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ABSTRACT
This article focuses on subset reachability in synchronizing automata.

First, we study the length of shortest words reaching subsets of states in synchro-
nizing automata. We provide an automata family with subsets that cannot be reached
by words shorter than 2n/n, thus disproving a recent conjecture of Don. We then
analyze relaxed versions of this conjecture.

Second, we analyze the Γ1-graph construction. The Γ1-graph is derived from
1-deficient words, and is a key tool for studying completely reachable automata. We
introduce the concept of roots of 1-deficient words, which allows to state explicit con-
catenation rules for these words. Based on these results, we provide a polynomial-time
algorithm for constructing the Γ1-graph. Then, we disprove a conjecture by Bondar
and Volkov linking the strong connectivity of this graph and the concatenation of 1-
deficient words of completely reachable automata. Finally, we prove an alternative
version of this conjecture.

Keywords: Subset reachability, short reaching word, completely reachable automata,
Γ1-graph.

Introduction

Automata1 are useful tools in various fields of applied mathematics. In pattern recog-
nition, they allow to parse texts and efficiently find letter sequences. In language
theory, they are the basic tools defining formal languages and context free languages.
In theoretical computer science, automata provide simple models for the behaviour of
computing devices. More recently, automata have also been at the core of synthesis

A preliminary version of this paper has been presented at the conference DLT 2018.
(B)R. M. Jungers is a F.R.S.-FNRS Research Associate. This work was supported by the French
Community of Belgium and by the IAP network DYSCO.

1Formal definitions are provided in the next subsection.
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and verification of complex automated systems. A general presentation of automata
and their applications is provided by Berthé and Rigo [4], and by Linz [22].

Synchronization is an important topic in automata theory. Indeed, if a machine
can be modelled as a synchronizing automaton, then it is possible to fix its state
by applying a sequence of commands corresponding to a synchronizing word. It
has direct applications in robotics [23], matrix theory [5], consensus theory [11] and
group theory [1]. The most famous problem in this field was proposed by Jan Černý
in 1964 [10]. It states that if an automaton has a synchronizing word, then it also has
a short synchronizing word:
Conjecture 1 (Černý’s conjecture, 1964 [10]). Let A = (Q; Σ; δ) be a synchronizing
automaton with |Q| = n. Then, it has a synchronizing word of length at most (n−1)2.

In [9], Černý proposes an infinite family of automata attaining this bound, for any
number of states. Fig. 1 represents the automaton of this family with four states.
Many improvements have been achieved recently for some particular classes of au-
tomata (see [2, 13, 15, 20, 26, 28]), by improving the best general bound [27], or by
proposing new probabilistic approaches (see [8,19,24]). However, Conjecture 1 is not
proven yet in its general formulation. A survey on the subject is provided by Mikhail
Volkov [29].
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Figure 1: A synchronizing automaton attaining Černý’s bound

Conjecture 1 can be adressed by the two natural and complementary approaches
that are subset synchronization and subset reachability. In the subset synchronization
approach, one considers the length of a shortest word which synchronizes a set S.
It is studied in [16, 21, 30] among others. In the subset reachability approach, one
considers the length of a shortest word reaching a set S. It is studied in [6, 12].
Subset reachability can be seen as a direct application of the extension method2,
which was used to prove Conjecture 1 for particular classes of automata (see [26] for a
detailed analysis of this method). The algorithmic complexity of subset reachability
problems is studied in [3]. Here, we focus on properties of subset reachability.

In Section 1, we study the length of shortest words reaching some subsets of states.

2In the extension method, one proves that any subset is the image of a larger set under the action
of a short word. Then, starting with a set S and extending it recursively, one obtains the set Q, and
the concatenation of the extending words is a word reaching S. Therefore, starting with extending
a single state with a single letter (such state always exist), this set can next be extended n − 2 times
to obtain Q. If each extending word in this process is not longer than n, it provides a synchronizing
word of length smaller or equal to n × (n − 2) + 1 = (n − 1)2.
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In [12], Don showed for a class of automata that for any reachable subset of k states of
any automaton of this class, there exists a word of length n(n−k) reaching this subset.
He also conjectured that it was true for any synchronizing automaton. First, we show
that this conjecture does not hold by providing a family of counterexamples where
the length of the shortest word reaching a set of n − 2 states is quadratic. Second,
we analyze alternative versions of the conjecture and the questions they raise. In
particular, we build a family of automata such that a set of bn

2 c states cannot be
reached by a word shorter than 2n/n.

In Section 2, we study the construction of the Γ1-graph and its link with completely
reachable automata. An automaton is said to be completely reachable if any of its
proper subsets is reachable. The Γ1-graph is built from 1-deficient words, i.e. words
under which Q has an image of cardinality n − 1. This graph is a key tool for
studying completely reachable automata, as shown in [6]. In [7], this tool is extended
to the Γ-graph and allows to fully characterize completely reachable automata. In [6],
Bondar and Volkov conjectured that the Γ1-graph is strongly connected if any subset
is reachable by a concatenation of 1-deficient words. They also left the question about
the algorithmic complexity of building the Γ1-graph open. In this section, we first
introduce the concept of root states of a 1-deficient word. Together with the already
well known concepts of excluded state and duplicate state, it allows us to state general
concatenation rules for 1-deficient words. Second, using these rules, we provide a
polynomial time algorithm building the Γ1-graph. Third, we provide a completely
reachable automaton which does not fulfil Bondar and Volkov’s conjecture. Finally,
we prove a slightly modified version of the conjecture.

The preliminary version of this paper has been presented at the DLT2018 confer-
ence [18]. The proofs of Lemma 1, Lemma 2 and Proposition 3 , as well as the section
2.1, on the algorithmic construction of the Γ1-graph, are new.

Definitions

A deterministic complete finite automaton is a triple A = (Q; Σ; δ) with Q a set of
states, Σ an alphabet of letters and δ : Q × Σ → Q a transition function defined for
all states and letters. In the following, we will use both “automaton” and “DFA”
to name such automata. It is convenient to represent a DFA with a directed graph
in which each state is represented by a node, and each transition δ(qi, li) = qj is
represented by a directed edge from qi to qj labelled by letter li. For example, Fig.1
shows an automaton with Q = {q1, q2, q3, q4}, Σ = {a, b}, δ(q1, a) = q1, δ(q1, b) = q2,
δ(q2, a) = q2, δ(q2, b) = q3, δ(q3, a) = q3, δ(q3, b) = q4, δ(q4, a) = q1 and δ(q4, b) = q1.
In the following, we will often directly use a graph to describe an automaton since
we can recover the formal description (Q; Σ; δ) of the automaton from the graph
representation.

In this context, we define words of Σ∗ as sequences of letters of Σ. Transition
functions are recursively extended to words as follows: for a word w = liw

′ in Σ∗,
with li a letter and w′ a word, δ(qi, w) = δ(δ(qi, li), w′). Similarly, transition functions
are extended to sets of states as follows: for a set S ∈ Q and a word w ∈ Σ∗,
δ(S,w) = {qj |qj = δ(qi, w), qi ∈ S}. In order to simplify the notation, we write qiw
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for δ(qi, w) and Sw for δ(S,w). We call rank of a word w the cardinality of its image
|Qw|. Conversely, for the ease of notation, we call deficiency of a word w the value
n− |Qw|. For example 1-deficient words are words of rank n− 1.

We define the power automaton of an automaton A = (Q; Σ; δ) as the automaton
obtained by setting all the possible subsets of Q as states, by maintaining the same
letters as A and with the transition function equal to the transition function of A
on its sets of states. The square graph of an automaton is equal to the restriction of
the power automaton to pairs. A set S ∈ Q is called reachable if there exists a word
w ∈ Σ∗ such that Qw = S. This is equivalent to having a path from Q to S in the
power automaton. In that case we say that the word w reaches S. A set S ∈ Q is
called extendable by a word w if S = S′w for S′ ⊆ Q with |S′| > |S|. The diameter
of a graph is the maximal length of the shortest path between two of its states.

An automaton is sychronizing if it has a reachable set of size 1. A word w such
that |Qw| = 1 is said to be a synchronizing word. For example, the automaton in
Fig.1 is synchronizing as the word w = abbbabbba is such that Qw = q1, and therefore
w is a synchronizing word. Similarly, we say that a word w synchronizes a set S if
|Sw| = 1.

For each 1-deficient word w of the automaton, the state Q\Qw is the excluded state
of w, and is written excl(w). Similarly, the state q such that there exists two states
q1 and q2 with q1w = q2w = q is the duplicate state of w, and is written dupl(w). For
an automaton A = (Q; Σ; δ), we define the Γ1-graph as follows: Γ1(A) = (Q,V ), with
the same set of nodes Q as the automaton and the set of edges V = {(qi, qj)|qi =
excl(w), qj = dupl(w), for some w ∈ Σ∗ and |Qw| = |Q| − 1}.

1. Subset Reachability

In this section, we provide an answer to Don’s conjecture on subset reachability and
analyze questions arising from it.
Conjecture 2 (Conjecture 18 in [12]). Let A = (Q; Σ; δ) be an n-state automaton.
If S ⊂ Q is a set of size k and there exists a word w such that Qw = S, then there
exists a word with this property of length at most n(n− k).

This conjecture would imply that Conjecture 1 is also true [12, Proof of Theo-
rem 12]. Indeed, any pair would be reachable with a word of length n(n − 2). Since
in any synchronizing automaton there is also a reachable pair which can be synchro-
nized with a single letter, reaching this pair with a word of length n(n − 2) and
then synchronizing it with a single letter leads to a synchronizing word of length
n(n− 2) + 1 = (n− 1)2.

In order to analyze the conjecture, we need the following lemma:
Lemma 1. Let A = (Q; Σ; δ) be an automaton. Let S ⊂ Q be a reachable subset, and
w ∈ Σ∗ be a shortest word such that Qw = S. Let us write w = l1 . . . lk, with k the
length of w and li ∈ Σ the letters of w. Let the subsets Si = Ql1 . . . li with 0 < i < k
be the subsets reached by prefixes of w.

Then, all the subsets Si are different, and they all have a cardinality larger than
or equal to the cardinality of S.
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Proof. If two subsets Si = Ql1 . . . li and Sj = Ql1 . . . lj , with i < j are equal, then
the word l1 . . . lilj+1 . . . lk, which is shorter than w, also reaches S, which is a contra-
diction.

In a complete deterministic automaton, each state has exactly one image. Therefore
for any word w and and set S, we have |Sw| ≤ |S|.

This lemma implies that any reachable set of size n−1 can be reached with a word
of length n. Indeed, there are only n + 1 different subsets of cardinality higher than
or equal to n − 1. Therefore, we will search for a counterexample to Conjecture 2
with a set of size n− 2 which cannot be reached with a word of length lower than or
equal to 2n.

One way to build such automata is to define the letters in the following way. First
choose a set of permutation letters such that the square graph of the automaton
limited to these letters has a large diameter. Second, choose a pair (qi, qj) such that
the shortest path to an other pair (qk, ql) in the square graph has a large length D.
Then, add a 2-deficient letter l such that Q\Ql = {qi, qj}. With this construction,
the set Q\{qk, ql} cannot be reached by words shorter than D + 1.

In Fig.2, we present the automaton P1,n, with n congruent to 3 modulo 4 which is
built in that way.
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Figure 2: The automaton P1,n

Proposition 1. The shortest word reaching the set Q\{qn′+2, qn′+4} with n′ = (n−
5)/2 in the automaton in P1,n is of length n2/4 + 5n/4− 6.

Proof. We first notice that letters a and b of the automaton P1,n are a set of permuta-
tion letters studied in [15] such that the shortest path from the pair q2q4 to qn′+2qn′+4
is of length n2/4 + 5n/4 − 7. As a and b are permutations, we have Qa = Q and
Qb = Q, so the first letter of any shortest word reaching a set S should be c.

Second, we notice that letter c maps q2 to q3 and q4 to q1, and the other states to
themselves, so Qc = Q \ {q2, q4} and is of cardinality n − 2. Moreover, if letter c is
applied to any set containing n − 2 states, it either sends it to Q \ {q2, q4}, or to a
set of lower cardinality. Therefore, due to Lemma 1, in any shortest word reaching
Q \ {qn′+2, qn′+4}, the letter c can only be at the first position.
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Third, as a and b are permutations, the image of a set S by a word w ∈ {a, b}∗
is equal to the complement of the image of the complement of S by w, i.e. Sw =
Q \ ((Q \ S)w). In our case, applying letters a and b to a set containing n− 2 states
is equivalent to applying it to the complement pair and taking the complement of the
image as result. Therefore, the shortest word w ∈ {a, b}∗ mapping the set Q\{q2, q4}
to Q \ {qn′+2, qn′+4} is also the shortest word mapping {q2, q4} to {qn′+2, qn′+4},
which is of length n2/4 + 5n/4 − 7. Therefore, cw is the shortest word reaching
Q \ {qn′+2, qn′+4}, and is of length n2/4 + 5n/4− 6.

The automaton of P1,n is a generic counterexample to Conjecture 2, which claims
that the distance from Q to any set of size n− 2 should be 2n.

We notice that the reachable sets of P1,n can be reached with words of polynomial
length. Therefore, one can wonder if it is a general property:
Problem 1. Let A = (Q; Σ; δ) be an n-state automaton. If there exists a word w
such that Qw = S, does there always exist a word of polynomial length with respect
to |S| with this property?

1.1. Answer to Problem 1: Exponential Length Shortest Words

For any n, we can build an automaton such that it has a set S ⊂ Q containing bn
2 c

states which cannot be reached with a word shorter than L =
(

n−1
bn

2 c
)
. This will be

shown in Definition 1 and Proposition 2 below.
Definition 1. We define the automaton P2,n as follows. It has n states q1 . . . qn, a
letter a and letters li. First, define letter a as follows:
q1a = q2
qia = qi for 1 < i ≤ bn

2 c+ 1
qia = q2 for bn

2 c+ 1 < i ≤ n.
Then, take all subsets S ⊂ (Q \ q1) with |S| = bn

2 c and enumerate them as
S1, . . . , SL, with L =

(
n−1
bn

2 c
)
. Define letters li such that Sili = Si+1 and (Q\Si)li = q1.

In Fig.3, we show a representation of P2,n (we do not represent the effect of
l1, . . . , lL−1 on other states than q1 for the sake of clarity). We will show that the set
SL cannot be reached with a word shorter than the size of the alphabet. Indeed, in
this automaton, the only way to exclude q1 from a subset is to use letter a. Moreover,
we have that |Qa| = |S1| = |SL|. Therefore, in order to reach SL, after using an a,
letters reducing the cardinality of the current set cannot be used any more. This will
imply that there is only one possible letter following any prefix of a shortest word
reaching SL.
Proposition 2. The shortest word reaching the set SL = {qn−bn

2 c+1, . . . , qn} in the
automaton P2,n is

(
n−1
bn

2 c
)
letters long, which is larger than 2n/n (for n > 6).

Proof. From the definition of letters li, it is clear that the word al1l2 . . . lL−1 maps
Q on SL.
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Figure 3: Part of the automaton P2,n

Moreover, it is the shortest of such words. Indeed, let w be a word such that
Qw = SL. We notice that the only letter which maps q1 on another state is a.
Therefore, as SL does not include q1 we have that: first, w must contain at least one
letter a; second, every letter after the last a does not map any state of the set reached
by the prefix of w preceding this letter on q1.

Now, if we consider a set Si of bn
2 c states from q2, . . . , qn, the only letter l which

does not map any states of Si on q1 is li. Therefore, if a subset Si was reached
with a prefix of w containing the last a of w, the only possible letter l such that
q1 /∈ Sil is li. This implies that the letter following the prefix is li and that the next
subset is Sili = Si+1. Since Qa = {q2, . . . , qbn

2 c+1} is already of cardinality bn
2 c, the

first subset after the last a must be {q2, . . . , qbn
2 c+1} = S1. Then, by induction, the

letters following the last a in w are l1, . . . , lL−1, in that order. Therefore, any word
w reaching Sl has a suffix al1l2 . . . lL−1, which is

(
n−1
bn

2 c
)
letters long. Since this suffix

is itself a word reaching SL, it is also the shortest word reaching SL.

The number of letters of the automaton P2,n is exponential with respect to the
number of states. We notice that it is possible to build families of automata with a
fixed number K of letters, such that the shortest word reaching a particular subset
has exponential length (as a function of n). Indeed, a construction of this kind with
32 letters for any n can be obtained from the construction given in [14, Theorem 20].

In the families P1,n and P2,n, shortest words reaching a defined subset were such
that a first letter was used to lower the cardinality of the set, and the following letters
were only permutations. Applying the first letter again would indeed have reduced
the number of states below the cardinality of this set or reached a set already reached,
which is forbidden by Lemma 1. Moreover, it turns out that these automata have a
set S which cannot be reached by a word of polynomial length, but such that some
subsets of S can be reached with such word. This leads to the following question:
Problem 2. Let A = (Q; Σ; δ) be an n-state automaton. If S ∈ Q is a set of size k
and there exists a word w such that Qw ⊆ S, does there exist a word with this property
of length at most n(n− k)?
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1.2. Answer to Problem 2: Included subsets

We notice that, although this question is weaker than Conjecture 2, a positive answer
would still imply that Conjecture 1 is true.

However, even for this weaker version, the answer is negative. Indeed, the automa-
ton P3 in Fig. 4, which was introduced in [17], is such that the set S = {1, 2, 3} or
any of its subset cannot be reached with a word of length lower than 6. This can
be verified by a breadth first search algorithm on the power automaton, presented in
Fig.5.
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Figure 4: The automaton P3
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Figure 5: Power automaton of P3

1.3. Complexity implication of the conjecture

Conjecture 2 would not only imply Conjecture 1 but also the collapse of polynomial
hierarchy3. Indeed, it is shown in [6] that the following problem is PSPACE-complete:
Problem 3. Given a DFA A = (Q,Σ, δ) and a non-empty subset S ⊆ Q, is it true
that S is reachable in A?

Would Conjecture 2 hold true, then, whenever S is reachable, one could guess a
word w of length at most n(n − k) where n = |Q| and k = |S| and then check in

3This was kindly communicated to us by an anonymous reviewer of the conference version of this
work.
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Figure 6: An automaton and the corresponding Γ1-graph

polynomial time that Qw = S. Thus, the above problem would be in NP whence
NP = PSPACE.

2. Γ1-graph of completely reachable automata

As formally defined in the definition section, the excluded state of a 1-deficient word
w is the state which is not in its image. Conversely, the duplicate state of w is the
state which is the image of two states by w. From these two concepts, the Γ1-graph
is defined as the unlabelled graph with the same nodes as the automaton and edges
corresponding to all directed pairs (excl(w), dupl(w)) of 1-deficient words w. An
example of such a graph is given in Figure 6 (the edges have been labelled in gray for
illustration purpose). For example, the word a induces the edge (q1, q2) in Γ1 because
q1 is not in the image of a, so excl(a) = q1 and q2 is the image of both q1 and q2 by
a, so dupl(a) = q2.

It is shown by Don in [12] that if the Γ1-graph is cyclic, then the automaton is
completely reachable. In the work of Bondar and Volkov [6], which study completely
reachable automata, it is noticed that complete reachability holds under the weaker
assumption of strong connectivity of the Γ1-graph. However, they also notice that
the converse is not true: there are completely reachable automata for which the Γ1-
graph is not strongly connected. In order to show this, they provide an example using
2-deficient letters. These letters do not contribute to the Γ1-graph but allow to reach
subsets which are not reachable with 1-deficient words. The second problem that we
consider is the restriction of this statement to 1-deficient words:
Conjecture 3 (Conjecture 3 in [6]). If for every proper non-empty subset S of the
state set of an n-state DFA A = (Q; Σ; δ) there is a product w of 1-deficient words
such that S = Qw, the graph Γ1(A) is strongly connected.

The paper [6] also leaves open the algorithmic aspects of building the Γ1-graph.
The authors point out that building the Γ1-graph is non trivial, since the number of
transformations of rank n − 1 can reach n!Cn

2 . Moreover, a fast algorithm building
the Γ1-graph would provide a fast positive criterion for complete reachability of an
automaton and could be used to experimentally investigate properties of the Γ1-graph.

In order to formalize the link between strong connectivity of the graph Γ1 and
subset reachability, we need the following definition of a strongly connected graph:
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Definition 2. A directed graph Γ = (N,E) with nodes N and edges E is strongly
connected iff for any set S ⊂ N , there exists an edge e = (n1, n2) ∈ E with n1 /∈ S
and n2 ∈ S.

We say that the edge e = (n1, n2) ∈ E with n1 /∈ S and n2 ∈ S is intersecting the
set S.

If Γ1 is strongly connected, then the automaton is completely reachable. Indeed, if
any set S ⊂ Q is intersected by an edge of Γ1, there exists a 1-deficient word w with
dupl(w) ∈ S and excl(w) /∈ S. This first implies that each state in S has a preimage
by w. Second, as dupl(w) ∈ S, it implies that there is a state in S which has two
preimages. Therefore |Sw−1| > S, and w is extending S. As this holds for every
subset S, the automaton is completely reachable.

2.1. Algorithmic construction of Γ1

In order to analyze the effect of word concatenation, we cannot restrict ourselves
to the concepts of excluded state and duplicate state of a word. Indeed, for two
1-deficient letters a and b, the knowledge of these states is not enough to determine
whether ab or ba are of deficiency one or two. To analyze this question, we need an
additional concept: the roots of a 1-deficient word. The roots are the states which
are sent on the duplicate state. More formally, for a 1-deficient word w, root(w) =
{qi|qiw = dupl(w)}. We notice that applying a 1-deficient word w to a set S ∈ Q
does not decrease the cardinality of the set if at least one of the roots of w is not in
S. This leads to the following concatenation rule:
Lemma 2. Let A = (Q; Σ; δ) be an n-state DFA. Let w1, w2 ∈ Σ∗ be two 1-deficient
words. If excl(w1) /∈ root(w2), then w1w2 is 2-deficient. If excl(w1) ∈ root(w2) then
w1w2 is 1-deficient. In that case, excl(w1w2) = excl(w2), dupl(w1w2) = dupl(w1)w2
and root(w1w2) = root(w1).

Proof. If excl(w1) /∈ root(w2), then root(w2) ⊂ Qw1, and the two states in root(w2)
are synchronized by w1 while the other states are permuted, so we have |Qw1w2| =
|Qw1| − 1 = |Q| − 2.

Moreover, if excl(w1) ∈ root(w2), then all the states in Qw1 have a different image
by w2 and |Qw1w2| = n− 1. In that case, we have the following properties.

The state dupl(w1w2) is the image of dupl(w1) by word w2, i.e. dupl(w1)w2.
The states root(w1w2) are equal to root(w1), since for these states we have that

qrw1 ∈ dupl(w1) and therefore qrw1w2 ∈ dupl(w1)w2.
The state excl(w1w2) is excl(w2), since excl(w2) /∈ Qw2 and Qw1w2 ⊆ Qw2.

Of course, the concatenation of a 1-deficient word with a permutation also provides
a 1-deficient word. In that case, the resulting word has the following properties:
Lemma 3. Let A = (Q; Σ; δ) be an n-state DFA. Let w ∈ Σ∗ be a 1-deficient word
and p ∈ Σ∗ be a permutation. Then both pw and wp are 1-deficient words. More-
over, excl(wp) = excl(w)p, excl(pw) = excl(w), dupl(wp) = dupl(w)p, dupl(pw) =
dupl(w), root(wp) = root(w) and root(pw) = root(w)p−1.
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These two lemmas allow to build the Γ1-graph algorithmically. Indeed, we can
identify which words can be concatenated into other 1-deficient words, which induce
edges in Γ1. If two words combine into a 2-deficient word, then the concatenation
does not contribute to Γ1. The Algorithm 1 provides a pseudo code implementing
the effect of Lemmas 2 and 3. The algorithm computes all 4-tuples composed of
the two root states, the excluded state and the duplicate state of 1-deficient letters
of the automaton, then computes the pairs of excluded and duplicate states for all
1-deficient words of the automaton. Line 1 initiates the list for letters of deficiency 1.
Line 2 initiates the lists in which the results are stored. In lines 3 to 11 the 4-tuples are
computed for single letters. Lines 12 to 33 describe a loop corresponding to increasing
the length of words tested by one letter if new results were obtained at the previous
step. Inside of this, lines 12 to 30 test each pair generated at the previous step. For
each of them, lines 14 to 21 test the concatenation with a permutation letter and lines
22 to 29 test the concatenation with another 1-deficient letter.

In order to prove the properties of the algorithm, we need the following properties
about 4-tuples obtained from two different words:
Lemma 4. Let w1 and w2 be two 1-deficient words of an n-state DFA A = (Q; Σ; δ)
such that root(w1) = root(w2), excl(w1) = excl(w2), dupl(w1) = dupl(w2).

(I) If l is a 1-deficient letter such that w1l is 1-deficient, then w2l is also 1-deficient
and root(w1l) = root(w2l), excl(w1l) = excl(w2l) and dupl(w1l) = dupl(w2l).

(II) If p is a permutation letter, then pw1, w1p, pw2 and w2p are 1-deficient words
and root(pw1) = root(pw2), excl(pw1) = excl(pw2), dupl(pw1) = dupl(pw2),
root(w1p) = root(w2p), excl(w1p) = excl(w2p) and dupl(w1p) = dupl(w2p).

Proof. This is a direct application of Lemma 2 and Lemma 3.
(I) If l is a 1-deficient letter such that w1l is 1-deficient, then from Lemma 2 we

have that excl(w1) ∈ root(l). As excl(w1) = excl(w2), we have excl(w2) ∈
root(l) and by Lemma 2 w2l is 1-deficient. Then, again from Lemma 2,
root(w1l) = root(w1) = root(w2) = root(w2l), excl(w1l) = excl(l) = excl(w2l)
and dupl(w1l) = dupl(w1)l = dupl(w2)l = dupl(w2l).

(II) If p is a permutation letter, then Lemma 3 implies root(pw1) = root(w1)p−1 =
root(w2)p−1 = root(pw2), excl(pw1) = excl(w1) = excl(w2) = excl(pw2),
dupl(pw1) = dupl(w1) = dupl(w2) = dupl(pw2), root(w1p) = root(w1) =
root(w2) = root(w2p), excl(w1p) = excl(w1)p = excl(w2)p = excl(w2p) and
dupl(w1p) = dupl(w1)p = dupl(w2)p = dupl(w2p).

Corollary 1. Let w1 and w2 be two 1-deficient words of an n-state DFA A = (Q; Σ; δ)
such that root(w1) = root(w2), excl(w1) = excl(w2), dupl(w1) = dupl(w2). Then for
any 1-deficient word w3 or permutation word p, the following pairs of words (i) w1w3
and w2w3, (ii) pw1 and pw2, (iii) w1p and w2p are such that the first one is 1-deficient
if and only if the second one is. In that case both words have the same corresponding
4-tuples composed of the root states, excluded state and duplicate state.
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Algorithm 1 Construction algorithm for the Γ1-graph
INPUT: An automaton (Q,Σ, δ). We consider |Q| = n. The alphabet is separated
between permutation letters and 1-deficient letters as follows: Σ = Σ0 ∪ Σ1, with m0
permutation letters p1, . . . , pm0 in Σ0 and m1 1-deficient letters l1, . . . , lm1 in Σ1.
OUTPUT: The exhaustive list of pairs composed of excl(w) and dupl(w) for any
1-deficient word w of the automaton, and the list of 4-tuples composed of excl(l),
dupl(l), root1(l) and root2(l) for any 1-deficient letter l of the automaton.

1: Initiate empty list L0
. List of 4-tuples of single letters

2: Initiate empty lists L1, L2, L3
. List of pairs. L1 for the final output, L2 for the previous step of the

algorithm, L3 for the current step of the algorithm
. Single letters computation

3: for i = 1, . . . ,m1 do
4: Compute excl(li), dupl(li), root1(li), root2(li)
5: if [excl(li), dupl(li), root1(li), root2(li)] is not in L0 then
6: append [excl(li), dupl(li), root1(li), root2(li)] to L0
7: end if
8: if [excl(li), dupl(li)] is not in L1 then
9: append [excl(li), dupl(li)] to L1, L2 and L3
10: end if
11: end for

. Words computation
12: while L3 is not empty do . If the algorithm did not stagnate at previous step
13: Empty the list L3 . Reset current step
14: for i = 1, . . . , length(L2) do
15: [V1, V2] = L2(i) . Test each pair added in the previous step
16: for j = 1, . . . ,m0 do . With each possible permutation
17: TestPair = [V1lj , V2lj ]
18: if TestPair is not in L1 then . If the result is new, store it
19: append TestPair to L1 and L3
20: end if
21: end for
22: for j = 1, . . . ,m1 do . With each possible 1-deficient letter

. Test if the letter can be concatenated at right
23: if V1 equal root1(lj) or root2(lj) then
24: TestPair = [excl(lj), V2lj ]
25: if TestPair is not in L1 then . If the result is new, store it
26: append TestPair to L1 and L3
27: end if
28: end if
29: end for
30: end for
31: Empty the list L2 . Reset previous step
32: L2 = L3 . Current step becomes previous step
33: end while
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This implies that if, in a greedy exhaustive search for pairs composed of an excluded
and a duplicate state, two words w1 and w2 have the same pair, then w2 can be ignored
as all the results obtained from concatenating a letter to w1 will replicate the pair
obtained by concatenating the same letter to w2.

Now, we notice that if no new pair is found with words of length k+1 compared to
pairs obtained with words of length k or lower, then all pairs have been found. More
generally, this result is true for 4-tuples corresponding to words:
Lemma 5. Let A = (Q; Σ; δ) be an n-state DFA. If for any 1-deficient word
w1 ∈ Σk+1 there exists a 1-deficient word w2 ∈ Σ≤k such that root(w1) = root(w2),
excl(w1) = excl(w2), dupl(w1) = dupl(w2), then for any 1-deficient word w3 ∈ Σ≥k+1

there exists a 1-deficient word w4 ∈ Σ≤k such that root(w3) = root(w4), excl(w3) =
excl(w4), dupl(w3) = dupl(w4).

Similarly, if for any 1-deficient word w1 ∈ Σk+1 there exists a 1-deficient word w2 ∈
Σ≤k such that root(w1) = root(w2), excl(w1) = excl(w2), then for any 1-deficient
word w3 ∈ Σ≥k+1 there exists a 1-deficient word w4 ∈ Σ≤k such that root(w3) =
root(w4), excl(w3) = excl(w4).

Proof. We proceed by induction.
First, by definition, any 1-deficient word w3 ∈ Σk+1 is such that there exists a

1-deficient word w4 ∈ Σ≤k such that root(w3) = root(w4), excl(w3) = excl(w4),
dupl(w3) = dupl(w4).

Second, we assume that for any 1-deficient word w1 ∈ Σk+1≤,≤k+i, i > 1, there ex-
ists a 1-deficient word w2 ∈ Σ≤k such that root(w1) = root(w2), excl(w1) = excl(w2),
dupl(w1) = dupl(w2).

Then we have that any 1-deficient word w3 ∈ Σ≤k+i+1 can be written as:
(I) w′3p, if the last letter p is a permutation and the prefix w′3 is 1-deficient;
(II) w′3l, if the last letter l is 1-deficient and the prefix w′3 is 1-deficient;
(III) or pw′3, if the last letter is 1-deficient and it turns out that the prefix preceding

it is a permutation.
We notice that in the three cases above, w′3 is a 1-deficient word of length k + i.
Therefore, from the assumption above, there exists a 1-deficient word w′4 ∈ Σ≤k such
that root(w′3) = root(w′4), excl(w′3) = excl(w′4), dupl(w′3) = dupl(w′4). Then, the
4-tuple corresponding to pw′3, w′3p or w′3l is the same as the one corresponding to
pw′4, w′4p or w′4l, which is of length at most k + 1 and 1-deficient. Again from the
assumption, any 4-tuple corresponding to pw′4, w′4p or w′4l also corresponds to a word
w4 ∈ Σ≤k. Therefore we have that for any 1-deficient word w3 ∈ Σ≤k+i+1, there exists
a 1-deficient word w4 ∈ Σ≤n such that root(w3) = root(w4), excl(w3) = excl(w4),
dupl(w3) = dupl(w4).

This implies that this property is true for any i ≥ 1, and therefore the lemma is
true.

The proof of the restriction to the excluded state and the duplicate state is the
same, except that case (III) is directly solved as the roots are not taken into account,
and therefore in that case the word w′3 already satisfies the condition.
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Theorem 1. Algorithm 1 provides the exhaustive list of pairs which can be obtained
from 1-deficient words and has a computational complexity in O(mn2), with m the
number of letters and n the number of states of the automaton.

Proof. First, we notice that any pair obtained through the algorithm corresponds to
the application of Lemma 2 and 3 to a concatenation of letters, and therefore is a
valid pair corresponding to a word.

Second, any pair corresponding to a 1-deficient word will be found by the algorithm.
We will again proceed by induction:
(I) first, any pair corresponding to a 1-deficient word w of length 1 (single letter)

is in the list L1 due to lines 3 to 11.
(II) Second, assume that all pairs corresponding to any 1-deficient word w of length

k are in the list. Then, any word wk+1 can be written as
(A) w′kp, if the last letter p is a permutation and the prefix w′k is 1-deficient
(B) w′kl, if the last letter l is 1-deficient and the prefix w′k is 1-deficient
(C) or pw′k, if the last letter is 1-deficient and it turns out that the prefix

preceding it is a permutation.
In all three cases, w′k is of length k, and therefore the corresponding pair is in
the list L1 (the case pw′k is therefore directly solved). Therefore, it was also
added in this list at some step, at which it was in the list L2. At that step, from
line 12 of Algorithm 1 the pair corresponding to the words w′kp, w′kl were tested
for any 1-deficient letter or permutations. Therefore the pair corresponding to
wk+1 was either already in the list, or was added in the list at that step.

Now, we notice that the final list L1 contains at most n2 pairs. Each of them is
added exactly once to the table and tested exactly once, when it is in the list L2,
and if no pair is added in list L2 after line 32, then due to Lemma 5 the algorithm
is stopped and all pairs have been found. Once a pair is added, the concatenation
with all the letters is tested, so each new pair induces at most m comparisons, which
corresponds to line 18 and 25. We notice that, if the list L1 is defined as a binary
vector of length n2 indicating if each pair is in the list or not, then verifying that a
pair is in the list takes O(1) operation, while the naive implementation comparing
each new pair with all pairs already in the list would take O(n2). As there are at
most n2 pair, this loop can be executed at most n2 times, leading to n2m operations
at most, which provides the algorithmic complexity of O(mn2).

2.2. Completely Reachable Automaton with Weakly Connected Γ1-graph

We now define in Fig. 7 the automaton P4, which has six states and six letters of
rank 5. Using Lemma 2, we will prove that it is a counterexample to Conjecture 3.
Proposition 3. The automaton P4 is completely reachable, and the graph Γ1(P4) is
not strongly connected.

Proof. Figure 9 lists all the words of rank 5 of this automaton, with their duplicate
states, excluded states and root states. In the first six lines are listed the single letters.
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Figure 7: The 6 letters of the automaton P4

We notice that the roots of any letter are states 1, 5 and 6, and the only letters with 1,
5 or 6 as excluded states are a, e and f . Therefore, due to Lemma 2 in words of rank
5, letter a can only be preceded by letters a or f , and all the other letters, including
e and f , can only be preceded by letters e or f . This leads to the last six lines of
the table, listing all words of rank 5. The duplicate states are found by applying the
combination rule of Lemma 2.

The edges of the graph Γ1 are defined by the excluded state and duplicate state
of words in Fig.9, i.e. the second and third columns. Since state 1 does not appear
in the duplicate state column, there are no edges of Γ1 intersecting the set {1}, and
therefore the graph Γ1 is not strongly connected.

We notice however that any set of P4 is reachable. The edges of Γ1 obtained with
single letters form a cycle with a tail containing only state 1, as shown in Fig. 8. In this
setting, any subset of Q except for {1} has an intersecting edge. Therefore, all sets of
states except for {1} are extendable by 1-deficient words, which implies by induction
on the number of states that they are also reachable. The set {1} itself can also be
reached from set {4} by applying letter b. Therefore, since P4 is completely reachable
and Γ1(P4) is not strongly connected, it is a counterexample to Conjecture 3.

Thus, Conjecture 3 turns out to be false. However, we notice that, in order to reach
the set {1} in the automaton P4, the last letter used was 1-deficient, but was acting
as a permutation on the remaining states. This leads to the following observation: if
a set S is such that Qw = S, and such that w = w1w2, with w2 a 1-deficient word,
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Figure 8: The graph Γ1(P4) restricted to single letters

word excluded state duplicate state root states
a 1 2 1, 6
b 2 3 5, 6
c 3 4 5, 6
d 4 5 5, 6
e 5 6 5, 6
f 6 2 5, 6
a∗ 1 2, 3, 4, 5 or 6 1, 6
{e, f}∗ 5 or 6 2, 5 or 6 5, 6
{e, f}∗fa∗ 1 2, 3, 4, 5 or 6 5, 6
{e, f}∗b 2 3 or 6 5, 6
{e, f}∗c 3 2 or 4 5, 6
{e, f}∗d 4 2 or 5 5, 6

Figure 9: Exhaustive list of words of rank 5

two possible cases arise. Either |Qw1| = |Qw|, or |Qw1| = |Qw|+ 1. In the first case,
the word w2 acts as a permutation on the set Qw1. In the latter case, w2 synchronizes
two states of Qw1, and we observe the following:
Lemma 6. Let A = {Q,Σ, δ} be an n-state DFA. Let S ⊂ Q, w1, w2 ∈ Σ∗, and w2
be a 1-deficient word. If Qw1w2 = S and |Qw1| = |Qw1w2|+ 1, then there is an edge
intersecting S in Γ1(A).

Proof. The edge (excl(w2), dupl(w2)) is an edge of Γ1 which intersects S. Indeed, we
first have excl(w2) /∈ S because S = Qw1w2 ⊆ Qw2, and excl(w2) /∈ Qw2. Second,
we have root(w2) ⊂ Qw1, because otherwise |Qw1| = |Qw1w2|, which contradicts the
assumption that |Qw1| = |Qw1w2|+ 1. As dupl(w2) is the image of root(w2) by w2,
it implies that dupl(w2) is in Qw1w2 = S.

Based on this observation, we prove the following modified version of Conjecture 3:
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Theorem 2. Let A = {Q,Σ, δ} be an n-state DFA. If for every proper non-empty
subset S ⊂ Q there is a word w = w1w2 ∈ Σ∗ with S = Qw, such that w2 is 1-deficient
and |Qw1| = |Qw|+ 1, then the graph Γ1(A) is strongly connected.

Proof. It is a direct application of Lemma 6 on any set of states S ⊂ Q of the
automaton. Indeed, it implies that any set has an intersecting edge in Γ1, which is
the definition of a strongly connected graph.

In particular, this theorem applies to automata with a simple idempotent, as stud-
ied in [25], and for automata with letters generating the full transformation group Tn,
as studied in [15].

3. Conclusion

In this article, we focused on subset reachability in synchronizing automata. The
first problem considered was the length of the shortest word reaching some subsets,
motivated by [12, Conjecture 18]. We started by presenting a family of automata
built from a set of permutations with a large square graph diameter. This family has
subsets of n − 2 states which cannot be reached by words shorter than a quadratic
value, and therefore is a counterexample to Conjecture 2. Then, we analyzed modified
versions of Conjecture 2 : first if the length of the shortest reaching word could be
bounded by a polynomial value, second if it was relaxed to subsets included in the
target subset instead of the target subset itself. Both cases led to negative answers.
In particular, we built a family of strongly connected synchronizing automata with
subsets that cannot be reached with words shorter than 2n

n .
The second problem that we considered was the construction of the Γ1-graph of

an automaton, motivated by the work of Bondar and Volkov [6]. We added the
concept of root states of 1-deficient letter to the already well studied excluded state
and duplicate state. With these concepts in hand, we provided an analysis of the way
1-deficient words combine with each other and with permutations, and their influence
on the Γ1-graph. This analysis first allowed to build a polynomial time algorithm
for constructing the Γ1-graph, then to build a counterexample to Conjecture 3, and
finally to prove a modified version of this conjecture, namely Theorem 2.

To conclude, we propose the following problem, which is the restriction of Conjec-
ture 2 to completely reachable automata.
Problem 4. Let A = (Q; Σ; δ) be an n-state completely reachable automaton. For
any 0 < k < n and any set S ∈ Q of size k, is it true that there exists a word w such
that Qw = S and |w| ≤ n(n− k)?

A positive answer to this problem would prove Černý’s conjecture for completely
reachable automata.
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