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1 Introduction

Nowadays, Optimal Control (OC) methods are increasingly used for the control of
mechanical systems. Many industrial applications already make use of it, e.g., for
the trajectory planning of industrial robots, while the scientific community contin-
ues to investigate new possibilities in the fields of active orthoses and autonomous
driving. Optimal Control of multibody systems (MBS) is of particular interest for
many mechanical systems such as vehicles, robots or the human body as it offers
the possibility to compute beforehand a control sequence on a given time interval
such that a certain optimality criterion is achieved. This makes OC methods suit-
able for multibody systems whose dynamics involves non-linearities and rotations
in the tridimentional space. Moreover, the computation of control command inputs
via optimization enables the control of underactuated MBS characterized by a lower
number of inputs than degrees of freedom. However, the performances of the opti-
mized control inputs strongly depend on the mathematical model used to represent
the dynamics of the controlled system.

Optimal Control is also essential for Model Predictive Control (MPC) of non-
linear systems. MPC consists in determining the current control inputs by solving
an Optimal Control Problem (OPC) on a finite future time horizon. In case of me-
chanical systems with fast dynamics, fast updates of the control inputs are required,
which means that the OCP online solving must be carried out in real-time. This
leads to many investigations on the OCP solving efficiency including for multibody
control purpose.

Optimal Control of multibody systems has already been approached on many
different angles. There have been a multitude of works to develop general purpose
algorithms for optimal trajectory planning of MBS. Among them, studies have fo-
cused on constrained MBS characterized by loops of bodies and algebraic equations
[12]. For such MBS, different methods of index reduction for the differential alge-
braic equations (DAE) system have been investigated (e.g., coordinate partitioning
[21] and Baumgarte stabilization [3]). Such methods are also of great importance in
the case of non-minimal parameterization of the system motion. In [11] and [14],
different parameterizations of the special orthogonal group SO(3) have been inves-
tigated with special integrators adapted to the parametrization. These non-minimal
parametrizations are of particular interest for many applications (e.g., flying vehicles
such as drones) as they offer a singular-free representation for the rotations.

On the other hand, minimal coordinates have also drawn the attention of re-
searchers as they are appropriate for the representation of many industrial appli-
cations (e.g., serial manipulators). During the two past decades, the optimal trajec-
tory planning of industrial robots has been a very popular research subject [2],[18]
[6],[19]. These robots generally possess a tree-like structure (i.e., without loop of
bodies) which leads to unconstrained systems in the case of a joint coordinates ap-
proach.

In robotics,the trajectory planning is usually referred as the inverse dynamics
problem for which the objective is to determine the joint torques for a prescribed
motion of the controlled system [2]. The use of optimization methods is often nec-
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essary for the control of underactuated or overactuated systems for which there is
still a latitude in the way to actuate them. Among the studied problems, the case
of non-minimal phase systems represents an additional challenge as the inverse dy-
namics is, in that case, non-causal which means that the control should start before
the beginning of the trajectory [2].

Generally, the research on OC for MBS has mainly focused on the development
of new methods for Numerical Optimal Control that are based on a given formu-
lation of the multibody dynamics [2] [18],[5] and [17]. Nevertheless, in [6], Diehl
gives a good overview on the different dynamic formulations and how they could
influence the Optimal Control solver. He suggests that an implicit formulation of the
dynamics through the Newton-Euler Recursive scheme should lead to a lower eval-
uation cost per iteration. However, to our knowledge, there has been no thorough
investigation on the dynamic formulations and its influence on the solving of opti-
mal control problem for unconstrained multibody systems. Regarding the numerical
formulation of OCP, two methods exist: the multiple shooting and the direct collo-
cation [4]. For the multiple shooting, the integration and the optimization are treated
separately. The choice of the integrator is left free and can be adapted to the system
dynamics. On the other hand, the direct collocation method consists in imposing
the dynamics equations at intermediate collocation points. The integration and the
optimization are treated at the same level. The advantages of collocation methods
are that they lead to a very sparse NLP and that they show fast local convergence. In
addition, they treat unstable system well and can easily cope with state and terminal
constraints [6]. These reasons led us to consider the collocation method in the case
study of this paper (see Section 4).

In this work, we analyze different multibody dynamic formulations and compare
their performances in terms of convergence, accuracy and computation cost in the
OCP framework. The aim is not to develop new numerical methods for the formu-
lation of the OCP or to propose a new type of solver but to provide some insights
on existing MBS formulations and their suitability in the formulation of Optimal
Control Problems (see Fig. 1). Among the different MBS formalisms, we focus on
minimal (i.e., relative) coordinates and the derivation of the dynamics via the re-
cursive methods for tree-like MBS (i.e., the so-called Newton-Euler and Order-N
recursive algorithms). The derivation is done symbolically through the use of the
Robotran software [7]. The symbolic equation generator of Robotran has already
been proved to be particularly efficient in the derivation of compact expressions for
the dynamics of multibody system [15]. However, its performances for OCP solving
have never been thoroughly analyzed.
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Fig. 1 In this work, the focus is on the influence of the MBS modeling on the solving OCP perfor-
mances.

In order to compare the formulations, a benchmark has been developed. It con-
sists of a 3D serial robot arm with an inverted pendulum attached to the end effector.
An important point is the underactuated nature of the system (due to the free rota-
tion of the pendulum) which requires the use of optimization to determine the robot
control inputs. In addition, the balancing of an inverted pendulum is a well-known
task that has already been largely investigated. The system being tridimensional,
its non-linear and complex dynamics should highlight the differences between the
considered dynamic formulations.

This chapter is organized as follows: first the theory related to the formulation of
the OCP and the multibody modeling are respectively presented in Sections 2 and 3.
The different formulations are introduced and their derivations are discussed. Then,
Section 4 presents a benchmark case study for an unconstrained multibody system.
First the MBS system (i.e., a 3D robot arm with an inverted pendulum) is described,
then the optimal control task is defined. To this extent, the CasADi software [1] is
used to formulate and solve the OCP while the dynamic formulations are provided
by the symbolic MBS software Robotran [7]. Finally, results are presented for a
series of tasks realized with the different representations of the dynamics. These
are compared in terms of solver performances: number of iterations, CPU time to
convergence and quality of the solutions. Finally, the differences observed for the
different formulations are discussed in light of theoretical considerations.

2 Optimal Control of multibody systems

There are many ways to formulate and solve an Optimal Control Problem. In this
Section, we introduce the main principle and define the trajectory planning problem
to solve. In Section 2.1, the continuous problem is presented analytically then the
discrete formulation is introduced in Section 2.2.
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2.1 Optimal Control formulation

In a multibody context, the optimal Control Problem (OCP) is formulated as an
optimization problem whose solution provides the control trajectory u(t) that mini-
mizes a given cost function (1) and steers the state x(t) of the multibody system and
its algebraic variables z(t) from a given initial state (2) to a given terminal state (3),
within a given time horizon T (see Fig. 2). The OCP then reads:

minimize
x(t),u(t),z(t)

∫ T

0
L (x(t),u(t),z(t))dt (1)

subject to possible path constraints:

x(0)−xi = 0 (2)
x(T)−xd = 0 (3)

c (x(t),u(t),z(t)) ≥ 0 t ∈ [0 T] (4)

c(x,u)>0

states x(t)

input u(t)

  

xi

T0

Fig. 2 The continuous Optimal Control Problem consists in finding the optimal state and control
trajectory on the time interval [0,T ].

The trajectory x(t),z(t) and the control inputs u(t) are subjected to equality con-
straints denoted g, which typically represent the system dynamics expressed as a set
of Differential Algebraic Equations (DAE).

g (x(t),u(t),z(t)) :
{
Ûx = f(x,u,z)
a(x,z) = 0 t ∈ [0 T] (5)

In this equation, f and a respectively denote the differential and the algebraic equa-
tions that described the physics of the system in terms of the states x, the algebraic
variables z and the control inputs u. This general framework for the dynamics is at
the core of the CasADi OC program and its permits the modeling of the dynam-
ics of the multibody system as a system of DAE (see Section 3). The optimization
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problem defined by the set of equations (1-5) has in general no analytical solution.
However it can be solved numerically through its discretization on the time interval
[0,T].

2.2 Numerical optimal control methods

There are several approaches to obtain a numerical solution of an OCP. Among
them, the direct methods consist in discretizing the time horizon [0,T] into N time
intervals [tk, tk+1] such that t0 = 0, tN = T and k ∈ 0,1, ...,N −1. The time functions
x(t), u(t) and z(t) that were the unknowns of the system (1-5) are replaced by a
sequence of N +1 discrete states xk , zk and N piecewise constant controls uk which
are now the decision variables of the optimization problem in its discrete form (see
Fig. 3).

The cost function (1) is replaced by a numerical approximation p which is a func-
tion of the decision variables vector w = {x0,u0,z0, ...,xk,uk,zk ...uN−1,zN−1,xN }.
Finally, the path constraints (2-3) are re-expressed in terms of the decision vari-
ables vector w. This parameterization of the original continuous OCP is referred as
a nonlinear program (NLP).

minimize
w

p(w) (6)

subject to path constraints on the decision variables:

x0−xi = 0 (7)
xN −xd = 0 (8)

c (w) ≥ 0 (9)

Fig. 3 Numerical OCP with the dynamic constraints (10) that are unsatisfied. The decision vari-
ables are the states at the discrete points and the piecewise constant control inputs.
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In order to respect the system dynamics, the constant control input uk on the
time interval [tk, tk+1] is linked to the two adjacent differential states xk and xk+1
through the explicit numerical integration F of the continuous dynamics (5) on the
same discrete time interval (see Fig. 3).

xk+1−F(xk,uk,zk) = 0 (10)

In addition, the differential and algebraic states are linked at each discrete time
through the set of algebraic equations.

a(xk,zk) = 0 (11)

As mentioned in the introduction, a collocation method is used to deal with the
constraints (10-11). This technique consists in defining collocation points between
tk and tk+1 at which the states, represented as polynomial functions, have to satisfy
the continuous dynamics (5). The integration scheme implies the definition of extra
variables (i.e., the polynomial coefficients) and additional constraint equations. This
leads to a very large but sparse NLP.

The optimization problem defined by equations (6-11) can be solved with differ-
ent techniques (e.g., an Interior Point method) which generally require the deriva-
tives of the cost function and constraint equations with respect to the decision vari-
ables. To this extent, the software CasADi [1] provides sensitivity analysis tools
for ODE and DAE system that allows the automatic generation of the derivatives
necessary to solve the NLP. To do so, CasADi uses state-of-the-art algorithmic dif-
ferentiation [10].

3 Multibody systems modeling

It is well-established that several formalisms can be used to model multibody sys-
tems (MBS). Among them, both the absolute and relative coordinates can be consid-
ered for optimal control, resulting in different structures for the NLP to solve [2]. In
this study, the focus is on minimal coordinates and the different formulations of the
dynamics. First the relative (i.e., minimal) coordinates approach is briefly described.
Then the different forms for the MBS dynamics that can be obtained through recur-
sive algorithms are presented. Finally, the symbolic generation of these dynamics
equations is discussed.
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3.1 Relative coordinates approach

In the relative coordinates approach, the parametric configuration of a body is de-
fined relatively to another one called its parent body. The motion degrees of freedom
(dof) are defined via the joints that connect the different bodies of the system. If the
MBS does not contain any loops of bodies, it inherits a tree-like structure as each
body can only have one parent body (see Fig. 4). The number of coordinates is min-
imal and thus reduced compared to the absolute coordinates approach, as the joint
constraints are implicitly taken into account by the relative formulation, leading to
a pure set of ordinary differential equations.

In the relative coordinates approach, a MBS is fully characterized by two types
of features:

• bodies, defined by their mass, center of mass and inertia tensor (10 parameters in
total),

• joints, defined by their location on the body and their nature (i.e., prismatic or
revolute, free or constrained).

External forces
 

4

q4

3

q3

2

q2

m,I

1

 

 

q1

q=[q1 q2 q3 q4]
prismatic/revolute

q1

q1

relative coordinates

Fig. 4 The relative coordinates approach consists in defining the motion of each body relatively to
its parent body with the help of a joint coordinate q.

A tree-like structure might be quite restrictive since many mechanical systems
contain kinematic loops (e.g., a four-bar linkage). The relative coordinates approach
deals with such closed-loop systems by introducing loop constraint equations. The
tree-like structure is restored in two steps. First the loop is cut resulting into two
independent branches of bodies. Afterwards the loop closure is ensured by apply-
ing algebraic constraints, for instance forcing two points of the created branches to
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coincide or imposing a given distance between two points. Hence, the derivation
of the differential equations is based on the tree-like structure of the MBS whether
or not the system is constrained. In this work, only unconstrained tree-like MBS
are considered within the frame of OCP formulation. However, as the derivation
of the differential equations is the same for constrained system, the study of the
different formulations of the dynamics will be insightful for both constrained and
unconstrained MBS.

3.2 Formulations of the dynamic equations

In this Section, different formulations of the equations of motion are presented for
the case of unconstrained MBS. Among those formulations, the so-called Newton-
Euler recursive scheme denoted NER is particularly suitable for minimal coordi-
nates [13]. This method implements two consecutive recursions on the MBS (a for-
ward kinematics followed by a backward dynamics). It is well-known for its facility
of computer implementation and its reduced number of operations necessary to ob-
tain the equations of motion. It expresses the vector of generalized forces Q as a
function of the system kinematics (q, Ûq, Üq).

Φ(Üq, Ûq,q) =Q (12)

This very efficient formulation, also called inverse dynamics has only a O(N) com-
plexity thanks to its recursive formulation, N being the size of the MBS (i.e., the
number of joints). It is extensively used by roboticians to determine the actuation
torques Q necessary to track a given trajectory (q(t), Ûq(t), Üq(t)) for a fully actuated
robot.

3.2.1 Implicit formulation

More generally, equation (12) can be used to represent the dynamics of any MBS
systems, in a residual form. In that case, the joint torques/forces Q can be configuration-
dependent (i.e., an elastic joint or a feedback control law) and are generally ex-
pressed as a function of the generalized coordinates q and generalized velocities
Ûq. It results in an implicit formulation of the equations of motion in terms of the
generalized acceleration Üq:

Φ(Üq, Ûq,q)−Q( Ûq,q) = 0 (13)
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According to Section 2.1, some control inputs u(t) are considered for the OCP
formulation. To this extent, the joint forces Q can be partitioned into two subsets.

• Qa for the active or actuated joints (input of the system)
• Qp for the passive joints that can contain dry friction, damping force, etc.

Q( Ûq,q) =Qa+Qp( Ûq,q) (14)

The system (13) can be re-expressed as a DAE system of the form (5) with the
generalized coordinates and velocities representing the differential states and the
accelerations considered as the algebraic states.

x =
[
Ûq
q

]
z = Üq u =Qa


f(x,u,z) =

[
z
Ûq

]
a(x,z) =Φ(q, Ûq,z)−Q(q, Ûq,u) = 0

(15)

3.2.2 Semi-explicit formulation

The original Newton-Euler recursive scheme leading to the formulation (12) can be
modified in order to obtain a semi-explicit form of the dynamics equations for tree-
like multibody systems. This new form still preserves the full recursivity even for
the computation of the mass matrix [9].

M(q)Üq+ c(q, Ûq) =Q( Ûq,q) (16)

M is the symmetric generalized mass matrix of the system and c is the non-linear
dynamic vector which contains the gyroscopic, centripetal and gravity terms as well
as the contribution of the resultant external forces. The difference compared to equa-
tion (12) is that the algorithm first computes M and c individually before the evalu-
ation of the left-hand side.

This semi-explicit formulation is often preferred for time integration purposes.
However, the factorization of the mass matrix in the recursive scheme requires ad-
ditional computational efforts of O(N2) complexity [9]. The semi-explicit system
(16) can be re-expressed as a DAE system in a similar way as for the implicit for-
mulation.

x =
[
Ûq
q

]
z = Üq u =Qa

f(x,u,z) =
[
z
Ûq

]
a(x,z) =M(q) z+ c(q, Ûq)−Q( Ûq,q,u) = 0

(17)
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3.2.3 Explicit formulation

The system of equations (16) can be solved in terms of the accelerations Üq via a
Cholesky decomposition of the mass matrix leading to the explicit expression γ for
the acceleration Üq in terms of the position q and velocity Ûq. This resolution step
yields an additional O(N3) complexity compared to the semi-explicit form.

Üq =M−1 [Q− c] ( Ûq,q) ∆= γ( Ûq,q,Q) (18)

Another way to derive the explicit form of the equations of motion in a fully
recursive way can be obtained through the Order-N algorithm [16]. This method is
based on three recursive steps (instead of two for the NER scheme) on the multibody
system. In short, first a forward recursion covers the MBS from the inertial body
to the leaves to compute the bodies kinematics (position, orientation, linear and
angular velocities). A second backward recursion computes the bodies dynamics on
the basis of the classical Newton-Euler equations within which a subtle embedded
block factorization of the mass matrix is performed. This process prepares the third
final kinetic recursion that straightforwardly computes the generalized acceleration
Üq as a function ν of the joint positions and velocities. This three-steps algorithm
has a O(N) complexity. Several implementations of it have been proposed in the
literature, the one used in this paper is the Schwertassek-Rulka method [16].

Üq = ν( Ûq,q,Q) (19)

As the system is expressed in a purely explicit form, the accelerations Üq do not
necessarily need to be considered as an algebraic state. As a result, the dynamics
can be assimilated to either set of ODE or DAE. The explicit dynamics is generally
denoted ξ and can either represent the NER explicit dynamics γ or the Order-N
dynamics ν. The dynamics is represented by a set of differential algebraic equations
(DAE) as

x =
[
Ûq
q

]
z = Üq u =Qa

f(x,u,z) =
[
z
Ûq

]
a(x,z) = z−ξ( Ûq,q,u) = 0

(20)

or by a set of ordinary differential equations (ODE) as

x =
[
Ûq
q

]
u =Qa

f(x,u) =
[
ξ( Ûq,q,u)
Ûq

]
(21)
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3.3 Symbolic generation

In practice, the MBS equations of motion can be computed either numerically or
symbolically. In specific cases, the recursive nature of the relative coordinates can
be deeply exploited by a symbolic program dedicated to multibody systems. This is
the purpose of the Robotran software [7] that offers symbolic tools for an extensive
simplification of the equations of motion. The latter are written under the form of
a function (C, Matlab, Python) with adequate input/output arguments. These func-
tions, internally optimized thanks to the symbolic approach, can be used externally
as a black-box by another program or computer environment. In this paper, the func-
tion generated by Robotran will be used by the CasADi software [1] to express the
system dynamics for the OCP formulation.

The different formulations of the dynamics yield different levels of complexity
as summarized in Table 1.

Table 1 Formulations for the Dynamics Equations of unconstrained Multibody Systems.

Algorithm Section Dynamics Complexity

IMPL original NER 3.2.1 Φ−Q = 0 N

SEMI modified NER 3.2.2 MÜq+ c−Q = 0 N2

EXP1 modified NER + Cholesky 3.2.3 Üq−γ = 0 N2 +N3

EXP2 Order-N 3.2.3 Üq− ν = 0 N

4 Case study – Unconstrained MBS

Given their different complexities, the formulations of the dynamics should lead to
distinct performances for the OCP solving. To this extent, the Optimal Control of a
simple unconstrained multibody system has been extensively tested.

4.1 System presentation

The system of interest is a 3D robot arm with an inverted pendulum attached to
the end effector as represented in Figure 5. The 3D arm has a morphology that
resembles the human arm. It is composed of 3 bodies and 4 actuated rotational joints
(with relative coordinates q1, q2, q3 and q4). The first element is connected to the
base with two rotational joints enabling to point in any direction of space. Then the
second and third elements are connected in series via a single rotational joint. The
relative motion of the pendulum with respects to the end effector is characterized
by two Cardan-type angles (q5 and q6) which are considered as free joints (i.e.,
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frictionless and non-actuated). The MBS is thus composed of 4 bodies and 6 joints.
The system is underactuated as only the 4 joints of the arm are actuated. The mass,
inertia and length of the different bodies are given in Table 2.

universal joint

l1

l2

d1

d2

l3,d3

d4

q1

q2

q3

q4

q5

q6

Fig. 5 Geometrical representation of the studied MBS system.

Table 2 Geometric and inertia parameters for the 3D serial robot and the pendulum.

Length [m] c.o.m. position [m] Mass [kg] Inertia [kg m2]

Upperarm l1=0.3 d1=0.1 2.5 [0.06,0.1,0.1]
Forearm l2=0.3 d2=0.1 2 [0.03,0.05,0.05]
Hand l3=0.1 d3=0.1 0.5 [0.004,0.006,0.006]
Pendulum d4=0.2 1 [0.1,0.1,0.05]

c.o.m. stands for the center of mass.

4.2 OCP formulation

There are many possible ways to formulate the Optimal Control Problem for this
application. In this study, the focus is on the trajectory optimization of the 3D arm.
The task is to move the system from an initial pose and position its end effector
at a given location in the 3D space after an imposed time T . At this final time, the
system must be at equilibrium with the pendulum in a perfect upright position. The
objective function is designed to minimize the actuation via the use of the square of
the actuation torques and its time derivative:

L(x,u,z) = k1

4∑
i=0

Q2
i + k2

4∑
i=0

ÛQi
2 (22)

The first term aims at minimizing the torques in the four actuated joints while the
second term minimizes the derivative of the controls which smooths the optimal
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trajectory and limits the mechanical power transmitted into the joints. In practice,
the control torques are piece-wise constant on each discrete time interval, which
implies the computation of the derivative via finite differences.

To achieve the equilibrium at the final time T , constraints are applied on the
differential states x = [ Ûq q], the inputs u = Qa and the algebraic states z when ap-
propriate.

• The absolute position of the end effector can be expressed as a function of the
angular joint positions, see(q). Thus, the end effector can be constrained to a
desired absolute Cartesian position pd = [xd yd zd]:

pd − see(q(T)) = 0 (23)

• The absolute velocity of the end effector being a linear function of the joint an-
gular velocities, equating the angular velocities at the final time T to zero should
then be sufficient.

Ûq(T) = 0 (24)

• The equilibrium of the whole system is achieved by canceling the joint acceler-
ations at the final time, Üq(T) = 0. To this extent, the joint accelerations are either
available as algebraic variables in the case of a DAE system or expressed with
the function ξ in the case of a pure ODE system (see Section 3.2.3 on explicit
formulations).

z(T) = 0 or ξ( Ûq,q,Qa) = 0 (25)

At time t = 0, the robot is in a stable equilibrium. The initial condition of the
system is given by the joint angles, qi .

q(0) = qi = [0 ; α ; −2α ; α ; 0 ; 0] Ûq(0) = 0 Üq(0) = 0 (26)

In addition, path inequality constraints (27) are applied to the joint angles to keep
a physical sense for the arm and the pendulum motions.

−∞ ≤ q1 ≤ ∞

−π/2 ≤ q2 ≤ π/2
−5π/12 ≤ q3 ≤ 0
−π/2 ≤ q4 ≤ π/2 (27)
−π/4 ≤ q5 ≤ π/4
−π/4 ≤ q6 ≤ π/4

The equilibrium condition (25), the terminal constraint (23) and the path constraints
ensure all together that the pendulum is in an upright position at the final time .
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4.3 Numerical Results

In order to assess the performances of the different formulations, we have compared
the solutions obtained for the above 3D arm benchmark. For the comparison, a total
of 6 formulations for the system dynamics have been considered. From Section 3, 4
different formulations for the equations of motion have been derived:

• IMPL : Implicit formulation from the Newton-Euler Recursive scheme (NER),
• SEMI : Semi-explicit formulation from the NER scheme,
• EXP1 : Explicit formulation from the NER scheme,
• EXP2 : Explicit formulation from the Order-N formalism.

While the first two formulations imply a DAE system for its numerical represen-
tation, the two explicit formulations can either be numerically treated as a system
of DAE or as a system of pure ODE. The difference lies in the number of decision
variables and constraint equations for the numerical NLP but also in the treatment
of the terminal constraints.

• EXPi-O : system of ODE with the position and velocity in the differential states,
• EXPi-A : system of DAE with the joint accelerations as algebraic variables.

The OCP described in Section 4.2 is formulated with the help of the software
environment CasADi [1]. Based on the functions generated by Robotran, symbolic
expressions of the dynamics are written and symbolically derived with respect to
the states and input variables. Then, the numerical OCP is formulated using a direct
collocation scheme [4] allowing the treatment of either a DAE or a pure ODE repre-
sentation of the dynamics. The resulting NLP is then solved using the Interior Point
solver IPOPT [20].

4.3.1 Simulation settings

The performances of each formulation are evaluated through the trajectory opti-
mization of the 3D arm robot. The task is described in Section 4.2. The time interval
length T is 2 seconds and is divided into 100 time intervals for the numerical solving
via a direct collocation method.

To compare the formulations, the optimization was performed for a series of end-
effector terminal locations. This set of points is defined in cylindrical coordinates
(ϕ,r ,z) around a vertical axis passing through the robot arm origin. The angular
position ϕ varies in the range [−π/2, π/2] rad. On the other hand, the two other
coordinates have relatively small variation ranges because the end effector has to
remain in the robot working space: the radius is fixed to 0.63 m and the height
varies in the range [−0.1,0.1] m (see Fig. 6).

Among the defined lateral surface, many points can be tested (see Fig. 6). The
number of trajectory optimizations was chosen on the basis of a convergence anal-
ysis. The optimizations have been performed on a grid of different sizes and it has
been shown that the mean number of iterations does not vary significantly between



16 Comparison and Analysis of MBS Dynamics Formalisms for solving OCP

two refinements after a certain size (see Fig. 7). The chosen grid is composed of
21 angular orientations and 11 vertical positions for a total of 231 points in the 3D
space (see Fig. 6).
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Fig. 6 Grid of the 3D point to reach. The multibody system is represented in its initial condition.

Number of tasks

9 18 36 66 121 231

N
u

m
b

e
r 

o
f 

it
e

ra
ti
o

n
s

80

100

120

140

160 IMPL SEMI EXP1-O EXP1-A EXP2-O EXP2-A

Fig. 7 Convergence analysis for the different formulations. After a given number of tasks, the
number of iterations does not vary significantly.

In addition, two different sets of results are generated by tuning the k1 and k2
coefficients. The first cost function is defined by (k1=1e0, k2=0) and corresponds to
a more aggressive actuation while the second cost function is defined by (k1=1e0,
k2=1e5) and should result in a smoother actuation. In both cases, the initial condition
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(i.e., the α angle) is such that the end effector is positioned at 0.65 m from the origin
with zero lateral rotation of the arm (i.e., ϕ =0 rad).

4.3.2 Simulation results

Figure 8 shows the optimal trajectory obtained to reach the point pd = {0,0.63,−0.1}
(see red point in Fig. 6) for the two different definitions of the cost function. The
second definition leads to a smoother but more important actuation. The torques
variations are reduced and there are less oscillations at the end of the trajectory.
This smoother actuation is reflected in the joint velocities with lower values than
for the non-smoothed actuation. Finally, for the 2 cost definitions, the same final
angular positions and the same final actuation are obtained as the equilibrium to
reach after 2 seconds is identical.
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on the control derivative leads to a smoother but more important actuation.



18 Comparison and Analysis of MBS Dynamics Formalisms for solving OCP

More than the solution itself, the interest of the study is to compare the different
formulation performances to solve the OCP described in Section 4.2. To do so, the
number of iterations before convergence, the cost function value at the optimum and
the mean evaluation times of the dynamics are evaluated for the two sets of results.

First, the optimal values of the cost function are compared for the 6 considered
representations of the dynamics. Figure 9 shows a box-plot1 of the cost value for
the two sets of results (i.e., different coefficients in the cost function). The OCP
formulation with the smoothed actuation leads to more constant results with only
one formulation presenting an outlier which corresponds to a higher local minima
(see Fig. 9.b). On the other hand, in the case of the non-smoothed control, the so-
lution leads to a higher number of outliers especially in the case of the implicit and
the semi-explicit formulations (see Fig. 9.a). Note that the higher group of outliers
corresponds to the tasks where the point to reach is either at the far left or the far
right and the lower group corresponds to the central point (i.e., no lateral movement
needed for the arm). The higher outliers clearly correspond to higher local minima
as lower minima are reached by the explicit formulations for the same tasks. Re-
garding the problem with no lateral movement, it is not clear whether it is a local
minimum as all the formulations seem to struggle to solve this problem. In general,
the actuation smoothing seems to reduce the problem of higher local minima.
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Fig. 9 Optimal values of the cost function represented in the form of a box plot for the two sets of
solutions. (a) first cost function without smoothing: k1=1e0, k2=0. (b) second cost function with
smoothing: k1=1e0, k2=1e5.

Another important aspect of the performances is the computation efforts needed
to reach the optimal solution. Figure 10 shows the number of iterations to conver-
gence and the CPU time for the two sets of results. Figure 11 shows the CPU time
per iteration. For the first set (see Fig. 10.a), the number of iterations is characterized
by a high number of outliers corresponding to the high local minima (see Fig. 9.a).
On this same set, the DAE explicit formulations result in a larger average number of
iterations than the four other formulations. For the second set of tasks, the implicit

1 On the box plot, the central mark indicates the median, and the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data
points not considered outliers, and the outliers are plotted individually using the ’+’ symbol.
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and semi-explicit formulation generally perform better than the explicit ones (see
Fig. 10.b). This difference could be due to the high local minima that are encoun-
tered by the first two formulations while solving the first set of tasks. Regarding the
CPU time, the implicit and the semi-explicit formulations lead to better results than
the explicit ones for both sets of tasks. This tendency is also observed for the CPU
time per iteration (see Fig. 11).

Regarding the numerical formulations, the ODE representation gives better re-
sults in terms of iterations for the first set of tasks (see Fig. 10.a) but this difference
is not so clear for the second set of tasks (see Fig. 10.b). The two explicit forms
exhibit similar performances in terms of CPU time when formulated as ODE and
DAE systems (see Fig. 10). However, the Order-N implementation yields a lower
CPU time per iteration when formulated as a DAE system (see Fig. 11). Its poor per-
formances in terms of total CPU time are explained by its high number of iterations
to reach convergence.
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Fig. 10 Number of iterations and total CPU time to convergence represented in the form of a
box plot for the two sets of solutions. (a) first cost function without smoothing: k1=1e0, k2=0. (b)
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4.3.3 Discussion

In this Section, we aim at giving some insights about the obtained results. From the
simulations, it is clear that the implicit and the semi-explicit formulations perform
better than the explicit ones. From a numerical point of view, the DAE form leads
to a larger problem as both the number of equations and variables is higher (see Ta-
ble 3). This difference results from the treatment of joint accelerations as algebraic
variables which is mandatory for the implicit and semi-explicit dynamics. Neverthe-
less, compared to a pure ODE representation, the differential equation Ûx = f(x,u,z)
is trivial in the DAE case. In addition, the DAE formulation allows the definition
of the terminal equilibrium constraint directly in terms of the algebraic variables,
which can be advantageous as the expression of the equilibrium constraints is linear
in that case.

Table 3 Size of the NLP associated to the OCP for the second cost definition (smoothed actuation).

Number of IMP SEMI EXP1-O EXP1-A EXP2-O EXP2-A

variables 8812 8812 6412 8812 6412 8812
constraint equations 8427 8427 6027 8427 6027 8427
nzta in constraint Jacobian 72435 72435 62519 69635 62519 69635
nzt in Lagrangian Hessian 39021 39021 35286 35021 35286 35021

a nzt stands for non-zero terms

The explanation for the performance differences lies in the derivation of the dy-
namics itself. The different formulations are all written in the form of a function
generated symbolically with Robotran. Because they inherit different complexity,
the number of equations and floating point operations associated with each formu-
lation differ as shown in Table 4. The O(N) computation of the Φ term does in fact
lead to a lower number of operations, about half of the M and c terms of the semi-
explicit dynamics for the system at hand. Regarding the explicit formulations, the
NER modified algorithm with Cholesky decomposition leads to a number of flops
comparable with the semi-explicit form. This is because the considered MBS is not
too large and the Cholesky decomposition is not critical for the number of joints
(i.e., 6 for the benchmark). However, the Order-N method yields a high number of
operations, that is more than 4 times the number of operations for the implicit form.
It may seem strange as the number of operations for the Order-N method is sup-
posed to increase linearly with the size of the system. The problem is that this linear
behavior becomes only interesting for a greater number of joints in the MBS (i.e.,
around 15 according to [8]).

While the explicit expressions clearly differ as they are derived differently, the
implicit and the semi-explicit equations are exactly the same but expressed in dif-
ferent forms (see Section 3.2.1 and 3.2.2). As these equations are identical, their
derivative should also be the same. As a matter of fact, the implicit and semi-explicit
formulations lead to the exact same number of non-zero terms in the expression of
the Jacobian and the Hessian for the NLP, which is already a good indicator (see
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Table 4 Dynamic formulations and their generation for the studied MBS.

Algorithm Dynamic terms # Flops # Eqs

IMPL original NER Φ(Üq, Ûq, q) 460 114
SEMI modified NER M(q) and c( Ûq, q) 830 264
EXP1 modified NER + Cholesky γ( Ûq, q,Q) 991 328
EXP2 Order-N ν( Ûq, q,Q) 1784 395

Table 3). The fact that the equations are identical should lead to the same iter-
ation path while solving the numerical OCP. This is observed in the case of the
smoothed actuation (see Fig. 10.b) with an almost exact same number of iterations
in the 231 tasks. For the case of non-smoothed actuation (see Fig. 10.a), a similar
but non-identical number of iterations is observed for the two formulations. These
differences are attributed to the high numerical sensitivity of this Optimal Control
Problem. This could cause the NLP solver to use different strategies for the two
dynamic formulations. Finally, the implicit and semi-explicit formulations are more
frequently trapped in higher local minima than the explicit ones. Some additional
investigations would be necessary to explain this observation.

We are aware that treating the explicit dynamics with a collocation scheme may
not be the best choice and that a multiple shooting could be more appropriated [6].
As a matter of fact, multiple shooting for the explicit formulations have also been
investigated in this work but was abandoned as it led to lower performances in terms
of robustness (i.e., lower success rate for the extreme point and slower convergence).
The reason could be the high dynamics of the system and the strong terminal equi-
librium constraint. In order to verify this assumption, a simpler multibody system
could be studied with a smoother formulation of the OCP (i.e., with no terminal
constraint).

5 Conclusion

This paper analyzes different formulations of the multibody dynamics and compare
their performances in terms of convergence, accuracy and computation cost in the
context of Optimal Control. The aim is to provide some insights on existing MBS
formulations and their relevance applicability in the formulation and solution of Op-
timal Control Problems. Among the different modeling techniques, we focus on the
derivation of the equations, using a relative coordinates approach, with the Newton-
Euler Recursive scheme and the Order-N algorithm .

First, a framework for the formulation of Optimal Control Problem has been in-
troduced. It was based on a semi-explicit DAE representation of the dynamics well
suited for the treatment of multibody systems. Other formulations could have been
considered (e.g., full implicit) but would have required specific integrators (i.e.,
DAE integrators). Regarding the discretization of the OCP, the direct collocation
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scheme is selected here. This decision is taken following the considerations found
in [6], but also because multiple shooting methods are less robust. Then, the dif-
ferent formulations for the multibody dynamics are introduced and their derivations
are discussed. From the Newton-Euler recursive scheme, three formulations are de-
rived: the implicit, the semi-explicit and an explicit one. Then, a second explicit
formulation is derived from the Order-N algorithm.

Finally, a case study is presented in a benchmark approach for the unconstrained
MBS Optimal Control. The system consists in a 3D robot arm with an inverted
pendulum attached to the end effector. An OCP is formulated with the goal to reach
a point in the 3D space for the end effector after a preset time of 2 seconds. At the
end, the system has to be at equilibrium with zero acceleration and the actuation
is minimized on the overall time interval. This task is realized for a grid of target
points in the 3D space and for two different definitions of the cost function resulting
in two sets of tasks.

Results showed that the implicit and semi-explicit formulations are generally per-
forming better in terms of CPU time and number of iterations. This can be explained
by a more compact formulation of the dynamics which leads to a lower CPU cost
per iteration. However, these two formulations appear to be more sensitive to higher
local minima when the dynamics is stronger (i.e., in the case of non-smoothed actu-
ation). This could be a drawback in applications such as offline trajectory planning
where the quality of the solution is more important than its computation cost. On
the other hand, the explicit formulations show larger CPU time to convergence but
ensure a higher quality of the solution, as a lesser number of high local minima are
observed. It seems that the Order-N explicit form works better with a DAE repre-
sentation, while a pure ODE seems more appropriate for the NER explicit form. For
the first set of solutions, with non-smoothed actuation, the differences in the num-
ber of iterations for the implicit and semi-explicit formulations are attributed to the
strong numerical sensitivity of the problem. More investigation should be carried
out on that subject. Nevertheless, this study shows the importance of the dynamic
formulations on the OCP solving performances for unconstrained MBS.

There are many perspectives to extend this work. First, it would be appropriate
to carry out additional simulations with different OCP formulations and different
multibody systems in order to verify the observed tendencies. It has been shown
that the way the dynamics is derived has a huge impact on the solver for the OCP as
it strongly influences the CPU time per iteration. A recent release of Robotran offers
symbolic tools for obtaining a fully analytical sensitivity of MBS equations based
on the recursive differentiation of the multibody formulation. It will be interesting to
see whether this could lead to better performances than when using the algorithmic
differentiation provided by an optimization software like CasADi.
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