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Abstract

In this paper we first develop a logic independent account of relevant
implication. We propose a stipulative definition of what it means for a
multiset of premises to relevantly L-imply a multiset of conclusions, where
L is a Tarskian consequence relation: the premises relevantly imply the
conclusions iff there is an abstraction of the pair 〈premises, conclusions〉
such that the abstracted premises L-imply the abstracted conclusions and
none of the abstracted premises or the abstracted conclusions can be omit-
ted while still maintaining valid L-consequence.

Subsequently we apply this definition to the classical logic (CL) conse-
quence relation to obtain NTR-consequence, i.e. the relevant CL-consequence
relation in our sense, and develop a sequent calculus that is sound and
complete w.r.t. relevant CL-consequence. We present a sound and com-
plete sequent calculus for NTR. In a next step we add rules for an object
language relevant implication to the sequent calculus. The object lan-
guage implication reflects exactly the NTR-consequence relation. One
can see the resulting logic NTR→ as a relevant logic in the traditional
sense of the word.

By means of a translation to the relevant logic R, we show that the
presented logic NTR is very close to relevance logics in the Anderson-
Belnap-Dunn-Routley-Meyer tradition. However, unlike usual relevant
logics, NTR is decidable for the full language, Disjunctive Syllogism (A
and ¬A ∨ B relevantly imply B) and Adjunction (A and B relevantly
imply A ∧ B) are valid, and neither Modus Ponens nor the Cut rule are
admissible.

1 Introduction

In the recent history of logic there are few episodes as mathematically and
philosophically rich as the development of relevance logics to avoid the counter-
intuitive properties (sometimes called ‘paradoxes’ or even ‘fallacies’ by relevance
logicians) of material implication. Starting with Wilhelm Ackermann [1] and
Alonzo Church [6] in the 1950s, many logicians have studied logical systems that
aim to get rid of irrelevance in logic. Nuel Belnap and Alan Anderson (among
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many others) [2, 3] have developed and thoroughly analyzed the best known
relevance logics E and R, for which Richard Routley/Sylvan and Bob Meyer
[16, 15] have proposed a very interesting and intriguing possible world seman-
tics with a ternary accessibility relation. For the technical work in this paper
the encyclopedic article [8] suffices. Despite the beauty and importance of this
thread of research, we think it is worthwhile to attempt a completely different
road to relevance from a more pluralistic and conservative point of view. We
want to look at a notion of relevance that is as close as possible to existing logics
that have no relevance properties. We study the notion of relevant implication
for existing consequence relations, and in particular for classical logic (CL).
We aim to investigate the position that, whatever notion of logical consequence
one endorses, one can coherently speak of and formalize the notion of relevant
implication, without criticizing the underlying (non-relevant) consequence rela-
tion. We thus look for a notion of relevance that is complimentary and tailored
to existing non-relevant logics, and in this paper specifically to classical logic.
R and E are not tailored for classical logic as illustrated by the rejection of
Disjunctive Syllogism, which is very often (relevantly) used in classical reason-
ing contexts (as argued by [4]). At the end of this paper however, it will be
shown that the here proposed relevant implication tailored for classical logic is
actually not extremely different from the standard relevance logic R and could
thus be seen as a contribution to the logical relevance research thread starting
with Ackermann.

LetW be the set of formulas of a formal language L. A (multiple conclusion)
Tarskian consequence relation ` (cf. [11]) is a relation in ℘(W) ×℘(W) that
is monotonic (i.e. if Γ ` ∆, then Γ ∪ {A} ` ∆ and Γ ` ∆ ∪ {A}), transitive
(i.e. if Γ ` ∆ ∪ {A} and Γ′ ∪ {A} ` ∆′, then Γ ∪ Γ′ ` ∆ ∪ ∆′), reflexive (i.e.
{A} ` {A}), and formal (i.e. closed under Uniform Substitution). Remark that
all axiomatizable consequence relations are Tarskian. Semantically, Tarskian
consequence relations can usually be characterized as follows: ∆ is a consequence
of Γ iff at least one of the members of ∆ is verified by each model that verifies
all members of Γ, where the precise meaning of the expressions ‘model’ and
‘is verified by’ differs from logic to logic. Consider any logic L that defines a
Tarskian consequence relation `L.

As an example, consider the CL-consequence relation with multiple conclu-
sions. Remember that in multiple conclusion consequence relations at least one
of the conclusions should be true in all models in which all premises are true.
So e.g.

p,¬p ∨ q `CL q, r
`CL p,¬p
p, q `CL q, r
p,¬p `CL

s, p ∨ q `CL p, q, r

but

p,¬p ∨ q 0CL r, s
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0CL p,¬q
p, q 0CL r
p,¬q 0CL

s, p ∨ q 0CL p, r

In what follows regular Greek capital letters–possibly with superscripts, sub-
scripts and accents–(e.g. Γ, ∆′, Θ3) will denote subsets of W. Bold Greek
capitals–possibly with superscripts, subscripts and accents–(e.g. Γ, ∆′, Θ3)
will denote multisets1 of formulas in W. Where ‡ is a symbol, a set ‡-sequent
is a statement Γ‡∆ and a multiset ‡-sequent is a statement Γ‡∆. Multiset `L-
sequents will be said to be valid iff the set version of the same sequent (when
only one copy is left of each element on both sides of the turnstyle) is valid.

For example, p, q `CL q ∧ r, s and p,¬q `CL are (invalid) `CL-sequents
p, p, p, r `CL and r, r, r `CL p, p,¬p are multiset `CL-sequents (the first invalid,
the second valid). If there is no confusion about the central symbol of the
sequent or about its being a mutiset sequent or not, we simply use the word
‘sequent’.

Let’s introduce our stipulative definition of L-relevance and relevant L-
implication.

Definition 1. A valid multiset `L-sequent is L-relevant iff there is an L-valid
abstraction of this multiset sequent in which none of the premises or conclusions
are redundant. We say that Γ relevantly L-implies ∆ iff the sequent Γ `L ∆ is
L-relevantly valid.

In order to make this definition precise we need to give a definition of abstrac-
tion and redundancy in a valid L-implication. We say that a multiset sequent
Γ′ ` ∆′ is an abstraction of a multiset sequent Γ ` ∆ iff the latter, or a version
of the latter with more copies of some of its formulas, can be obtained from
the former by one or more applications of Uniform Substitution, where Uniform
Substitution is the rule that enables the replacement of every occurrence of a
sentential letter (in the entire sequent) by a (primitive or complex) formula. Or,
more formally:

Definition 2. The notion abstraction is recursively defined as follows.

• Γ ` ∆ is an abstraction of Γ ` ∆,

• Γ ∪ {A,A} ` ∆ is an abstraction of Γ ∪ {A} ` ∆,

• Γ ` ∆ ∪ {A,A} is an abstraction of Γ ` ∆ ∪ {A},

• Γ′ ` ∆′ is an abstraction of a multiset sequent Γ ` ∆, where 〈Γ,∆〉 is the
result of substituting every occurrence of a proposition letter in 〈Γ′,∆′〉 by
one single formula,

1A multiset is like a set, but distinguishes for each element the number of copies of that
element. The union of two multisets has the same elements as the union of the elements of
the two multisets. The number of copies of each element of the union multiset is the sum of
the number of its copies in the first multiset and the number of its copies in the second.
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sequent is an abstraction of sequent
p,¬p `CL p ∧ r,¬(p ∧ r) `CL

`CL q,¬q `CL p ∧ ¬p,¬(p ∧ ¬p)
p,¬p ∨ q `CL q p,¬p ∨ p `CL p
p ∨ q `CL p, q (p ∧ r) ∨ (p ∧ r) `CL p ∧ r, p ∧ r
p, q `CL p ∧ q p,¬p `CL p ∧ ¬p
¬(p ∨ q) `CL ¬p ∧ ¬q ¬(p ∨ p) `CL ¬p ∧ ¬p
p, q ` p ∧CL (q ∧ r),¬r p ∧ q, p ∧ q `CL (p ∧ q) ∧ ((p ∧ q) ∧ (p ∧ q)),¬(p ∧ q)
p, q ` p ∧ q p, p ` p ∧ p
p ∨ q ` p, q p ∨ p ` p, p
p ∨ p ` p, p p ∨ p ` p

Table 1: examples of abstractions.

• If Γ′′ ` ∆′′ is an abstraction of Γ′ ` ∆′ and Γ′ ` ∆′ is an abstraction of
Γ ` ∆, then Γ′′ ` ∆′′ is an abstraction of Γ ` ∆, and

• nothing else is an abstraction.

Note that if an abstraction of a sequent is L-valid, then the abstracted
sequent is also L-valid (by the formality of L).

Definition 3. We say that a premise resp. a conclusion is redundant in an
L-valid sequent iff the sequent is still L-valid after that premise resp. that con-
clusion is removed from the premises resp. conclusions of the sequent.

For example, the following are valid `CL-sequents in which no premises
or conclusions are redundant (the reader can verify that the sequents become
invalid as soon as one removes one formula in the sequent):

p,¬p `CL

`CL q,¬q
p,¬p ∨ q `CL q
p ∨ q `CL p, q
p, q `CL p ∧ q

¬(p ∨ q) `CL ¬p ∧ ¬q
p, q `CL p ∧ (q ∧ r),¬r

Whatever formula one adds to these sequents, it will be redundant for the
validity of the consequent. For example,

q is redundant in p,¬p `CL q
r is redundant in r `CL q,¬q

¬p is redundant in p,¬p ∨ q `CL q,¬p
premise q is redundant in q, p ∨ q `CL p, q.

To illustrate what an abstraction of a sequent is, see Table 1.
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Observe that the abstractions are multisets: premises and conclusions may
occur more than once. In each of the above examples the multiset sequents are
CL-relevant, because there is a CL-valid abstraction without redundancy. This
does not imply absence of redundancy. Consider that, in every valid multiset
sequent in which some premises/conclusions occur more than once, at least
one copy of these premises/conclusions is redundant. The following examples
illustrate this redundancy.

In the relevant `CL p ∧ ¬p,¬(p ∧ ¬p), the conclusion p ∧ ¬p is redundant
because also `CL ¬(p ∧ ¬p) is valid, but the abstraction `CL q,¬q does not

contain redundancy.

In the relevant p,¬p ∨ p `CL p, the premise ¬p ∨ p is redundant because it is a
tautology, but the abstraction p,¬p ∨ q `CL q does not contain redundancy.

In the relevant (p ∧ r) ∨ (p ∧ r) `CL p ∧ r, p ∧ r one of the copies of the
conclusion p ∧ r is redundant, but the abstraction q ∨ (p ∧ r) `CL q, p ∧ r does

not contain redundancy.

In the relevant p,¬p ` p ∧ ¬p the conclusion is redundant because it is a
contradiction, but the abstraction p,¬q ` p ∧ ¬q does not contain redundancy.

In the relevant p ∧ q, p ∧ q `CL (p ∧ q) ∧ ((p ∧ q) ∧ (p ∧ q)),¬(p ∧ q), one of the
copies of the premise and the second conclusion are both redundant, but the

abstraction s, t `CL r ∧ (s ∧ t),¬r does not contain redundancy.

The idea behind this stipulative definition is that, intuitively, we can say
that premises relevantly imply conclusions iff the combination of all the premises
gives us enough grounds to formally argue for one of the conclusions, in such
a way that each involved statement is useful to establish the validity relation
(i.e. none of the formulas are redundant or, put differently, can be removed
or replaced by an arbitrary formula, without jeopardizing validity). In other
words: there is a formal argument for the conclusion using each of the premises.
We speak of ‘formally argue’ and a ‘formal argument’ because it is the form
of the argument that needs to be non-redundant. The concrete instance may
contain redundancies. The notions ‘argument’ and ‘used’ or ‘useful’ here and
in what follows seems to be proof theoretic notions, but it is not meant that
way: a formal argument is here meant as nothing more than a generally valid
(abstract) syllogism, principle of reasoning, or admissible inference rule, in any
possible proof system one would develop for the consequence relation. When we
say ‘useful’ we merely mean that it is not redundant in the employed principle
of reasoning. We admit that a proof theoretic account of these notions would
make more sense, but here we want to stay as general as possible, beyond any
concrete logic or proof theory.

For example, p,¬p ∨ p `CL p is relevant because there exists a formal ar-
gument of which it is a token (viz. A,¬A ∨ B `CL B) that does not contain
redundancies. So, in some sense, all premises and conclusion of p,¬p ∨ p `CL p
are useful because they are indispensable in (at least) one way to formally argue
for the sequent. One more example:
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`CL p ∨ ¬p, p ∨ ¬p is relevant because `CL A ∨ ¬B,B ∨ C is non-redundant,
not because `CL A ∨ ¬A is.

Although this is a stipulative definition of relevant validity, we conjecture
that this is one of the ways in which the expressions ‘together entail’, ‘follows
from’, ‘together imply’ etc. are used in natural language (e.g. in mathematics or
science papers). It seems fair to assume that whenever a scientist claims that
statement (1), (2) and (3) together entail/imply (4) or that (4) follows from (1),
(2), and (3), she means that (4) is relevantly implied by (1), (2) and (3) in the
above sense, i.e. that she has a formal argument for (4) from (1)–(3), in which
all of (1)–(4) are effectively useful.

The advantages of this definition are the following. First, in this sense of
relevance, relevant validity is closed under Uniform Substitution and is thus a
formal relation. For example, because p,¬p∨q `CL q is relevant, every instance
of A,¬A∨B `CL B is also relevant. Secondly, it can be applied to every Tarskian
consequence relation and so does not presuppose any specific view on logic or
on the meaning of the involved connectives. Thirdly, it is implicitly based on a
reasonable notion of usefulness in an argument. If premises relevantly imply a
conclusion, then there is a valid argument for the conclusion which really uses
each of the premises. If the conclusion is moreover non-tautological, then the
converse conditional also holds. Fourth, given that there is a sense in which
none of the involved formulas of a relevant valid sequent are redundant, there
must be a real connection between the premises and the conclusions. It is due
to the premises and the other conclusions (or, in absence of premises, only the
other conclusions) that we can obtain any particular conclusion (that particular
conclusion is not obtained independently).

A possible criticism may be that, given this definition, even though premises
relevantly imply conclusions, some of the premises and conclusions may be re-
dundant (see examples above). Remember that it suffices that an abstraction
of the (multiset) sequent is non-redundant, not that it is non-redundant itself.
This, however, is unavoidable if one wants to develop a formal account of rele-
vance. One can always instantiate premises of a relevant form of an argument
in such a way that a conclusion becomes a contradiction or that a premise be-
comes a tautology (and so automatically redundant). In other words, if one
has a formal proof, based on formal rules, that some conclusion follows from
some premises in a relevant way, one can always redo the proof, by uniform
substitution, in such a way that the conclusion becomes a contradiction (un-
less the conclusion was a tautology before substitution, but then the premises
were already redundant). Such a conclusion is by definition redundant (if a
contradiction follows, anything follows).

One could in principle avoid this redundancy by using a non-formal notion of
relevant validity along the following lines: premises informally relevantly entail
conclusions if none of the premises or conclusions are redundant for validity.
But this does not solve much. Given classical logic one would then say that
p∧ q informally relevantly implies p. But as soon as we instantiate this sequent
redundancies may show up again. For example, take p to be ‘object a is round’
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and q to be ‘object a is square’. This object being a round square should then
informally relevantly imply it being round. But informally anything follows from
the object being round and square (it is an informal/material inconsistency).
So it being round is in some sense still redundant to the validity. If one also
wants to eliminate cases like that, no (logically) relevant validities remain that
are relevant independently of the context in which they are used. We conclude
from this observation that, if context independent relevance makes any sense at
all (and we think it does), it should be robust under applications of Uniform
Substitution. A consequence of this is that non-redundancy of all premises and
conclusions is too strong a criterion for relevant validity. Incidentally, consider
that all standard accounts of relevance logic are also formal and so cannot
avoid the same sort of redundancies. As an example, one can verify that (p →
(q∧p))→ (p→ p) is a theorem of the relevance logic R although the consequent
of this implication is itself already a theorem of R.

Let us now investigate this general, logic independent definition for the con-
crete case of the logic CL. It is clear that not every valid `CL-sequent is
relevant. As an example take: p `CL p, q, where q is redundant in each formal
argument that grounds the validity of the sequent. Relevant validity is a much
stronger property than logical consequence in general2.

Let us see how the definition of relevant CL-implication works in practice.
Do p, ¬p∨q, and (¬q∨p)∧p relevantly CL-imply p? Prima facie, one may think
that it is not the case, because the second and third premise seem useless. But
consider that 〈p,¬p∨q, (¬q∨r)∧s, r〉 is an abstraction of 〈p,¬p∨q, (¬q∨p)∧p, p〉,
and moreover it holds non-redundantly that p,¬p ∨ q, (¬q ∨ r) ∧ s `CL r. So
p is relevantly CL-implied by p, ¬p ∨ q, and (¬q ∨ p) ∧ p after all. Is this not
evidence that the definition flags absurd consequences as relevant? We think
this is not the case, for consider the following proof:

1 p PREM
2 ¬p ∨ q PREM
3 q Disjunctive Syllogism; 1,2
4 (¬q ∨ p) ∧ p PREM
5 ¬q ∨ p Elimination of Conjunction; 4
6 p Disjunctive Syllogism; 3,5

In this proof all the premises are effectively used to obtain the conclusion.
One could of course object that this is far from the most efficient proof. But
do we want to stipulate that we can only claim that a conclusion is relevantly
implied by premises if all the premises are used in the most efficient proof? That
seems too restrictive. As soon as we really use the premises in the derivation of
the conclusion, they are relevant for the conclusion.

Although the notion of relevance is based on Tarskian consequence relations,
the set of relevant sequents does not constitute a Tarskian consequence relation.
Obviously it is not monotonic: adding premises or conclusion easily makes a

2We use the concept ‘logical consequence relation’ here as it usually used in the literature,
viz. as the relation of truth preservation in the Tarskian sense. We do not want to claim that
the pre-theoretic notion of ‘consequence’ is anything like this. In fact it may well be that the
latter notion is closer to what we call relevant implication than to truth preservation.
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sequent irrelevant. But it is not transitive either. Consider premises p and q
and conclusion p. Although p and q together relevantly CL-imply p ∧ q and
moreover p ∧ q relevantly CL-implies p, it does not make sense to say that
p and q together relevantly CL-imply p, as q is completely irrelevant for the
entailment. Although p relevantly CL-implies p, p and q together do not.

Let us take a look at another example. It is unproblematic to claim that p
relevantly CL-implies p∨q. It is also clear that ¬p and p∨q together relevantly
CL-imply q. It is however not the case that p and ¬p together relevantly CL-
imply q. While in this case both of the premises are relevant, the conclusion is
here completely arbitrary, i.e. q could be replaced by whatever formula.

It can be seen from these examples that, whereas CL-consequence is of
course reflexive, monotonic and transitive, relevant CL-implication does not
always satisfy all of these properties (but remark that we do have reflexivity: A
relevantly implies A, in every logic).

Given that we require every premise of a relevant validity to be non-redundant
in obtaining the conclusion, it comes as no surprise that our notion is non-
monotonic (in the same sense in which also logics in the relevance logic tradition
are non-monotonic—for the precise relation with traditional relevance logic, see
below). But it may be more surprising that our relevant validity relation is
not transitive. Many relevance logicians may even strongly object against the
lack of transitivity. It is of course true that, in order to be able to formalize
standard deductive practices, we need some kind of a notion of ‘implication’
which is (at least cautiously3) transitive. Otherwise one cannot allow for cumu-
lative theorem proving: it is an established practice that once one has proven
a certain theorem from axioms, one can use this theorem in further derivations
as if it were an axiom, without further proof. So, to formalize mathematical
and scientific theories, we definitely need a notion of consequence relation which
is transitive as the underlying logic of such theories. But this does not mean
that the notion of relevant validity has to be transitive. There is no fundamen-
tal reason why the notion ‘relevant validity’ should coincide with the notion of
consequence that underlies our theories. Just like it is generally accepted and
unproblematic that there is non-transitivity in counterfactual and indicative
conditionals, also relevant validity may be non-transitive, without this needing
to affect the logical structure of our theories.

Many relevance logicians have aimed to come up with a holistic alternative
to classical logic (this is clear in the philosophical project presented in, for
example, [2] and [14]). Given that they entirely reject classical logic, they had
to come up with alternative ways to formalize the notion of truth preservation,
consequence, the underlying logic of theories, etc. Here we only reject the claim
that CL-consequence would be a good characterization of relevant validity. We
do not reject other uses of this logic.

Transitivity is a far from obvious property of relevant implication. Consider
that we can only say that A relevantly implies B if there is a connection between
A and B. If we know that A relevantly implies B and B relevantly implies C we

3A relation ` is cautiously transitive iff, whenever Γ ` A and Γ ∪ {A} ` B, then Γ ` B.
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sure know that A implies C and that there is a link between both A and B and
between B and C. But we have no information about there being a link between
A and C. So it would be very strange that, without further information, it would
always be true that A relevantly implies C. Why then would we even expect
relevant implication to be transitive? Might it not be so that one has always
accepted transitivity for relevant implication (without convincing argument)
only because one was so used to it from more traditional logics?

Note that, when there is exactly one premise and one conclusion, our rele-
vant CL-implication coincides with Smiley’s alternative concept of logical con-
sequence (see [17, Section 2]) and Burgess’s ‘perfectible’ entailment relation
(see [5]). Burgess begins by stipulating that A perfectly entails B iff A `CL B,
0CL B and 0CL ¬A and goes on to define that A perfectibly entails B iff there
is an abstraction A′, B′ of A,B such that A′ perfectly entails B′. It is clear that
A relevantly CL-implies B (in our sense) iff A perfectibly entails B. However
in case we have zero or more than one premises or conclusions (or a different
logic), Burgess’s definition cannot be used.

Although we now have given a precise definition of the relevant CL-implication
relation, we have not yet provided a complete logical formalization of the rel-
evant implication connective. We have not yet presented how to prove that
something relevantly CL-implies something else. Where Γ and ∆ are classical
logic formulas, define �NTR by Γ �NTR ∆ iff Γ relevantly CL-imply ∆. In the
next section we will present a sequent calculus for �NTR and prove that it is
sound and complete.

By means of this formalization of relevant CL-implication alone we do not
yet have presented how the relevant implication relation can be nested and how
it can be related to the usual object language logical vocabulary.

In the relevance logic tradition of Routley, Meyer, Anderson, Belnap, Dunn
and many others (see [2], [3], [9], [8], [13], [14], [16], [15], and [21]), one gives
a formal definition of relevant implication by adding the relevant implication
to the object language in the form of an arrow which can be used on the same
level as what is usually seen as logical vocabulary (conjunction, disjunction,
negation, equivalence, etc.). In the third section of this paper, we do the same
thing, resulting in the logic NTR→. NTR→ will prove A1 → (A2 → . . . →
(An → B) . . .) (the last “. . .” contains only parentheses) iff A1, A2, . . ., and
An together relevantly CL-imply B. For more complex nested implications our
relevant implication will function much like the relevant implication of R.

2 Relevant CL-implication: a sequent calculus
for NTR

We start by defining the (multiset) sequent calculus for NTR.
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2.1 Definition

Definition 4. Syntactic consequence. Where Γ and ∆ are multisets of propo-
sitional formulas the only logical symbols in which are ∨ and ¬, Γ `NTR ∆ iff
the sequent ΓB∆ is derivable by means of the rules and axioms listed below.

The only axiom schema:
ABA

The only structural rule:

Γ, A,AB∆
LCON

Γ, AB∆

ΓBA,A,∆
RCON

ΓBA,∆

The rules for ¬:

Γ, AB∆
R¬

ΓB ¬A,∆
ΓBA,∆

L¬
∆,¬AB∆

The rules for ∨:

ΓBA,∆
R∨1

ΓBA ∨B,∆
ΓBB,∆

R∨2
ΓBA ∨B,∆

Γ1, AB∆1 Γ2, B B∆2
L∨

Γ1,Γ2, A ∨B B∆1,∆2

2.2 Derived rules

We present some useful derived rules, the first two derivable by means of the
corresponding primitive rules plus applications of the LCON and RCON rules,
the last is a special case of the second.

ΓBA,B,∆
R∨f

ΓBA ∨B,∆

Γ1, AB∆1 Γ2, B B∆2
L∨c

(Γ1 ∪ Γ2)− (Γ1 ∩ Γ2),Γ2, A ∨B B (∆1 ∪∆2)− (∆1 ∩∆2)

Γ, AB∆ Γ, B B∆
L∨f

Γ, A ∨B B∆

The difference between L∨c and L∨ lies in the fact that we are dealing
with multisets. If there is a formula A that occurs both in Γ1 and Γ2, L∨
requires to keep the copies A in Γ1 plus those in Γ2 while L∨c allows you to
only keep the number of copies present in either Γ1 or Γ2, depending of which
has the most A’s. For example, if Γ1 = {A,A,B} and Γ2 = {A,A,A,C},
then (Γ1 ∪ Γ2) − (Γ1 ∩ Γ2) = {A,A,A,B,C}, while Γ1,Γ2 or Γ1 ∪ Γ2 is simply
{A,A,A,A,A,B,C}.

We can define the other traditional logical symbols, as follows:

A ∧B =df ¬(¬A ∨ ¬B)
A ⊃ B =df ¬A ∨B
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A ≡ B =df (A ⊃ B) ∧ (B ⊂ A)

Now one can easily derive introduction rules for these defined symbols.

Γ, AB∆
R⊃1

ΓBA ⊃ B,∆
ΓBB,∆

R⊃2
ΓBA ⊃ B,∆

Γ1 BA,∆1 Γ2, B B∆2
L⊃

Γ1,Γ2, A ⊃ B B∆1,∆2

Γ1 BA,∆1 Γ2 BB,∆2
R∧

Γ1,Γ2 BA ∧B,∆1,∆2

Γ, AB∆
L∧1

Γ, A ∧B B∆

Γ, B B∆
L∧2

Γ, A ∧B B∆

Γ1 BA,∆1 Γ2, B B∆2
L≡1

Γ1,Γ2, A ≡ B B∆1,∆2

Γ1, AB∆1 Γ2 BB,∆2
L≡2

Γ1,Γ2, A ≡ B B∆1,∆2

Γ1 BA,∆1 Γ2 BB,∆2
R≡1

Γ1,Γ2 BA ≡ B,∆1,∆2

Γ1, AB∆1 Γ2, B B∆2
R≡2

Γ1,Γ2 BA ≡ B,∆1,∆2

We conclude with rules to conjoin premises and disjoin conclusions.

Γ1,Γ2 B∆
L∧m

Γ,
∧

Γ2 B∆

ΓB∆1,∆2
R∨m

ΓB
∨

∆1,∆2

2.3 Examples

NTR-proof for r ∧ q B ¬p ∨ (p ∧ q)

q B q
pB p

R¬B¬p, p
R∧

q B ¬p, p ∧ q
R∨

q B ¬p,¬p ∨ (p ∧ q)
R∨

q B ¬p ∨ (p ∧ q),¬p ∨ (p ∧ q)
RCON

q B ¬p ∨ (p ∧ q)
L∧

r ∧ q B ¬p ∨ (p ∧ q)
NTR-proof for (p ∧ ¬p) ∨ q B q ∧ (¬r ∨ r)

pB p
L¬¬p, pB

L∧
p ∧ ¬p, pB

L∧
p ∧ ¬p, p ∧ ¬pB

LCON
p ∧ ¬pB q B q

L∨
(p ∧ ¬p) ∨ q B q

r B r
R¬B¬r, r

R∨B¬r ∨ r, r
R∨B¬r ∨ r,¬r ∨ r
RCONB¬r ∨ r

R∧
(p ∧ ¬p) ∨ q B q ∧ (¬r ∨ r)

NTR-proof for p ∧ pB p, p ∧ ¬p

pB p
pB p

R¬B¬p, p
R∧

pB p, p ∧ ¬p
L∧

p ∧ pB p, p ∧ ¬p

11



NTR-proof for (p ∨ r) ∧ (p ∨ s) ∧ (q ∨ r) ∧ (q ∨ s)B (p ∧ q) ∨ (r ∧ s)

q B q s B s
L∨

q ∨ s B q, s
q B q r B r

L∨
q ∨ r B q, r

R∧
q ∨ r, q ∨ s B q, q, r ∧ s

RCON
q ∨ r, q ∨ s B q, r ∧ s

p B p s B s
L∨

p ∨ s B p, s
p B p r B r

L∨
p ∨ r B p, r

R∧
p ∨ r, p ∨ s B p, p, r ∧ s

RCON
p ∨ r, p ∨ s B p, r ∧ s

R∧
p ∨ r, p ∨ s, q ∨ r, q ∨ s B p ∧ q, r ∧ s, r ∧ s

RCON
p ∨ r, p ∨ s, q ∨ r, q ∨ s B p ∧ q, r ∧ s

R∨m
p ∨ r, p ∨ s, q ∨ r, q ∨ s B (p ∧ q) ∨ (r ∧ s)

L∧m
(p ∨ r) ∧ (p ∨ s) ∧ (q ∨ r) ∧ (q ∨ s) B (p ∧ q) ∨ (r ∧ s)

2.4 Soundness

Theorem 1. Soundness. If Γs `NTR ∆s, then4 Γs �NTR ∆s.

Proof. We need to prove that, for every NTR-proof, the final conclusion always
has a CL-valid abstraction such that no proper subsequent is CL-valid. We do
this recursively.

This holds obviously for every NTR-proof only existing of an axiom. The
only sequent in such a proof can always be abstracted into the CL-valid sequent
pB p. The reader sees that all its proper subsequents are not CL-valid.

We need to show for each rule that, if its local premises5 have a CL-valid
abstraction such that none of its proper subsequents are CL-valid, then there
is also such a non-redundant abstraction of the local conclusion of the rule. We
treat the rules one by one. Each time we suppose there is such a non-redundant
abstraction for the local premises.

1. L∨. Transform the non-redundant abstraction of the local premises by
relettering (substitute letters by other letters) in such a way that the
transformed abstractions of the two local premises have no letters in com-
mon. Say the transformed abstractions (which are also non-redundant ab-
stractions!) are Γ1, A1, A2 . . . An B∆1 and Γ2, B1, B2 . . . Bm B∆2, where
A1, A2 . . . An and B1, B2 . . . Bm are the abstractions of resp. A and B. The
sequent Γ1,Γ2, A1∨B1, A1∨B2, . . . A1∨Bm, . . . An∨B1, A1∨B2, . . . An∨
Bm B ∆1,∆2 is an abstraction of the local conclusion of L∨, is CL-
valid and it cannot have a proper subsequent that is CL-valid because
Γ1, A1, A2 . . . An B∆1 and Γ2, B1, B2 . . . Bm B∆2 are non-redundant and
have no letters in common.

2. R∨1. Let ΓBA1, . . . An,∆ be the non-redundant abstraction of the local
premise, where A1, A2 . . . An is the abstraction of A. Take as the non-
redundant abstraction of the local conclusion ΓBA1∨σ,A2∨σ, . . . An∨σ,∆,

4The superscripts s and a in Γs and Γa have no meaning, they just indicate different
metavariables.

5The local premises of a rule are the sequents that are used by the rule to obtain a new
sequent (the local conclusion). In other words, local premises are the sequents above and the
local conclusion the sequent below the line in the definition of the rule.
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where σ is a letter that does not occur in the abstraction of the local
premise.

3. R∨2. Similar to R∨1.

4. R¬ and L¬. Evident in view of the fact that the local premise is CL-valid
iff the local conclusion is. Take as the non-redundant abstraction of the
conclusion the abstraction of the local premise such that A1, A2 . . . An is
removed and ¬A1,¬A2 . . .¬An is added on the other side of B, where
A1, A2 . . . An is the abstraction of the formula that is negated by the rule.

5. LCON and RCON. The non-redundant abstraction of the local premise is
also a non-redundant abstraction of the local conclusion.

2.5 Completeness

Theorem 2. Completeness. If Γs �NTR ∆s, then Γs `NTR ∆s.

Before moving to the actual proof, we prepare the proof with some useful
terminology. Let an NTR-tree be a tree of sequents that respects all rules of
NTR, but in which the leafs are not necessarily axioms. We say that an NTR-
tree is an NTR-tree for a sequent if that sequent is the root of the tree. An
NTR-tree is tableau-like iff each rule used in the tree is one of L∨f, R∨f, L¬,
or R¬.

An NTR-tree is completed iff all formulas that occur in the leafs are atoms.
Note that there is at least one tableau-like completed NTR-tree for each se-
quent, as we can always further analyse every remaining complex formula by
one of the rules L∨f, R∨f, L¬, or R¬.

An NTR-tree is a proto-proof iff all its leafs are sequents such that at least
one formula occurs both left and right of B. The reader can easily verify that,
whenever there is a proto-proof for a sequent, then that sequent is CL-valid.

Successor and predecessor (recursive definition). An occurrence O1 of a
formula in a sequent S1 is a successor of an occurrence O2 of a formula in
another sequent S2 iff (i) S1 is the local conclusion of an application of a rule
with S2 as a local premise, O1 and O2 encode the same formula, and O1 and O2

are in the part of the sequent that is left untouched by the rule, (ii) S1 is the
local conclusion of an application of a rule with S2 as a local premise and the
O1 is the result of the application of the rule on O2, or (iii) O1 is a successor of
another occurrence O3 in another sequent and O3 is a successor of O2. O1 is a
predecessor of O2 iff O2 is the successor of O1.

Proof. Suppose Γs 0NTR ∆s. We will show that Γs 2NTR ∆s.
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Maximal analysis Given that there is no NTR-proof for Γs B ∆s, all the
completed trees for Γs BNTR ∆s have at least one leaf that is not σ B σ.

Take any tableau-like completed tree T . There are two possibilities: either
there is a tableau-like completed tree with a leaf containing Γ′B∆′ s.t. Γ′∩∆′ =
∅, or there is no such tree.

Not a classical consequence In the case there is such a tree with a leaf
containing Γ′ B ∆′ s.t. Γ′ ∩ ∆′ = ∅, the contents of that leaf constitute a
countermodel for Γ `CL ∆ (let the letters in Γ′ be true and the ones in ∆′ be
false). This can be shown recursively by demonstrating that every sequent on a
branch in a tableau-like completed tree with such a leaf is CL-falsified by each
model that makes all atoms in Γ′ true and all atoms in ∆′ false. Of course the
final conclusion of the tableau-like tree is then also CL-falsified by each such
model.

Irrelevant consequence If there is no tree with such a countermodel leaf, all
leafs of all completed trees are such that there is an atom that occurs both left
and right of B. In that case the tree is a proto-proof and so the final conclusion
is CL-valid. Now we need to prove that it is however not NTR-valid.

In order to do that, we need to show that every CL-valid abstraction of ΓB∆
has a proper subsequent that is also CL-valid. Let ΓaB∆a be an arbitrary CL-
valid abstraction. From the fact that there is no NTR-proof for Γs B∆s we
can conclude that there is none for ΓaB∆a either (all NTR-rules are formal; a
uniform substitution of a proof will also constitute a correct NTR-proof). We
will construct a proto-proof for Γa B∆a with the special property that if one
leaf of that tree contains a sequent that does not comply with the schema for
NTR-axioms, then a proper subsequent of the final conclusion of the tree is
also CL-valid. Because there is no NTR-proof, there cannot be a proto-proof
tree in which all leafs comply with that schema. We can conclude that, by
means of that proto-proof construction, we will have proven the redundancy of
each abstraction of Γs B∆s. We will be able to conclude that Γs B∆s is not
NTR-valid.

Stage 1. First, consider that, since Γa B∆a is CL-valid, there exists a
tableau-like proto-proof T1 for it in view of the completeness of proto-proofs
w.r.t. classical logic (which can be proven using exactly the same methods used
to prove the completeness of traditional tableaux methods).

Stage 2. Then we construct a more parsimonious proto-proof for ΓaB∆a by
removing all redundancies from T1, as follows. Let a pruning of a proto-proof be
a tree that is the result of removing a formula and all its predecessors from the
proto-proof in such a way that the resulting tree is also a proto-proof (after one
replacing at most one time R∨f by6 R∨c and possibly making several rule appli-
cations empty, i.e. the local premise is exactly the same as the local conclusion).

6If one removes an occurrence of a formula from sequents in a proof, it will no longer be
a correct application of the same rule, so one needs to change the justification of the step in
the proof.
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Now maximally prune T1 (i.e. there is a sequence 〈T1, Tb2, . . . , Tbn−1, Tbn〉 s.t.
Tb2 = a pruning of T1, Tb3 is a pruning of Tb2, . . ., Tbn is a pruning of Tbn−1,
and Tbn does not have a pruning) resulting in T2.

Let us give an example of this pruning process.

q, pB p, r, s
L¬

q, p,¬pB r, s q, p, r B r, s
L∨f

q, p,¬p ∨ r B r, s
R∨f

q, p,¬p ∨ r B r ∨ s

First pruning

q, pB p, r
L¬

q, p,¬pB r q, p, r B r
L∨f

q, p,¬p ∨ r B r
R∨

q, p,¬p ∨ r B r ∨ s

Second pruning

pB p, r
L¬

p,¬pB r q, p, r B r
L∨

q, p,¬p ∨ r B r
R∨

q, p,¬p ∨ r B r ∨ s

Third pruning

pB p, r
L¬

p,¬pB r q, r B r
L∨

q, p,¬p ∨ r B r
R∨

q, p,¬p ∨ r B r ∨ s

Fourth pruning

pB p
L¬

p,¬pB q, r B r
L∨

q, p,¬p ∨ r B r
R∨

q, p,¬p ∨ r B r ∨ s

Every further removal of formulas from the tree results in a violation of rules
or another final conclusion sequent.

Stage 3. We recursively construct a specific proto-proof T3 from T2 by
removing formulas and subtrees from T3 such that the final conclusion of T3 is
a proper subsequent of the final conclusion of T2. Because T3 is a proto-proof,
its final conclusion is CL-valid, and so the final conclusion of T2 has a CL-valid
subsequent.

We construct T3 following the same tree structure as T2, sequent per sequent
each time mentioning which formulas or even whole subtrees need to be removed
from T2 in order to obtain T3.

First we construct the leafs of T3 based on those of T2. At least one leaf
sequent in T2 contains a formula that may be removed so that the leaf would
still be a leaf of a proto-proof (such as the sequent q, rB r in one of the example
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tree in Stage 2, in this sequent q can be removed; r B r is still an acceptable
leaf of a proto-proof), otherwise the tree would be an NTR-proof. Remove this
redundant formula from such a leaf in T2 to obtain the corresponding leaf in T3.
The other leafs of T3 are the same as the corresponding leafs in T2. Call the
leaf that differs the slimmed down leaf.

Now we assume already to have constructed T3 upto a certain point. Con-
sider arbitrary subtrees T ′a2 and T ′b2 of T2. Suppose we already have the cor-
responding trees T ′a3 and T ′b3 which are proto-proofs and for which the final
conclusion is a proper subsequent of the final conclusion of corresponding tree
T ′x2 , whenever the slimmed down leaf is in that subtree T ′3, and T ′x3 = T ′x2 oth-
erwise. We prove that the subproof T ′′2 of T2 that is result of applying a rule R
to T ′a2 and T ′b2 (or one of them, in case of a rule with only one local premise)
can also be transformed into T ′′3 (it is a proto-proof and has as final conclusion
a proper subsequent of T ′′2 ’s final conclusion, whenever the slimmed down leaf
is inside there).

Let T ′′3 be identical to T ′′2 if the slimmed down leaf is not inside of T ′a3 nor
inside of T ′b3 .

Otherwise call T ′3 the tree with the slimmed down leaf, and T ′b3 the other
one; T ′2 and T ′b2 are the corresponding subtrees of T2. If the rule R has only one
local premise, it suffices to speak of T ′3 and T ′2 and drop the a and b altogether.

We construct T ′′3 depending on the rule R used to construct T ′′2 , assuming
that T ′3 contains the slimmed down leaf and has as its final conclusion a proper
subsequent of the T ′2’s final conclusion. The final conclusion of T ′b3 is always
identical to that of T ′b2 . We need to treat the rules that may occur in T ′2 case
by case.

1. L∨c. Let the final conclusion of T ′2 be Γ1, A B ∆1, the final conclusion
of both T ′3b and T ′2b is Γ2, B B ∆2, and the final conclusion of T ′′2 be
Γ1,Γ2, A∨BB∆1,∆2. There are 3 cases: (1) the final conclusion of T ′3 is
of the form Γ′

1 B∆′
1 where Γ′

1 ⊆ Γ1 and ∆′
1 ⊆ ∆1. Let T ′′3 be identical to

T ′3, because the final conclusion of the latter is already a proper subsequent
of the final conclusion of T ′′2 . (2) The final conclusion of T ′3, say Γ′

1, AB∆′
1

is such that Γ1 − Γ′
1 6= ∅. Then apply L∨c to T ′3 to obtain T ′′3 , the final

conclusion of which is (Γ′
1∪Γ2)−(Γ′

1∩Γ2),Γ2, A∨BB(∆′
1∪∆2)−(∆′

1∩∆2).
In that case either (1a) (Γ1 − Γ′

1) ⊆ Γ2. This is impossible because,
as they are redundant, T ′′2 would have been pruned in such a way that
all C ∈ Γ1 − Γ′

1 and their predecessors would have been removed from
the subproof T ′2 of the proof (remember that T2 and all its subproofs
are maximally pruned) (1b) otherwise (Γ′

1 ∪ Γ2) − (Γ′
1 ∩ Γ2) is a proper

submultiset of (Γ1 ∪ Γ2) − (Γ1 ∩ Γ2) and T ′′3 has a final conclusion that
is a proper subsequent that of T ′′2 . (3) The final conclusion of T ′3, say
Γ′

1, AB∆′
1 is such that ∆1 −∆′1 6= ∅. Very similar to case (2).

2. R∨1. Let the final conclusion of T ′2 be Γ B A,∆ and the final conclusion
of T ′′2 be ΓBA ∨B,∆. There are 3 case: (1) the final conclusion of T ′3 is
of the form Γ′B∆′ where Γ′ ⊆ Γ and ∆′ ⊆ ∆. Let T ′′3 be identical to T ′3,
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because the final conclusion of the latter is already a proper subsequent of
the final conclusion of T ′′2 . (2) The final conclusion of T ′3, say Γ′ B A,∆′

is such that Γ − Γ′ 6= ∅. Then apply R∨ to T ′3 to obtain T ′′3 , the final
conclusion of which is (Γ′ B A ∨ B,∆′, which is a proper subsequent of
the final conclusion of T ′′2 . (3) The final conclusion of T ′3, say Γ′ B A,∆′

is such that ∆−∆′ 6= ∅. Very similar to case (2).

3. R∨2. Very similar to R∨1.

4. L¬. Very similar to R∨1.

5. R¬. Very similar to R∨1.

6. R∨f. Let the final conclusion of T ′2 be ΓBA,B,∆ and the final conclusion
of T ′′2 be ΓBA ∨B,∆. There are 5 case: (1) the final conclusion of T ′3 is
of the form Γ′B∆′ where Γ′ ⊆ Γ and ∆′ ⊆ ∆. Let T ′′3 be identical to T ′3,
because the final conclusion of the latter is already a proper subsequent
of the final conclusion of T ′′2 . (2) the final conclusion of T ′3 is of the form
Γ′ B A,∆′ where Γ′ ⊆ Γ and ∆′ ⊆ ∆. This is impossible because, as B
is redundant, T ′′2 would have been pruned in such a way that B and its
predecessors would have been removed from the subproof T ′2 of the proof
(remember that T2 and all its subproofs are maximally pruned). (3) the
final conclusion of T ′3 is of the form Γ′BB,∆′ where Γ′ ⊆ Γ and ∆′ ⊆ ∆.
Similar to case (2). (4) The final conclusion of T ′3, say Γ′BA,B,∆′ is such
that Γ− Γ′ 6= ∅. Then apply R∨f to T ′3 to obtain T ′′3 , the final conclusion
of which is (Γ′ B A ∨ B,∆′, which is a proper subsequent of the final
conclusion of T ′′2 . (5) The final conclusion of T ′3, say Γ′ BA,B,∆′ is such
that ∆−∆′ 6= ∅. Very similar to case (4).

This concludes the construction of a proto-proof T3. Its final conclusion will
be a proper subset of the final conclusion of T2, because the slimmed down leaf
will be inside T3. Because it is a proto-proof, the final conclusion of T3 will be
CL-valid. That final conclusion is thus a CL-valid proper subsequent of ΓaB∆a.
Given that ΓaB∆a was an arbitrary CL-valid abstraction of ΓsB∆s, there is a
CL-valid proper subsequent for every CL-valid abstraction of Γs B∆s. Hence
the sequent Γs B∆s is not NTR-valid, or, in other words, Γs 2NTR ∆s.

3 Adding → to the object language: the logic
NTR→

3.1 Syntactic definition of NTR→

The logic NTR→ will be a set of theorems in the language with propositional
letters p, q, r, s, t, p1, p2, . . . and logical symbols →,∨ and ¬. The logic is only
defined syntactically. We have not yet devised a direct semantics like the one
for NTR.
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The only symbol we add is →. We formalize this symbol by means of the
most straight forward implication introduction rules, to make it exactly reflect
the metatheoretic relevant CL-implication. The other rules are exactly the same
as the ones for NTR.

Definition 5. Syntactic consequence. Where A is a formula the only logical
symbols in which are →, ∨, and ¬, `NTR→ A iff the sequent BA is derivable
by means of the rules and axioms listed below.

The only axiom schema:
ABA

The only structural rules:

Γ, A,AB∆
LCON

Γ, AB∆

ΓBA,A,∆
RCON

ΓBA,∆

The rules for ¬:

Γ, AB∆
R¬

ΓB ¬A,∆
ΓBA,∆

L¬
∆,¬AB∆

The rules for ∨:

ΓBA,∆
R∨1

ΓBA ∨B,∆
ΓBB,∆

R∨2
ΓBA ∨B,∆

Γ1, AB∆1 Γ2, B B∆2
L∨

Γ1,Γ2, A ∨B B∆1,∆2

The rules for →:

ΓABB,∆
R→

ΓBA→ B,∆

Γ1 BA,∆1 Γ2, B B∆2
L→

Γ1,Γ2, A→ B B∆1,∆2

All derived rules for NTR mentioned in the last section are also derivable
in NTR→. In the examples we will use them with same names.

We obtain a set of formulas A in the language with logical symbols ¬, ∨ and
→ such that `NTR→ A. Those are the theorems that formalize the relevant
classical logic implication relation by means of the symbol → in the object
language.

3.2 Examples of NTR→-proofs

We give a couple of examples of NTR→-proof trees.
The first example is the Distributivity (also called Distribution) of conjunc-

tion and disjunction. We mention this rule in particular because the incomplete
sequent calculus for R called LR (see below) is unable to prove this. The fact
that we have more permissive rules for ∨ or ∧ enables us to derive Distributivity
without complications.
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q B q s B s
L∨

q ∨ s B q, s
q B q r B r

L∨
q ∨ r B q, r

R∧
q ∨ r, q ∨ s B q, q, r ∧ s

RCON
q ∨ r, q ∨ s B q, r ∧ s

p B p s B s
L∨

p ∨ s B p, s
p B p r B r

L∨
p ∨ r B p, r

R∧
p ∨ r, p ∨ s B p, p, r ∧ s

RCON
p ∨ r, p ∨ s B p, r ∧ s

R∧
p ∨ r, p ∨ s, q ∨ r, q ∨ s B p ∧ q, r ∧ s, r ∧ s

RCON
p ∨ r, p ∨ s, q ∨ r, q ∨ s B p ∧ q, r ∧ s

R∨m
p ∨ r, p ∨ s, q ∨ r, q ∨ s B (p ∧ q) ∨ (r ∧ s)

L∧m
(p ∨ r) ∧ (p ∨ s) ∧ (q ∨ r) ∧ (q ∨ s) B (p ∧ q) ∨ (r ∧ s)

R→
B ((p ∨ r) ∧ (p ∨ s) ∧ (q ∨ r) ∧ (q ∨ s))→ ((p ∧ q) ∨ (r ∧ s))

The next proof tree is for a relevant implication in which Disjunctive Syllo-
gism is used. The logic R does not have this as a tautology. But because of the
permissive rule L∨ the implication is derivable in NTR→.

p B p q B q
L∨

p ∨ q B p, q
L¬

p ∨ q,¬p B q
R∨1

p ∨ q,¬p B q ∨ s
L∧1

p ∨ q,¬p ∧ r B q ∨ s
R→

p ∨ q B (¬p ∧ r)→ (q ∨ s))
R→

B (p ∨ q)→ ((¬p ∧ r)→ (q ∨ s))

Also the next NTR→-proof tree is not valid in R. This time the difference
lies in the rule R∧, which is not valid in LR.

p B p q B q
R∧

p, q B p ∧ q
R→

p B q → (p ∧ q)
R→

B p→ (q → (p ∧ q))

Finally we give an example of a situation in which we can derive a clas-
sical logical tautology containing material implications ⊃ (just like R, also
NTR→contains all classical tautologies) but we cannot derive the version with
relevant instead of material implications. For good reasons: q is not rele-
vant/useful in arguments proving p from p.

p B p
R¬B ¬p, p

Rb2B ¬p, q ⊃ p
R⊃2

B ¬p, p ⊃ (q ⊃ p)
R⊃1

B p ⊃ (q ⊃ p), p ⊃ (q ⊃ p)
RCON

B p ⊃ (q ⊃ p)
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4 Properties of NTR→: relations with classical
and traditional relevance logics

4.1 General properties

We list some easily verifiable properties of NTR→.

1. `NTR→ (A1 → (A2 → . . . (An−1 → (An → B) . . .) iff A1, . . . , An `NTR

B. (→ captures exactly `NTR in the NTR→ object language).

2. If `CL A then `NTR→ A. (all classical tautologies are represented)

3. if A is consistent (i.e. A 0CL), B is not tautological (i.e. 0CL B) and
A `CL B, then `NTR→ A→ B. (NTR→ captures the full consistent and
non-tautological part of classical logic).

4. If `NTR→ A→ B, then A `FDE B and `R A→ B, but p∧(¬p∨q) 0FDE q
while `NTR→ (p∧(¬p∨q))→ q, whenever A and B are arrow-free formulas
(The implication of NTR→ is strictly stronger than the one of R and
FDE, when linking formulas).

5. `NTR→ is decidable (in the next Section we show how to reduce NTR→-
proofs to LR-proofs and the latter is decidable).

6. A,¬A 0NTR B and 0NTR→ (A ∧ ¬A)→ B for an arbitrary unrelated B.
(NTR and NTR→ are paraconsistent, but remark that A,¬A `NTR)

4.2 The relevance logic R

In this subsection we simply define and describe the well known relevance logic
R for future reference. TR has as theorems (the formulas A such that `R A)
the formulas derivable from the following axioms and rules (see [2]).

Axioms:

(A1) A→ A
(A2) (A→ B)→ ((B → C))→ (A→ C))
(A3) A→ ((A→ B)→ B)
(A4) (A→ (A→ B))→ (A→ B)
(A5) (A ∧B)→ A
(A6) (A ∧B)→ B
(A7) ((A→ B) ∧ (A→ C))→ (A→ (B ∧ C))
(A8) A→ (A ∨B)
(A9) B → (A ∨B)
(A10) ((A→ C) ∧ (B → C))→ ((A ∨B)→ C)
(A11) (A ∧ (B ∨ C))→ ((A ∧B) ∨ C)
(A12) (A→ ¬B)→ (B → ¬A)
(A13) ¬¬A→ A

Rules:
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(R13) from A and A→ B conclude B
(R13) from A and B conclude A ∧B

The logic R has a well known adequate possible world semantic: the so
called Routley-Meyer semantics (cf. [15]). This semantics has a very interesting
philosophical interpretation due to Mares (cf. [12]). There is no need to give the
definition of the Routley-Meyer models here, nor to explain their philosophical
interpretation. For our purposes it suffices that there is such a semantics and a
philosophical interpretation. Let �R A denote that A is valid according to the
Routley-Meyer semantics (i.e. A is true in all normal Routley-Meyer worlds).

There is an incomplete sequent calculus for R, the system LR (short for
lattice-R, see [9]). The only reason why it is incomplete is that it does not
account for the distributivity of disjunction and conjunction.

Definition 6. Syntactic consequence. Where A is a formula the only logical
symbols in which are →, ∨, and ¬, `LR A iff the sequent BA is derivable by
means of the rules and axioms listed below.

The only axiom schema:
ABA

The only structural rules:

Γ, A,AB∆
LCON

Γ, AB∆

ΓBA,A,∆
RCON

ΓBA,∆

The rules for ¬:

Γ, AB∆
R¬

ΓB ¬A,∆
ΓBA,∆

L¬
∆,¬AB∆

The rules for ∨:

ΓBA,∆
R∨1

ΓBA ∨B,∆
ΓBB,∆

R∨2
ΓBA ∨B,∆

Γ, AB∆ Γ, B B∆
L∨

Γ, A ∨B B∆

The rules for →:

ΓABB,∆
R→

ΓBA→ B,∆

Γ1 BA,∆1 Γ2, B B∆2
L→

Γ1,Γ2, A→ B B∆1,∆2

We have left out the Cut-rule, because there is Cut-elimination in LR.
R is not decidable, but the LR-fragment is. For a discussion of this property

and references to the appropriate literature (by, among others, Saul Kripke and
Alasdair Urquhart) see [9, Section 4].
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4.3 Relation between NTR→ and R via a translation

The R-implication is not rich enough to capture what we call the relevant CL-
implication. None of the following forms are valid in R, but they express relevant
CL-implications (according to our definition) in the object language.

0R (A ∧ (¬A ∨B))→ B

0R (B ∨ (A ∧ ¬A))→ B

0R A→ (B → (A ∧B))

0R A→ (A ∧ (B ∨ ¬B))

0R A→ ((A ∧B) ∨ ¬B)

Let ∗¬A =df A and ∗B =df ¬B, whenever B is not of the form ¬A. The
translation tr :W →W is recursively defined as follows:

TR1 tr(σ) = σ, where σ is a letter (atomic formula)
TR2 tr(A ∨B) = tr(A) ∨ tr(B)
TR3 tr(¬(A ∨B)) = ¬(tr(∗A)→ ¬tr(∗B))
TR4 tr(¬¬A) = tr(A)
TR5 tr(A→ B) = ¬tr(∗A)→ tr(B)
TR6 tr(¬(A→ B)) = ¬(tr(A)→ ¬tr(∗B))

The idea behind the translation is that the implication and the negation of
R and of NTR→ function in exactly the same way. The differences lie in the
behaviour of the disjunctions and conjunctions. Disjunctions on the left hand
side of B in NTR→ work like intensional disjunctions ∨i in R (A∨iB =df ¬A→
B) while disjunctions on the right hand side ofB in NTR→ work like extensional
disjunctions ∨e in R (A∨e B =df A∨B). Conjunctions in antecedents of → in
NTR work like extensional conjunctions ∧e in R (A ∧e B =df ¬(¬A ∨e ¬B))
while conjunctions in consequents of → work like intensional conjunctions ∧i in
R (A ∧i B =df ¬(¬A ∨i ¬B)).

Theorem 3. Adequacy of the translation. `NTR A iff �R tr(A)

Proof. First observe that the fragment of the language of R without formu-
las with conjunctions or negations of disjunctions as positive parts suffices to
capture all translated formulas. Distributivity of conjunction and disjunction
therefore plays no role here. So for this fragment of the language the sequent
calculus LR is complete w.r.t. R. The only difference between the sequent cal-
culus of NTR→ and that of LR is the rule L∨. In NTR this rule is replaced by
what would be the derived rule7 for left introduction of intensional disjunction
in LR:

7The rule can be derived as follows in LR:

Γ1, A B∆1
R¬

Γ1 B ¬A,∆1 Γ2, B B∆2
L→

Γ1, Γ2,¬A → B B∆1,∆2
def∨i

Γ1, Γ2, A ∨i B B∆1,∆2

.
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Γ1, AB∆1 Γ2, B B∆2
L∨i

Γ1,Γ2, A ∨i B B∆1,∆2

So, to obtain a correct LR-proof we simply need to use the rule L∨i instead
of L∨. This is exactly what the translation does: it translates disjunctions into
intensional disjunctions in subformulas that end up on the left hand side of B.

We do not have a reverse translation, i.e. it is principally impossible to
translate all R (non-)tautologies into NTR (non-)tautologies (NTR is decid-
able, whereas R is not), but we do have an equivalence result for part of R’s
language.

Theorem 4. if A is a formula without negative occurrences of ∨, �NTR A iff
�R A

This can be proven by a straight forward induction on the complexity of
formulas. It suffices to observe that one does not need TR4.3 for the fragment
without negative disjunctions. One can prove that tr(A) = A whenever this
particular clause is not needed.

Via this translation one can indirectly provide the logic NTR→ with a pos-
sible world semantics (using the possible world semantics of R). Doing this is
technically a bit tedious but does not involve any difficulties. It is however still
unclear how to interpret this semantics philosophically. We were not able to
find a good reason why one would, given this semantics, interpret disjunctions
differently depending on the side of the implication on which they occur.

There are however promising outlooks for an exact truthmaker semantics (in
the vain of Kit Fine’s work, e.g. [10]) of NTR in terms of possible situations
instead of possible worlds. It is an exact semantics in Fine’s sense: a possible
situation only makes a sentence true if the whole situation is relevant for the
sentence.

4.4 Relation with Classical Relevance

The only difference between the logic NTR→ and the logic RR defined in
[22] is that in NTR→ we can derive a relevant implication from a material
implication, i.e. we have (¬A∨B)→ (A→ B) as an NTR→-theorem. Because,
from an external perspective, this may be seen as a fallacious inference, RR
was designed in such a way that such theorems are avoided. This is done by
not translating RR into R but into the logic R2, which is R but with two
non-equivalent relevant R-implications 7→ and →, by means of the following
translation function:

trRR(σ) = σ, where σ is a sentential letter,
trRR(A ∨B) = trRR(A) ∨ trRR(B),
trRR(A� B) = ∗trRR(∗A) 7→ trRR(B),
trRR(¬(A ∨B)) = ¬(trRR(∗A)→ ∗trRR(∗B)),
trRR(¬¬A) = trRR(A), and finally
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trRR(¬(A� B)) = ¬(trRR(A) 7→ ∗trRR(∗B)).

If we now consider that � is just the standard relevant implication of RR
(for which we use simply→ in NTR→), we can see that this translation function
is exactly the same as the function tr, as soon as we conflate the two relevant
R-implications 7→ and → into the regular R-implication.

The result of this is that NTR→ is at least as strong (and actually stronger
given that `NTR (¬A ∨B)→ (A→ B) but not `RR (¬A ∨B)� (A→ B)) if
we compare the logics by letting � correspond to →.

Although the presented logics in the present paper are very related to those
defined in [22], this paper’s sequent calculus and its general, logic-independent
definition of relevance are entirely original.

5 Conclusion

In this paper we have first presented and argued for a stipulative definition of
what a relevant L-implication is, for a Tarskian consequence relation L. We have
explained that the definition is based on being faithful to the logic L, on the
formality of relevant implication, and on the idea that premises and conclusions
have to be useful in some argument for the implication in order for them to be
relevant for the implication.

Then we have developed a sound and complete sequent calculus for relevant
CL-implication �NTR. We have provided the required metaproofs and have
given some examples of proof trees.

Subsequently, we have added an implication → to NTR that reflects ex-
actly the relevant meta-implication �NTR in the object language. Arguably the
resulting logic NTR→ is a relevance logic in the traditional sense of the word
defining a set of theorems that formalize relevant implication.

Finally, we have listed some properties of the new logic NTR→. (Among
other features) NTR→ turns out to have three useful properties the combina-
tion of which seems counterintuitive: (1) It has classical richness in case the
antecedent is consistent and the consequent non-tautological; so it does validate
i.e. disjunctive syllogism (`NTR→ (p ∧ (¬p ∨ q)) → q). (2) It is relevant in a
reasonable sense (so it has the variable sharing property, etc.). (3) It is decid-
able (if one starts from the sequent that should be proven, in a finite time one
can find all possible proofs by applying the rules in reverse, which results each
time in less complex sequents). The combination of these three properties is
only possible because the calculus has no cut rule and so the formalized rele-
vant implication is not transitive (`NTR→ A → B and `NTR→ B → C does
not necessarily entail `NTR→ A → C). This may seem suspicious in light of
99% of the literature on relevant implication, but we have given arguments to
the effect that one should not expect relevant implication to be transitive in the
first place.

It should be noted that the system NTR→shows some resemblances with
Neil Tennant’s not fully transitive core logic (cf. for example [18, 19, 20]) and
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with truth-relevance as proposed by Richard Dı́az (cf. [7]). However the pre-
sented system is quite different from these accounts. Tennant proposes a relevant
consequence relation that is classical in similar situations (consistent premises,
conclusion not tautological) as NTR, but does not define a system of relevant
implication, a sequent calculus, or a notion of relevance defined by means of
notions like non-redundancy and abstraction. Dı́az uses techniques similar to
the ones presented here to achieve relevance by pruning tableaux trees such
that each atom needs to be matched by another one without redundancy (cf.
our completeness proof). However he does not develop a sequent calculus and
his system is not classical in the sense that, in his approach, each symbol be-
comes relevant/intensional (∨ just as much as →), which results in a serious
reduction of the classical (arrow-free) tautologies. By contrast, NTR→ proves
all (arrow-free) classical tautologies.

The logic we have presented here is a first step in a long term philosophi-
cal project. The idea behind this project is that notions of relevance occurring
in philosophy (the requirement of relevance of explanans for explanandum in
theories of explanation, the requirement of relevance of the antecedent for the
consequent in standard counterfactuals, relevance in justifications, grounding,
imagination, abduction etc.) could be unified by a relevance logic if that logic is
sufficiently close to the deductive logic that is preferred in that domain of philos-
ophy for independent reasons (mostly classical, intuitionistic, or paraconsistent
logic). To execute this project, future logical work will include the elaboration
of a predicative (quantified) version of NTR, proof theories of our notion of
relevance for other logics than classical logic and a truthmaker semantics for
NTR, NTR→, and for non-classical versions.
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