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ABSTRACT: Novel thioureas RNHC(S)NHP(S)(OiPr)2 [R
= (HOCH2)(Me)2C (1), Me2CH2CH2 (2), 2-CF3C6H4 (3),
2-Pym (4), and bis-thiourea 1,5-C10H6{NHC(S)NHP(S)-
(OiPr)2} (5)] have been synthesized and characterized by
NMR, X-ray diffraction, Hirshfeld surface analysis, and
theoretical ETS-NOCV charge and energy decomposition
calculations. The monomers contain multiple intramolecular
noncovalent interactions including N−H···X (X = O, 1−3; F,
3; N, 4; S, 5) and C−H···Y (Y = O, 1; N, 2 and 3; S, 4 and 5)
augmented further by homopolar C−H···H−C contacts in all
the structures. It has been determined that the three-
dimensional crystal networks are primarily constituted from
intermolecular H···H and H···S contacts due to homopolar C−H···H−C as well as X−H···S (X = N, C) interactions. They are,
depending on the system, augmented further by C−H···Y (Y = π, S, F) as well as by σ-hole(S)···π interactions. ETS-NOCV
allowed us to delineate that in the case of C−H···H−C, C−H···Y, and σ-hole(S)···π intermolecular interactions, except for the
electrostatically dominated N−H···N in 4, London dispersion forces appeared to be a crucial contributor to the stability with
non-negligible factors stemming from electrostatics and charge delocalization terms. Remarkably, the dispersion dominated
(∼50% of the overall stabilization ΔEelstat + ΔEorb + ΔEdispersion) σ-hole(S)···π interactions appeared to be the strongest among
all the discovered interactions, including classical hydrogen bonds N−H···N. The electrostatic and charge delocalization
contributions within the σ-hole(S)···π interactions amount to ∼30% and ∼20%, respectively.

■ INTRODUCTION

London dispersion forces have been recently gaining
significant attention in various fields of chemistry, starting
from small molecules to end up with large systems in catalysis
and material science.1,2 It is mostly due to developments of
semiempirical dispersion corrections by Grimme.3,4 Although
they are in principle not as accurate as ab initio estimations,5,6

it has been proven that they allow researchers to capture and
better understand a number of very important physical
phenomena and chemical concepts.1,2 For example, the recent
review by Schreiner and Wagner highlighted the need for
“...reconsidering steric effects” since in many cases large bulky
hydrophobic substituents, leading to the existence of
homopolar C−H···H−C interactions, are truly London
dispersion donors which can easily overcompensate for the
Pauli (kinetic) repulsion.1 It leads, for example, to syntheses of
extraordinarily stable (>200 °C) dimondoic dimers,7 formation
of bulky tetrahedral nickel complexes,8 or even to steering the
catalytic activity.9 Interestingly, the existence of very short H···
H contacts (∼1.5 Å) has been first featured theoretically as
found, for example, in the recent high quality computational
paper by Mandal and co-workers.10 Firouzi and Shahbazian

have reached even 1.15 Å in rigid hydrocarbons.11 Thereafter,
quite similar systems have been isolated experimentally.12

Furthermore, the azine crystals were also found to be stabilized
by C−H···H−C interactions.13 It is necessary to point out that
although significant progress has been achieved during recent
years in understanding the nature of X−H···H−X inter-
actions,1−13 there are many known systems where the
importance of London dispersion forces has not been yet
recognized, as nicely pointed out by Liptrot and Power.2 Even
more importantly, this subject is still the matter of intensive
discussion in the literature especially as far as intramolecular
X−H···H−X contacts are taken into account. Here one can list
the following disputes on the stability of the biphenyl molecule
(planar versus bent),14−19 2-butene isomers,20−22 or the nature
of intermolecular homopolar B−H···H−B and other similar
contacts in hydrogen storage systems.23−30

Apart from the above noncovalent interactions and polar X−
Hδ+···−δH−Y (X ≠ Y) bonds,31−35 there are other nonconven-
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tional and quite unintuitive weak interactions, which have been
discovered during recent years, such as anion···π interac-
tions36−38 or various types of σ-/π-hole bonds constituted
from the electron deficient regions of molecules and
nucleophiles.39−43 All these types of weak interactions as well
as more classic hydrogen bonds, π···π stacking, and others are
now crucial forces for crystal engineering.44−47

In crystal engineering and growth, the (thio)urea group is of
great importance due to the combination of both hydrogen
donors arising from the NH groups and the CO or CS
acceptor centers.48−59 Furthermore, modification of the
(thio)urea skeleton will make these molecules very attractive.
During recent years, our efforts have been directed toward
synthesis and understanding various properties of substituted
thioureas of the type R1R2NC(S)NHP(X)(OR3)2, where R1,
R2 = H, alkyl, aryl; R3 = iPr, Ph; X = O, S (NTTUs).60−90 We
have learned that classic hydrogen bonding is crucial for both
the structures and properties of NTTUs. Due to recent
progress in recognizing novel noncovalent interactions,
including homopolar C−H···H−C, we have recently deeply
studied a novel set of thiourea derivatives RNHC(S)NHP(S)-
(OiPr)2 by applying bulky hydrophobic R differing in size and
accordingly in dispersion donating properties.91 We have
further determined that a significant amount of polar thiourea
regions, NH hydrogen donors, thiocarbonyl and thiophos-
phoryl acceptors, together with large hydrophobic areas, leads
to extraordinary stability of the systems arising from the
formation of London dispersion dominated nonconventional
homopolar dihydrogen C−H···H−C interactions (both intra-
and intermolecular) augmented by numerous other contrib-
utors (e.g., N−H···π, N−H···S, N−H···O, C−H···S, C−H···π,
π···π).91

In this contribution we have decided to study experimentally
and theoretically a novel set of sterically demanding NTTUs of
the RNHC(S)NHP(S)(OiPr)2 type, varying in the structure of
the substituent at the thiocarbonyl fragment [R = (HOCH2)-
(Me)2C (1), Me2CH2CH2 (2), 2-CF3C6H4 (3), 2-Pym (4)],
and bis-thiourea 1,5-C10H6{NHC(S)NHP(S)(OiPr)2}2 (5)
(Chart 1), hoping to generate novel architectures driven by
synergistic action of multiple types of classic and recently
topical noncovalent interactions. We have used herein R
ligands containing both hydrophobic and polar regions that
shall generate diversity of noncovalent interactions. In order to
identify and deeply understand the synergy between different

types of noncovalent interactions responsible for the crystal
packing, the Hirshfeld surface analyses92−95 as well as DFT-
based quantum chemical calculations due to the ETS-NOCV
charge and energy decomposition scheme,96 will be employed.
Additionally, NMR spectroscopy and X-ray diffraction data are
used to characterize the obtained thioureas.

■ METHODS
Physical Measurements. NMR spectra in CDCl3 were recorded

on a Bruker Avance 300 MHz spectrometer. 1H, 19F, and 31P{1H}
NMR spectra were recorded at 299.948, 282.404, and 121.420 MHz,
respectively. Chemical shifts are reported with reference to SiMe4
(1H), CFCl3 (19F{1H}), and 85% H3PO4 (31P{1H}). Elemental
analyses were obtained on a Thermoquest Flash EA 1112 analyzer
from CE Instruments.

ETS-NOCV Bonding Analysis. The Natural Orbitals for
Chemical Valence (NOCV) ψi constitute the canonical representation
for a differential density matrix ΔP (it is formed by subtracting the
appropriate molecular fragments density matrices from a density
matrix of a molecule under consideration) in which ΔP adopts a
diagonal form.96 It gives rise to the corresponding eigenvalues vi and
the related vectors ψi. NOCVs occur in pairs (ψ−k,ψk) related to |vk|,
and they decompose overall deformation density Δρ into bonding
components with different symmetries (Δρk):

∑ ∑ρ ν ψ ψ ρΔ = [− + ] = Δ
=

−
=

r r r r( ) ( ) ( ) ( )
k

M

k k k
k

M

k
1

/2
2 2

1

/2

Usually, a few k allow one to recover a major shape of Δρ.96 By
combining NOCVs with ETS scheme in ETS-NOCV,96 one can
obtain the related energetics, ΔEorb(k), in addition to qualitative
picture emerging from Δρk. ETS originally divides the total bonding
energy, between fragments, ΔEtotal, into four distinct components:
ΔEtotal = ΔEelstat + ΔEPauli + ΔEorb + ΔEdispersion. The ΔEelstat is an
energy of quasi-classical electrostatic interaction between fragments.
The next term, ΔEPauli, is responsible for repulsive Pauli interaction
between occupied orbitals on the two fragments. The third
component, ΔEorb, is stabilizing and shows formation of a chemical
bond (including polarizations). In the ETS-NOCV scheme ΔEorb is
expressed in terms of the eigenvalues vk and diagonal Fock energy
matrix elements Fi,i

TS (transformed into NOCV representation) as

∑ ∑ νΔ = Δ = [− + ]
=

− −E E k F F( )
k k

M

k k k k korb orb
1

/2

,
TS

,
TS

Finally, ΔEdispersion denotes the semiempirical Grimme dispersion
correction (D3).3,4 The DFT method has been applied with BLYP-
D3/TZP.

Synthesis of 1−5. A solution of 2-amino-2-methyl-1-propanol,
N,N-dimethylethylenediamine, 2-(trifluoromethyl)aniline, 2-amino-
pyrimidine (5 mmol; 0.446, 0.441, 0.806, or 0.476 g) or 1,5-
diaminonaphthalene (2.5 mmol, 0.396 g) in CH2Cl2 (15 mL) was
treated under stirring with a solution of (iPrO)2P(S)NCS (6 mmol,
1.436 g) in the same solvent. The mixture was stirred for 1 h. The
solvent was removed in a vacuum, and the product was purified by
recrystallization from a 1:5 (v/v) mixture of CH2Cl2 and n-hexane.

1. Yield: 1.494 g (91%). 1H NMR: δ = 1.35 (d, 3JH,H = 6.3 Hz,
12H, CH3, iPrO), 1.45 (s, 6H, CH3, (HOCH2)(Me)2C), 2.75 (br. s,
1H, OH), 3.86 (s, 2H, CH2, (HOCH2)(Me)2C), 4.79 (d. sept,

3JPOCH
= 10.7 Hz, 3JH,H = 6.3 Hz, 2H, OCH, iPrO), 6.72 (br. s, 1H, PNH),
7.91 (s, 1H, alkylNH) ppm. 31P{1H} NMR: δ = 53.1 ppm. Calc. for
C11H25N2O3PS2 (328.42): C, 40.23; H, 7.67; N, 8.53. Found: C,
40.34; H, 7.72; N, 8.59%.

2. Yield: 1.375 g (84%). 1H NMR: δ = 1.33 (t, 3JH,H = 6.4 Hz, 12H,
CH3, iPrO), 2.24 (s, 6H, CH3, Me2NCH2CH2), 2.49 (t, 3JH,H = 6.0
Hz, 2H, CH2, Me2NCH2CH2), 3.63 (t, 3JH,H = 5.9 Hz, 3JHCNH = 4.1
Hz, 2H, CH2, Me2NCH2CH2), 4.78 (d. sept, 3JPOCH = 10.6 Hz, 3JH,H
= 6.3 Hz, 2H, OCH, iPrO), 5.66 (br. s, 1H, PNH), 8.05 (s, 1H,
alkylNH) ppm. 31P{1H} NMR: δ = 54.7 ppm. Calc. for

Chart 1. Structural Diagrams of 1−5
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C11H26N3O2PS2 (327.44): C, 40.23; H, 7.67; N, 8.53. Found: C,
40.34; H, 7.72; N, 8.59%.
3. Yield: 1.722 g (86%). 1H NMR: δ = 1.38 (d, 3JH,H = 6.4 Hz, 6H,

CH3, iPrO), 1.41 (d, 3JH,H = 6.4 Hz, 6H, CH3, iPrO), 4.89 (d. sept,
3JPOCH = 10.2 Hz, 3JH,H = 6.3 Hz, 2H, OCH, iPrO), 7.32 (d, 2JHNP =
10.5 Hz, 1H, PNH), 7.42 (t, 3JH,H = 7.6 Hz, 1H, 4-CH, C6H4), 7.60
(t, 3JH,H = 7.6 Hz, 1H, 5-CH, C6H4), 7.70 (d, 3JH,H = 7.6 Hz, 1H, 3-
CH, C6H4), 7.77 (d, 3JH,H = 7.6 Hz, 1H, 6-CH, C6H4), 9.42 (s, 1H,
arylNH) ppm. 19F NMR: δ = −62.1 ppm. 31P{1H} NMR: δ = 53.4
ppm. Calc. for C14H20F3N2O2PS2 (400.41): C, 42.00; H, 5.03; N,
7.00. Found: C, 42.11; H, 5.11; N, 7.07%.
4. Yield: 1.555 g (93%). 1H NMR: δ = 1.21 (d, 3JH,H = 6.2 Hz, 6H,

CH3, iPrO), 1.22 (d, 3JH,H = 6.2 Hz, 6H, CH3, iPrO), 4.55 (d. sept,
3JPOCH = 10.4 Hz, 3JH,H = 6.2 Hz, 2H, OCH, iPrO), 8.41 (d, 3JH,H =
5.2 Hz, 2H, 4-CH + 6-CH, 2-Pym), 8.71 (t, 3JH,H = 5.2 Hz, 1H, 5-CH,
2-Pym), 8.84 (br. s, 1H, arylNH), 12.71 (br. s, 1H, PNH) ppm.
31P{1H} NMR: δ = 57.3 ppm. Calc. for C11H19N4O2PS2 (334.39): C,
39.51; H, 5.73; N, 16.75. Found: C, 39.42; H, 5.69; N, 16.84%.
5. Yield: 1.305 g (82%). 1H NMR: δ = 1.22 (d, 3JH,H = 6.2 Hz,

12H, CH3, iPrO), 1.23 (d, 3JH,H = 6.2 Hz, 12H, CH3, iPrO), 4.56 (d.
sept, 3JPOCH = 10.3 Hz, 3JH,H = 6.2 Hz, 4H, OCH, iPrO), 7.20 (br. s,
2H, PNH), 7.54−7.70 (m, 4H, C10H6), 7.92−8.08 (m, 2H, C10H6),
9.40 (s, 2H, arylNH) ppm. 31P{1H} NMR: δ = 54.9 ppm. Calc. for
C24H38N4O4P2S4 (636.78): C, 45.27; H, 6.01; N, 8.80. Found: C,
45.36; H, 6.12; N, 8.91%.
Single Crystal X-ray Diffraction. The X-ray data for 1−5 were

collected on a Mar345 image plate detector using Mo−Kα radiation
(Xenocs Fox3D mirror). The data were integrated with the
CrysAlis(Pro) software.97 The implemented empirical absorption
correction was applied. The structures were solved by SHELXS97 and
refined by full-matrix least-squares on |F2|, using using SHELXL-97.98

Non-hydrogen atoms were anisotropically refined, and the hydrogen
atoms were placed on calculated positions in riding mode with
temperature factors fixed at 1.2 times Ueq of the parent atoms and 1.5
times Ueq for the methyl groups. The details of crystal structures and
refinement are presented in Table 1. Figures were generated using the
Mercury program.99

■ RESULTS AND DISCUSSION

The functionalized thioureas 1−5 (Chart 1) were readily
fabricated by addition of the corresponding amine to the
solution of isothiocyanate (iPrO)2P(S)NCS in CH2Cl2. The

final products are well soluble in dichloromethane, chloroform,
acetone, acetonitrile and insoluble in n-hexane and water.
The 31P{1H} NMR spectra of the thioureas 1−3 and 5 in

CDCl3 each exhibit a singlet at 53.1−54.9 ppm, which is the
characteristic area for neutral NTTUs (X = S).60−90 Contrarily,
the 31P{1H} NMR spectrum of 4 in the same solvent contains
a remarkably low-field shifted singlet at 57.3 ppm. This
confirms the deprotonated form of NTTUs (X = S).60−90 The
1H NMR spectra of 1−5 in CDCl3 each exhibit a unique set of
signals. Particularly, the iPrO protons were found as a doublet
or two doublets or a triplet for the CH3 protons at 1.21−1.38
ppm and a doublet of septets for the CHO protons at 4.55−
4.79 ppm. The spectrum of 1 contains signals for the
(HOCH2)(Me)2C group: two singlets for the CH3 and CH2
protons at 1.45 and 3.86 ppm, respectively, and a broad singlet
for the OH proton at 2.75 ppm. The signals for the
Me2NCH2CH2 group in 2 were found as a singlet for the
CH3 protons at 2.24 ppm and as two triplets for the CH2
protons at 2.49 and 3.63 ppm. The aryl protons in the 1H
NMR spectrum of 3 are shown as two triplets and two
doublets at 7.42−7.77 ppm, while the pyrimidine protons in
the spectrum of 4 are observed as a doublet and a triplet at
8.41 and 8.71 ppm, respectively. The naphthylene protons
were shown in the spectrum of 5 as two multiplets at 7.54−
7.70 and 7.92−8.08 ppm. Additionally, the spectra of 1−3 and
5 each contain signals for the PNH proton at 5.66−7.32 ppm.
However, the same signal in the spectrum of 4 is remarkably
low-field shifted and shown at 12.71 ppm. This clearly
indicates a strong intramolecular hydrogen bonding between
one of the nitrogen atoms of the pyrimidine function and the
hydrogen atom of the phosphorylamide fragment. We have
determined that this system indeed exhibits the strongest
intramolecular N−H···N bond as indicated by the NCI (Non
Covalent Index) results, shown as a blue disc area of the
reduced density gradient (Figure S1 in the Supporting
Information). The RNH proton signals are observed at
7.91−9.42 ppm. It has to be noted that the signals for the
alkylNH proton of 1 and 2 are considerably high-field shifted
with respect to the arylNH proton of 3−5.

Table 1. Selected Parameters and Structural Data for 1−5

1 2 3 4 5

empirical formula C11H25N2O3PS2 C11H26N3O2PS2 C14H20F3N2O2PS2 C11H19N4O2PS2 C24H38N4O4P2S4
formula weight, g mol−1 328.42 327.44 400.41 334.39 636.76
crystal system triclinic monoclinic triclinic triclinic triclinic
space group P1̅ P21/n P1̅ P1̅ P1̅
T, K 295(2) 297(2) 150(2) 295(2) 100(2)
a, Å 9.1039(6) 10.0936(8) 8.1513(9) 10.0356(4) 8.139(3)
b, Å 9.5907(8) 16.2214(11) 10.4889(9) 10.1983(12) 9.067(6)
c, Å 10.6186(8) 10.9422(9) 11.8226(6) 10.5711(15) 10.817(8)
α, ° 104.764(7) 90.0 105.534(6) 65.429(13) 97.87(6)
β, ° 100.494(6) 102.188(8) 94.794(7) 68.473(10) 93.91(4)
γ, ° 98.787(6) 90.0 98.396(8) 61.282(10) 106.16(4)
V, Å3 861.97(11) 1751.2(2) 955.43(14) 843.75(16) 754.7(8)
Z 2 4 2 2 1
ρ 1.265 1.242 1.392 1.316 1.401
μ(Mo−Kα) 0.407 0.398 0.399 0.416 0.458
reflections collected 8444 11027 6407 11456 1583
unique reflections 3020 3238 3278 3267 1583
Rint 0.045 0.051 0.035 0.033 0.000
R1 (all) 0.0443 0.0433 0.0451 0.0416 0.1891
wR2 (all) 0.1168 0.1021 0.0893 0.0957 0.3038
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On the basis of the NMR spectroscopy data, we conclude
that 4 is completely in the zwitterionic form in CDCl3
(Scheme 1). A similar zwitterion formation, based on the

corresponding NMR spectra, was recently postulated for the
N-(thio)phosphorylated thiosemicarbazides NH2N(Me)C(S)-
NHP(X)(OiPr)2 and thioureas 2-PyNHC(S)NHP(O)(OiPr)2
(X = O, S).70,77,84

The crystal structures of 1 and 3−5 were each solved in the
triclinic space group P1̅, while the structure of 2 was best
solved in the monoclinic space group P21/n. Notably, the
CH2OH group in 1 is disordered over two positions with a
62.7% to 37.3% ratio, indicated herein as 1-I and 1-II,
respectively. The crystal structures of 1−5 are shown in
Figures 1, 2, 3, 4, and 5, while selected geometrical parameters,

hydrogen bonds, and π···π stacking are given in Tables 2, 3,
and 4, respectively. The geometrical parameters (Table 2)
within the SCNPS moiety of all the thioureas are characteristic
for NTTUs (X = S),100 and differences in the E or Z
conformation of the SCNP and SPNC fragments within the
SCNPS backbone can be highlighted (see detail description in
the Supporting Information).
To shed more light and to have an in-depth delineation of

intermolecular interactions in the reported crystals, we have
applied the Hirshfeld surface analysis.92−95 The structures of 1-
I and 1-II were analyzed separately, and as evidenced from the
Hirshfeld surface analysis data both structures are very similar
with respect to intermolecular interactions. For the sake of
brevity, we therefore discuss only 1-I in detail.
The intermolecular H···H contacts (44.0−71.3%) are major

contributors to the molecular surface of all the thioureas
(Table 5). The alkylamine pendant functions in 1-I and 2
remarkably increase the proportion of H···H contacts. Notably,

3 is the poorest one with respect to H···H components, which
is explained by the presence of the CF3 substituent. The
shortest H···H distances are found in the corresponding 2D
plots of the thioureas as distinctive spikes at de + di ≈ 2.2−2.6
Å (Figures S2−S6 in the Supporting Information). Interest-
ingly, a clear feature is seen in the 2D plots of 2−5, where a
division of the short H···H fingerprint is observed. This is due
to the shortest interaction between three atoms.92 The
intermolecular H···H contacts might result from dispersion
dominated homopolar C−H···C−H interactions as it will be
discussed in the forthcoming theoretical sections.
All the structures are also dictated by H···S contacts (19.1−

23.8%) of the molecular surface (Table 5). These contacts are

Scheme 1. Zwitterionic Form of 4 in CDCl3

Figure 1. (P)N−H···SC H-bonded dimers, linked through the O−
H···O−P H-bonds, in 1 (H atoms not involved in H-bonding are
omitted for clarity). Color code: C = black, H = light gray, N = blue,
O = red, P = maroon, S = orange.

Figure 2. (P)N−H···SC P-bonded dimer in 2 (H atoms not
involved in H-bonding are omitted for clarity). Color code: C = black,
H = light gray, N = blue, O = red, P = maroon, S = orange.

Figure 3. (P)N−H···SC H-bonded dimers, linked through the C−
HiPr···F−C and C−HiPr···SP H-bonds (top) and π···π stacking
interactions (bottom), in 3 (H atoms not involved in H-bonding are
omitted for clarity). Color code: C = black, H = light gray, N = blue,
O = red, P = maroon, S = orange.

Figure 4. (Pym)N−H···NPym and C−HPym···SC H-bonded dimers,
linked through the C−HPym···SC and C−HPym···SP H-bonds, in
4 (H atoms not involved in H-bonding are omitted for clarity). Color
code: C = black, H = light gray, N = blue, O = red, P = maroon, S =
orange.
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found as a pair of sharp peaks at de + di ≈ 2.3−2.7 Å (Figures
S2−S6 in the Supporting Information) and attributed to

(P)N−H···SC intermolecular H-bonds in 1-I−3 and 5, and
C−HPym···SC and C−HPym···SP hydrogen bonds in 4

Figure 5. (P)N−H···SC and C−HiPr···SC H-bonded 1D polymeric chain in 5 (H atoms not involved in H-bonding are omitted for clarity).
Color code: C = black, H = light gray, N = blue, O = red, P = maroon, S = orange.

Table 2. Selected Bond Lengths (Å) and Angles (deg) for 1−5

1 2 3 4 5

Bond lengths
CS 1.6753(19) 1.6856(19) 1.671(2) 1.660(2) 1.642(19)
PS 1.9118(7) 1.9223(6) 1.9132(8) 1.9128(9) 1.906(8)
P−N 1.6711(17) 1.6681(17) 1.6787(19) 1.6771(19) 1.674(16)
C−N(C) 1.330(2) 1.324(2) 1.349(3) 1.374(3) 1.33(2)
C−N(P) 1.387(2) 1.391(2) 1.370(3) 1.352(3) 1.41(2)
Bond angles
SC−N(C) 125.88(14) 123.62(15) 123.30(16) 119.82(15) 125.8(14)
SC−N(P) 118.81(13) 119.22(14) 120.10(15) 123.65(18) 119.0(14)
N−C−N 115.31(16) 117.16(16) 116.60(19) 119.5(2) 115.1(16)
P−N−C 130.74(12) 130.73(13) 131.88(15) 128.38(17) 125.4(13)
SP−N 109.91(6) 111.73(6) 110.10(7) 118.17(7) 116.5(6)
Dihedral angles
N−C−N−P −10.2(3) 8.7(3) −6.6(3) 176.78(14) −29(2)
SC−N−P 169.83(11) −171.43(11) 173.62(12) −2.1(3) 154.6(11)
SP−N−C 179.68(15) −179.89(14) −172.81(16) 61.74(18) 56.3(16)
SC−N−C 0.4(3) 0.2(3) −1.0(3) −179.37(16) −6(3)

Table 3. Hydrogen Bond Lengths (Å) and Angles (deg) for 1−5

thiourea D−H···A d(D−H) d(H···A) d(D···A) ∠(DHA)
1a N(11)−H(11)···S(13)#1 0.86 2.53 3.3843(15) 171

N(14)−H(14)···O(3) 0.86 2.57 3.122(2) 123
N(14)−H(14)···O(7) 0.86 2.26 2.970(2) 140
N(14)−H(14)···O(19) 0.86 2.33 2.689(3) 106
N(14)−H(14)···O(19B) 0.86 2.27 2.640(7) 106
O(19)−H(19)···O(3)#2 0.82 2.50 3.105(3) 132

2b N(11)−H(11)···S(13)#1 0.86 2.65 3.4052(16) 148
N(14)−H(14)···O(3) 0.86 2.31 2.946(2) 131
N(14)−H(14)···N(17) 0.86 2.46 2.816(2) 105

3c N(10)−H(10)···S(12)#1 0.88 2.44 3.2963(18) 165
N(13)−H(13)···F(22) 0.88 2.47 2.861(3) 108
N(13)−H(13)···O(3) 0.88 2.49 3.091(3) 126
N(13)−H(13)···O(7) 0.88 2.48 3.058(2) 124
C(4)−H(4)···S(2)#2 1.00 2.85 3.746(2) 150
C(5)−H(5A)···F(23)#3 0.98 2.48 3.446(4) 170

4d N(11)−H(11)···N(16) 0.86 1.93 2.647(3) 140
N(14)−H(14)···N(20)#1 0.86 2.23 3.084(3) 174
C(18)−H(18)···S(2)#2 0.93 2.84 3.616(3) 142
C(19)−H(19)···S(13)#1 0.93 2.78 3.576(3) 144

5e N(11)−H(11)···S(13)#1 0.88 2.62 3.370(17) 144
N(14)−H(14)···S(1) 0.88 2.38 3.199(17) 155
C(9)−H(9C)···S(13)#1 0.98 2.98 3.807 142

aSymmetry transformations used to generate equivalent atoms: #1 1 − x, 2 − y, 2 − z; #2 − x, − y, 1 − z. bSymmetry transformations used to
generate equivalent atoms: #1 2 − x, − y, 1 − z. cSymmetry transformations used to generate equivalent atoms: #1 1 − x, 1 − y, 2 − z; #2 − x, − y,
2 − z; #3 1 − x, − y, 2 − z. dSymmetry transformations used to generate equivalent atoms: #1 − x, 2 − y, 1 − z; #2−1 + x, y, z. eSymmetry
transformations used to generate equivalent atoms: #1 1 − x, 1 − y, 1 − z.
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(Table 3). 3 is further characterized by a notable proportion of
H···F contacts (18.5%) (Table 5), which are also shown as a
pair of sharp spikes at de + di ≈ 2.4 Å (Figure S4 in the
Supporting Information) due to C−HiPr···F−C hydrogen
bonds (Table 3).
The next remarkable contributor into the molecular surface

of 1-I is H···O interactions (6.4%) (Table 5) with the shortest
contacts in the 2D plot shown as a pair of “horns” at de + di ≈
2.4 Å (Figure S2 in the Supporting Information). These are
due to the O−H···O−P intermolecular H-bonds (Table 3). A
similar proportion of the same contacts was found in 4 and 5
(5.2 and 4.3%, respectively), while a significantly lesser amount
is on the molecular surfaces of 2 and 3 (2.7 and 1.6%,
respectively). The shortest H···O was found on the 2D plots of
2−5 at de + di ≈ 2.7−3.1 Å (Figure S2 in the Supporting
Information).
1-I is additionally described by negligible proportions of S···

S, H···C, and O···S contacts (1.4, 0.2, and 0.3%, respectively).
Negligible proportions of the former two (0.7 and 1.7%,

respectively) as well as H···N contacts (1.4%) were also found
on the molecular surface of 2. The presence of the aryl rings in
3−5 increases a proportion of the H···C (8.2, 9.4, and 14.8%,
respectively). These contacts in 2D plots are observed as
“wings” with the shortest de + di ≈ 2.8−3.0 Å (Figures S4−S6
in the Supporting Information). They are typical for C−H···π
interactions.92 It is worth adding that the 2D plots of 3 and 4
each contain a number of points at large de and di (Table 4),
which is similar to the 2D plots of benzene92 and phenyl-
containing compounds.90,101,102 and characteristic to areas on
the molecular surface without any close connections to nuclei
in adjacent molecules.
The thiourea 4 is further dominated by H···N contacts

(10.2%) (Table 5) with the shortest ones shown as a pair of
sharp spikes at de + di ≈ 2.1 Å (Figure S5 in the Supporting
Information) and are due to the (Pym)N−H···NPym

intermolecular H-bonds (Table 3). A negligible proportion
of H···N was found in 3 and 5 (0.7 and 2.0%, respectively).

Table 4. π···π Interaction Distances (Å) and Angles (deg) for 3a

Cg(I) Cg(J) d[Cg(I)−Cg(J)] α β γ

3b Cg(C6H4) Cg(C6H4)
#1 3.8924(15) 0.00(12) 24.0 24.0

aCg(I)−Cg(J): distance between ring centroids; α: dihedral angle between planes Cg(I) and Cg(J); β: angle Cg(I) → Cg(J) vector and normal to
plane I; γ: angle Cg(I) → Cg(J) vector and normal to plane J. bSymmetry transformations used to generate equivalent atoms: #1 1 − x, − 1 − y, 1
− z.

Table 5. 2D Fingerprint Plots, Hirshfeld Contact Surfaces and Derived “Random Contacts” and “Enrichment Ratios” for 1-I−
5a

aNo contacts for the phosphorus atom were found, and, hence, it was not included under consideration. bValues are obtained from CrystalExplorer
3.1.94 cThe enrichment ratios were not computed when the “random contacts” were lower than 0.9%, as they are not meaningful.95
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The structure of 3 is also described by C···C and F···F
contacts (1.8 and 2.8%, respectively). The former ones are
found in the 2D plot as the area at de = di ≈ 1.8−2.0 Å (Figure
S4 in the Supporting Information) and characteristic to π···π
stacking (Figure 3, Table 4). The F···F interactions are on the
diagonal at de = di ≈ 1.6−2.0 Å (Figure S4 in the Supporting
Information) and responsible for the weak dihalogen bonding
between the face-to-face oriented CF3 groups of two adjacent
molecules (Figure 3).103

In order to examine the susceptibility of two species to be
involved in a contact, we have calculated the enrichment ratios
(E)95 of the contacts for the studied thioureas. The H···H
connections are enriched in all thioureas as evidenced from the
enrichment ratios EHH being close to unity (0.92−0.99) (Table
5). The EHO and EHS values are larger than unity (1.03−1.45),
indicating that H···O and H···S have an increased propensity to
form for all the structures. The EHC values (1.00−1.23)
confirm that these contacts also have a high propensity to form
in 2−5 (Table 5). The H···N (EHN = 1.06−1.17) contacts are
highly favored in 2, 4, and 5. Despite the negligible
contribution of the S···S in 1-I (1.4%), the corresponding
proportion of RSS is the same, yielding the enrichment ratio ESS
= 1.00. The same contacts are impoverished (ESS = 0.44−0.62)

in 2 and 3, which is explained by significantly higher values of
the random contacts RSS = 1.3−1.6% compared to proportions
of these contacts (0.7−0.8%). A similar trend, but for the C···S,
is observed in 4 and 5. In particular, while 4 is highly enriched
by C···S (ECS = 1.36), the molecular surface of 5 is significantly
impoverished (ECS = 0.50). Finally, the N···S contacts are
highly favored in 4 (ENS = 1.75), while 3 is highly enriched by
the H···F (EHF = 1.10) and F···F (EFF = 1.87) interactions.
At this stage we performed detailed qualitative and

quantitative characterizations of various noncovalent inter-
actions based on the charge and energy decomposition scheme
ETS-NOCV96 as available in the ADF package.104,105 Recently
it was demonstrated that the BLYP-D3/TZP with the Slater
basis sets performs well for weak interactions.106,107 To this
end, we have applied herein this protocol. It also appeared to
be reliable in our previous investigations.8,22,34

We have determined, based on the molecular electrostatic
potentials, that the NTTUs (X = S) monomers are
characterized by the presence of decreased electron density
at the tips of both sulfur atoms that indicates the so-called σ-
holes39−43 (Figure 6). It is now well-known that it can lead to
the formation of strong directional interactions with
nucleophiles.39−43,108,109 Indeed, we have delineated herein

Figure 6. Molecular electrostatic potential for the monomer of 4 on the electron density isosurface 0.03 au (top), and fragmentation pattern
(middle) and results of the ETS calculations (bottom) for the dimer of 4.
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due to the ETS-NOCV calculations that a dimer of 4,
containing parallel monomers, is extremely stable with the
calculated interaction energy ΔEint = −21.34 kcal/mol (Figure
6). It stems mostly from the σ-hole(S)···π interaction formed
between the thiophosphoryl sulfur σ-hole and the (Pym)NH

π-system, which is further augmented by the presence of
intermolecular C−HiPr···SC interactions. An inspection of
the overall deformation density contour leads to the conclusion
that the σ-hole(S)···π interaction is significantly covalent due
to the charge delocalization from the π(HNC) to the sulfur

Figure 7. Dimeric model of 4 from the side-to-side interacting monomers and the ETS energy decomposition results (top) together with the
NOCV-based deformation density contributions (bottom).

Figure 8. Dimeric models of 5 and the ETS energy decomposition results (top) together with the overall differential density quantities Δρorb and
ΔEorb (bottom).
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tip area (Figure 6). Additionally, the electron depletion from
the lone pair (Lp) of CS into σ*(C−H) is clearly seen due
to the C−HiPr···SC interactions. The ETS-NOCV data
testify that the London dispersion stabilization covers ∼50% of
the overall stabilization, followed by quite similarly important
electrostatic (∼31%) and charge delocalization (∼19%) terms
(Figure 6). We have additionally estimated the role of
correlation energy in 4 (Figure 6) by performing HF and
MP2 calculations, which was found to be −13.6 kcal/mol
(Table S1 in the Supporting Information). This value is lower
than the semiempirical D3 correction by ca. − 21.34 kcal/mol.
It is notable that at the HF level the overall interaction energy
is only −4.2 kcal/mol (Table S1 in the Supporting
Information). Other dispersion corrected XC and MP2
provide quite similar interaction energies to ADF/BLYP-D3/
TZP (Table S1 in the Supporting Information). In the case of
typical Lp···π interactions, the electrostatic stabilization were
found to be a dominant factor followed by slightly less
important dispersion energy and the least crucial charge
delocalization term.110 Interestingly, when considering some
anions, the charge delocalization contribution can be of vital
importance as demonstrated by Kozelka and co-workers.111,112

It is important to highlight that such efficient stabilization
obtained herein (Figure 6) is far stronger as compared to the
known Lp···π interactions, which are typically within a few
kcal/mol,110 and even the conventional hydrogen bonds.44−47

The interaction energy of monomers in 4, interacting through
the conventional ionic N−H···N H-bonds, is notably lower by
∼4 kcal/mol compared to the dimer bounded through σ-
hole(S)···π (Figures 6 and 7). It is important to comment that
the major N−H···N stabilization is supported by weaker C−
H···S interactions as indicated by the separated NOCV-
deformation density channels Δρorb(1) and Δρorb(2) (Figure
7). The corresponding stabilizations are ΔEorb(1) = −4.00
kcal/mol and ΔEorb(2) = −1.75 kcal/mol (Figure 7).
Interestingly, π-polarizations with ΔEorb(rest) = −3.39 kcal/
mol are similar in strength to the leading N−H···N charge
delocalization channel ΔEorb(1) = −4.00 kcal/mol (Figure 7).
In the case of 5 dispersion dominated σ-hole(S)···π

interactions are even stronger than in 4, ΔEint = −24.49
kcal/mol (Figure 8). This is due to the supportive C−H···π
and C−H···S interactions (Figure 8). It is important to
comment that instead of the typical N−H···N hydrogen bond
the thioureas 1−3 and 5 contain N−H···S intermolecular
interactions. ETS-NOCV allowed us to determine that N−H···
S is also roughly two times weaker than σ-hole(S)···π and it is
the strongest in 5 (ΔEint = −13.20 kcal/mol), whereas its
strength is quite alike (|ΔEint| = ∼9−10 kcal/mol) in the
remaining systems (Figures 8 and 9, and Figures S7−S9 in the
Supporting Information). The London dispersion and electro-
static contributions are both leading stabilizing components
and each cover ∼40% of the overall stabilization of N−H···S
followed by the charge delocalization term, ∼20% (Figures 8
and 9, and Figures S7−S9 in the Supporting Information). It
shall be referenced that in our previous investigations based on
another set of R ligands lack of any σ-hole(S)···π interactions
was noted, and the strongest N−H···S (supported by C−H···
C−H, C−H···S and other contacts) constituted the crystals.91

We have further delineated qualitatively due to QTAIM and
NCI calculations that C−H···C(π), σ-hole(S)···C(π), and C−
H···C−H interactions can be quite similar in strength as
opposed to notably stronger C−H···S (Figure S10 in the
Supporting Information). It is important to highlight that apart

from the already discussed noncovalent interactions, 1 and 2
are further stabilized by nonconventional C−H···C−H and C−
H···S contacts giving rise to dispersion dominated (∼60%)
trimeric interaction energies by ΔEint = −13.44 kcal/mol and
−22.36 kcal/mol, respectively (Figure 9 and Figure S7 in the
Supporting Information). Notably, the charge delocalization
term is also non-negligible since it can cover ∼15% of the
overall stabilization (Figure 9 and Figure S7 in the Supporting
Information). Although the typical face-to-face π···π stacking,
augmented by C−H···S contacts in the dimer of 3, is the
strongest, ΔEint = −13.23 kcal/mol, the slipped parallel model,
which involves purely intermolecular homopolar C−H···C−H
interactions between monomers, is only somewhat less stable,
ΔEint = −7.47 kcal/mol (Figures S8 and S9 in the Supporting
Information). Interestingly, the C−H···C−H engages inter-
actions between the iPr and aryl units, and quantitatively the
charge delocalization contribution outweighs the electrostatic
term with the obvious dominance of the London dispersion
forces (Figure S9 in the Supporting Information). It is
quantitatively and qualitatively comparable to the degree of
joint C−H···F and C−H···S stabilization in 3 (Figures S8 and
S9 in the Supporting Information).

■ CONCLUSIONS
In summary, we have synthesized a series of five novel
thioureas RNHC(S)NHP(S)(OiPr)2 [R = (HOCH2)(Me)2C
(1), Me2CH2CH2 (2), 2-CF3C6H4 (3), 2-Pym (4)] and bis-
thiourea 1,5-C10H6{NHC(S)NHP(S)(OiPr)2} (5) by the

Figure 9. Dimeric and trimeric models of 1 and the ETS energy
decomposition results (top) together with the overall differential
density quantities Δρorb and ΔEorb (bottom).
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addition of thiophosphorylisothiocyanate to the corresponding
amine. They were subsequently characterized by the NMR
spectroscopy, X-ray diffraction, as well as theoretical ETS-
NOCV charge and energy decomposition calculations.
According to the NMR spectroscopy data of 5, it was
established that both amine groups of the 1,5-diaminonaph-
thalene reacted with the isothiocyanate. Furthermore, the
NMR data testify that the thiourea 4 is completely in a
zwitterionic form in CDCl3 caused by strong intramolecular
N−H···N interaction. Single crystal X-ray diffraction studies
showed that an E arrangement of the CS and P−N bonds in
the SC−N−P backbones was found for all the thioureas
except 4, which exhibits a Z conformation of the same
fragment. The SP−N−C backbone tends to be in an E
conformation in the structures of 1−3, and a Z conformation
was observed in the structures of 4 and 5.
We have determined that the monomers that constitute the

obtained crystals are characterized by multiple conventional
and nonconventional intramolecular noncovalent interactions
including N−H···X (X = O, 1−3; F, 3; N, 4; S, 5) and C−H···
Y (Y = O, 1; N, 2 and 3; S, 4 and 5) augmented further by
homopolar C−H···H−C contacts (1−5).
Hirshfeld surface analysis and associated 2D fingerprint

plots, as well as the enrichment ratios, have shown that 1−5
are constituted mainly from H···H and H···S intermolecular
contacts. This is mostly due to the numerous intermolecular
homopolar C−H···H−C as well as X−H···S (X = C, N)
interactions. The ETS charge and energy decomposition
scheme allowed us to pinpoint the crucial role of London
dispersion stabilization in both types of interactions. More
specifically, in the case of intermolecular N−H···S interactions
responsible for the formation of centrosymmetric R2

2(8)
dimers or 1D polymeric chains, with the overall strength |ΔEint|
varying from ∼9 kcal/mol up to 14 kcal/mol, London
dispersion stabilization and electrostatic contributions are
similarly crucial (∼40% of the overall stabilization) followed
by the charge delocalization term (20%), whereas C−H···H−
C, C−H···S, and C−H···F are dispersion dominated (∼60%)
with less efficient electrostatic (∼25%) and charge delocaliza-
tion contributions (∼15%). It is clear that although C−H···H−
C, C−H···S, and C−H···F engage in principle inert C−H
bonds, the charge ouflow from the corresponding σ(C−H)
bonds is discovered resulting in notable ΔEorb values in the
ETS-NOCV analysesit is even superior over the electrostatic
term in the case of slipped-parallel model of 3. Finally, it is of
great importance to stress that the already discovered intra-
and intermolecular interactions are not the strongest ones.
Surprisingly, we have delineated that the strongest are
intermolecular σ-hole(S)···π interactions noted in 4 and 5
with |ΔEint| = 21.34 and 24.49 kcal/mol, respectively. They are
even stronger than typical ionic N−H···N bonds in 4 (|ΔEint| =
17.13 kcal/mol). As far as the nature of σ-hole(S)···π is
concerned, these noncovalent interactions determined herein
are not, as other typical σ-hole bonds, dominated by
electrostatics.39−43 We have determined that again the London
dispersion stabilization is a prevailing factor (∼50% of the
overall stabilization), followed by quite similarly crucial
electrostatic (∼30%) and charge delocalization (∼20%)
components. The latter one stems from the charge depletion
from the π(HNC) and the accumulation at the tip of a
sulfur region. Additionally, the electron depletion from the
lone pair (Lp) of CS into σ*(C−H) is clearly seen due to
the supportive C−HiPr···SC interactions. All discovered and

deeply studied intermolecular interactions constitute the 3D
networks of the synthesized crystals.
We believe that this work, highlighting the crucial role of

London dispersion forces as well as other non-negligible
bonding contributions through the existence of multiple “old”
and “novel” inter- and intramolecular interactions in sterically
demanding NTTUs, will be also useful not only in crystal
engineering but also in a number of other fields since large
areas of polar and hydrophobic (dispersion donating) regions
are certainly present in other systems.
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