
Using planning CTs to enhance CNN-based bladder
segmentation on Cone Beam CT

Eliott Brion*, Jean Léger, Umair Javaid, John Lee, Christophe De Vleeschouwer, and
Benoit Macq

Université catholique de Louvain, Louvain-la-Neuve, Belgium

ABSTRACT

For prostate cancer patients, large organ deformations occurring between the sessions of a fractionated radiotherapy
treatment lead to uncertainties in the doses delivered to the tumour and the surrounding organs at risk. The
segmentation of those structures in cone beam CT (CBCT) volumes acquired before every treatment session
is desired to reduce those uncertainties. In this work, we perform a fully automatic bladder segmentation of
CBCT volumes with u-net, a 3D fully convolutional neural network (FCN). Since annotations are hard to collect
for CBCT volumes, we consider augmenting the training dataset with annotated CT volumes and show that it
improves the segmentation performance.

Our network is trained and tested on 48 annotated CBCT volumes using a 6-fold cross-validation scheme.
The network reaches a mean Dice similarity coefficient (DSC) of 0.801± 0.137 with 32 training CBCT volumes.
This result improves to 0.848± 0.085 when the training set is augmented with 64 CT volumes. The segmentation
accuracy increases both with the number of CBCT and CT volumes in the training set. As a comparison, the
state-of-the-art deformable image registration (DIR) contour propagation between planning CT and daily CBCT
available in RayStation reaches a DSC of 0.744± 0.144 on the same dataset, which is below our FCN result.
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1. INTRODUCTION

External beam radiation therapy (EBRT) treats cancer by delivering daily fractions of radiation to a tumor
volume while attempting to spare normal tissues. Current techniques allow for planning and delivery of complex
dose distributions in order to improve dose delivery in the target volume while better sparing surrounding healthy
organs. At treatment planning, clinicians delineate the tumor and organs volumes on a computed tomography
(CT) and compute the dose distribution. At treatment delivery, the patient is aligned with its treatment planning
position and the dose fraction is delivered. Patient positioning relies on a daily cone beam computed tomography
(CBCT) volume acquired in treatment position before each treatment fraction. Importantly, large day-to-day
variations occur in the pelvic region due to matter income and outcome (e.g. bladder filling) and can impair
treatment dose conformity.1 Hence, anatomical variations detection (between planning and treatment stages) on
the CBCT volume is needed. Current clinical practice includes it through a CBCT visual inspection but the
automatic pelvic organs segmentation in daily CBCT volumes would allow an accurate measure of the anatomical
variations and better prevent non-compliant dose delivery. The automation of the segmentation is required for an
integration in the clinical workflow since manual organs delineation on daily volumes is too time-consuming. Our
proposed approach focusses on the automatic bladder segmentation on CBCTs with u-net, a fully convolutional
neural network. Since annotations are hard to collect for CBCT volumes, we consider augmenting the training
dataset with annotated CT volumes following a supervised domain adaptation strategy.

Automatic organs segmentation in CBCT volumes is challenging due to poor soft tissue contrast and the
various reconstruction artifacts.2 Two main approaches have been previously proposed to tackle this. Classical
clinically used segmentation methods include deformable image registration (DIR) methods between planning CT
and daily CBCT volumes3–5 to segment the bladder in CBCTs. Although it shows improvement compared to rigid
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registration, a large proportion of the obtained bladder contours are unacceptable in case of large deformations
between the registered volumes as in the pelvic region.6 Statistical shape models7 allow to capture shape variations
and have been used for bladder segmentation on CBCT.8,9 However, those methods require the definition of
landmarks or meshes. Also, building a patient specific shape model8 requires the availability of several delineated
CBCT volumes, which is hampering the application from the start of the treatment. Alternatively, in order to
limit the number of required delineated CBCT volumes while following the shape variation along a treatment,
the model is best updated on segmentations manually corrected during the treatment.9 However, this requires
user intervention. Henceforth, none of these methods closes the challenging task of pelvic organs segmentation on
CBCT volumes.

In parallel, the recent advances in computing capabilities, the availability of representative datasets and
the high versatility of deep learning approaches allowed them to reach impressive segmentation performance,
competing with state-of-the-art segmentation tools. In contrast with the above-mentioned segmentation techniques,
deep learning algorithms are supposed to be robust to shape and appearance variations if those variations are
captured in the training database and they do not require a landmarks definition. Deep learning algorithms
have already been successfully used to segment pelvic organs on CT images, including the urinary bladder.10,11
Hence, our goal is to perform fully automatic bladder segmentation in CBCT volumes with u-net, a 3D fully
convolutional neural network (FCN).12 To our knowledge, there has not been any attempt yet to use deep learning
to segment the bladder in CBCTs, probably due to the scarcity of annotated data. In order to deal with of the
small amount of annotated daily CBCT volumes, the performance improvement provided by the augmentation of
the training dataset with annotated planning CT volumes is proposed. We motivate this choice by the fact that
CBCT volumes can be roughly considered as noisy and distorted CT volumes in a segmentation perspective,
hence sharing shape and contextual information with the CT volumes. We investigate the performance of u-net
for different numbers of training CT and for different numbers of training daily CBCT, and show that adding
CTs in the training set helps for contouring CBCTs.

Our approach is an instance of transfer learning and, more precisely, an instance of supervised domain
adaptation. Transfer learning refers to the situation where a model is trained either (i) using data coming from
different domains or (ii) on different tasks or (iii) both using data coming from different domains and on different
tasks.13 Our model is trained on two similar but different domains (CT and CBCT) on the same task (classifying
each voxel of a 3D matrix as bladder on non-bladder). The CT domain is called source domain since it is the one
from which most training data come, while the CBCT domain is called target domain since it is the one for which
we want our model to perform well. As it is the case in most transfer learning applications, our source domain
data are used to mitigate the small number of available target data during training. The situation where source
and target domains are different is referred as domain adaptation, which is a subclass of transfer learning.14 In
our approach, all target data are labeled (i.e., we dispose of a contour of the bladder for all CBCTs) and therefore
we are in the situation of supervised domain adaptation. Our approach shares similarities with Kamnitsas et
al.,15 where brain lesions are segmented using datasets coming from different domains. The key difference with
our work is that their target domain data are unlabeled (i.e., they perform unsupervised domain adaptation).
However, they compare their approach with a network jointly trained with labeled source and target data, which
is more similar to our approach. Ghafoorian et al.16 perform supervised domain adaptation to learn brain lesion
segmentation on MRI across FLAIR and T1 images. However, they first pre-train the network on the source
domain dataset before fine-tuning it on the target domain dataset. We jointly train our network on both source
and target data.

In Section 2, we present both datasets of labeled CTs and CBCTs used in this study. We also introduce the
u-net architecture, our learning strategy and the comparison baselines. In Section 3, we report the results and
discuss them. Finally, we conclude in Section 4.

2. MATERIALS AND METHODS

In this section, we propose a method to assess whether adding CTs in the training set boosts the performance of a
neural network to segment CBCTs. We use a dataset of 112 CTs and 48 CBCTs, presented in Section 2.1. These
data are fed to the u-net neural network, whose architecture is described in 2.2. In order to evaluate the gain
brought by CTs, we evaluate u-net’s performance on a fixed dataset of 48 CBCTs in different training settings



(i.e., with a varying number of training CTs and training CBCTs). The cross-validation scheme detailed in Section
2.3 improves the statistical relevance of our results, mitigating the small size of our dataset. The performance
metrics are defined in the same section. The performance of u-net in the different training settings is compared
to other segmentation algorithms (using a commercial software on our data and reporting the results from other
authors on other datasets) in Section 2.4.

2.1 Data and pre-processing
Our data consist of (i) a set S1 of 64 patients for which we have a CT which has been delineated by a trained
expert and (ii) a set S2 of 48 patients (different from the 64 patients mentioned above) for which we have a
planning CT and a daily CBCT (acquired with a Varian TrueBeam STx version 1.5), which have been both
delineated by a trained expert. The patients of sets S1 and S2 respectively underwent EBRT at CHU-UCL-Namur
and CHU-Charleroi Hôpital André Vésale. The use of these retrospective, anonymized data for this study has
been approved by each hospital’s ethics committee. In order to ensure data uniformity accross the entire dataset,
all the 3D CT and CBCT volumes (as well as the 3D binary mask representing the ground truth segmentations)
have been re-sampled on a 2x2x2 mm regular grid. Every re-sampled image volume and binary mask volume are
cropped to volumes of 96x96x80 voxels centered on the bladder. Downsampling and cropping allow the model
parameters, each batch of eight image volumes and the corresponding eight binary mask volumes to fit in a 11
Gb GPU.

2.2 Network architecture
The 3D u-net fully convolutional neural network is considered in this study. The network follows the same
architecture (i.e. number and composition of layers) as in Ronneberger et al.,12 where the 3x3 convolutions, the
2x2 max-pooling and the 2x2 up-conversion operations have been replaced by their 3x3x3 and 2x2x2 counterparts,
as in Ciçek et al.17 The network takes as input the 96x96x80 image volume and outputs a prediction for the
bladder segmentation. The input goes through a contracting path to capture context and an expanding path
to enable precise localization. In the contracting path, a collection of features are learned thanks to successive
convolutions and max-pooling operations. Successively, two 3x3x3 convolutions, followed by a ReLu activation,
are applied before applying a 2x2x2 max-pooling. After each max-pooling step, the number of feature maps is
doubled in order to allow the network to learn many high level features. Within a layer, the number of feature
maps is kept constant as in Ronneberger et al.,12 starting with 16 feature maps in the first layer. From the features
learned in the contracting path, the expanding path increases the resolution via skip connections, successive
2x2x2 up-conversion operations, 3x3x3 convolutions and ReLu activations in order to recover the original volume
size. In the last layer, a sigmoid is applied and the network outputs the probability for each voxel to belong to
the bladder. To obtain the final binary segmentation mask, a threshold of 0.5 is chosen. The network is trained
with the Dice loss. The optimization algorithm used is Adam with learning rate 10−4 and a batch size of 8. We
use the validation set to earlystop the training (with a maximum of 100 epochs). Training data (both CBCT
and CT image volumes as well as their binary mask volumes) are augmented using rotation (comprised between
−5◦ and 5◦ along each of the three axes), shift (comprised between -5 and 5 pixels along each axes) and shear
(reasonable values for the affine transformation matrix).

2.3 Learning strategy and performance assessment
In the rest of this paper, a "CT volume" (or "CBCT volume") refers to a couple of both the 3D image and the
3D binary mask representing the bladder segmentation on this image. We perform a six-fold cross-validation
(see Table 1) with the 48 CBCT volumes of set S2, where four folds (nCBCT ≤ 32 volumes in total) are used as
training set, one fold (8 volumes) is used as validation set for earlystopping and one fold (8 volumes) is used
as test set. As shown in Figure 1, the number of training CBCT volumes nCBCT has been varied such that
nCBCT ∈ {2, 4, 8, 16, 32} by excluding a part of the 32 available volumes. The training set has been augmented
with nCT annotated CT volumes from set S1 such that nCT ∈ {0, 16, 32, 64}. The same CT volumes are added to
the CBCT training volumes independently on the four considered training folds. Hence, the training set contains
nCBCT + nCT volumes in total. Note that no CT volumes are present in the validation and test sets (indeed
our goal is only to segment CBCT volumes). In order to evaluate our results, we use three metrics: the Dice
similarity coefficient (DSC) and the Jaccard index (JI) measure the overlap between two binary masks, while the



symmetric mean boundary distance (SMBD) assesses the distance between the contours (i.e. the sets of points
located at the boundary of the binary masks) extracted from those binary masks. More specifically,

DSC =
2|A ∩B|
|A|+ |B|

, (1)

JI =
|A ∩B|
|A ∪B|

, (2)

SMBD =
D(A,B) + D(B,A)

2
, (3)

where A and B are the predicted and reference segmentation binary masks, D(A,B) = {minx∈ΩB
||x−y||, y ∈ ΩA}

and ΩA, ΩB are respectively the contours extracted from A and B.

S1 S2 (CBCT)

(CT) fold1 fold2 fold3 fold4 fold5 fold6

train train train train train val test
train train train train val test train
train train train val test train train
train train val test train train train
train val test train train train train
train test train train train train val

Table 1. Six-fold cross-validation. To train the model, we use nCT volumes from S1 and we use the nCBCT first volumes
from the CBCT folds labeled with "train". To earlystop the training, we use all eight volumes from the CBCT fold labeled
with "val". To test the model, we use all eight volumes from the CBCT fold labeled with "test".

2.4 Comparison baselines
The prediction performed by our network is compared to several baselines. A first baseline has been obtained on
the dataset presented in Section 2.1 by using the built-in contour propagation tool of RaySearch (RayStation∗
version 5.99.50.22). The contours from the planning CT volumes of set S2 have been propagated to the daily
CBCT image volumes of the same patient by using a rigid registration followed by a regularized intensity-based
deformable image registration (DIR). More precisely, the DIR algorithm is the ANACONDA algorithm,18 where
no controlling regions of interest (ROI) have been used, apart from the external/whole body structure. This
follows the approach proposed in Takayama et al.5 when no controlling ROIs (i.e. annotations) are available on
the CBCT image volumes for the bladder (or other organs).

Additional baselines are reported on others CT-CBCT datasets obtained with different acquisition machines.
A rigid registration followed by an intensity-based DIR between pairs of planning CT image volumes and daily
CBCT image volumes is performed in Thor et al. (demon algorithm)3 and Takayama et al. (ANACONDA
algorithm without controlling ROIs).5 In Woerner et al.,4 several mutual information-based DIRs are performed
after the rigid registration with a user intervention at the end of the process in order to tune a final DIR.

A patient specific bladder deformation model is proposed in Chai et al.8 and van de Schoot et al.9 In Chai et
al.,8 five delineated CBCT volumes serve as training data in order to build a statistical bladder shape model
through principal component analysis (PCA) on shape vectors capturing the 3D position of 2091 landmarks on
the bladder contour. Then, the test volume segmentation is obtained by deforming a reference segmentation
(namely one of the training contours) along the major deformation modes obtained with PCA. This is done by
the minimization of the absolute difference between the directional intensity gradients evaluated on the bladder
contour in the reference CBCT and the bladder contour candidate in the test CBCT. In van de Schoot et al.,9

∗https://www.raysearchlabs.com/raystation/.
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the statistical shape model is built on two planning CT volumes instead of five treatment CBCT and updated on
manually corrected contours during the treatment. The absolute difference minimization is also replaced by a
cross-correlation maximization.

3. RESULTS AND DISCUSSION
In Figure 1, the DSC between the output segmentation of the FCN and the ground truth segmentation are
computed and averaged over all 48 CBCT volumes from the six test folds. This is done for different numbers
of training CBCTs and different numbers of training CTs. Those results are compared with the DIR algorithm
of RayStation. Table 2 provides the mean and the standard deviation of the DSC, JI and SMBD for different
numbers of training CBCT volumes and different numbers of training CT volumes. A mixed model with a random
intercept on the patient showed significant difference between the algorithms’ performance regarding their DSC
(p < 10−3), JI (p < 10−3) and SMBD (p < 10−3). The following three observations can be done based on Figure
1 and Table 2.

• The more CBCT volumes in the training set, the higher the DSC on the test set. A Tukey’s range test
performed on DSC reveals that Ours(32,0) performs significantly better than Ours(8,0) (p < 10−3) and that
Ours(32,64) performs significantly better than Ours(8,64) (p < 10−3). This means that adding new CBCT
volumes allows the network to better generalize on test set. This makes sense since the added training data
and the test data are of the same modality (CBCT).

• Interestingly, the more CT volumes in the training set, the higher the mean DSC (Ours(8,64)>Ours(8,0)
with p < 10−3 and Ours(32,64)>Ours(32,0) with p < 10−2). We explain this improvement by the learning
of more generic features, leading to better generalization. However, the more training CBCT volumes, the
smaller the gain obtained from additional CTs in the training set.

• When all available CT and CBCT volumes are used for training (32 CBCT volumes and 64 CT volumes),
our approach outperforms the DIR algorithm of RayStation (Ours(8,64)>RayStation with p < 10−3). This
is illustrated on a representative patient in Figure 2. Our approach also outperforms the DSC metrics
presented in Thor et al. on a different but comparable dataset. Note that those two DIR-based comparison
baselines perform similarly, which suggests that our dataset is of similar difficulty than the one used by
Thor et al. Our method also outperforms the results of Takayama et al. when their algorithm is used
without controlling ROIs. Our method reaches results comparable to Woerner et al. but does not require a
user intervention and the prediction requires a single pass in the CNN compared to a 6-pass deformable
registration in Woerner et al. Although our algorithm performs worse than the one proposed by Chai et al.
and van de Schoot et al., it is not patient specific. Hence, it does not require the availability of patient
specific CBCT (or CT) contours beforehand, nor a model update during the treatment.

Although this discussion is based on the DSC, basing it on the JI or on the SMBD leads to the same
observations with the same levels of confidence. From those observations, we conclude that our FCN outperforms
alternative fully-automatic approaches and is slightly worse than a semi-automatic approach. Furthermore, adding
in the training set volumes from a distribution (CT) different but close to the distribution of the test set (CBCT)
improves the FCN performance.

4. CONCLUSION
The contribution of this paper is twofold. (i) To the best of our knowledge, this is the first attempt to use
convolutional neural networks to segment the bladder on CBCT. (ii) We show that including in the training
set volumes from a distribution (CT) close but different from the test set distribution (CBCT) improves the
performance on this test set for the task at hand. Our proposed learning strategy leverages largely available
labeled CT volumes available from radiotherapy planning to outperform current state-of-the-art DIR-based
bladder segmentation on CBCT.

Convolutional neural networks result in accurate segmentation of the bladder for CBCT volumes. Moreover,
we demonstrate that augmenting the training set with CT volumes (which are more accessible since labeling them
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Figure 1. Influence of the number of the training CBCTs and CTs on the segmentation accuracy. DSC: Dice similarity
coefficient.

Algorithm (nCBCT , nCT ) DSC JI SMBD (mm)

Ours (8,0) .669 ± .155 .521 ± .159 6.5 ± 3.1
Ours (8,64) .788 ± .110 .663 ± .136 3.9 ± 1.9
Ours (32,0) .801 ± .137 .685 ± .147 3.9 ± 2.6
Ours (32,64) .848 ± .085 .745 ± .114 2.8 ± 1.4
DIR, RayStation .744 ± .144 .612 ± .167 5.0 ± 3.1

DIR, Takayama et al. (2017)5* .69 ± .07 - -
DIR, Woerner et al. (2017)4* ∼ .83 - -
PSM, van de Schoot et al. (2014)9* ∼ .87 - -
PSM, Chai et al. (2012)8* - .785 -
DIR, Thor et al. (2011)3* .73 - -

Table 2. Comparison between our proposed algorithm in different settings (number of training CBCT volumes, number
of training CT volumes) and the baseline algorithms regarding to overlap (DSC, JI) and distance (SMBD) measures.
DSC: Dice similarity coefficient, JI: Jaccard index, SMBD: Symmetric mean boundary distance, DIR: Deformable image
registration, PSM: Patient specific model. *Evaluated on a dataset different from ours.

is part of clinical practice, in contrary to CBCTs) improves the segmentation performance. Our FCN could be
used in radiotherapy to precisely localize the bladder, allowing to reduce the dose delivered to this healthy organ
in patients treated for prostate cancer. In future works, we could attempt to explain how deep features of CBCTs
are improved by CT training data. Further analysis could also investigate how the information present in the
annotated planning CT of a given patient can be leveraged to segment the subsequent CBCTs of the same patient.
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Figure 2. Comparison between the ground truth segmentation (in yellow), the DIR with RayStation segmentation (in
red, DSC = 0.788) and our segmentation (in green, DSC = 0.892, setting nCBCT = 32 and nCT = 64) for a given patient.
Each image represents a different slice of the same CT volume. DIR: Deformable image registration.
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