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Abstract

In this note, an extension of the design of asymptotic observers is proposed
for the thermodynamically consistent non-isothermal continuous stirred tank
reactor (involving nc active chemical species with nr independent reactions)
that has incomplete state information. The two well-known constraints for
the implementations of the asymptotic observer are the process operating
conditions and the availability of temperature measurement together with
(nr− 1) concentration measurements. However, even though the process op-
erating conditions are justified, the requirement of having good estimation
performances and high accuracy of (nc−nr + 1) state estimates may only be
guaranteed if a so-called feasibility condition of the observer is fulfilled. This
feasibility condition is formulated via the full rank constraint of a structural
matrix, which is related to the stoichiometric coefficient matrix. A sufficient
condition for the fulfilment of the full rank constraint shows that the process
estimation selection is not made arbitrarily. Interestingly, as the designed
observer is based on thermodynamic information only and does not require
knowledge of reaction kinetics, the solution proposed to the feasibility condi-
tion has a clear physical meaning. Numerical simulations considered for Van
de Vusse reaction system illustrate the application of the theoretical results.
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1. Introduction

Chemical reaction systems and among them the Continuous Stirred Tank
Reactors (CSTRs) [1, 2] provide an important benchmark for stability anal-
ysis, controller synthesis and observer design in dynamical systems and con-
trol theory. Industrial reactors require precise knowledge of process states to
achieve uniform product quality, and must operate safely under a wide range
of conditions. Nonlinearity is important since the reactor may be subject
to very different operating regimes as it starts up, shuts down or operates
in batch or semi-batch modes [3]. In many applications, it may be difficult
and/or expensive to measure all the states of the CSTR system [4, 5, 6]. State
estimation has therefore attracted the attention of researchers and a range
of tools have been developed for the CSTR (see e.g., [4, 7]). Other examples
include nonlinear state observer design with kinetic models assumed to be
available and subject to technical assumptions such as local/global Lipschitz
condition, etc. [8, 9, 10] and kinetics-independent observers [11, 12] while
[13, 14] for the observer-based control design. In addition to the fulfilment
of an a priori requirement known as the local observability or detectability
condition, i.e. the linearized tangent model of the nonlinear dynamics must
be observable or detectable [15, 16], the key idea considered in these model-
based observer design approaches is to guarantee that for a time sufficiently
large (tending to infinity!), the estimates will converge to the true values
or within a bounded interval close to these. Even though these model-based
approaches are of great importance, they may, in fact, pay for seeking kinetic
information that is extremely challenging to obtain due to the limitations on
data or system parameters, etc. In other works, in many practical applica-
tions the use of the kinetics-independent observer may sometimes provide
advantages over observers based on a full set of state equations, such as the
extended Luenberger observer or the extended Kalman observer [3, 4], since
stoichiometric and thermodynamic data are more readily available than ki-
netic data. We refer the reader to [15, 17, 18, 19] and references therein
for a comprehensive review and recent developments of different types of ob-
servers for biochemical process systems at large and reactors in particular
which can be of the continuous/discrete (i.e. sampled) or the discontinu-
ous (batch and semi-batch) time type. Due to the discontinuous nature, the
observers with sufficiently large time convergence property mentioned above
are obviously inappropriate in the context of batch and semi-batch processes
where one cannot wait very long before obtaining reliable estimates. The
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need to have rapidly reliable estimates is a crucial issue in batch and semi-
batch operation. One possible suggestion would be to use, in the selection
of a suitable observer, different types of models like black-box and white-box
model or another model, called grey-box model, that combines the two ex-
treme cases aforementioned together with time constrained optimization [17],
as pointed out from an academic and a practical point of view by Bonvin
and coworkers (see e.g. [20, 21]). Another state estimation scheme, called
optimization-based observer design [22, 23], in conjunction with iterative al-
gorithms has been proposed based on the search for a global minimum of
a cost function. For process systems, this cost function may be adapted as
the L2-norm of the difference between the measured process output and the
process output predicted based on the current estimated state. Extensions
of several approaches cited to distributed parameter systems such as heat
diffusion systems and bioreactors are possible [24].

In this note, we focus our attention on the design of state observers
with application to a class of continuous homogeneous reactors, namely the
CSTRs. As shown in the literature, the CSTR model takes either a simplified
form [1, 2, 6] or a thermodynamically consistent one [12, 25]. A simplified
CSTR model (or a so-called not thermodynamically consistent CSTR model)
deals with, among others, the energy balance equation written in terms of
temperature only. Hence these two models differ from each other in the use
of less restrictive assumptions on the system dynamics and chemical thermo-
dynamic properties (for example, the specific heat capacity and the heats of
reaction of the mixture are not necessarily constant, etc.). Furthermore, the
thermodynamically consistent model offers a consistency of the different but
equivalent forms of the energy balance equation which are expressed in terms
of either temperature or internal energy1 and possibly even a derivation of
the entropy balance equation [26, 27, 28].

The purpose of this note is to develop a state observer for the thermody-
namically consistent non-isothermal liquid phase CSTR in order to estimate
unmeasured or difficult-to-measure process states with satisfactory conver-
gence rate. More precisely, we address an extension of the state estimation
problem proposed in the pioneering works of Dochain and coworkers [11, 12]
with the following less restrictive settings :

• General chemical reaction networks take place in the CSTR.

1This can also be replaced by enthalpy under appropriate conditions.
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• An energy balance equation more strictly related to thermodynamics
and the impact of the temperature on all the heats of reaction are taken
into account for a wide range of operating conditions.

• Measurement of the reactor temperature and possibly of only a subset
of concentrations is available on-line.

In this context, we adopt the approach based on the idea of using chemical
reaction invariants proposed by Asbjørnsen and coworkers [29, 30, 31]2 to
define a so-called asymptotic observer3. It is worth noting that the use of the
asymptotic observer for the estimation (or the reconstruction) of unmeasured
or difficult-to-measure concentrations within the CSTR is not novel. Never-
theless, compared to [4, 11, 12]4 it is the first time such an observer is designed
with discussions on the so-called feasibility condition for the requirements of
having good estimation performance (i.e., avoiding numerical fluctuations in
transient phase) with high accuracy. With this respect, even if all chemical
reactions are independent, the concentrations of several species to be esti-
mated need to be chosen as appropriately as possible so that the full rank
constraint of a structural matrix (which is derived from the left annihilator of
the stoichiometric coefficient matrix and partial enthalpies vector of reaction
mixture) holds in order to meet the feasibility condition. A sufficient condi-
tion is developed for the fulfilment of the full rank constraint in this work.

2See also [32, 33] for different applications of the reaction variants/invariants concepts
in reactor modeling, simulation, control and optimization. Later, Bonvin and cowork-
ers [34, 35, 36, 37, 38] extended the variants/invariants concepts by taking into account
the effects of reactions, flows and initial conditions as well, and even generalized to dis-
tributed parameter reaction systems such as tubular reactors. On this basis, they intro-
duced the concept of vessel extents. An extension regarding the incorporation of con-
centration/calorimetric measurements into the rate-based and extent-based incremental
identification approaches has been proposed in [39, 40].

3Observer models derived directly from reaction invariants are called asymptotic ob-
servers due to the asymptotic stability property of reaction invariants with appropriate
process operating conditions imposed, as discussed in [29, 30, 31]. Two of the main features
of the asymptotic observer are summarized as follows, (i) it is independent of the knowl-
edge of the reaction kinetics and (ii) its implementation does not require the fulfilment of
any observability conditions [11].

4Indeed, the results proposed in [11, 12] were of great interest, yet for instance limited
to the simplified CSTR models together with all the heats of reaction assumed to be
constant [4, 11] or no developments on the feasibility condition (or the state estimation
sets) have been made yet due to lack of attention to the heat effects [12].
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The proposed solution shows that the process estimation selection is not
made arbitrarily. Furthermore, it has a clear physical meaning because of its
link with the heat of reaction. In other words, the remaining concentrations
(or mole numbers) are then estimated based on the heats of formation of the
different chemical compounds rather than kinetic information and a subset
of the state equations. This is the reason why in this paper, the proposed
asymptotic observer will be called thermodynamically consistent asymptotic
observer (TCAO). A different proof for the exponential convergence of the
states of the TCAO to their exact values in the port-Hamiltonian framework
[41, 42] is given. The state estimates are then obtained from the the states
of the TCAO and the states appropriately chosen to measure by solving a
system of linear equations. This linear system has a single unique solution at
any time. This allows once again to verify the asymptotic stability property
as discussed in [29, 30, 31].

The main novel contributions of the paper are the following.

(i) Two different computation methods are applied so as to derive reaction
invariants. The first one is developed based on Gauss-Jordan elimina-
tion while the second is available in the literature.

(ii) The concept of the asymptotic observer is extended to the thermody-
namically consistent CSTR models. The feasibility condition of the
observer is explicitly shown.

(iii) The open loop and closed loop estimation performances are discussed
and illustrated in simulation.

The paper is organized as follows. The dynamical model of the ther-
modynamically consistent non-isothermal CSTR is presented in Section 2.
Section 3 is devoted to the design of a state reconstruction method on the
basis of extending the asymptotic observer approach. A full rank constraint
(also known as the feasibility condition) and a sufficient condition required
for the fulfilment of this full rank constraint are developed when designing
the TCAO with good estimation performance and high accuracy. Theoretical
developments are then illustrated by simulation results in Section 4. Finally
conclusions and future perspectives of the work are given in Section 5.
Notation The following notations are considered in this paper :

• The superscript T is the matrix transpose.
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• nr stands for the number of chemical reactions (nr ≥ 1).

• mc and nc (mc ≥ 0 and nc ≥ 2) are the numbers of the non-active and
active chemical species, respectively.

• M and N are the sets of indices for non-active and active chemical
species, respectively.

2. The thermodynamically consistent non-isothermal CSTR with
chemical transformation

2.1. Definition

We consider hereafter a nonlinear system, called thermodynamically con-
sistent reaction system, characterised by some properties of the reaction
mixture closer to thermodynamics. Let us recall that, in classical thermody-
namics the evolutionary tendency of isolated systems is in the direction of
increasing entropy, e.g. (dS

dt

)
isolated

≥ 0 (1)

This observation can be extended to open systems [43, 44] (such as an open
homogeneous reactor with a chemical reaction network) and summarized in
Definition 1.

Definition 1. A reaction system is said to be thermodynamically consistent
if it has the following two properties [26, 27, 28]:

(i) The energy balance equation can be expressed in terms of either the
temperature or the internal energy5. Both of these forms are mathe-
matically equivalent.

(ii) The entropy of the system is created due to the irreversible processes
inside the system like the reactions, the irreversible flows of heat, mass
or moment and other possibilities. Furthermore, the entropy creation
term is always greater than or equal to zero.

5This can also be replaced by the enthalpy under the assumptions of constant volume
and pressure.
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Remark 1. The inherent properties (i) and (ii) mentioned above express
both the first and second laws of thermodynamics, that is, the (total) energy
is conserved while the entropy creation term is equal to the internal entropy
production if the system is isolated. These two properties are central for
the chemical reactor modelling and control research area by means of the
Hamiltonian formalism and passivity theory [13, 28, 41, 42].

2.2. The CSTR modelling

Consider a CSTR with nr independent irreversible chemical reactions6

and nc active components Ci of molar mass Mi (i = 1, 2, . . . , nc). Such a
reaction network7 is characterized by the molar mass conservation of the
reactions :

nc∑
i=1

νijMi = 0, j = 1, 2, . . . , nr (2)

where νij is the signed stoichiometric coefficient of species i as it enters in
reaction j [27, 28, 50].

Similarly to the research works in this area (see e.g., [4, 11, 12, 51, 52, 53]),
for modelling purposes, we consider the following assumptions :

(A1) The fluid mixture is ideal, incompressible and maintained at mechan-
ical equilibrium with a constant pressure environment.

(A2) The inlet and outlet flow rates are equal if the holdup volume V is
constant (i.e. the volume variation due to the reactions is negligible).

(A3) The reactor is fed by the species k (k = 1, 2, . . .) at a fixed temperature
TI . The specific heat capacities cp,k of the species k (k = 1, 2, . . .) are
assumed to be constant.

6Without loss of generality, we assume that all chemical reactions are irreversible. It
is worth noting that any reversible reaction can be considered as a simple ”irreversible”
reaction (also called pseudo-irreversible reaction) with reduced reaction rate that is defined
as the difference of the forward and reverse reaction rates [26]. Furthermore a set of
chemical reactions is said to be independent if both the stoichiometries and the kinetics
are linearly independent [45].

7We refer the reader to [46, 47, 48, 49] and references therein for further information
on this concept (particular for representation, analysis and control).
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It is worth noting that the temperature and mole numbers are non-
negative due to the definition of the (absolute) temperature and compositions
[27, 54]. This implies that the CSTR is a positive system [51, 52, 55].

Under (A1)(A2), the energy balance is written using the enthalpy H.
Hence the material and energy balances are then given as follows [1, 2, 13,
36, 56]8 : 

dN1

dt
= δ(N1,I −N1) +

nr∑
j=1

ν1jrj

dN2

dt
= δ(N2,I −N2) +

nr∑
j=1

ν2jrj

...

dNnc
dt

= δ(Nnc,I −Nnc) +
nr∑
j=1

νnjrj

dH
dt

= δ(HI −H) + Q̇J

(3)

where :

• Ni is the mole number of species i (i = 1, . . . , nc);

• H and rj represent the total enthalpy and the reaction rate9 of the
reaction j (j = 1, . . . , nr), respectively;

• Q̇J is the heat flow rate coming from the jacket;

• δ stands for the dilution rate which is assumed to be constant. The
subscript I written in equation (3) denotes ”Inlet”.

Remark 2. Let us note that the dynamics of the mole numbers of non-active
species (such as Inert and/or Catalyst if so), that have not been included in
the CSTR dynamics (3), can be written as follows :

dNot

dt
= δ(Not,I −Not) (4)

8We refer to [12] for a detail discussion and explanation of the implication of the
different choices of the energy balance in the case of models of CSTR. With (3), the
entropy balance equation of the reactor can be derived by considering the Gibbs’ relation
when the local equilibrium assumption is taken into account, as shown in Appendix A. It
should be noted, however, that this entropy balance is not needed at the level of designing
the observer asymptotic [11].

9For the sake of brevity, the notation r for the reaction rate is used instead of rvV as
seen in [14, 26].
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where Not is a vector containing all those non-active species. Since the dif-
ferential equation (4) is stable and the states converge to Not,I with the time
constant τ = 1

δ
, consequently we shall only consider the dynamics of nc active

species as seen in (3) from system theory point of view.

Remark 3. As the total enthalpy H is an extensive variable, it is a homo-
geneous function of degree 1 of Ni, i ∈ N ∪M. The total enthalpy H of the
reaction system is then given by [54, 57, 58, 59] :

H =
∑
i∈N∪M

hi(T )Ni := H(Ni, T ) (5)

in the case of the liquid phase CSTR model, one gets for the partial molar
enthalpy [59] :

hi(T ) = cp,i(T − Tref ) + hi,ref (6)

where Tref and hi,ref are reference values. By using the local equilibrium
hypothesis [27], the energy balance dH

dt
in (3) can be rewritten in terms of

temperature [1, 2, 13] so that :

dT

dt
=

nr∑
j=1

(
−∆HR,j

)
rj

Cp
+ δ(TI − T )

Cp,I
Cp

+
1

Cp
Q̇J (7)

where

∆HR,j =

nc∑
i=1

νijhi(T ) := ∆HR,j(T ) (8)

represents the heat of the chemical reaction j (j = 1, . . . , nr)
10 and,

Cp =
∑
i∈N∪M

cp,iNi (9)

is the total heat capacity. The reciprocal transitions of the thermodynami-
cally consistent energy balance from one form to another, i.e. between the
last entry in (3) and (7), are clear.

10This term is positive if the reaction course is endothermic. Otherwise, it is negative
if the reaction course is exothermic.
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Note also that under a suitable operating condition11, the heat of reaction
∆HR,j (8) can be assumed to be constant and usually be determined quite
accurately by correlation and group contribution methods [59, 60]. Indeed,
this attempt together with the simplified dynamics (i.e, no link with the ther-
modynamic energy balance equation) was considered in [11] when designing
the asymptotic observer for the stirred tank reactors. For the purposes of
comparison, we extract here the simplified energy balance from (1b) in [11]
with adequate notations

dT

dt
=

nr∑
j=1

(
−∆ȞR,j

)
ϕjV

ρčpV
+
F

V
(TI − T ) +

Q̇J

ρčpV
(10)

where F is the influent flow rate (m3/s), V is the reactor volume (m3), ρ is
the density (kg/m3), čp is the specific heat (kJ/kg/K) while ϕjV (kmol/s)
and ∆ȞR,j (kJ/kmol), respectively, are the reaction rate and the heat of
the chemical reaction j. Note also that the density ρ, the specific čp and all
the heats of reaction ∆ȞR,j (j = 1, . . . , nr) are assumed to be constant (see
Assumption H5 in [11]). It follows that equation (10) can be obtained from
(7) if more restrictive assumptions are imposed (see Table 1). Therefore,
it can be interpreted that the system at hand is operating too close to the
equilibrium (i.e. Cp = const. and ∆HR,j = const.). In such an instance, the
derivation of an equivalent expression of the simplified energy balance (10)
(similar to the last entry in (3) of (7)) is tedious.

Table 1: Comparison of the two energy balance models

Quantity/ Value used Value used Restrictions for
Parameter in (7) in (10) (7) equivalent to (10)

Cp (kJ/K)
∑

i∈N∪M
cp,iNi ρčpV = const.

∑
i∈N∪M

cp,iNi = ρčpV

∆HR,j (kJ/kmol)
nc∑
i=1

νijhi(T ) ∆ȞR,j = const.
nc∑
i=1

νijhi(T ) = ∆ȞR,j

(j = 1, . . . , nr)
Inlet heat capacity Cp,I unknown Cp,I = Cp

11The changes of the states (such as the temperature T , etc.) are enough small.
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Even if the results developed further in [12] were of great importance,
yet for instance paid by losing physical insights of the so-called feasibility
condition since the heat effects have not been taken explicitly into account. It
is worth noting that the heat effects in reaction systems need to be considered
in the developments because the reactor temperature is a major concern with
the reactor safety management [1, 2]. In this work, all the heats of reaction
are functions of the temperature T intrinsically.

The CSTR dynamics expressed with state variables (N1, . . . , Nnc , H) given
by equation (3) or (N1, . . . , Nnc , T ) defined by the first nc equations in (3) and
equation (7) are mathematically equivalent due to the fundamental thermo-
dynamic equation (5) and the explicit form given by (6). In other words, since
the liquid phase CSTR states are thermodynamically unique along the dy-
namical trajectories, there exist therefore a diffeomorphism T and a vector bT
which allow to relate (N1, . . . , Nnc , T ) with the state vector (N1, . . . , Nnc , H).
Indeed it follows immediately from equations (5) and (6) that :

N1

...

Nnc

T


= T



N1

...

Nnc

H


+ bT (11)

where :

T =



1 0 0 . . . 0 0

0 1 0 · · · 0 0

0 0 1
. . .

...
...

0 0 0
. . . 0 0

...
...

...
. . . 1 0

1
Cp

−h1,ref
Cp

−h2,ref
Cp

· · · −h(nc−1),ref

Cp

−hnc,ref
Cp



(12)
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bT =



0

...

0

−
∑
i∈M

hi,refNi

Cp
+ Tref


(13)

Remark 4. For general homogeneous thermodynamic systems, the relation-
ship between (N1, . . . , Nnc , T ) and (N1, . . . , Nnc , H) (similar to that of (11))
is not obvious due to lack of the explicit expression of state equations and/or
constitutive equations, etc. However, it is important to note that the funda-
mental thermodynamic equation H := H(Ni, T ) (5) remains valid for cases
of homogeneous mixtures, and in such cases hi = µi + Tsi where µi and si
are the chemical potential and partial molar entropy of the chemical species
i [27, 54, 59]. Interestingly this allows to recover the algebraic form of Gibbs
equation in energy representation [58] :

H =
∑
i∈N∪M

µiNi + TS := H(Ni, S) (14)

where the entropy S =
∑

i∈N∪M
siNi := S(Ni, T ). The arguments T of the func-

tion H(Ni, T ) (5) and S of the function H(Ni, S) (14) are the energy conju-
gated variables. The connection of these conjugated variables is expressed as
follows [58]12 :

T =
(∂H
∂S

)
Ni

(15)

As a consequence of (14)(15), any evolution of the system is associated to
the so-called equilibrium manifold or thermodynamic phase space (TPS) [26,
61]13.

12The temperature T is known as an intensive variable. From the contact geometric
viewpoint, it measures the slope of the energy in the direction of the entropy S. This
connection can also be viewed as a particular case of the first law of thermodynamics.

13For a treatment of geometry of thermodynamic processes, especially if the TPS concept
and/or the (generalized) Legendre transform are involved, we refer to e.g. [62, 63, 64, 65,
66].
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The non-isothermal CSTR is said to be thermodynamically consistent
due to, among others, the reciprocal derivations between different energy
balance equation models (i.e. the last entry in (3) and equation (7)).

Example 1. We consider the production of cyclopentenol C5H7OH from cy-
clopentadiene C5H6 by sulfuric acid-catalyzed electrophilic addition of water
in a dilute solution. The total mass of the liquid phase mixture mt is assumed
to be constant. The process is described by the Van de Vusse reaction system
[67]. The stoichiometry is written as in (2) with nr = 3 and nc = 5 :

C5H6︸ ︷︷ ︸
M1

+ H2O︸︷︷︸
M5

H+

−−→
r1

C5H7OH︸ ︷︷ ︸
M2

+ H2O︸︷︷︸
M5

H+

−−→
r2

C5H8(OH)2︸ ︷︷ ︸
M3

2 C5H6︸ ︷︷ ︸
M1

−→
r3

C10H12︸ ︷︷ ︸
M4

(16)

The system dynamics (3) with 5 active species is given by [25] :

dN1

dt
= δ(N1,I −N1) + ν11r1 + ν12r2 + ν13r3

dN2

dt
= δ(N2,I −N2) + ν21r1 + ν22r2 + ν23r3

dN3

dt
= δ(N3,I −N3) + ν31r1 + ν32r2 + ν33r3

dN4

dt
= δ(N4,I −N4) + ν41r1 + ν42r2 + ν43r3

dN5

dt
= δ(N5,I −N5) + ν51r1 + ν52r2 + ν53r3

dH
dt

= δ(HI −H) + Q̇J

(17)

By convention [27, 28, 50], we therefore have :
ν11 = −1, ν12 = 0, ν13 = −2
ν21 = 1, ν22 = −1, ν23 = 0
ν31 = 0, ν32 = 1, ν33 = 0
ν41 = 0, ν42 = 0, ν43 = 1
ν51 = −1, ν52 = −1, ν53 = 0

(18)

Note that sulfuric acid is present as a catalyst (i.e. mc = 1). From Remark
2, we therefore have :

dNot
dt

= δ(Not,I −Not) (19)

In differential equations (17) and (19), we have δ = q
mt

and Ni,I = ωi,I
mt
Mi

where ωi,I is the mass fraction of species i in the inlet (
∑

i∈M∪N
ωi,I = 1) and
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q is the mass flow rate. Finally the energy balance dH
dt

in equation (17) is
written in terms of the temperature T (see Remark 3) so that :

dT

dt
=

3∑
j=1

(
−∆HR,j

)
rj

Cp
+ δ(TI − T )

Cp,I
Cp

+
1

Cp
Q̇J (20)

with : 
∆HR,1 = −h1(T )− h5(T ) + h2(T ) > 0
∆HR,2 = −h2(T )− h5(T ) + h3(T ) < 0
∆HR,3 = −2h1(T ) + h4(T ) < 0

(21)

where equations (8) and (18) have been used to obtain (21) and,

Cp = cp,1N1 + cp,2N2 + cp,3N3 + cp,4N4 + cp,5N5 + cp,otNot (22)

In what follows, the dynamics (3) will be used to design the asymp-
totic observer for the thermodynamically consistent non-isothermal CSTR.
We shall see that the proposed developments extend the results of Dochain
and coworkers [11, 12] in the sense that a so-called feasibility condition of
the asymptotic observer is required for good estimation performance with
high accuracy. A sufficient condition is proposed for solutions. Interestingly
this can be explicitly formulated and interpreted under physical insights.
The resulting observer is therefore called the thermodynamically consistent
asymptotic observer (TCAO).

3. State reconstruction of the CSTR via TCAO: stability, conver-
gence and feasibility condition

3.1. Preliminaries

Let us reconsider the CSTR dynamics given in equation (3) and rewrite
it into the following form :{

dH
dt

= δ(HI −H) + Q̇J
dN
dt

= δ(NI −N ) + νr
(23)

whereN = (N1, . . . , Nnc)
T is the vector of mole numbers. ν =

(
νij

)
i = 1, . . . , nc;
j = 1, . . . , nr

is the matrix of stoichiometric coefficients and r = (r1, . . . , rnr)
T is the vector

composed of chemical reaction rates.
The following additional assumption is made [11, 12] :
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(A4) (nr−1) concentrations (or mole numbers) and the reactor temperature
T are assumed to be available for the on-line measurement14.

As previously shown in [45], the reaction network described by equation
(2) with nr independent irreversible chemical reactions and nc active compo-
nents fulfilling nr < nc

15 is such that,

rank(ν) = nr (24)

We have the following lemma.

Lemma 1. There exists a nc × nc non singular matrix Θ :

Θ =


(
ν†
)
nr×nc(

ν⊥
)

(nc−nr)×nc


nc×nc

(25)

where the following equalities hold :

ν†ν = Inr×nr (26)

and
ν⊥ν = 0(nc−nr)×nr (27)

where Inr×nr and 0(nc−nr)×nr are the identity and the zero matrices, respec-
tively. The matrix Θ (25) is not unique.

Proof. The proof immediately follows using the condition (24). Indeed it
can be shown that Θ is a matrix directly derived by Gauss-Jordan elimina-

tion, Θ =
∏
i

Θi, where Θi is the elementary matrix operator to perform row

operations. �

14That means that nr values are assumed to be measured in total.
15Since nr and nc are the positive integers, an equivalent constraint can also be given by

nr + 1 ≤ nc. A systematic proof of this constraint can be found completely in Proposition
4 of [45].
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Example 2. Let us consider the Van de Vusse reaction system given in Ex-
ample 1. The system dynamics given by equations (17) and and (18) can be
re-expressed as (23), where :

ν =


−1 0 −2

1 −1 0
0 1 0
0 0 1
−1 −1 0

 and r = (r1, r2, r3)T (28)

After some manipulations, we have :

Θ =


0 1 1 0 0
0 0 1 0 0
−1

2
−1

2
−1

2
0 0

1
2

1
2

1
2

1 0
0 1 2 0 1

 (29)

where ν† and ν⊥ of the matrix Θ (29) verify equations (26) and (27), re-
spectively. Another result for the matrix Θ (25) can be derived as follows :

Θ =


0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 1 2 0 1
1 0 −1 2 −1

 (30)

Remark 5. From a structural point of view, the matrix Θ given in equa-
tion (25) forms a linear transformation associated with the vector of mole
numbers N that decomposes the dynamics of the vector N in (23) into two
intrinsically different parts (also known as the two-way separation), the first
one with the reaction-variant states vector Nv and the second one with the
reaction-invariant states vector Niv [29, 30, 31, 34]16. However unlike the
linear transformation (denoted by T ) proposed by Bonvin and coworkers in

16An important property of the (thermodynamic) energy balance equation (i.e. first
entry in (23)) is that it does not depend explicitly on the reaction rates. This property
will be used for the design of asymptotic observer of non-isothermal CSTR since H is also
a reaction-invariant.
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[35, 36], the approach used to construct the matrix Θ from the stoichiometric
coefficient matrix ν via Gauss-Jordan elimination is mathematically simpler
since no additional constraint is imposed on Θ (i.e. the submatrices or the
kernel and Moore-Penrose peusdo-inverse calculations as well, etc.). In fact,
the proposed transformation that achieves the two-way separation objective,
e.g. variant and invariant states, consists in performing a finite sequence of
elementary row operations, which moves the stoichiometric coefficient matrix
closer to a row-reduced echelon form. As a consequence, the obtained result
is flexible in nature since the variants are unnecessarily nonorthogonal to the
invariants by the fact that ν†(ν⊥)> 6= 0nr×(nc−nr)

17. In other words, follow-
ing the procedures proposed by Bonvin and coworkers, more manipulations
are made, particularly for high-dimensional stoichiometric matrices. As a
matter of fact, the linear transformation Θ of Example 2 can be obtained
below :

Θ =


− 1

11
5
11

0 − 2
11
− 5

11

0 −1
3

1
3

0 −1
3

− 4
11
− 2

11
0 3

11
2
11

− 1
11

4
33

1
3
− 2

11
7
33

2
11

1
11

0 4
11
− 1

11

 (31)

Note also that the transformation matrices Θ (see equations (29) and (30)
or (31)) obtained by the two methods are useful for the two-way separation
and thus for the asymptotic observer design. We shall not elaborate any
further on the concept of the reaction variants here and refer the reader to
[14, 32, 37, 38, 68, 69] for more details and applications.

3.2. The TCAO design: stability, convergence and feasibility condition

As a consequence of Lemma 1, we state Proposition 1 below.

Proposition 1. The map from Rnc to Rnc−nr , Z = ν⊥N , reduces the dy-
namics of the vector of mole numbers N defined by the second entry in equa-
tion (23) to :

dZ

dt
= δ(ZI −Z) (32)

17See also [32] for extensive discussions on the advantage of using variants which are
nonorthogonal to the invariants, with special emphasis on control. Nevertheless, it is
difficult to extend the treatment to the case when a finer separation is needed for further
studies such as model reduction and kinetic identification, as shown in [35, 36].
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where ZI = ν⊥NI and ν⊥ are given in equation (25). Furthermore, the
reduced dynamics are independent of the chemical reaction kinetics.

Proof. The proof immediately follows by multiplying ν⊥ defined by equation
(25) with dN

dt
in equation (23). Note also that Z is known as the reaction-

invariant state vectorNiv as mentioned in Remark 5. �

For the sake of deriving the main results in the remaining of the paper, let
us write N = {1, . . . , nc} where N is called the set of (ordered) indices for all
the active chemical species of the reaction network described by the invariant
(2) and the differential equations (23). It is worth noting that there exists
a disjoint partitioning I,J ⊂ N with (nr − 1) and (nc − nr + 1) elements,
respectively, so that :

I ∩ J = ∅
I ∪ J = N (33)

where ∅ denotes the empty set; I and J refer to the subsets of (nr − 1)
measured mole numbers and (nc − nr + 1) remaining mole numbers to be
estimated, respectively. As a consequence, we derive from the fundamental
thermodynamic equation (5) and Proposition 1 :{

H = hT
INI + hT

JNJ + hT
otNot

Z =
(
ν⊥
)
I
NI +

(
ν⊥
)
J
NJ

(34)

where :

• hot and Not are the vectors of the partial molar enthalpies and mole
numbers of the non-active species, respectively;

• hI and NI are the vectors of the partial molar enthalpies and mole
numbers of the active species associated with the subset I, respectively;

• hJ and NJ are the vectors of the partial molar enthalpies and mole
numbers of the active species associated with the subset J , respec-
tively;

•
(
ν⊥
)
I

and
(
ν⊥
)
J

are the submatrices of the matrix
(
ν⊥
)

formed by

selecting columns corresponding to the values of the elements of the
subsets I and J .
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The convergence analysis of the estimated values to their exact values is
proved by Proposition 2. A different version of the convergence proof of the
state estimates directly derived from the (classical) asymptotic observer can
be found in [4, 11].

Proposition 2. If the subset J is chosen as appropriately as possible so that
the structural matrix for the estimation defined by

O =

(
hT
J(

ν⊥
)
J

)
(nc−nr+1)×(nc−nr+1)

:= O(t) (35)

fulfils the following full rank constraint,

rank(O) = nc − nr + 1, ∀t ≥ 0 (36)

then the states to be estimated N̂J are asymptotically reconstructed by solving
the following algebraic equations :

N̂J = O−1

(
Ĥ − hT

INI − hT
otN̂ot

Ẑ −
(
ν⊥
)
I
NI

)
(37)

where Ĥ and Ẑ are the states of the TCAO designed for the system dynamics
defined by equation (23) and governed by{

dĤ
dt

= δ(HI − Ĥ) + Q̇J

dẐ
dt

= δ(ZI − Ẑ)
(38)

The convergence of the TCAO dynamics (38) to its exact value, i.e. Ĥ → H
and Ẑ → Z, is exponentially stable with the time constant τTCAO = 1

2δ
.

Proof. Let us define the error vector ε(t) :=

(
εH̃(t)
εZ̃(t)

)
=

(
Ĥ −H
Ẑ −Z

)
∈

R(nc−nr+1). By subtracting (38) to (23), we get :

dε

dt
= −δ I(nc−nr+1)×(nc−nr+1)

(
εH̃
εZ̃

)
(39)

The dynamics of ε is then presented in the port-Hamiltonian format (see
equation (B.5) of Appendix B) where J(ε) = 0, R(ε) = δ I(nc−nr+1)×(nc−nr+1)
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and the Hamiltonian storage function H(ε) = 1
2
εTε ≥ 0. H(ε) plays a role

of a Lyapunov function for the stability at the origin of the dynamics of the
error ε because :

dH(ε)

dt
= −

(∂H(ε)

∂ε

)T

R(ε)
(∂H(ε)

∂ε

)
< 0 (40)

Furthermore, it can be rewritten as follows :

dH(ε)

dt
= −δ εTε = −2δ H(ε)⇒ H(ε(t)) = H(ε(t = 0)) exp

− t
1
2δ (41)

The storage function H(ε(t)) exponentially converges to 0 with the time
constant τTCAO = 1

2δ
since δ > 0. As a consequence, we have ε(t) → 0, i.e.

Ĥ → H and Ẑ → Z when t → +∞. In other words, we obtain by using
equation (34) together with equation (4) :

O
(
N̂J −NJ

)
→ 0, when t→ +∞ (42)

where the matrix O is defined by equation (35). Thanks to the condition
(36), we conclude :

N̂J →NJ , when t→ +∞ (43)

From this, (37) follows immediately. The latter completes the proof. �

Remark 6. The estimates N̂ot are omitted in equation (37) if mc = 0. Oth-
erwise, the estimates N̂ot of the states Not are derived by using the differential
equation (4) so that :

dN̂ot

dt
= δ(NotI − N̂ot) (44)

The dynamics (44) is exponentially stable with the time constant τ = 1
δ
.

Remark 7. The two-way separation resulting from the matrix transforma-
tion of Lemma 1 is potentially useful for the design of optimization-based

observers thanks to the existence of a state partition x =

(
xI
xII

)
with

xI =

(
ν⊥ 0
0 1

)(
N
H

)
and xII =

(
ν† 0

)( N
H

)
(see, e.g., [23]). Fol-

lowing the same idea as in the design of the TCAO, the dynamics in the novel
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coordinates is given by dx
dt

= f(x), while the temperature designated as the
measured output is expressed from (11) as a nonlinear function of (N , H),
and thus of x,

T = (T )nc+1

 ν⊥ 0
0 1
ν† 0

−1

x+ (bT )nc+1 (45)

where (.)i represents the ith row of the matrix (.). Even if the substate xII has
effect on the output, as the detectability still holds in this case, the design of
optimization-based observers in the sense of [23] may be implementable pro-
vided that some appropriate bounding function is existent. However, nonlin-
earity together with numerical instability has to be taken properly into account
for a wide range of operating conditions since the observer may diverge.

The TCAO defined in equation (38) does not require knowledge of reac-
tion kinetics thanks to the state transformation of Proposition 1. This is an
interesting feature compared with other state observers (such as the extended
Luenberger observer (ELO) and Kalman observer (EKO), etc. [4, 12, 15]),
since usually there is considerable uncertainty in the kinetic parameters in
many practical applications [1, 2, 59, 60, 70].

Remark 8. As an extension of the (classical) asymptotic observer to the
TCAO, the following two hard and soft constraints are taken into account
prior to designing the TCAO for good estimation performances with high
accuracy :

Hard constraint The process operating conditions with an appropriate di-
lution rate18 are so that the TCAO dynamics globally exponentially con-
verges to its exact values (i.e. Ĥ → H and Ẑ → Z). This analysis is
well-known and given in [4, 11, 12].

Soft constraint The process estimation selection (or the process measure-
ment selection) with the fulfilment of the full rank constraint of the
structural matrix O (35) :

det(O) 6= 0,∀t ≥ 0 (46)

18That is, it is (relaxedly) positive or not equal to zero for too long. In other words, if
it is a persistently exciting signal, i.e. if there exist positive constants α and β such that:

∀t ≥ 0,
∫ t+β
t

δ(t′)dt′ ≥ α.
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is so that (nc − nr + 1) remaining mole numbers can be reconstructed
via (37).

Let us consider the following example.

Example 3. In [12], the authors considered a liquid phase CSTR involving
three chemical species X1, X2 and X3 with the simple exothermic reaction
scheme : ν1X1

r1−→ ν2X2
r2−→ ν3X3. The mole number (or the composition)

of the species X1 was assumed to be measured. Thus, in that case, it follows
that : nr = 2, nc = 3, mc = 0, N = {1, 2, 3}, I = {1} and J = {2, 3}. We
can check easily that the full rank condition of the structural matrix Θ (or
denoted by A2, see equation (74) in [12]) is justified, i.e. :

det(A2) =
ν1V

ν2ν3

∆HR,2 6= 0

where ∆HR,2 = −ν2h2(T ) + ν3h3(T ) < 0 with ν1 > 0, ν2 > 0 and ν3 > 0.
However, what happens to the inverse of the matrix A2 when reconstructing
the unmeasured states (see equation (63) in [12]) if the measurement selection
is so that I = {2} and J = {1, 3}? This unobvious situation may be similar
to that of the observer estimates given in [14].

Up to now, no general estimation/measurement selection methodology
has been provided to satisfy the soft constraint (i.e. the full rank constraint
(36)). Contrary to the dependence of the dilution rate upon the process op-
erating conditions, the structural matrix O defined by equation (35) depends
only on the temperature (i.e. the internal state variable). Therefore, the full
rank constraint (36) can be viewed as the feasibility condition (see e.g., [16])
for the TCAO. However how can we make this feasibility condition fulfilled
in the TCAO design?

Since the subsets I and J of the set N are fully disjoint, the process
estimation selection associated with J or process measurement selection as-
sociated with I can be deduced from each other without ambiguity. In other
words, if a process measurement selection is made, this implies that a pro-
cess estimation selection is derived accordingly, or vice versa. Without loss
of generality, in the remaining of the paper, we focus our attention on the
process estimation selection.

As shown in Example 3, it follows that the choices for (nc− nr + 1) mole
numbers to be estimated associated with the subset J cannot be made a
priori arbitrarily. On the other hand, since card(N) = nc and card(J ) =
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nc−nr+1 (or card(I) = nr−1), the total number of all the feasible estimation
selection cases to be considered for the subset J is a (nc−nr+1)-combination
of the set N having nc elements, i.e. :

ntot =

(
nc

nc − nr + 1

)
:=

nc!

(nc − nr + 1)! (nr − 1)!
(47)

A feasible estimation selection case, among others, is said to be true if the
full rank constraint (36) is guaranteed. Hence the question arises whether
it is possible to show the conditions for which a feasible estimation selection
case comes true, thereby providing the guidelines for removing unnecessary
manipulations with other worse estimation selection cases.

In addition to the necessary observability property provided (e.g. [11]),
the following proposition proposes a sufficient condition for true feasible es-
timation/measurement selection sets.

Proposition 3. The full rank constraint (36) is fulfilled if almost all the
active chemical species with the mole numbers to be estimated associated with
the subset J are chosen in such a way that they, all together, are intrinsically
involved in a certain reaction k among nr reactions available.

Proof. As the subset J is made so that almost all the active chemical species
with the mole numbers to be estimated are intrinsically involved in reaction
k, from a mathematical point of view, it is possible to calculate, arrange and
derive using (35) :

det(O) = κ ∆HR,k (48)

where κ is a non-zero scalar. Since the heat of reaction ∆HR,k can be either
positive or negative in dependence on reaction nature, i.e. ∆HR,k 6= 0, we
conclude :

det(O) 6= 0

The latter completes the proof. �

In what follows, numerical simulations will be carried out for the Van
de Vusse reaction mechanism (see Examples 1 and 2 above) to illustrate the
proposed developments, particularly those of Proposition 3.

4. Numerical simulation
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4.1. System description and preliminary computations

We reconsider Examples 1 and 2 and assume that the heat flow rate
coming from the jacket is given by [1, 2, 51, 52] :

Q̇J = λ(TJ − T ) (49)

where λ > 0 is the heat exchange coefficient19. The jacket temperature and
reactor temperature are denoted by TJ and T , respectively. The mole number
of sulfuric acid is regulated to be constant in the reactor by imposing some
appropriate initial condition (i.e. by setting Not0 = Not,I for the dynamics
given in (19)). All the thermodynamic, kinetic parameters and data are
available in [25]. The following stationary equilibrium point is derived [25]
(say precision around 10−4) : T̄ = 398.210 (K), N̄1 = 1.593 (mol), N̄2 =
1.419 (mol), N̄3 = 11.551 (mol), N̄4 = 0.294 (mol), N̄5 = 447.701 (mol)
and N̄ot = Not,I = 5.102 (mol). Furthermore, the system exhibiting a non-
minimum phase behavior is (locally) asymptotically stable as shown in [25,
51].

Without loss of generality, the matrix Θ given in equations (25) and (29)
is first used for the illustration of the application of the proposed results. We
therefore have :

ν⊥ =

(
1
2

1
2

1
2

1 0
0 1 2 0 1

)
(50)

It is evident that nr = 3 and nc = 5 and the set N = {1, 2, 3, 4, 5}. From
(47), the total number of feasible cases ntot to be considered for the subset
J (33) is :

ntot =

(
5
3

)
=

5!

3! 2!
= 10 (51)

Table 2 summarizes all these 10 cases and their treatments.

19The dependency of the heat flow term Q̇J on the reactor temperature is consistent
with σex.

s (A.6b) since the positive semi-definite property holds.
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Table 2: Ten feasible cases to be considered for the subsets I and J

Case J I det(O) Physical sense Sign of det(O)
of det(O)

1 {3,4,5} {1,2} h3(T )− 1
2
h4(T )− 2h5(T ) unknown unknown

2 {2,4,5} {1,3} h2(T )− 1
2
h4(T )− h5(T ) unknown unknown

3 {2,3,5} {1,4} 1
2
(h2(T )− h3(T ) + h5(T )) −1

2
∆HR,2 > 0

4 {2,3,4} {1,5} −2h2(T ) + h3(T ) + 1
2
h4(T ) unknown unknown

5 {1,4,5} {2,3} h1(T )− 1
2
h4(T ) −1

2
∆HR,3 > 0

6 {1,3,5} {2,4} 1
2
h1(T )− 1

2
h3(T ) + h5(T ) unknown unknown

7 {1,3,4} {2,5} −2h1(T ) + h4(T ) ∆HR,3 < 0
8 {1,2,5} {3,4} 1

2
(h1(T )− h2(T ) + h5(T )) −1

2
∆HR,1 < 0

9 {1,2,4} {3,5} −h1(T ) + 1
2
h4(T ) 1

2
∆HR,3 < 0

10 {1,2,3} {4,5} 1
2
h1(T )− h2(T ) + 1

2
h3(T ) unknown unknown

From Table 2, it is shown that Cases 1, 2, 4, 6 and 10 do not fulfil the
requirements of Proposition 3 since the species associated with the subset J
of those cases are not involved in any reaction of three independent reactions
given by (16). As contrary to the evidence of Cases 3 and 8, the explanation
for Cases 5, 7 and 9 is that two species (species 1 and 4) associated with
the subset J are involved in reaction 3 of three independent reactions (16),
except that, of course, the remaining species is considered as a transparent
species in that reaction (i.e. with the stoichiometric coefficient equal to 0).

4.2. Open loop simulations

For simplicity, only Cases 4 and 7 are considered further next. The struc-
tural matrix and its inverse are given in Table 3. It is shown that the de-
terminants of each structural matrix O depend only on T . The reactor
temperature is thus a major concern with the singularity as well as with the
estimation performance of the observer when the sign (or the physical sense)
of the determinants is completely unknown. A computational comparison
of different formulations for the state estimation yields very similar results
as seen in Table 4 where the transformation matrix Θ (31) is used. Under
identical initial conditions, the resulting asymptotic observers provide the
same estimation performance as illustrated next.
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Table 3: The structural matrix and its inverse computed from the proposed approach via
Θ (29)

Case O O−1

4

 h2(T ) h3(T ) h4(T )
1
2

1
2

1
1 2 0

 1
det(O)

 −2 2h4(T ) h3(T )− 1
2
h4(T )

1 −h4(T ) −h2(T ) + 1
2
h4(T )

1
2
−2h2(T ) + h3(T ) 1

2
h2(T )− 1

2
h3(T )


(with det(O) = −2h2(T ) + h3(T ) + 1

2
h4(T ))

7

 h1(T ) h3(T ) h4(T )
1
2

1
2

1
0 2 0

 1
det(O)

 −2 2h4(T ) h3(T )− 1
2
h4(T )

0 0 −h1(T ) + 1
2
h4(T )

1 −2h1(T ) 1
2
h1(T )− 1

2
h3(T )


(with det(O) = −2h1(T ) + h4(T ) ≡ ∆HR,3 < 0)

Table 4: The structural matrix and its inverse computed from the proposed approach via
(31)

Case O O−1

4

 h2(T ) h3(T ) h4(T )
4
33

1
3

− 2
11

1
11

0 4
11

 1
det(O)

 4
33

− 4
11
h3(T ) − 2

11
h3(T )− 1

3
h4(T )

− 2
33

4
11
h2(T )− 1

11
h4(T ) 2

11
h2(T ) + 4

33
h4(T )

− 1
33

1
11
h3(T ) 1

3
h2(T )− 4

33
h3(T )


(with det(O) = 1

33
(4h2(T )− 2h3(T )− h4(T )))

7

 h1(T ) h3(T ) h4(T )
− 1

11
1
3

− 2
11

2
11

0 4
11

 1
det(O)

 4
33

− 4
11
h3(T ) − 2

11
h3(T )− 1

3
h4(T )

0 4
11
h1(T )− 2

11
h4(T ) 2

11
h1(T )− 1

11
h4(T )

− 2
33

2
11
h3(T ) 1

3
h1(T ) + 1

11
h3(T )


(with det(O) = 2

33
(2h1(T )− h4(T )) ≡ − 2

33
∆HR,3 > 0)

As shown in Tables 3 and 4, the determinants of the structural matrix
O of Case 4 may become singular at a certain time if the measurement of
the reactor temperature T evolves towards the stable steady state value T̄
in such a way that its trajectory from a given initial condition T0 crosses the
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critical temperature Tc, or Tc ∈ [min{T0, T̄} max{T0, T̄}] with

Tc =
2h2,ref − href,3 − 1

2
href,4

−2cp,2 + cp,3 + 1
2
cp,4

+ Tref (52)

In other words, once Tc is positive, one design suggestion to possibly avoid
the singularity is that the initial temperature T0 is initialized far enough from
Tc and the closed interval [min{T0, T̄} max{T0, T̄}] does not contain Tc. It
is worth noting that both Tc and T̄ depend on the model parameters and/or
operating conditions while T0 is an arbitrarily chosen positive constant in
practice. On the other hand, if the determinants are nonzero at any time t
due to their link with the heat of reaction of any (endothermic or exothermic)
reaction involved, the corresponding structural matrix O therefore fulfils the
full rank condition despite the dynamic behavior of the system and the initial
condition, as obviously shown by Case 7.

For the sake of simulation, the following initial conditions are used :

• for the reaction system dynamics : T0 = 300 (K), N10 = 0.8 (mol), N20 =
0.4 (mol), N30 = 9 (mol), N40 = 0.27 (mol), N50 = 470 (mol) and
Not0 = N̄ot.

• for the TCAO : Ĥ0 = H(T ′0, N
′
10, N

′
20, N

′
30, N

′
40, N

′
50, N

′
ot0) and Ẑ0 =

ν⊥N ′0 where N ′0 = (N ′10, . . . , N
′
50)T with

T ′0 = T0 + 1
N ′10 = N10 + 0.1
N ′20 = N20 + 0.2
N ′30 = N30 + 1
N ′40 = 0.15
N ′50 = N50 + 5
N ′ot0 = Not0

(53)

It follows from (52) that Tc = 359.866 (K) and thus Tc ∈ [T0 T̄ ]. Con-
trary to Case 7 where the requirements of Proposition 3 (and Remark 8) are
fulfilled (thus, the asymptotic convergence of the states to be estimated is
globally guaranteed as shown in Figure 1), Case 4 provokes a change of the
value of the determinant det(O) in time from the positive to the negative (i.e.
passage through zero), and therefore violates the feasibility condition (46).
Although the convergence of the molar numbers to be estimated can also be
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obtained as seen in Figure 2 thanks to the nonzero value of the determinant
det(O) at steady state, however, in such an instance, we therefore pay for
numerical fluctuations in transient phase. In other words, it is shown from
(37) that the numerical fluctuations are present in the states to be estimated
at the time of the passage through zero. As previously suggested, the sin-
gularity situation of Case 4 can be avoided as seen in Figure 3 if the initial
temperature is chosen to be far enough from Tc (for example T0 = 385 (K)
and thus Tc /∈ [min{T0, T̄} max{T0, T̄}]).

4.3. Some further discussions

In general, the ”division-by-zero” situation may make the system perfor-
mance via a combined observer-controller strategy worse if the robustness
challenges (e.g. control sensibility with noise/disturbance or data reconcil-
iation etc. [36, 37, 38, 51, 52, 53]) are not well enough taken into account
in the treatment. As a matter of illustration, if the control design is re-
quired in order to stabilize the reaction system at an optimal temperature
Td (Td = 367.28 (K)) that consequently corresponds to a maximal amount
of the desired product C5H7OH (N2,d = 3.37 (mol)), one possible nonlinear
feedback law for the manipulated variable TJ is derived on the basis of con-
sidering the availability function as a candidate Lyapunov function (see also
the general control equation given by (31) in [25])

TJ =
1

λ

[
K
( 1

T
− 1

Td

)
−
∑
i∈N∪M

( 1

T
− 1

Td

)−1

Γi(T, Td)
dNi

dt
−δ(HI−H)

]
+T (54)

where Γi(T, Td) = (cp,iTref − hi,ref )
(

1
T
− 1

Td

)
+ cp,i ln

(
T
Td

)
and K is called

the controller gain. We thus assume now that the nonlinear controller (54)
is coupled with the proposed observer for practical implementation. The
simulation results performed on the two computation approaches (Tables 3
and 4) with K = 50×109 show that when the process estimation selection is
made appropriately, the observer-controller feedback loop enables to stabilize
the system at the desired set-point (i.e. T → Td) (Figures 4 and 5(a) for Case
7) that, otherwise, deactivates or diverges once the observer is out of action
due to the singularity. For instance, the dynamics of the control input as
shown in Figure 5(b) for Case 4 is physically inadmissible. Similarly to the
previous open loop singularity, this closed loop singularity can be eliminated
as seen in Figure 6 if the initial temperature is chosen to be far enough
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Figure 1: Case 7: det(O) and state estimates
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Figure 3: Case 4: det(O) and state estimates with T0 = 385 (K)
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from Tc (T0 = 385 (K)) while a greater value of the controller gain (for
example K = 100 × 109) allows to improve the rate of convergence. Again,
under similar initial conditions and treatment levels the resulting asymptotic
observers provide the same closed loop estimation performance.
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Figure 4: The system dynamics with the observer-controller feedback loop
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5. Conclusion

In this work, an extension to the state estimation has been proposed on
the basis of the so-called asymptotic observer approach for the case that
not all states of chemical reaction networks within a non-isothermal CSTR
are measured. The non-isothermal CSTR is considered here to be thermo-
dynamically consistent, or strictly speaking, closer to the thermodynamics
due to, among others, the reciprocal derivations of different energy balance
equation models. The proposed observer is then called thermodynamically
consistent asymptotic observer (TCAO). Two hard and soft constraints, the
process operating conditions with an appropriate dilution rate for the pre-
cise convergence (see e.g., [4, 11, 12]) and the suitability of process esti-
mation/measurement selection for the feasibility condition, respectively, are
required prior to designing the TCAO for good estimation performance with
high accuracy. The feasibility condition is shown to be equivalent to the full
rank constraint of a structural matrix defined on the basis of the stoichiomet-
ric coefficient matrix and the partial enthalpies vector. A sufficient condition
for the full rank constraint shows that the process estimation selection is
made in such a way that almost all the species to be estimated, all together,
are intrinsically involved in a certain reaction k among nr independent reac-
tions available. The proposed solution has a clear physical meaning because
of its link with the heat of reaction. In that respect, this work completes the
results proposed in [11, 12, 14].

The properties of the proposed TCAO have been illustrated with two
different scenarios in simulation by considering Van de Vusse reaction sys-
tem. Contrary to the first scenario where the feasibility condition is fulfilled
regardless of the computation methods used, the division-by-zero situation
of the second scenario results in numerical fluctuations in the states to be
estimated in transient phase of both the open loop and closed loop system
dynamics when the reaction system is inappropriately initialized.

Our future work is to develop similar kinetic independent estimation strat-
egy for the somewhat more complex case of multiphase stirred tank reactors,
semi-batch and batch reactors. A natural extension of this work uses the
reaction variants, and takes advantage now of the concept of vessel extents
(an important property of the reaction system models, see e.g. in [36]) for
modeling and control where the cooling jacket dynamics is taken into account.
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Appendix A. The entropy balance equation

The thermodynamics of irreversible processes relies on the thermody-
namic fundamental equation defining the entropy S as a function of the
molar number Ni, the volume V and the internal energy U as stated by
Gibbs’ relation [58]

dS =
∑
i∈N

−µi
T

dNi +
P

T
dV +

1

T
dU (A.1)

with µi the chemical potential of species i. This equation is well defined since
the absolute temperature T is positive thanks to the third law of thermo-
dynamics. By using the local equilibrium assumption [27, 54], (A.1) can be
written as follows :

dS

dt
=
∑
i∈N

−µi
T

dNi

dt
+
P

T

dV

dt
+

1

T

dU

dt
(A.2)

On the other hand, the entropy balance can also be directly written from the
second law of thermodynamics [27, 54] :

dS

dt
= Φs + σs and σs ≥ 0 (A.3)

where Φs and σs are the entropy exchange flow rate with the environment and
the irreversible entropy creation, respectively. The term σs is nonnegative
from the second law of thermodynamics. Clearly, equation (A.3) reduces to
(1) if the system is isolated (i.e. Φs = 0).

We consider now the explicit expressions of Φs and σs for the reaction
system under consideration. Using the fact that the system is isochore and
isobaric, H =

∑
i∈N
hiNi and S =

∑
i∈N
siNi with si = 1

T
(hi − µi) together with

the material and energy balance equations given in (3), (A.2) gives [26, 27,
28, 54] :

dS

dt
= δ(SI − S) +

Q̇J

TJ︸ ︷︷ ︸
Φs

+σs (A.4)
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where TJ is the jacket temperature while σs is generated from the individ-
ual irreversible processes including the mixing, the heat exchange and the
reactions, respectively,

σs = σmix.
s + σex.

s + σreac.
s ≥ 0 (A.5)

with

σmix.
s = δ

∑
i∈N

Ni,I

T
(hi,I − Tsi,I − µi) ≥ 0 (A.6a)

σex.
s = QJ

(
1

T
− 1

TJ

)
≥ 0 (A.6b)

σreac.
s = − 1

T

∑
i∈N

nr∑
j=1

νijµirj ≥ 0 (A.6c)

Note that σmix.
s , σex.

s and σreac.
s are all nonnegative from the second law of

thermodynamics. Furthermore, σmix.
s and σex.

s depend on the process inputs
while σreac.

s depends only on the system states.

Appendix B. The port-Hamiltonian framework

Let us consider nonlinear autonomous systems whose dynamics are given
by the following set of ordinary differential equations (ODEs) :

dx

dt
= f(x), x(t = 0) = x0 (B.1)

where x = x(t) ∈ Rn is the state vector, f(x) : D → Rn represents a vector-
valued smooth nonlinear function with respect to x and D is an open subset
of Rn.

Assume that the separability condition [50, 56, 71, 72, 73] holds for the
autonomous evolution (B.1), i.e., there exist therefore a negative semi-definite
matrix Q(x) : D → Rn × Rn and a smooth function H(x) : D → R so that
equation (B.1) is then rewritten in the following form20

dx

dt
= Q(x)

∂H(x)

∂x
(B.2)

20 ∂H(x)
∂x is the gradient of the smooth function H(x) with respect to x.

37



Since any square matrix Q(x) can be split into skew-symmetric and sym-
metric parts given by

Q(x) = J(x)−R(x) (B.3)

with

J(x) =
Q(x)−Q(x)T

2
and R(x) = −Q(x) +Q(x)T

2
(B.4)

Consequently, equation (B.2) becomes :

dx

dt
= [J(x)−R(x)]

∂H(x)

∂x
(B.5)

where the following structural condition hold thanks to the negative semi-
definiteness property of the matrix Q(x) :

R(x) = R(x)T ≥ 0 (B.6)

The structural form (B.5) of the dynamics (B.1) belongs to a dissipative
Port-Controlled Hamiltonian system with strict dissipation (PCH systems)
[41, 42]. In this representation, the smooth function H(x) represents the
Hamiltonian storage function (possibly close to the energy of the system);
J(x) and R(x) are called structure matrix functions and correspond to nat-
ural interconnection and damping elements, respectively.

If the Hamiltonian storage function H(x) is such that it is bounded from
below and has a strict local minimum at the origin of Rn (that is, xe = 0)21,
then the dynamics of x governed by equation (B.5) is stable at the equilib-
rium xe for any initial condition x0 6= xe

22 since it follows from equations
(B.5) and (B.6) that

dH(x)

dt
= −

[
∂H(x)

∂x

]T

R(x)

[
∂H(x)

∂x

]
(B.7)

is negative semi-definite for x 6= xe
23. Hence the system (B.1) with the equiv-

alent dynamics as represented by equation (B.5) is dissipative with respect
to a Lyapunov function candidate H(x) [74, 75].

21It is straightforward to show that any nonzero equilibrium can also be translated to
the origin via a change of variable.

22A trivial case is with x0 = xe since the system reaches its equilibrium point.
23If the damping element R(x) is positive definite, then the equilibrium xe is said to be

asymptotically stable.
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In this work, we follow this framework for providing a different proof of
the convergence property of the state estimates directly derived from the
asymptotic observer.

References

[1] W.L. Luyben, Process modeling, simulation, and control for chemical
engineers, McGraw-Hill, Singapore, 1990.

[2] R. Aris, Elementary Chemical Reactor Analysis, Dover Publications,
New York, 2000.

[3] F. Caccavale, M. Iamarino, F. Pierri, V. Tufano, Control and monitoring
of chemical batch reactors, Springer-Verlag, London, 2011.

[4] G. Bastin, D. Dochain, On-line estimation and adaptive control of biore-
actors, Elsevier, Amsterdam, 1990.

[5] A.M. Gibon-Fargeot, H. Hammouri, F. Celle, Nonlinear observers for
chemical reactors, Chem. Eng. Sci., 49(14) (1994) 2287-2300.

[6] J. Alvarez-Ramı́rez, Observers for a class of continuous tank reactors via
temperature measurement, Chem. Eng. Sci., 50(9) (1995) 1393-1399.
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