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Abstract Quantum rings patterned from two-dimensional semiconductor het-

erostructures exhibit a wealth of quantum transport phenomena at low temperature

and in a magnetic field that can be mapped in real space thanks to dedicated scanning

probe techniques. Here, we summarize our studies of GaInAs- and graphene-based

quantum rings by means of scanning-gate microscopy both at low magnetic field,

where Aharonov-Bohm interferences and the electronic local density-of-states are

imaged, and at high magnetic field and very low temperatures, where the scanning

probe can image Coulomb islands in the quantum Hall regime. This allows decrypt-

ing the apparent complexity of the magneto-resistance of a mesoscopic system in

this regime. Beyond imaging and beyond a strict annular shape of the nanostruc-

ture, we show that this scanning-probe technique can also be used to unravel a new

counter-intuitive behavior of branched-out rectangular quantum rings, which turns

out to be a mesoscopic analog of the Braess paradox, previously known for road or

other classical networks only.
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5.1 Introduction

Electron systems confined in mesoscopic quantum rings (QRs) patterned from two-

dimensional charge carrier systems exhibit a wealth of quantum transport phenomena

at low temperature and in a magnetic field such as the Aharonov-Bohm effect (AB)

or the quantum Hall effect (QH). These effects have usually been observed thanks to

measurements of the device electrical resistance vs the magnetic field. Such data yield

“global” information on the phenomenon, i.e. on the scale of the device. During the

last fifteen years, numerous attempts have been made to obtain real-space information

on these mesoscopic phenomena down to the nanometer scale (i.e. on a smaller scale

than the device size), thanks to dedicated scanning probe techniques. Mapping locally

these phenomena give new insights, which allow for a more in-depth comparison with

simulations. This chapter focuses on GaInAs- and graphene-based open QRs that

are imaged by scanning-gate microscopy (SGM), a variant of electric atomic-force

microscopy (AFM), which can access to the intimate behavior of buried electronic

systems, not accessible to the tip of scanning tunneling microscopy (STM).

After a brief introduction to SGM in Sects. 5.2 and 5.3 focuses on the low-

magnetic field range where the conductance modulations of a ring device induced by

the scanning probe provide rich patterns that are either concentric or radial with the

ring geometry. The concentric patterns, primarily seen when the tip scans outside the

ring area [1], image in real space the AB interferences taking birth in the ring device

as a consequence of its ability to capture a magnetic flux or to differentially probe

in its two arms a remote electrostatic potential. Radial patterns, that are seen when

the probe scans directly over the ring, indirectly map the electronic local density of

states (LDOS) at the Fermi energy [2, 3], as does STM in a direct way for surface

electron systems [4]. Quantum simulations give a limit to the range of validity for

the correspondence between conductance and LDOS maps and show how robust this

correspondence can be against, for example, the introduction of impurities in the ring

materials [5].

Beside conventional semiconductor systems, the last decade has witnessed the

advent of new types of materials with unusual charge carrier dynamics. The most

striking example is graphene, a two-dimensional crystal of carbon atoms arranged on

a honeycomb lattice [6]. Charge carriers in graphene behave as massless relativistic

particles and novel properties emerge in particular close to the Dirac point, where

valence and conduction bands touch. Section 5.4 focuses on QRs carved out of

graphene, and examine the consequences of the peculiar band structure and charge

carrier dynamics on scanning gate imaging of coherent transport in such devices.

In particular, radial patterns were also imaged in disordered graphene rings [7],

and they were found to be recurrent when varying the charge carrier energy [8].

The observation is consistent with an earlier theoretical prediction of “relativistic

quantum scars” [9] , i.e. semiclassical orbits scarring the LDOS.

At high magnetic field, which is the focus of Sect. 5.5, the charge carrier system

enters into the QH regime, where electrons should only be transmitted through spa-

tially separated edge states (ESs) near integer filling of the Landau levels. In contrast
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to extended 2D systems that exhibit vanishing longitudinal resistance concomitant to

Hall plateaus in the QH regime, mesoscopic devices lead to surprising observations

[10], such as pseudo-AB oscillations with “sub-periods” and “super-periods” com-

pared to the orthodox AB oscillations seen at low field. To explain these observations,

recent models [11] put forward the theory that, when counter-propagating ES come

close to each other, electrons can hop between ES, or tunnel through quantum Hall

insulating islands. Such islands, also called localized states, are made of ES rotating

around hills or dips in the potential landscape, or around the central antidot in a ring

geometry. SGM reveals to be very powerful in locating QH islands in GaInAs QRs,

and in revealing the spatial structure of transport inside the QH interferometer that

they form [12]. Locations of QH islands are found by modulating, with the scanning

tip, the tunneling between ESs and confined electron orbits. Tuning the magnetic

field, SGM unveils a continuous evolution of active QH islands [12]. This allows

decrypting the complexity of high-magnetic field magnetoresistance oscillations,

and opens the way to further local-scale manipulations of QH localized states.

In Sect. 5.6 we consider the possibility to control the electron transport through the

buried semiconductor nanostructure by means of the SGM tip. In doing so, we find

evidence for a counterintuitive behavior of mesoscopic networks [13] that presents

a striking similarity with the Braess paradox encountered in traffic or classical net-

works [14]. A simulation of quantum transport in a two-branch mesoscopic network

of rectangular shape reveals that adding a third branch can paradoxically reduce

transport efficiency. This manifests itself in a sizable conductance drop of the net-

work. A SGM experiment using the tip to modulate the transmission of one branch

in the network reveals the occurrence of this paradox by mapping the conductance

variation as a function of the tip voltage and position [13].

5.2 A Brief Introduction to the Technique of Scanning-Gate

Microscopy

Unlike common AFM-based imaging techniques, scanning gate microscopy does

not rely on a measurement of the cantilever property (i.e. its deflection angle, or

resonance frequency shift), but rather of the device electrical characteristics. The

principle of SGM [15–17] is sketched in Fig. 5.1. A voltage-biased (Vtip) metal-

coated AFM tip is laterally scanned at an altitude of a few tens of nm over the device

surface to perturb locally its electrical conductance G (or resistance). The changes

in the device conductance �G are mapped as a function of the relative tip-sample

position (x,y) to draw a �G(x,y) SGM map. Depending on the device impedance,

a current-biased device (I) or voltage-biased (V) configuration can be used. The

whole setup is immersed into a cryostat to operate down to below 100 mK for the

coldest SGM setups [12, 18]. Optionally, an external magnetic field can be applied.

The combined low-temperature and magnetic field environment requires the use

of cryogenic magnetic-free displacement units, such as for example titanium-made
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Fig. 5.1 Principle of scanning-gate microscopy. Frame a depicts a sketch of a SGM experiment

on a ring-shaped device that hosts a buried 2DEG. A current Iapp is applied to the device and

the voltage drop Vm across it is measured, while the biased tip (V tip) is raster scanned over the

device. A perpendicular magnetic field B is applied. In frame b, curved lines sketch the tip-induced

isopotential lines φ felt by the buried electron system. For a sufficiently negative tip voltage, a

depleted region is formed below the tip in the case of semiconductor 2DEGs (not for graphene)

inertial step motors [19, 20] for the in situ coarse positioning of the tip relative to

the nanostructure over a few millimeters. In our setup, fine positioning over a few

micrometers for image acquisition is ensured by commercially available piezoelectric

scanner elements.

Using an AFM environment allows for locating the active device by measuring

the sample topography, e.g. by using the dynamic mode of the AFM. Instead of using

an optical method to measure the AFM cantilever deflection, as commonly done in

AFM, it is advantageous to use a light-free setup [21], so that photosensitive devices

remain under dark conditions during the entire experiment. One solution consists in

gluing the AFM cantilever on a piezoelectric tuning fork, and monitoring the shift

�f of its resonance frequency observed when the tip approaches the surface. Sample

topography is performed by using a feedback loop on �f while scanning the tip over

the device surface. Once the device topography has been mapped, SGM is performed

by lifting the tip at some tens of nanometers (typically 20–50 nm) above the surface

and scanning it along a plane parallel to the 2D electron gas (2DEG), with a voltage

applied to the tip. SGM measurements are carried out without contact between tip

and sample, so that there is no electrical current through the tip, which acts indeed

as a flying nanogate.

SGM has been used to image a broad range of transport-related phenomena in

various nanostructures, such as for example the branching of conductance channels

transmitted through quantum-point contacts (QPCs) [16, 17, 22], magnetic steering in

a series of connected QPCs [23], Coulomb blockade in quantum dots [24–26], scarred

wavefunctions in quantum billiards [27], and various graphene-based nanodevices

[28–35], including in the quantum Hall regime [34]. We refer the reader to [36] for a
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Fig. 5.2 Sketch of the electrostatic AB effect in a QR due to the tip bias. The cone and disk stand

for the tip and potential range, respectively. Approaching the tip to the QR from the left modifies

the electrostatic potential felt by the electrons in the left arm, tuning the wavefunction interference

at the output of the device from destructive (a) to constructive (b)

more extensive review. In the rest of this chapter, we focus on our own work devoted

to GaInAs- and graphene-based QRs.

5.3 Imaging of Quantum Rings in the Low-Field

Aharonov-Bohm Regime

If electrons maintain their phase coherence over sufficiently long distances, an open

QR sees its conductance peaking when electron waves interfere constructively at the

output contact, and decreasing to a minimum for destructive interference. Varying

either the electrostatic potential in one arm, e.g., by approaching the SGM biased tip

as shown schematically in Fig. 5.2, or the magnetic flux captured by the QR allows

the interference to be tuned. This gives rise to the electrostatic [37] and magnetic

[38] AB oscillations in the ring conductance.

These interference phenomena can be imaged in real space by SGM [1]. An

example of such imaging is shown in Fig. 5.3. Here, the QR is patterned from a

Ga0.3In0.7As-based heterojunction with carrier concentration and mobility at 4.2 K

of 2.0 × 1016 cm−2 and 100.000 cm2 V−1 s−1, respectively. The QR is connected

to the 2D electron reservoir, which is buried 25 nm below the free surface, by two

upper and lower narrow constrictions. The mean-free path and coherence length in

Ga0.3In0.7As at 4.2 K are 2 and 1 µm, respectively, so that the electron transport

is in the ballistic and (partly) coherent regimes. The coherent nature is confirmed
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(a) (b) (c)

(d) (e)

Fig. 5.3 SGM images (a–c) of a GaInAs QR whose geometry is shown schematically by full lines

(image size: 2 µm×2 µm; T�4.2 K; zero magnetic field). The inner and outer ring diameters are

210 and 610 nm, respectively. The images are acquired for different tip voltages Vtip indicated on

the figures and are all filtered [1] to compensate for a slowly varying strong background, which

masks part of the interference pattern. Frames d and e are two sequences of profile plots as function

of the tip bias. Each horizontal line corresponds to a vertical average of the conductance map in

regions (α) and (β) shown in Fig. 5.3c, respectively. Adapted from [39]

by the observation of AB oscillations in the magneto-conductance when the QR is

subjected to a perpendicular magnetic field [1].

One also observes an electrostatic AB effect which gives rise, at low magnetic

field, to a well-developed fringe pattern in the SGM conductance image of the QR

when the tip scans outside the QR. This outer pattern is mainly concentric with

the ring geometry, as can be seen in the sequence of images shown in Fig. 5.3a–c

obtained at different voltages applied to the tip. The interference pattern is here best

seen on the left part of the ring, possibly due to a ring asymmetry. The qualitative

interpretation in terms of a scanning-gate-induced electrostatic AB effect is that as

the tip approaches the QR, either from the left or right, the electrical potential mainly

increases on the corresponding side of the QR (see Fig. 5.2). This induces a phase

difference between electron wavefunctions traveling through the two arms of the

ring, and/or bends the electron trajectories, tuning the interference alternatively from

constructive to destructive, thereby producing the observed pattern. Figure 5.3d, e

shows how the interference pattern evolves for increasing tip voltages when the tip

scans over the left hand-side and right hand-side regions of the QR, respectively [39].

It is clear from this figure that for increasing tip voltages the interference fringes shift

away from the QR to the left in d and to the right in e, respectively. This is a direct

manifestation of the tip-induced electrostatic AB effect. From Fig. 5.3d, we find that

a phase shift of π is obtained for a tip bias variation �tip �1.75 V [39].
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Fig. 5.4 Quantum simulation of a SGM experiment on a QR in the presence of positively charged

impurities. The outer diameter, inner diameter and opening width are 530, 280, and 120 nm, respec-

tively. The effective mass is 0.04 m0 as in GaInAs (m0 is the free electron mass). The Fermi energy

is EF �107.4 meV. Frames a and b are simulated images of the LDOS and conductance changes

(in units of G0, the quantum of resistance), respectively, calculated for the random distribution of

positively-charged impurities shown in frame (c). In the simulation, the tip potential has a Lorentzian

shape with 10 nm range and amplitude EF/50. Adapted from [5]

Now, modifying the magnetic field strength, another phase term contributes

through the magnetic AB effect, i.e. the capture of the magnetic flux threading the

QR area. The flux periodicity of such oscillations correspond to the flux quantum

φ0 �h/e. This displaces the whole fringe pattern with respect to the QR. This dis-

placement is periodic in magnetic field strength with the same periodicity (here

13 mT, in nice agreement with the average area of the QR) than the AB oscillations

seen in the magneto-conductance [1, 39], which gives further support to the interpre-

tation in terms of AB effects. This interpretation was confirmed by density functional

theory [40].

In Fig. 5.3a–c, it is clear that the conductance images also exhibit a complex pat-

tern when the tip scans directly over the QR region. These inner fringes are linked to

the local electron-probability density in the QR [2, 3, 5], provided that the tip potential

is weak enough not to distort the QR electron density (see also [40]). A detailed anal-

ysis based on quantum mechanical simulations of the electron probability density,

including a model tip potential, the magnetic field, and randomly distributed impu-

rities, reproduces the main experimental features and demonstrates the relationship

between SGM conductance maps and electron probability density, i.e. LDOS, at the

Fermi energy. An example of such a relationship is shown in Fig. 5.4 in the case

of a realistic QR perturbed by positively charged impurities (in the experiments on

Ga0.3In0.7As heterojunction devices, the electrostatic potential experienced by elec-

trons is influenced by ionized dopants located a few nm above the conducting 2D

electron system). Although impurities distort the LDOS, this distortion is reflected

back in the conductance image in such a way that the conductance map can still be

seen as a mirror of the electronic LDOS. As shown in Fig. 5.4, both the LDOS and

conductance images tend to develop radial fringes, which are mostly, but not entirely,

anchored to the impurity locations.

The discussion above suggests that SGM can be viewed as the analog of STM

[4] for imaging the electronic LDOS in open mesoscopic systems buried under an
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insulating layer. It can also be seen as the counterpart of the near-field scanning optical

microscope that can image photonic [41, 42] LDOS in confined nanostructures,

provided that the excitation light source can be considered as point-like such as in

active tips based on fluorescent nano-objects [43].

5.4 Recurrent Quantum Scars in Graphene Quantum

Rings

In a semiclassical framework, the inner radial fringes observed in the arms of QRs

(discussed in previous section) can be viewed as “privileged paths” along which

charge carrier wavefunctions are concentrating, also named “scarred wavefunctions”,

or “scars”. Such scars have been introduced in the framework of quantum chaos

theories [44]; in the latter case, they were associated with unstable semiclassical

periodic orbits in quantum billiards. A specific aspect of semiclassical periodic orbits,

useful for probing their existence in the experiment, is their recurrence originating

from their finite orbit length: scar patterns associated with such semiclassical periodic

orbits were predicted to reappear periodically with the Fermi energy EF in relativistic

systems like graphene while the recurrence should occur with the square root of EF

in the case of a conventional semiconductor system [9].

This prediction was investigated using SGM, through experiments realized on

two different graphene QRs, fabricated from exfoliated graphene, transferred either

directly on top of a degenerately doped oxidized silicon substrate acting as a back-

gate [7], or on hexagonal boron nitride (h-BN) deposited on top of a similar silicon

substrate [8]. In the first case, the measured low temperature mobility of charge

carriers was relatively modest (around 1000 cm2/Vs). In the low density regime

(close to the Dirac point), SGM reveals Coulomb blockade oscillations, associated

with disorder-induced localized states. Such localized states are ubiquitous in low-

mobility graphene devices at low charge carrier density since the disorder landscape

induces randomly located electron and hole puddles which can constitute and act

like isolated quantum dots, tunnel-coupled with the transmitted channels. They have

already been imaged indirectly using tip-induced tuning of Coulomb blockade in

various SGM experiments, in particular in small constrictions [31–33]. In contrast, at

higher charge carrier densities, disorder is at least partially screened and electron/hole

puddles disappear. In these conditions, SGM imaging on the graphene QR revealed

radial fringes (scars) [7] very similar to those found in heterostructure-based QRs [2].

Simulations realized on graphene QR with similar degree of disorder confirmed that

radial patterns naturally emerge at various locations along QR’s arms in the LDOS.

The recurrence of the radial pattern of scars with energy was studied using SGM in

another graphene QR with higher charge carrier mobility (~10000 cm2/Vs), deposited

on top of an h-BN flake [8]. A large number of radial scars was observed in this case,

and sequences of SGM images obtained at various back-gate voltage were thor-

oughly examined, in order to find evidence of recurring patterns. Cross-correlations
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between successive images were calculated, both for full SGM images and for spe-

cific areas on SGM images where radial patterns were observed. Local maxima in the

correlation parameters were found when varying the Fermi energy, clearly indicating

the energy recurrence, with an average distance between maxima varying slightly

depending on the examined portion of the SGM image. This distance in energy can

be directly converted in semiclassical orbit lengths corresponding to twice the QR

arm width, which allowed to associate the sequence of maxima in SGM image cor-

relation parameters with radial scars. Note that similar energy recurrence was also

found for patterns of radial scars obtained in simulated QR LDOS.

5.5 Imaging Quantum Rings in the Quantum Hall Regime

In the two previous sections we focused on transport at zero or low-magnetic field

(B) through a QR. The wave-like nature of electrons could be revealed by periodic

AB oscillations in the magneto-resistance of the device. They originate from the

different phases that electrons acquire along both arms of a QR when B is applied

perpendicular to the 2D electron system. In this section, we will discuss another type

of periodic magneto-resistance oscillations, which show up at high B in QRs.

At high magnetic field the electron transport picture changes drastically as the

cyclotron radius shrinks, highly degenerate Landau levels (LLs) form and the 2DEG

enters in the “QH regime”. When the Fermi energy lies between two Landau levels

(i.e. around integer LL filling factor ν), the bulk of the 2DEG becomes insulating and

current flows through counter-propagating one-dimensional channels, the so-called

ESs, confined along the borders of the device, where the Fermi energy crosses LLs.

In macroscopic devices, scattering between opposite ESs vanishes and the electron

mean free path becomes of the order of several millimeters. Moreover, QH islands

(QHIs), i.e. electrons trapped in closed ESs pinned around potential inhomogeneities,

remain electrically isolated and do not contribute to electron transport. This gives rise,

as shown in Fig. 5.5a, to plateaus in the transverse resistance Rxy, and to a vanishing

longitudinal resistance Rxx measured in a macroscopic Hall bar (for review see e.g.

[45]).

However, when the size of the device is reduced and becomes comparable with the

size of QHIs, this picture is no longer valid. In such conditions, several experiments

have reported “sub-periodic” and “super-periodic” magnetoresistance oscillations,

i.e. with a flux period corresponding to a fraction, or a multiple of the usual AB period

observed at low-magnetic field (see sections above) [10, 46–51]. Driven by these

intriguing results, theoretical efforts have explained these oscillations within a model

where Coulomb interactions dominate [11]. In small devices, the counter-propagating

ESs are indeed brought close to each other so that electrons may tunnel between them,

either directly, and/or through a QHI that mediates electron transmission [52, 53].

Rather than coherent effects, the discrete nature of electrons has naturally been put

forward.
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Fig. 5.5 Quantum Hall effect on a mesoscopic QR. In a the black and red curves are the longitudinal

(Rxx) and the transverse (Rxy) resistances of a Hall bar, respectively, as function of the magnetic

field (B). At high B, Rxy is quantized in e2/(N.h), where N is the number of fully occupied Landau

levels, while Rxx becomes zero. The AFM micrograph of the QR is shown in c where the black

bar represents 1 µm. In b we display the magnetoresistance measured across the QR in the same

range of B and at a temperature T= 100 mK. Close-ups of b are shown in (d–f). At low-B (d),

the periodicity of the oscillations is �BAB �9 mT which, given the geometry presented in (c), is

consistent with AB interferences. At high magnetic field, for N= 8, shown in (e) the periodicity

is �B= 1.1 mT while, for N= 6, displayed in (f), we find �B= 1.5 mT. The latter oscillations are

explained, as sketched in (g), as tunneling between edge states through a Coulomb island located

around the central anti-dot of the QR. This gives rise to periodic oscillations with �B.N��BAB

The experiments discussed in this section [12] are performed at a temperature

T �100 mK, inside a 3He/4He dilution refrigerator, equipped with a superconducting

coil that can provide a magnetic field up to 15/17 T. The 2DEG in which the QR

is patterned is located 25 nm below the surface and, at low-T , the electron density

and mobility are 1.4×1016 m−2 and 4 m2/Vs, respectively. Figure 5.5c shows the

device topography. The QR has an average outer diameter of 1 µm, two apertures

and a central antidot diameter of approx. 300 nm. The magneto-resistance of the

quantum ring (R versus B), measured simultaneously with Rxx and Rxy in the bulk,

is shown in Fig. 5.5b, d–f. Figure 5.5b shows R versus B over the full magnetic field

range, from 0 to 10 T. At low magnetic field, Fig. 5.5d, periodic AB oscillations with

�BAB �9 mT are observed. This is consistent with an average radius of 380 nm for

the QR. In Fig. 5.5e, f, two B-ranges are zoomed, around ν�8 and 6, respectively.

In these ranges the magnetoresistance of the device displays oscillations with two

different “sub-periods”: �B= 1.1 mT around ν�8 and, around ν�6, �B= 1.5 mT.

As sketched in Fig. 5.5g, one can understand these oscillations within a Coulomb-
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(a) (f)

(b) (c) (d) (e)

Fig. 5.6 Identification of the centre of a Coulomb island inside a QR using SGM. Frame a shows

R versus B in the range B � [9.67 T, 9.74 T]. The periodicity of the fringes is �B � 17 mT, which

corresponds to a QHI with a surface equivalent to a disc of radius ~65 nm located, as sketched

in (b), somewhere in the arms of the 300-nm-wide QR. c–e are SGM resistance maps obtained at

B � 9.65, 9.70 and 9.75 T, respectively, with V tip � −1 V. The white lines correspond to the position

of the QR and the scale bar represents 1 µm. This sequence of images reveals the position of the

center of the QHI [marked with a green arrow in (c)], inside the QR. f depicts B-dependence of

the R(x, y) profile measured along the green line in c, V tip � −1 V. The fringes share the same

periodicity �B � 17 mT as in (a)

dominated model where electrons tunnel between propagating ESs through a QHI

with discrete energy levels, located around the central anti-dot of the QR [11]. The

basis of this model is that a change in magnetic field induces a periodic change in

the QHI energy with respect to the ES energy. For each flux quantum added to the

QHI, one electron has to be added to each populated ES in the QHI, which means

that, in this case, Coulomb blockade oscillations are observed, with a period:

�B � (ϕ0/A)/N ;

where N is the number of filled ESs around the QHI of area A. Indeed, the periods

measured in Fig. 5.5e, f are consistent with this relation. Nevertheless, shifting the

magnetic field range to B= [9.67 T, 9.74 T] (still around ν�6), the magnetoresistance,

as displayed in Fig. 5.6a, reveals “super-period” oscillations with �B= 17 mT. Using

the previous model, we conclude that they correspond to ES loops with a radius of

~65 nm, which would not fit around the QR antidot. However, it could well be located,

as drawn in Fig. 5.6b, somewhere in the 300-nm-wide arms of the QR, or near its

openings, and be connected to the propagating ES through tunnel junctions.

In order to precisely locate such a QHI, we now use SGM since this technique

is particularly well adapted to image electronic transport through buried 2DEG in
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the quantum Hall regime [12, 18, 36, 39, 54–59]. Here, we measure the resistance

of the device as the electrically polarized AFM tip scans over the surface. Within

the Coulomb-dominated model, as the negatively biased tip approaches a QHI, it

progressively changes the electrostatic potential experienced by electrons trapped in

the QHI and modify the QHI surface which, in turn, induces an energy imbalance

between the QHI and the ESs [11, 12]. As with the magnetic field, this imbalance then

allows electrons to tunnel between ESs and the QHI in the Coulomb blockade regime,

whenever a QHI energy level lies in the energy window defined by the propagating

ES potential. In a SGM map, one therefore expects to observe sets of concentric

resistance fringes, each one corresponding to a Coulomb blockade peak, encircling

each active QHI.

Three consecutive SGM maps for B � 9.65, 9.70 and 9.75 T are shown in

Fig. 5.6c–e, respectively, where the position of the QR is drawn, superimposed on the

SGM data. Concentric fringes are observed, centered close to one of the openings of

the QR. As B increases the position of resistance fringes evolves. This is clearly illus-

trated in Fig. 5.6f, where B is swept while scanning with a negatively polarized tip

(V tip � −1 V) along the same line, highlighted in green and denoted δx in Fig. 5.6c.

As B increases the concentric fringes shift away from their center, indicated by the

green arrow in Fig. 5.6c. Importantly, we also note that the periodicity �B � 17 mT

found in Fig. 5.6f is the same as the one extracted from the magnetoresistance curve

in Fig. 5.6a. This allows concluding that the QHI, which is at the origin of these

“super-period” oscillations, has its center indicated by the green arrow in Fig. 5.6c.

Remarkably, the slope direction in the plane B versus δx can be used to discrim-

inate between ESs surrounding a potential hill or looping around a potential well.

If we assume that a QHI is created around a potential hill, approaching a negatively

biased tip will raise the potential and increase the QHI area. On the other hand, in

the case of a QHI formed around a potential well, the effect of a negatively biased tip

would be to reduce the QHI surface. In Fig. 5.6f, isoresistance lines, that correspond

to isoflux states through the QHI, move away from their center as B is raised, which

unambiguously indicates that the QHI surrounds a potential hill. Such a potential

hill could be caused by the presence of one or several ionized dopants located a few

nm above the 2D electron system.

In addition to pinpointing the location of QHIs and understanding their contribu-

tion in the high-B magnetoresistance oscillations, SGM can also yield spectroscopic

information on QHIs. This is achieved by positioning the tip close to a QHI, and

varying the microscope tip bias as well as current bias across the device. This way,

we uncovered the QHI discrete energy spectrum arising from electronic confinement

and extracted estimates of the gradient of the confining potential, as well as the edge

state velocity [58]. Moreover, we also used the SGM tip to modify the configuration

of QH edge states in the vicinity of a constriction in order to form a QH interferometer,

i.e. a small quantum ring formed by tunnel-coupled QH edge states [59].
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5.6 Revealing an Analog of the Braess Paradox

in Branched-Out Rectangular Rings

In the above sections, SGM has been used to image the electron transport in annular

shaped QRs. In this section, we demonstrate that SGM can also be used to tune the

electron transport by depleting, by gate effect, a conduction channel in a branched-

out mesoscopic network, whose primary shape is a rectangular ring. This leads to

the discovery of a mesoscopic analog [13] of the Braess paradox [14].

Adding a new road to a congested network can paradoxically lead to a deterioration

of the overall traffic situation, i.e. longer trip times for road users. Or, in reverse,

blocking certain streets in a complex road network can surprisingly reduce average

trip time [60]. This counter-intuitive behavior has been known as the Braess paradox

[14]. Later extended to other networks in classical physics, such as mechanical or

electrical networks [61, 62], this paradox lies in the fact that adding extra capacity to a

congested network can counter-intuitively degrade its overall performance. Initially

known for classical networks only, we have extended the concept of the Braess

paradox to the quantum world [13]. By combining quantum simulations of a model

network and SGM, we have discovered that an analog of the Braess paradox can

occur in mesoscopic semiconductor networks, where electron transport is ballistic

and coherent.

We consider a simple two-path network in the form of a rectangular ring connected

to source and drain via two openings (see Fig. 5.7a for the network geometry).

In practice, this ring is patterned from a GaInAs heterojunction as for the QRs

discussed in the previous sections. The dimensions are chosen to ensure that the

embedded 2DEG is in the ballistic and coherent regimes of transport at 4.2 K. The

short wires in the ring are chosen to be narrower than the source/drain openings to

behave as congested constrictions for propagating electrons. Branching out this ring

by patterning a central wire (see Fig. 5.7a) opens a third path to the electrons that

bypasses the antidot in the initial rectangular ring. Then, we use SGM to partially

block by gate effects the transport through the additional branch. Doing so should

intuitively result in a decreased current transmitted through the device, but this is just

the opposite behavior that is found in certain conditions, both experimentally and in

quantum simulations [13]. Therefore, in a naive picture, electrons in such networks

turn out to behave like drivers in congested cities: blocking one path favors “traffic”

efficiency.

The above finding is summarized in the simulations of Fig. 5.7a, d, which show the

network geometry and a calculated conductance crosscut as a function of tip position,

respectively. Here, the outer width and length of the initial corral are 0.75 and 1.6 µm,

respectively, whereas the widths of the lateral, upper/lower, and central (additional)

arms are W�140 nm, L�180 nm, and W3�160 nm, respectively. The width of

the source and drain openings are W0�320 nm. This ensures that electron flow in

the lateral arms (in the absence of the central arm) is congested because 2 W < W0.

In other words, all injected conduction channels (about 10) into the network cannot

be admitted in these arms [13].
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Fig. 5.7 Evidence for a Braess-like paradox in a mesoscopic rectangular network. Frames a–c

depict the network geometries with parameters given in the text. Frames d–f are the corresponding

calculated conductance crosscuts in the presence of a depleting SGM tip scanning along the median

lines of (a–c), respectively. The horizontal dotted lines give the unperturbed conductance without

tip. The Fermi wavelength is 47 nm. Fluctuations in the conductance profiles are UCFs due to the

tip-induced change in the potential felt by electrons propagating through the device

The crosscut in Fig. 5.7d is obtained by computing the network conductance

(source-drain voltage�1 mV) as function of the tip position scanned along the

median line of Fig. 5.7a. This line crosses the lateral and central arms. The tip

potential is mimicked by a point-like potential of −1 V placed at 100 nm above the

2DEG [13], which corresponds to a lateral extension of ≈400 nm for the tip-induced

potential perturbation at the 2DEG level. This model potential entirely depletes the

2DEG in one arm when the tip passes above it.

It is clear from Fig. 5.7d that depleting the central arm produces a distinctive

conductance peak that goes well beyond the unperturbed value. This peak has a much

larger amplitude as the universal conductance fluctuations (UCFs) that are seen as

small oscillations for any tip position along the median lines, as a consequence of the

tip-induced change in the potential felt by electrons propagating through the device

[63]. This strong central peak is the signature of the counter-intuitive Braess-like

behavior mentioned above. Noteworthy, closing one of the lateral arms reduces the

conductance, in agreement with the intuitive expectation: the paradox is seen only

when the central branch is closed, not the lateral ones, which stresses the particular

role played by this central branch.

Congestion plays a key role in the occurrence of the classical Braess paradox

[14, 60, 61]. In order to probe a similar role in the mesoscopic counterpart paradox,

we have simulated two additional networks with enlarged lateral arms (Fig. 5.7b, e:

W�560 nm, L unchanged) and with both enlarged lateral and upper-lower arms

(Fig. 5.7c, f: W�560 nm, L�500 nm) [63]. This releases congestion in the lateral

arms. It is clear from Fig. 5.7e, f that releasing congestion smoothens the counter-
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intuitive conductance peak seen in the congested network when the central arm is

blocked. Nevertheless, there is still a slight conductance (current) increase when

the tip scans just above the central arms in networks e and f, but it no longer goes

beyond the unperturbed conductance for the largest network f. This finding entails

the particular roles played by the additional branch and by network congestion in

the occurrence of a distinctive Braess-like paradox. Yet, more experimental and

theoretical work is needed to put forward a conclusive explanation at the microscopic

level for the paradoxical behavior reported here.

5.7 Conclusion

The few examples presented in this chapter show how powerful is SGM in imag-

ing, and possibly tuning, the electronic transport in ring-shaped semiconductor and

graphene devices and to reveal how electrons behave down there. It gives valuable

complementary view on phenomena that are usually considered within a macro-

scopic experimental scheme. The imaging of AB interferences and quantum scars,

the ability of locating precisely compressible Coulomb islands in a quantum Hall

interferometer, and the closing of a selected branch in a mesoscopic rectangular ring

to induce a Braess-like phenomenon, all are illustrative of this claim.
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