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Abstract. We review the different formalisms that can be used for quantum mechanics, all
of them going beyond the standard Hilbert space formulation: Rigged Hilbert Spaces (RHS),
partial inner product spaces (PIP spaces), etc. In particular, we consider the spectral analysis
of observables and the description of symmetries.

1. Introduction

1.1. Basic principles of quantum mechanics

Quantum Mechanics (QM) is based on two fundamental principles:

• The superposition principle: any linear combination of two states is a state, which implies
that the state space Ho is a vector space; thus QM has an intrinsic linear structure (which
is not true in classical physics).

• The transition amplitude between two states φin, φout is given by a sesquilinear form:
A(φin → φout) = 〈φout|φin〉. Similarly, the corresponding transition probability is given
by : P (φin → φout) = |〈φout|φin〉|2. It follows that the state space Ho is a pre-Hilbert
space. Thus, Ho carries an equivalence class of Hilbertian norms and its invariance group
is GL(Ho), the set of bounded operators with bounded inverse.

Then, for reasons of “mathematical confort”, one fixes a particular Hilbertian norm and takes
the completion H of Ho, so that H is a Hilbert space (even projective) and the invariance group
is U(H), the set of unitary operators.

The problem, however, is that Hilbert space is both too small, since it lacks nonnormalizable
eigenstates, and too large, since it contains nonphysical states, for instance states of infinite
energy.

One way of solving this dilemma is to take for state space a Rigged Hilbert Space (RHS) or
Gel’fand triplet [1]

Φ ⊂ H ⊂ Φ×. (1)

The standard example is Schwartz’s space of tempered distributions

S(R) ⊂ L2(R) ⊂ S(R)× (conjugate dual). (2)

The duality gives a pairing 〈S(R),S(R)×〉 with the “inner product” inherited from L2: 〈f |g〉 =∫
R f(x) g(x) dx. Thus we get a partial inner product on the large space S(R)×.

Interpolating between the spaces of the triplet (2), one obtains a chain of Hilbert spaces, and
this is the structure we will be interested in from now on.



As a matter of fact, many other function spaces that play a central role in analysis come
in the form of families, indexed by one or several parameters that characterize the behavior of
functions (smoothness, behavior at infinity, . . . ). The typical structure is a chain or a lattice of
Hilbert or (reflexive) Banach spaces. Let us give some familiar examples.

(i) The Lebesgue Lp spaces on [0, 1], I = {Lp([0, 1], dx), 1 6 p 6∞}.
(ii) The scale of Hilbert spaces {Hn}n∈Z built on the powers of a positive self-adjoint operator

C ≥ 1 in a Hilbert space H0. Here Hn = D(Cn), with the graph norm ‖f‖n = ‖Cnf‖, f ∈
D(Cn), for n ∈ N or n ∈ R+, and H−n = H×n (conjugate dual). Note that the triplet (2) is
of this type.

(iii) Lattices of Hilbert or Banach spaces (total order is irrelevant, partial order suffices!), for
instance, the lattice generated by the spaces Lp(R, dx).

(iv) Nested Hilbert spaces [2].

In all cases, the inner product of the central Hilbert space cannot be extended to the largest
space of the chain, but only on compatible pairs. Thus one needs a unifying formalism, which
is afforded by partial inner product spaces (pip-space). In this paper, we shall give a quick
overview of pip-spaces and operators on them, including their spectral properties. A complete
information may be found in our monograph [3], including references to the original work.

2. Partial Inner Product spaces

How can one generate such a structure systematically? The basic question is, given a vector
space V and two vectors f, g ∈ V , when does their inner product make sense?

A formal way of introducing pip-spaces is given by the idea of linear compatibility [3], by
which we mean a symmetric binary relation # on V which preserves linearity:

f#g ⇐⇒ g#f, ∀ f, g ∈ V,
f#g, f#h =⇒ f#(αg + βh), ∀ f, g, h ∈ V, ∀α, β ∈ C.

Then, for any subset S ⊂ V , the set S# = {g ∈ V : g#f, ∀ f ∈ S} is a vector subspace of V and
one has S## = (S#)# ⊇ S, S### = S#. Thus,

f#g ⇐⇒ f ∈ {g}# ⇐⇒ {f}## ⊆ {g}#. (3)

From now on, we will call assaying subspace of V a subspace S such that S## = S and denote
by F(V,#) the family of all assaying subsets of V , ordered by inclusion. Assaying subsets will
be denoted Vr, Vq, . . . and the index set by F . By definition, q ≤ r if and only if Vq j Vr. We

also write Vr = V #
r , r ∈ F . Thus the relations (3) mean that f#g if and only if there is an index

r ∈ F such that f ∈ Vr, g ∈ Vr. In other words, assaying subspaces are the building blocks of
the whole structure. Now it is easy to see that the map S 7→ S## is a closure, in the sense of
universal algebra, so that the assaying subspaces are precisely the “closed” subsets. Therefore
one has the following standard result [4].

Theorem 1 The family F(V,#) = {Vr, r ∈ F} of all assaying subspaces, ordered by inclusion,
is a complete involutive lattice, under the following operations, arbitrarily iterated:

. involution: Vr ↔ Vr := (Vr)
#,

. infimum: Vp∧q := Vp ∧ Vq = Vp ∩ Vq, (p, q, r ∈ F )

. supremum: Vp∨q := Vp ∨ Vq = (Vp + Vq)
##.

The smallest element of F(V,#) is V # =
⋂
r Vr and the greatest element is V =

⋃
r Vr. We also

note the following relations:

(Vp∧q)
# = Vp∧q = Vp∨q = Vp ∨ Vq.



A partial inner product on (V, #) is a hermitian form 〈·|·〉, not necessarily positive definite,
defined exactly on compatible pairs of vectors. A partial inner product space (pip-space) is a
vector space V equipped with a linear compatibility and a partial inner product.

We require the pip-space (V, #) to be nondegenerate, i.e., 〈f |g〉 = 0 for all f ∈ V # implies
g = 0. Then (V #, V ) is a dual pair in the sense of topological vector spaces [5], and so is every
couple (Vr, Vr), r ∈ F . In the sequel, we also assume that the partial inner product is positive
definite.

Since we want the topological structure to parallel the algebraic structure, we impose that
(Vr[tr])

× = Vr, ∀r ∈ F . This implies that the topology tr of Vr must be intermediate between
the weak topology σ(Vr, Vr) and the Mackey topology τ(Vr, Vr). We assume that every Vr carries
its Mackey topology τ(Vr, Vr). As a consequence, if Vr is a Hilbert space or a reflexive Banach
space, then τ(Vr, Vr) coincides with the norm topology. Next, r < s implies Vr ⊂ Vs, and the
embedding operator Esr : Vr → Vs is continuous and has dense range. In particular, V # is dense
in every Vr.

Let us give two simple examples.

(1) V = ω, the space of all complex sequences x = (xn), with the compatibility relation
x#y ⇔

∑∞
n=1 |xn yn| <∞, and the partial inner product 〈x|y〉 =

∑∞
n=1 xn yn, for x#y. The

central, self-dual Hilbert space is `2.

(2) V = L1
loc(R, dx), the space of Lebesgue measurable, locally integrable functions, with

the compatibility relation f#g ⇔
∫
R |f(x)g(x)| dx < ∞ and the partial inner product

〈f |g〉 =
∫
R f(x)g(x) dx, for f#g. The central, self-dual Hilbert space is L2(R, dx).

The previous examples show that F(V,#) is a huge lattice (it is complete!) and that assaying
subspaces may be complicated, such as Fréchet spaces, non metrizable spaces, etc. This situation
suggests to choose an involutive sublattice I of F , indexed by I, such that

(i) I is generating, that is, f#g iff ∃ r ∈ I such that f ∈ Vr, g ∈ Vr ;

(ii) every Vr, r ∈ I, is a Hilbert space or a reflexive Banach space;

(iii) I contains a unique self-dual Hilbert space Vo = Vo.

In that case, the structure VI := (V, I, 〈·|·〉) is called, respectively, a lattice of Hilbert spaces
(LHS) or a lattice of Banach spaces (LBS). Note that V #, V themselves usually do not belong
to the family {Vr, r ∈ I}, but they can be recovered as V # =

⋂
r∈I Vr, V =

∑
r∈I Vr.

It may be useful to note that compatibility can be varied: coarsening is always possible, but
refinement not always. An important case is the refining of a RHS into a LHS, e.g. the Schwartz
triplet S ⊂ L2 ⊂ S× [3].

Let us give some examples of lattice structures.

2.1. Sequence spaces

In V = ω, take for I the lattice generated by `2(r) = {x = (xn) :
∑∞

n=1 |xn|2 r−2n < ∞}, with
r = (rn), rn > 0 a sequence of positive numbers, and

• infimum: `2(p ∧ q) = `2(p) ∧ `2(q) = `2(r), rn = min(pn, qn)

• supremum: `2(p ∨ q) = `2(p) ∨ `2(q) = `2(s), sn = max(pn, qn)

• involution : `2(r)⇔ `2(r) = `2(r)×, rn = 1/rn .

2.2. Spaces of locally integrable functions

In V = L1
loc(R, dx), take for I the lattice generated by L2(r) = {f ∈ L1

loc(R, dx) :∫
|f(x)|2 r(x)−2 dx <∞}, with r ∈ L2

loc(R, dx), r(x) > 0 a.e., and

• infimum: L2(p ∧ q) = L2(p) ∧ L2(q) = L2(r), r(x) = min(p(x), q(x))

• supremum: L2(p ∨ q) = L2(p) ∨ L2(q) = L2(s), s(x) = max(p(x), q(x))

• involution : L2(r) ⇔ L2(r), r = 1/r.



2.3. The spaces Lp(R, dx), 1 < p <∞
This is not a chain, but a genuine lattice, since one has only Lp ∩ Lq ⊂ Ls, p < s < q. The
lattice operations are the following [6]:

• Lp ∧ Lq = Lp ∩ Lq , with projective norm ‖f‖p∧q = ‖f‖p + ‖f‖q
• Lp ∨ Lq = Lp + Lq, with inductive norm ‖f‖p∨q = inff=g+h (‖g‖p + ‖h‖q) , g ∈ Lp, f ∈ Lq

• For 1 < p, q <∞, both spaces Lp ∧Lq and Lp ∨Lq are reflexive Banach spaces and one has
(Lp ∧ Lq)× = Lp ∨ Lq, (Lp ∨ Lq)× = Lp ∧ Lq.
For the visualization, it is useful to introduce the following notation:

L(p,q) =

{
Lp ∧ Lq, if p > q
Lp ∨ Lq, if p 6 q

(1 ≤ p, q ≤ ∞).

Then L(p,q) is represented by the point (1/p, 1/q) in the unit square J = [0, 1]× [0, 1].

2.4. Other examples of LBS (or containing a LBS)

(i) Amalgam spaces W (Lp, `q) ≡ (Lp, `q):
This space consists of functions on R locally in Lp with `q behavior at infinity. It is a
Banach space for the norm

‖f‖p,q =

{∑∞
n=−∞

[∫ n+1

n
|f(x)|p dx

]q/p}1/q

, 1 6 p, q <∞.

(ii) Mixed norm spaces

Lp,qm (R2d) = {f measurable : ‖f‖p,qm <∞}, 1 6 p, q <∞, where

‖f‖p,qm =

(∫
Rd

(∫
Rd

|f(x, ω)|pm(x, ω)p dx

)q/p
dω

)1/q

,m ∈ L1
loc(R2d, dx dω),m > 0.

This is a Banach space for the norm ‖ · ‖p,qm .

(iii) Inhomogeneous Besov spaces Bs
pq(Rd), well adapted to wavelet analysis.

(iv) Modulation spaces Mp,q
m (Rd), well adapted to Gabor analysis.

3. Operators on PIP-spaces

The basic idea of (indexed) pip-spaces is that vectors should not be considered individually, but
only in terms of the subspaces Vr :

f#g if, and only if, there is an r ∈ I such that f ∈ Vr, g ∈ Vr.
For the corresponding definition of operator on a pip-space, we impose that only bounded
operators between Hilbert or Banach spaces are allowed, so that an operator is a coherent
collection of bounded operators.

Thus, given a LHS-space VI = {Vr, r ∈ I}, we define an operator on VI as a map A : D → VI ,
where:

(i) D is a nonempty union of assaying subspaces of V : D =
⋃
q∈d(A) Vq

(ii) For every q ∈ d(A), there is a p ∈ I such that the restriction of A : Vq → Vp is linear and
continuous; we denote it by Apq ∈ B(Vq, Vp).

(iii) A has no proper extension satisfying (i) and (ii), i.e., it is maximal.

Examples of global operators on L1
loc(R, dx) or S×(R) are Fourier transform, translation,

modulation, scaling (dilation), . . .

The linear bounded operator Apq : Vq → Vp is called a representative of A. The operator A is
characterized by the set j(A) = {(q, p) ∈ I × I : Apq exists} and it is equivalent to the collection
of its representatives: A ' {Apq : (q, p) ∈ j(A)}.



Given an operator A, define the following sets:

d(A) = {q ∈ I : there is a p such that Apq exists};
i(A) = {p ∈ I : there is a q such that Apq exists}.

• d(A) is an initial subset of I: if q ∈ d(A) and q′ < q, then q′ ∈ d(A), and Apq′ = ApqEqq′ ,
where Eqq′ = unit operator; this is what we mean by a ‘coherent’ collection. . . .

• i(A) is a final subset of I: if p ∈ i(A) and p′ > p, then p′ ∈ i(A).

• j(A) ⊂ d(A)× i(A), with strict inclusion in general.

In the case of a scale, the properties of the operator A may be characterized by the following
figure:

6
p

I

-p qI

j(A)

q′ < q

p′ > p

(q, p)

d(A) qmax

pmin

i(A)

We denote by Op(VI) the set of all operators on VI . A similar definition may be given for
operators A : VI → YK between two LHS or LBS. The resulting set is denoted by Op(VI , YK).

Since V # ⊂ Vr, ∀ r ∈ I, with dense image, an operator on VI may be viewed as a sesquilinear
form on V # × V #, and also as a linear map from V # into V . But we want to keep also the
algebraic operations on operators ! Thus we define:

(i) Adjoint A× : every A ∈ Op(VI) has a unique adjoint A× ∈ Op(VI):

〈A×x|y〉 = 〈x|Ay〉, for y ∈ Vr, r ∈ d(A), and x ∈ Vs, s ∈ i(A),

that is, (A×)rs = (Asr)
∗ (usual Hilbert/Banach space adjoint). Therefore, one has always

A×× = A, ∀A ∈ Op(VI): no extension is allowed, by the maximality condition (iii).

(ii) Partial multiplication : AB is defined if, and only if, there is a q ∈ i(B) ∩ d(A), that is,
if, and only if, there is a continuous factorization through some Vq :

Vr
B−→ Vq

A−→ Vs, i.e., (AB)sr = AsqBqr.

Notice that, for a LHS/LBS, the domain D(A) is vector subspace of V , but this is not true for
a general pip-space. In any case, Op(VI) is a vector space and a partial *-algebra [7].

4. Special classes of operators on PIP-spaces

In the sequel, we will need several special types of operators, that in fact generalize the
corresponding ones on a Hilbert space.

4.1. Regular and totally regular operators

An operator A on VI is regular if d(A) = i(A) = I; equivalently, A : V # → V # and A : V → V
continuously. An operator A on VI is totally regular if j(A) ⊃ diag(I × I); equivalently,
Arr : Vr → Vr, ∀ r ∈ I, continuously.



4.2. Homomorphisms

An operator A ∈ Op(VI , YK) is called a homomorphism if

(i) for every r ∈ I there exists u ∈ K such that both Aur and Au r exist.

(ii) for every u ∈ K there exists r ∈ I such that both Aur and Au r exist.

The set of all homomorphisms is denoted by Hom(VI , YK). Clearly, one has

• A ∈ Hom(VI , YK) if and only if A× ∈ Hom(YK , VI).

• If A ∈ Hom(VI , YK), then j(A×A) contains the diagonal of I × I and j(AA×) contains the
diagonal of K ×K.

4.3. Isomorphisms

The operator A is an isomorphism if A ∈ Hom(VI , YK) and there exists B ∈ Hom(YK , VI) such
that BA = 1V , AB = 1Y (identity operators).

4.4. Unitary operators

The operator U is unitary if U×U and UU× are defined and U×U = 1V , UU
× = 1Y (caution:

unitary operators need not be homomorphisms !).

Thus the unitary isomorphisms are the natural setting for group representations in LHS, as we
shall see in Section 8.

4.5. Symmetric operators

A is said to be symmetric if A× = A. For such an operator, a generalized KLMN theorem holds
true, stating when a symmetric operator has a self-adjoint restriction to the central Hilbert space
Vo (see Section 6).

An application of this theorem is the treatment of very singular operators. The simplest case
runs as follows:.

Vr ⊂ Vo ' Vo ⊂ Vs (Vo = Hilbert)
Then :

• Aoo is a bounded operator Vo → Vo ;

• Aor is an unbounded operator Vr → Vo, with domain D(A) ⊃ Vr ;

• Asr is a singular operator Vr → Vs, with Hilbert space domain possibly reduced to {0}.

4.6. Orthogonal projections

Let VI be a nondegenerate pip-space. Then P is an orthogonal projection whenever P ∈ Hom(VI)
and P 2 = P = P×. It follows that P : Vr → Vr, ∀ r ∈ I.

The main result is that W is an orthocomplemented subspace of V , i.e., V = W ⊕ Z if, and
only if, W is the range of orthogonal projection P . There are equivalent topological conditions,
so that an orthocomplemented subspace is the same thing as a pip-subspace.

4.7. Invertible operators

Let VJ be a LBS/LHS and A ∈ Op(VJ). Then A is invertible if it has at least one inver-
tible representative. Equivalently, there exists B ∈ Op(VJ) and two indexes p, q such that
(p, q) ∈ j(A), (q, p) ∈ j(B), and AB = BA = I. Note that the two conditions AB,BA well-
defined and AB = BA = I are not sufficient by themselves. Whenever A ∈ Op(VJ) is invertible,
it has a unique inverse A−1 ∈ Op(VJ).

Given A ∈ Op(VJ), the notion of invertibility is needed for defining the resolvent set ρ(A)
and the spectrum σ(A) (with the usual analyticity properties), and also the resolvent operator
Rλ(A) := (A− λI)−1 ∈ Op(VJ) [8].



5. Spectral analysis in a RHS

Take a rigged Hilbert space (RHS) Φ ⊂ H ⊂ Φ×, where Φ is dense in H, with a finer topology,
and Φ× is the conjugate dual of Φ. Let A be a self-adjoint operator in H, such that A : Φ→ Φ,
continuously. Then A has a continuous extension A† : Φ× → Φ× defined by duality:

〈φ|A†ξ〉 = 〈Aφ|ξ〉, ∀ φ ∈ Φ, ξ ∈ Φ×. (4)

A vector ξλ ∈ Φ× is called a generalized eigenvector for A, with generalized eigenvalue λ, if one
has A†ξλ = λξλ.

Then the main result, obtained by Gel’fand and Maurin, independently, is the following
theorem [1].

Theorem 2 [Gel’fand-Maurin spectral theorem] If Φ is nuclear and complete, A has a
complete set of generalized eigenvectors ξλ ∈ Φ×, λ ∈ R, that is, one has, for all φ, ψ ∈ Φ,

〈φ|ψ〉 =

∫
R
ξλ(φ) ξλ(ψ) dµ(λ) (5)

≡
∫
R
〈φ|ξλ〉 〈ξλ|ψ〉 dµ(λ) (6)

for some measure µ on R , where µ =
∑

i δ(· − λi) + µc, where {λi} are the eigenvalues of A in
H and supp µc ⊃ σcont(A), where σcont(A) denotes the continuous spectrum of A.

The upshot is that all eigenvalues are treated on the same footing, which is the characteristic
feature of the Dirac formalism in QM [9, 10].

6. Spectral analysis in a LHS

There is another way to generate a self-adjoint operator in a Hilbert space, namely by restriction
of a symmetric operator acting in a larger space. This is the content of the celebrated KLMN
theorem [KLMN stands for Kato, Lax, Lions, Milgram, Nelson]. The proof of Nelson actually
takes place in a LHS (or part of it, namely the central triplet of Hilbert spaces) [3, Sec.3.3.5].

Theorem 3 [KLMN theorem] Let C > I be a self-adjoint operator in H and VJ = {Hn, n ∈
Z} the scale of Hilbert spaces built on the powers of C. Let A = A× ∈ VJ) be a symmetric
operator with (m,n) ∈ j(A), where Hm ⊆ H0 ⊆ Hn.

Assume there exists a λ ∈ R such that A−λI has an invertible representative Anm−λEnm :
Hm → Hn. Then Anm has a unique restriction to a self-adjoint operator A0 in the Hilbert space
H = H0, with dense domain D(A0) = {f ∈ Hm : Af ∈ H0}. The number λ does not belong to
the spectrum of A0.

One may note that the result extends to a general LHS, not only the scale of a self-adjoint
operator.

Now, the Gel’fand-Maurin spectral theorem may also be reformulated in the context of a
LHS.

Theorem 4 [Gel’fand-Maurin spectral theorem] Assume C > I with C−1 Hilbert-
Schmidt, so that V # = D∞(C) is a nuclear Fréchet space. Let A = A× ∈ VJ) be a symmetric
operator with (m,m) ∈ j(A), where Hm ⊆ H0 ⊆ Hm (m := −m). Let A0m be the restriction
of A to D(A0m) = {f ∈ Hm : Af ∈ H} ⊂ Hm and assume it is densely defined and essentially
self-adjoint. Then A has a complete set of generalized eigenvectors belonging to Hm, in the sense
that the relations (5)-(6) hold true.



Combining the two theorems above, we get a generalization of the preceding theorem. In the
statement, the condition that C−1 be a Hilbert-Schmidt operator implies that the extreme space
Φ = D∞(C) :=

⋂
n∈ZD(Hn) is nuclear, the crucial condition in the Gel’fand-Maurin theorem.

Theorem 5 [Generalized Gel’fand-Maurin spectral theorem] Let C > I be a self-adjoint
operator in H and VJ = {Hn, n ∈ Z} the scale of Hilbert spaces built on the powers of C, with
C−1 Hilbert-Schmidt. Let A = A× ∈ VJ) be a symmetric operator with (m,m) ∈ j(A), where
Hm ⊆ H0 ⊆ Hm. Assume there exists a λ ∈ R such that A−λI has an invertible representative
Amm − λEmm : Hm → Hm.

Then Amm has a unique restriction to a self-adjoint operator A0 in the Hilbert space H = H0

with dense domain D(A0) = {f ∈ Hm : Af ∈ H0}. The operator A0 has a complete set of
generalized eigenvectors belonging to Hm. The number λ does not belong to the spectrum of A0.

6.1. Tight riggings

Define the extended spectrum of A0, σext(A0) ⊃ σ(X0), as the closure of the set of all generalized
eigenvalues of A0. Then the rigging is said to be tight if σext(A0) = σ(X0), that is, there are no
additional eigenvalues when going from H to Φ× [11].

As an example, consider the operator A0 = −i d
dx in L2(R). The generalized eigenvectors are

the functions ξλ(x) = eiλx, λ ∈ σext(A0). Then we have a tight rigging in the RHS S ⊂ L2 ⊂ S×,
since σ(A0) = σext(A0) = R, but a nontight rigging in the RHS D ⊂ L2 ⊂ D×, since now
σext(A0) = C.

7. Symmetries: Representations of Lie groups and Lie algebras in a RHS

Consider first the traditional approach of Schrödinger, Dirac, von Neumann,. . . , where states are
represented by rays in a Hilbert space H and observables by self-adjoint operators in H. In this
context, a symmetry is defined as a bijection between states that preserves the absolute values
of all transition amplitudes. According to Wigner, a symmetry τ is realized by a unitary or an
anti-unitary operator in H [12]. Then, if the system admits a symmetry group {τg, g ∈ G}, with
G a Lie group, the latter is realized by a strongly continuous unitary (projective) representation
U of G in H (Wigner–Bargmann) [12, 13].

Assume all “relevant” observables have a common, dense, invariant domain in H. Then one
gets a Rigged Hilbert Space (RHS) Φ ⊂ H ⊂ Φ×, where Φ describes the set of all physical
states. Hence its (conjugate) dual represents pieces of equipment, i.e., measurement apparatus:
the input of the linear functional is a physical state, the output is a number. The problem, of
course, is how to build Φ. Several solutions have been described in the literature [9, 10, 14].

If U is a unitary representation of a symmetry group G in H, it must map physical states
into physical states, continuously, and similarly for the measuring devices. Thus we obtain two
additional representations:

• UΦ, restriction of U to Φ: this is the active point of view for symmetry operations;

• U×Φ , extension of U † from H to Φ×: U×Φ (g)ξ = U †(g)ξ for g ∈ G, ξ ∈ H: this is the passive
point of view.

The equivalence of the two points of view is manifested by the requirement that UΦ and U×Φ are
contragredient of each other, that is,

〈φ|U×Φ (g)ξ〉 = 〈UΦ(g−1)φ|ξ〉, ∀ g ∈ G,φ ∈ Φ, ξ ∈ Φ×,

or, equivalently,
〈UΦ(g)φ|U×Φ (g)ξ〉 = 〈φ|ξ〉, ∀ g ∈ G,φ ∈ Φ, ξ ∈ Φ×,



a relation that embodies the unitarity of U in H:

〈U(g)f |U(g)h〉 = 〈f |h〉, ∀ g ∈ G, f, h ∈ H.

This definition implies that U×Φ is an extension of both UΦ and U , as it should in view of the
triplet structure of the RHS.

Similar considerations apply to the representation of elements of the Lie algebra g or its
universal enveloping algebra U(g), which contains observables of the system.

8. Symmetries: Representations of Lie groups and Lie algebras in a LHS

Now we consider the converse problem. Given a strongly continuous unitary representation U00

of a Lie group G in a Hilbert space H0, we want to build a pip-space or a LHS VI , with H0 as
central Hilbert space, in such a way that U00 extends to a unitary representation U in VI . Of
course, we must represent also elements of the Lie algebra g or the universal enveloping algebra
U(g), since these may be observables.

The solution is to exploit Nelson’s theory of analytic vectors [15]. First some definitions. A
vector ξ ∈ H0 is called a C∞-vector for U00 (resp. an analytic vector) if the map g 7→ U00(g)ξ
of G into H0 is C∞ (resp. analytic). The set H∞0 of all C∞-vectors is dense in H0.

Of particular interest is the so-called G̊arding domain HG0 , which consists of finite linear

combinations of vectors of the form Ũ00(f)φ, f ∈ C∞0 (G), where Ũ00(f)φ =
∫
G U00(g)φf(g) dg

and dg is the left-invariant Haar measure on G.
The key properties of the G̊arding domain are the following: HG0 ⊂ H∞0 , and HG0 is dense in

H0; HG0 is stable under U00(g), ∀ g ∈ G; andHG0 is contained in the domain of the representatives
of all elements of the Lie algebra g of G and stable under them.

In particular, every element T ∈ U(g) is represented in HG0 by an operator Ũ00(T ) (often
essentially self-adjoint on HG0 ) defined by the relation

Ũ00(T )Ũ00(f)ξ = Ũ00(Tf)ξ, f ∈ C∞0 (G)(G), ξ ∈ H.

Define the Nelson operator ∆ :=
∑n

j=1X
2
j , where {Xj , j = 1, . . . , n} are the representatives

under U00 of a basis of g. Then ∆ is essentially self-adjoint on the G̊arding domain HG0 , and ∆
is self-adjoint and positive. Now we define the associated pip-space as VI := {Hn, n ∈ Z} , the
canonical scale of Hilbert spaces generated by the powers of the operator (∆ + 1):

V # := D∞(∆) = H∞0 ⊂ H0 ⊂ V := D∞(∆). (7)

In the scale VI , U00(g) maps every Hn, n = 0, 1, 2, . . . , into itself continuously, for all g ∈ G. By
transposition, the same is true for Unn(g−1) : Hn → Hn, n = 1, 2, . . .

H∞0 ⊂ . . . ⊂ Hn ⊂ . . . ⊂ H0 ⊂ . . . ⊂ Hn ⊂ . . . ⊂ [H∞0 ]×.

In other words, U00 extends to a unitary representation U by totally regular automorphisms of
the LHS VI .

Corresponding to the triplet (7), we have now three continuous representations : U∞∞ ⊂
U00 ⊂ U∞∞, which are simultaneously topologically irreducible.

9. Applications of RHSs and PIP spaces

(1) In mathematical physics
The various formalisms that go beyond Hilbert space have been motivated by difficulties

in the traditional approach of QM. Both RHS and PIP-spaces yield a framework suitable for
the description of quantum systems and their symmetry properties. In particular, PIP-spaces
generalize both the traditional Hilbert space method and the RHS approach, yet the mathematics
involved are simpler, there is no need for sophisticated functional analysis concepts.

Let us quote a number of concrete applications.



• The first rigorous formulation of the Dirac formalism in QM was, of course, obtained via the
RHS approach: the bra-ket formalism, generalized (nuclear) spectral theorem, . . . [9, 10, 14].

• As explained in Section 4.5, pip-spaces allow to treat rigorously singular interactions in QM.
A spectacular example is the clean description of the Kronig-Penney 1D crystal model, and
2D or 3D periodic point interactions [16].

• In quantum scattering theory, a unification of the Weinberg-Van Winter approach and the
Complex scaling method may be obtained with a LHS of analytic functions [3, Sec.7.2].

• Various rigorous formulations of Quantum Field Theory, via RHS or pip-spaces : axiomatic
Wightman QFT, Borchers’ field algebra, Nelson’s Euclidean field theory are based on a
RHS or a LHS.

• PIP spaces yield a natural environment for the representations of Lie groups/algebras, in
particular for QM symmetries, as seen in Section 8 above.

(2) In signal/image processing
The pip-space formalism is ubiquitous in the formulation of signal or image processing.

Indeed, many families of function or distribution spaces that underlie theory are of this type, for
instance, Wiener amalgam spaces, modulation spaces, the Feichtinger algebra S0 ⊂ L2 ⊂ S×0 ,
Besov spaces, coorbit spaces, and so on [3, Chap.8].
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