 0.25 Pa. Figure 7 represents the uncertainty in the Y 650 

variable (ln(𝑄)) and in the X variable (ln(∆𝑃)), with (X1, dashed grey line) and without (X0, dotted 

grey line) consideration of the uncertainty due to zero-flow pressure approximation, as a function of 

the pressure measurement in a typical fan pressurization test performed on an apartment in Brussels. 

 

Figure 7 – Uncertainties in Y variable and X variable - with (X1) and without (X0) consideration of the zero-flow pressure 
approximation - as a function of the pressure measurement for a typical fan pressurization test 

 

This observation has an important impact on the protocol for building airtightness evaluation. A linear 

regression technique is generally used to determine building flow characteristics (i.e., flow exponent 

and leakage coefficient) from airflow-pressure couples, but the ISO 9972:2015 standard [17] gives no 660 

indication about the choice of the method. The ordinary least square (OLS) method is often utilized in 

practice, but this method assumes that the uncertainties in the envelope pressure are negligible [47]. 
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Various authors have already questioned the use of the OLS method, even without considering the 

uncertainty due to zero-flow pressure approximation [12, 48]. The findings of this study strengthen, as 

illustrated by Figure 7, their point of view in the debate and supports the development of other 

regression techniques, as for example the iterative weighted least square (IWLS) suggested by 

Okuyama and Onishi [48] or the weighted line of organic correlation (WLOC) proposed by Delmotte 

[13]. Recent research has also shown that using the OLS method leads to a poor estimation of 

uncertainties in building flow characteristics [13, 49]. 

This study quantifies the impact of uncertainties in zero-flow pressure approximation on envelope 670 

pressure uncertainty. Its influence on the global uncertainty is more complex to quantify because the 

study of different regression techniques is also implied. It must be considered that this component has 

no impact on the uncertainty calculation using the OLS method since this assumes that the uncertainty 

in envelope pressure measurement is negligible. However, it has an impact on the calculation of 

uncertainties in regression parameters and on the estimation of the correlation between both 

coefficients when using other regression methods (e.g., WLOC or IWLS). In addition, its impact is 

expected to strongly vary depending on the variable of interest (e.g., airflow at 50 or 10 Pa) due to the 

weighting of the measurement induced by alternative regression methods. The study of the change in 

regression techniques and the uncertainty in zero-flow pressure approximation has an influence on 

the total uncertainty, and the airtightness estimation is an important work that should be conducted 680 

in further researches. 

This study also finds that none of the three suggested distributions gives better results than the 

constant one (i.e., the distribution recommended in the ISO 9972:2015 standard [17]). This is not 

consistent with the bi-linear distribution suggested by Delmotte [13]. However, the results presented 

in the previous section do not imply that the constant distribution is the most appropriate. Indeed, this 

study has only tested constant 𝛼𝑖 coefficients in the distribution while the standard deviation seems 

to have a strong impact on the approximation quality. It could be interesting in further research to test 
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distributions with 𝛼𝑖  coefficients depending on the zero-flow pressure variation (i.e., distributions 

depending on the test results) before claiming that uncertainties cannot be reduced by changing the 

zero-flow pressure distribution during the test.  690 

Finally, this study shows that an increase of measurement period has a statistically significant and 

practically relevant positive impact on the approximation quality, especially on windy days. This is 

important because this modification is easy to implement in practice. When considering travel time, 

building preparation, equipment installation, and the measurement itself, a fan pressurization test can 

easily take half-a-day to complete. Therefore, the addition of 90 seconds to both approximation 

periods is negligible compared to the total duration of the test itself. Results showed that an increase 

of the approximation period from 30 to 60 seconds for class 2 and from 30 to 90 seconds for class 3 

should be considered, respectively, for days with medium and high wind. Unfortunately, to our 

knowledge, no other author has yet studied the impact of this variable. One interesting further work 

would be the generalization of these observations on a large sample of zero-flow pressure tests 700 

performed on several different buildings. 

In generalizing the findings of this study, some methodological limitations should be acknowledged. In 

fact, even if the results were obtained by rigorous statistical testing, the data on which they were based 

were specific to the sample analyzed. Other buildings could undergo other zero-flow pressure (e.g., 

due to a stack effect in high-rise buildings or different surroundings inducing other wind pressure). 

Since a correlation between the zero-flow pressure and its uncertainty can be expected, it is also 

reasonable to assume an influence of the building case on the zero-flow pressure approximation 

uncertainty. However, the method and the trends observed (e.g., the importance of the zero-flow 

pressure approximation uncertainty regarding the envelope pressure uncertainty or the reduction of 

uncertainty when taking higher approximation periods) should still be appropriate for other cases. In 710 

addition to the generalization of the results, applying this quantification method on a large sample of 

different buildings would also allow to analyze the impact of building-related parameters (e.g., 
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dwelling type, volume or height, etc.) on uncertainty due to zero-flow pressure approximation. 

Another variable that could be tackled in further research is the location of the pressure gauge. As 

mentioned in section 2.1.3, the location of the pressure gauge is expected to have an influence on the 

zero-flow pressure average and standard deviation and, therefore, on the uncertainty due to zero-flow 

pressure approximation.  

5 CONCLUSION 

This study provides 4 key-findings:  

 Multi-level modelling can, and should, be used to estimate uncertainties due to zero-flow 720 

pressure approximation and to study the impact of different variables on it. 

 The approximation period should be increased to 60 seconds on medium-wind days (to reduce 

the uncertainty by 11%), and to 90 seconds on high-wind days (to reduce the uncertainty by 

9%).  

 A change in the zero-flow pressure distribution or in the time step between measurements 

does not provide statistically or practically better results. 

 Uncertainties in zero-flow pressure represents more than 75% of the envelope pressure 

uncertainties whatever the wind conditions, and therefore they have an impact on the choice 

of regression method used. 

This study is an important step in the quantification of uncertainties in airtightness measurements, but 730 

further research in this field is needed, including: applying the proposed method on a large sample of 

data from different buildings; studying the impact of uncertainty due to zero-flow pressure on the 

airtightness estimation for different regression techniques (OLS, IWLS or WLOC); quantifying the other 

relevant uncertainty components of airtightness measurements uncertainties. 



35 
 

ACKNOWLEDGMENTS 

Authors gratefully acknowledge the support of Dr Michael Kent from the University of Nottingham in 

the statistical analysis of data. Authors also thank Christophe Delmotte from the Belgian Building 

Research Institute and Felipe Ossio from Pontificia Universidad Católica de Chile for helping with a 

proofreading of the paper. The tests were performed on a site from Jacques Delens Company and this 

work was supported by an INNOVIRIS grant (2016-DOCT-9) awarded to the first author for his PhD 740 

research at Architecture et Climat, Université catholique de Louvain.  

  



36 
 

REFERENCES 

1. Kalamees, T., Air tightness and air leakages of new lightweight single-family detached houses 
in Estonia. Building and environment, 2007. 42(6): p. 2369-2377. 

2. Jokisalo, J., et al., Building leakage, infiltration, and energy performance analyses for Finnish 
detached houses. Building and Environment, 2009. 44(2): p. 377-387. 

3. Loncour, X. and C. Mees, L'étanchéité à l'air des bâtiments. 2015, Centre Scientifique et 
Technique de la Construction (CSTC). 

4. Šadauskienė, J., et al., Impact of Air Tightness on the Evaluation of Building Energy 750 
Performance in Lithuania. Energies, 2014. 7(8): p. 4972-4987. 

5. Thor-Oskar, R., H. Sverre, and T.J. Vincent, Airtightness estimation—A state of the art review 
and an en route upper limit evaluation principle to increase the chances that wood-frame 
houses with a vapour-and wind-barrier comply with the airtightness requirements. Energy 
and Buildings, 2012. 54: p. 444-452. 

6. Prignon, M. and G.V. Moeseke, Factors Influencing Airtightness and Airtightness Predictive 
Models: A Literature Review. Energy and Buildings, 2017. 146: p. 87-97. 

7. Novak, J., Repeatability and reproductibility of blower door tests - four years' experience of 
round-robin tests in Czech republic, in 9th International Buildair Symposium. 2015: Germany. 

8. Delmotte, C. and J. Laverge. Interlaboratory tests for the determination of repeatability and 760 
reproducibility of buildings airtightness measurements. in 32nd AIVC conference and 1st 
TightVent Conference: "Towards Optimal Airtightness Performance". 2011. Brussels, Belgium. 

9. Persily, A. Repeatability and accuracy of pressurization testing. in ASHRAE/DOE Conference 
Thermal Performance of the Exterior Envelopes of Buildings II. 1982. Las Vegas, USA. 

10. Kim, A.K. and C.Y. Shaw, Seasonal variation in airtightness of two detached houses, in 
Measured Air Leakage of Buildings: A Symposium. 1986, ASTM International: Philadelphia, 
USA. p. 16-32. 

11. Bracke, W., et al., Durability and Measurement Uncertainty of Airtightness in Extremely 
Airtight Dwellings. International Journal of Ventilation, 2016. 14(4): p. 383-394. 

12. Delmotte, C. Airtightness of buildings-Calculation of combined standard uncertainty. in 34th 770 
AIVC Conference "Energy conservation technologies for mitigation and adaptation in the built 
environment: the role of ventilation strategies and smart materials". 2013. Athens, Greece. 

13. Delmotte, C. Airtightness of Buildings - Considerations regarding the Zero-Flow Pressure and 
the Weighted Line of Organic Correlation. in 38th AIVC Conference "Ventilating healthy low-
energy buildings". 2017. Nottingham, UK. 

14. Sherman, M. and L. Palmiter, Uncertainties in fan pressurization measurements, in Airflow 
performance of building envelopes, components, and systems. 1995, ASTM International: 
Philadelphia, USA. p. 266-283. 

15. Carrié, F.R. and V. Leprince, Uncertainties in building pressurisation tests due to steady wind. 
Energy and Buildings, 2016. 116: p. 656-665. 780 

16. Walker, I., et al., Applying Large Datasets to Developing a Better Understanding of Air 
Leakage Measurement in Homes. International Journal of Ventilation, 2013. 11(4): p. 323-
338. 

17. ISO-9972, NBN EN ISO 9972:2015 - Performance thermique des bâtiments - Détermination de 
la perméabilité à l'air des bâtiments - Méthode de pressurisation par ventilateur (ISO 
9972:2015) CEN, Brussels, Belgium. 2015. 

18. TEC, Operating Instruction for the DG-700 Pressure and Flow Gauge. 2012: The Energy 
Conservatory. 

19. TEC, An explication of the DG-1000 accuracy specifications. 2016, The Energy Conservatory. 
20. Field, A., J. Miles, and Z. Field, Discovering Statistics Using R. 2012, London: SAGE 790 

Publications Ltd. 957. 



37 
 

21. Peugh, J.L., A practical guide to multilevel modeling. Journal of School Psychology, 2010. 
48(1): p. 85-112. 

22. Rasbash, J., et al., A User's Guide to MLwiN. 2015, University of Bristol: Centre for Multilevel 
Modelling. 

23. Goldstein, H., Multilevel Statistical Models. 4th ed. 2010, New York: John Wiley & Sons Ltd. 1-
14. 

24. Kent, M.G., Temporal Effects in Glare Response, in Department of Architecture & Built 
Environment. 2016, University of Nottingham: United Kingdom. 

25. Hayes, A.F., A Primer on Multilevel Modeling. Human Communication Research, 2006. 32(4): 800 
p. 385-410. 

26. Beretvas, S.N. and D.A. Pastor, Using Mixed-Effects Models In Reliability Generalization 
Studies. Educational and Psychological Measurement, 2003. 63(1): p. 75-95. 

27. Whittaker, T.A. and C.F. Furlow, The Comparison of Model Selection Criteria When Selecting 
Among Competing Hierarchical Linear Models. Journal of Modern Applied Statistical 
Methods, 2009. 8(1). 

28. Seltman, H.J., Experimental Design and Analysis. 2012, Pittsburgh: Carnegie Mellon 
University 2012. 428. 

29. D Ellis, P., The essential guide to effect sizes: Statistical power, meta-analysis, and the 
interpretation of research results. 2010, Cambridge: Cambridge University Press. 173. 810 

30. Schiavon, S. and S. Altomonte, Influence of factors unrelated to environmental quality on 
occupant satisfaction in LEED and non-LEED certified buildings. Building and Environment, 
2014. 77: p. 148-159. 

31. Kent, M.G., et al., Temporal effects on glare response from daylight. Building and 
Environment, 2017. 113: p. 49-64. 

32. Cohen, J., A power primer. Psychological bulletin, 1992. 112(1): p. 155. 
33. Durlak, J.A., How to select, calculate, and interpret effect sizes. Journal of pediatric 

psychology, 2009. 34(9): p. 917-928. 
34. Volker, M.A., Reporting effect size estimates in school psychology research. Psychology in the 

Schools, 2006. 43(6): p. 653-672. 820 
35. Julian, M.W., The Consequences of Ignoring Multilevel Data Structures in Nonhierarchical 

Covariance Modeling. Structural Equation Modeling: A Multidisciplinary Journal, 2001. 8(3): 
p. 325-352. 

36. Maas, C.J.M. and J.J. Hox, Sufficient Sample Sizes for Multilevel Modeling. Methodology, 
2005. 1(3): p. 86-92. 

37. Muthén, B.O. and A. Satorra, Complex Sample Data in Structural Equation Modeling. 
Sociological Methodology, 1995. 25: p. 267-316. 

38. Verbeke, G.M., G, Linear Mixed Models for Longitudinal Data. Springer Series in Statistics. 
2000: Springer-Verlag New York. 570. 

39. Gurka, M.J., Selecting the Best Linear Mixed Model Under REML. The American Statistician, 830 
2006. 60(1): p. 19-26. 

40. De Winter, J.C., Using the Student's t-test with extremely small sample sizes. Practical 
Assessment, Research & Evaluation, 2013. 18(10). 

41. Zimmerman, D.W., A note on preliminary tests of equality of variances. British Journal of 
Mathematical and Statistical Psychology, 2004. 57(1): p. 173-181. 

42. Field, A. and G. Hole, How to design and report experiments. 2002: Sage. 
43. Ferguson, C.J., An effect size primer: A guide for clinicians and researchers. Professional 

Psychology: Research and Practice, 2009. 40(5): p. 532-538. 
44. Hauke, J. and T. Kossowski, Comparison of Values of Pearson's and Spearman's Correlation 

Coefficients on the Same Sets of Data. Quaestiones Geographicae, 2011. 30(2): p. 87. 840 
45. JCGM, Evaluation of measurement data—guide for the expression of uncertainty in 

measurement. 2008, Joint Committee for Guides in Metrology. p. 134. 



38 
 

46. Delmotte, C., Airtightness of buildings - Calculation of combined standard uncertainty. 2013, 
Belgian Building Research Institute - Laboratory Air Quality and Ventilation: Unpublished 
Report. p. 29. 

47. Helsel, D.R. and R.M. Hirsch, Statistical Methods in Water Resources in Techniques of Water 
Resources Investigations. 2002, U.S. Geological Survey. p. 522. 

48. Okuyama, H. and Y. Onishi, Reconsideration of parameter estimation and reliability 
evaluation methods for building airtightness measurement using fan pressurization. Building 
and Environment, 2012. 47: p. 373-384. 850 

49. Prignon, M., A. Dawans, and G. van Moeseke. Uncertainties in airtightness measurements: 
regression methods and pressure sequences. in 39th AIVC-7th TightVent & 5th venticool 
Conference Smart ventilation for buildings. 2018. 

 


