
Practical CCA2-Secure and Masked Ring-LWE
Implementation

Tobias Oder1, Tobias Schneider2?, Thomas Pöppelmann3, and Tim Güneysu14

1Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany
{tobias.oder,tim.gueneysu}@rub.de

2ICTEAM/ELEN/Crypto Group, Université Catholique de Louvain, Belgium
tobias.schneider@uclouvain.be

3Infineon Technologies AG, Germany
thomas.poeppelmann@infineon.com

4DFKI, Germany

Abstract. During the last years public-key encryption schemes based
on the hardness of ring-LWE have gained significant popularity. For real-
world security applications assuming strong adversary models, a num-
ber of practical issues still need to be addressed. In this work we thus
present an instance of ring-LWE encryption that is protected against ac-
tive attacks (i.e., adaptive chosen-ciphertext attacks) and equipped with
countermeasures against side-channel analysis. Our solution is based on
a post-quantum variant of the Fujisaki-Okamoto (FO) transform com-
bined with provably secure, first-order masking. To protect the key and
message during decryption, we developed a masked binomial sampler
that secures the re-encryption process required by FO. Our work shows
that CCA2-secured RLWE-based encryption can be achieved with rea-
sonable performance on constrained devices but also stresses that the
required transformation and handling of decryption errors implies a per-
formance overhead that has been overlooked by the community so far.
With parameters providing 233 bits of quantum security, our implemen-
tation requires 4,176,684 cycles for encryption and 25,640,380 cycles for
decryption with masking and hiding countermeasures on a Cortex-M4F.
The first-order security of our masked implementation is also practically
verified using the non-specific t-test evaluation methodology.

1 Introduction

Public-key encryption (PKE) is a fundamental asymmetric cryptographic primi-
tive and plays an extremely important role in numerous applications and security
protocols, such as key-transport or email encryption. To date, most applications
deploy RSA- and ECC-based schemes that are known to be broken by powerful
quantum computers running Shor’s polynomial-time algorithm [69] on a suffi-
ciently large number of qubits. Given that such large-scale quantum computers
? The majority of the work was performed while Tobias Schneider was with Ruhr-
Universität Bochum

will exist in the future, the effects would be devastating as it would jeopardize
the security of RSA or ECC protected ciphertexts exchanged today in case they
are stored and decrypted in the future by a malicious entity1. Concerns over
quantum computers have recently been fueled by an announcement of NIST to
start the standardization process for post-quantum cryptography [19,51] and by
the statement of NSA’s Information Assurance Directorate (IAD) to "initiate
a transition to quantum resistant algorithms in the not too distant future" for
Suite B cryptography [50].

Possible candidates to replace RSA and ECC-based public-key encryption are
cryptosystems based on the hardness of certain lattice problems – a very promi-
nent example is NTRUEncrypt, proposed by Hoffstein, Pipher, and Silverman [39]
almost two decades ago. More recently, cryptographic instances based on ideal
lattices and the ring-learning with errors (ring-LWE) problem gained significant
popularity in this field. This happened presumably due to their simplicity, high
efficiency, and scalability (see [13, 14, 24, 65]), as well as because of theoreti-
cal foundations and security reductions (see [45, 53]). A practical advantage of
ring-LWE-based encryption over NTRU is relatively easy constant-time imple-
mentation and fast key generation, which is useful when constructing schemes
for ephemeral key exchange (e.g., NewHope [2] and BNCS [16]).

However, there are several challenges that have to be solved before ring-LWE-
based encryption can be considered as a serious replacement of RSA or ECC for
public-key encryption and (authenticated) key exchange. The most pressing and
often overlooked issues are decryption errors (i.e., correctness), security against
adaptive chosen-ciphertext attacks (CCA2)2 and the protection against side-
channel attacks. In this context, a basic semantically secure encryption scheme
with parameters leading to a negligible amount of decryption errors is a require-
ment to achieve CCA2-security as discussed by Dwork, Naor, and Reingold [27]
when applying CCA2-transformations. This issue was also shown by practical
attacks on NTRU [40] or code-based encryption using QC-MDPC codes [37].
Moreover, CCA2-security is a condition for most real-world usage scenarios and
has to be in place before side-channel protection can be considered. Otherwise,
an attacker with physical access to a decryption oracle could simply create mal-
formed ciphertexts to reveal a secret key, without the need to perform a side-
channel attack at all3. The importance of CCA2-security is also reflected in the
current NIST submission requirements for post-quantum public-key encryption
and key-exchange [51] that explicitly ask for CCA2-security.

Contribution. In this work we address the aforementioned issues of ring-
LWE PKE schemes that need to be considered before any wide-spread deploy-
1 Note that this scenario is likely for PGP or S/MIME encrypted emails as users (or
their providers) might keep them encrypted for a long time on a server over which
they do not have control.

2 Security against adaptive attacks is a stronger notion than security against non-
adaptive chosen-ciphertext attacks where the adversary is constrained on the choice
of the challenges, often referred to as CCA1 [9] or lunchtime attack.

3 Note that a chosen-ciphertext attack on ring-LWE encryption [44,45] is trivial as it
is only secured against chosen plaintext attacks (CPA) [30].

2

ment of lattice-based cryptography can be initiated. We conservatively instanti-
ate ring-LWE public-key encryption (n = 1024, q = 12289, and ς = 2) for negli-
gible decryption errors and implement the post-quantum variant of the Fujisaki-
Okamoto [31] transformation by Targhi and Unruh [72]. Our main contribution
is a novel, provably first-order secured masking scheme and its non-trivial in-
tegration into a CCA2 conversion. We point out that for full protection of the
secret key and message in the probing model, a masked noise sampler is required
for re-encryption and we provide the first design of corresponding protected bi-
nomial sampler. Our implementation and measurements were carried out on an
ARM Cortex-M4F and we experimentally verified our masking scheme using
the common non-specific t-test [32] methodology. In this setting, our implemen-
tation is the first instance for constrained devices that allows a fair compari-
son with established schemes like the Optimal Asymmetric Encryption Padding
(OAEP) method with RSA or corresponding transformations for NTRU that
can achieve CCA security. With masking and hiding countermeasures our code
achieves 2,669,559 cycles for key generation, 4,176,684 cycles for encryption, and
25,640,380 cycles for decryption. The supposed security level against currently
known quantum adversaries in the model of [2] is 233 bits. In comparison, our
masking scheme thus outperforms previous masking approaches for ring-LWE
by one million cycles.

Differences to previous version of this paper. In a previous version
of this work [52] we presented an incomplete masking scheme in which we only
masked the decryption of CPA-secure ring-LWE encryption (RLWE.CPAdec

NTT).
As described in Section 3.3 this is not sufficient to prevent first-order side-
channel analysis. Furthermore we updated our proposal for the masking of
RLWE.CPAdec

NTTas our previous approach was leaking side-channel information in
certain edge cases. We would like to thank the anonymous reviewers for pointing
out these issues in the first version of this work.

2 Preliminaries

In this section we cover preliminaries on ring-LWE-based public-key encryption,
discuss previous attempts to mask ring-LWE-based PKE schemes, and provide
related work on protected NTRU implementations. Unless explicitly stated, we
denote addition (resp. subtraction) modulo q with + (resp. −). We denote mul-
tiplication by · and point-wise multiplication by ◦. We use ⊕ as operator for
addition modulo 2. Polynomials in Rq = Zq[x]/〈xn + 1〉 are labeled by bold
lower case letters. When we access a single bit of a bit vector, we use an index
in square brackets to identify the respective bit.

2.1 Ring-LWE Encryption

The plain CPA-secured ring-LWE-based public-key encryption scheme we are
using was previously proposed in [44,46,47]. Several variants of the scheme exist
and the concrete instantiation we are using is defined as follows:

3

– RLWE.CPAgen
NTT(): Sample the binomial noise r̃1

$← NTT(SampleNoisePoly()),
r̃2

$← NTT(SampleNoisePoly()), sample uniform ã
$← SampleUniformPoly(),

and compute p̃ = r̃1 − ã◦r̃2. Output the secret key r̃2 and the public key
(p̃, ã).

– RLWE.CPAenc
NTT(ã, p̃,mcpa ∈ {0, 1}n): Sample ẽ1 = NTT(SampleNoisePoly()),

ẽ2 = NTT(SampleNoisePoly()), and c̃1 = ã◦ẽ1 + ẽ2 and compute h̃2 =
p̃◦ẽ1, e3 ← SampleNoisePoly(), and c2 = INTT(h̃2)+e3+LWEEncode(mcpa).
Output the ciphertext (c̃1, c2).

– RLWE.CPAdec
NTT(r̃2, c̃1, c2): Output LWEDecode(INTT(c̃1◦r̃2) + c2) ∈ {0, 1}n.

In the scheme all elements are polynomials over Rq = Zq[x]/〈xn + 1〉 where
we always assume implicit reduction modulo q and reduction modulo xn + 1
and only allow parameters for which it holds that 1 ≡ q mod 2n for q being
a prime and n being a power-of-two. For efficiency, we make explicit use of
the number theoretic transform (NTT)4 in a way that has been previously de-
scribed in [56, 65]. By ã we denote that a polynomial a is in the NTT domain
and for efficiency we transmit and store keys and some ciphertexts in the NTT
domain. Note that for the discussion of the masking scheme it is sometimes not
relevant whether polynomials are stored in NTT format or whether the NTT
is used at all (other options would be schoolbook or Karatsuba) and thus we
sometimes omit the NTT notations to simplify the presentation. The public
key (p = r1 − ar2,a) is an ring-LWE sample and an attacker trying to extract
the secret key basically has to solve the search version of the ring-LWE prob-
lem [45]. In earlier works [16, 33] RLWE.CPA, or derived key exchange schemes,
were usually instantiated with a (high-precision) discrete Gaussian distribution
with parameter σ. However, newer results show that security can also be achieved
with distributions that are close to a discrete Gaussian. Examples are the bi-
nomial distribution [2, 17], a fixed distribution [15], a binary distribution [18],
or a uniform distribution [5, 36]. We define SampleNoisePoly() to be a function
that samples a polynomial in Rq with coefficients coming from a binomial dis-
tribution with parameter k where each coefficient is sampled independently as∑k−1
i=0 bi − b′i where the bi, b′i ∈ {0, 1} are uniform independent bits5. The bino-

mial distribution is centered with a zero mean, has variance k/2, and gives a
standard deviation of ς =

√
k/2. For distributions that roughly follow a discrete

Gaussian the standard deviation ς can be considered as the most important
measure when describing and comparing security levels for ring-LWE. A uni-
formly random polynomial is sampled by SampleUniformPoly() and we decided
to include ã in the public key for simplification. Note that it would be pos-
sible to generate the secret key or ã from a seed of 256-bits (or to choose ã
as a global constant; see [2] for a discussion). Additionally, the secret key r̃2
could be generated from a seed or stored in normal domain and efficiently en-
coded as it is not distributed uniformly but roughly follows a discrete Gaussian
4 The NTT basically allows to efficiently compute a polynomial multiplication a ·b as
a · b = INTT(NTT(a)◦NTT(b)).

5 In [2] the definition of the binomial distribution contains a typo in which the sum
goes from zero to k.

4

(see [55, 67]). However, for comparability and maintainability, we leave these
straightforward optimizations and trade-offs as future work as they are not es-
sential for our use-case. For successful decryption knowledge of the secret key r2
is required. Otherwise, the large term ae1r2 cannot be eliminated when comput-
ing c1r2 + c2. An encoding of the n-bit message m is necessary as some small
noise (i.e., e = e1r1 + e2r2 + e3) is still present after calculating c1r2 + c2 and
would prohibit the retrieval of the message after decryption. This also shows why
the noise distribution is chosen to be rather small – a too big noise level would
make reliable decoding impossible. Thus, to allow the extraction of the message
despite the noise during decryption RLWE.CPA requires (as a minimum) a sim-
ple message encoding. We replace the standard threshold encoding and decoding
functions with a variant that encodes one message bit into four coefficients [56]
(as mentioned earlier). The encoding function used in RLWE.CPAenc

NTTis defined
as Encode(m ∈ {0, 1}n/4) =

∑n−1
i=0 m[bi/4c] · q2 · x

i (where m[i] denotes the
i-th bit of m). The decoding function used in RLWE.CPAdec

NTTtakes four coeffi-
cients z1, z2, z3, z4 ∈ [−bq/2c, bq/2c] as input that carry one bit of the message.
Decode(z1, z2, z3, z4) is defined to return 1 if |z1| + |z2| + |z3| + |z4| < q and 0
otherwise.

2.2 Related Work on Masked Ring-LWE

Masking schemes for the ring-LWE encryption scheme have already been inves-
tigated by Reparaz, Roy, Vercauteren, and Verbauwhede in [62, 63]. The main
idea of [62, 63] is to split the secret key r2 into two shares, compute the multi-
plication r2 · c1 separately on both shares and add c2 to one of the shares. The
authors construct a masked decoder that takes both shares as input and checks
whether certain pre-defined rules are satisfied or not. For half of all inputs no
rule applies and the value cannot be decoded immediately. This is solved by
adding a certain δ ∈ [0, q − 1] to the shares and restarting the decoding process
up to 16 times. However, this process increases the decryption time and also the
decryption error probability is increased by 19%, which has to be compensated
by selecting lower noise sizes and thus leads to lower security.

In follow-up work Reparaz, de Clercq, Roy, Vercauteren, and Verbauwhede [60]
propose a different masking scheme. The authors exploit that the ring-LWE
decryption is almost additively homomorphic. Instead of dividing the secret
key into two shares, they split the ciphertext into two shares and compute de-
crypt(c′1 + c′′1 , c

′
2 + c′′2) to receive (m′ ⊕m′′) as output. Note that this procedure

includes an additional encryption of m′′ during the decryption. Unfortunately,
the addition of two ciphertexts implies that also the including error vectors are
added and this again raises the decryption error probability of the scheme and
lowers performance.

In both masking schemes, the decrypted message m is split into two parts,
m′ = (m ⊕ m′′) and m′′. In Appendix B of [64] the authors state that they
were able to simulate a differential power analysis (DPA) attack targeting the
pre-decoded value z. As the output of the decryption is m = LWEDecode(z), we
expect a DPA attack on m to be feasible as well. Thus, the shares of m must not

5

be combined on the device that performs the decryption. Note, that it might be
a possibility to transmit the message already in two shares. However, this would
mean that the protocol would have to be changed for this purpose; currently our
approach could be easily adapted to a large number of lattice-based schemes.
Additionally, the message space might not be sufficient. Another more severe
issue is that the simulated attack on z from [64] requires an attacker to be able
to choose arbitrary ciphertexts. Such an attacker is even able to find the secret
key without DPA as ring-LWE itself does not provide CCA2-security (see [30])
but only security against chosen plaintext attacks (CPA). Thus, we draw two
conclusions for the implementation of practically secured ring-LWE encryption:

– Assuming a CPA-only attacker, the DPA attack on ring-LWE without masked
decoding is not feasible and thus no masked decoder is required.

– Assuming a CCA2 attacker, a CCA2-conversion has to be applied to ring-
LWE. Otherwise, an attacker would be able to break the system without
performing a DPA and thus rendering any side-channel countermeasures
useless. The message m must not be stored unmasked in this setting.

As a consequence, the masking schemes described in [60,62,63] are less suitable
for use in most practical settings.

2.3 Related Work on NTRU

In this section we review works on implementation attacks on NTRU. This is
relevant as NTRU and ring-LWE have a similar structure (especially from the
perspective of an implementer). Thus, (older) works on protecting NTRU are a
natural reference for countermeasure to protect ideal (or even standard) lattice-
based scheme that should not get overlooked.

In [4] a hardware implementation of NTRU and a first study regarding DPA
attacks is provided. The attack allows recovering secret coefficients one-by-one
using a Hamming distance model and Pearson’s correlation coefficient. In [75]
a correlation power analysis of an NTRU implementation equipped with the
blinding countermeasures proposed in [49] is attacked. These countermeasures
are addition of a random integer before convolution that can easily be removed,
blinding using a random value, and randomization of the order of which coef-
ficients are processed. As additional countermeasures in [75] random delays are
proposed, masking, as well as dummy operations. A first order collision attack
on NTRU is given in [77] and as countermeasure, besides random delays, a math-
ematical randomization is proposed where two inputs a and b to a convolution
are randomly rotated as a′ = a · xi and b′ = b · xn−i for a random i so that the
result a′ · b′ = a · xi · b · xn−i = ab. The same countermeasure has recently also
been proposed by Saarinen in [67] for lattice-based signatures with the obser-
vation that the shifting can be integrated into the NTT. Additionally, Saarinen
proposes the multiplication with random constants that could also be integrated
into the NTT computation. Timing attacks on NTRU have been investigated
in [70]. Fault attacks are given in [42] and countermeasures against fault attacks
are given in [43], mainly using spatial and temporal duplication.

6

Table 1: Security levels and failure probability of previously proposed ring-LWE-
based public-key encryption or key-exchange schemes. The security level was
computed based on the model in [2]. Note that C-Sec = classical bit-level security,
Q-Sec = known quantum bit-level security, and that ς is the standard deviation
of the ring-LWE noise distribution.
Set Parameter (n, q, ς) C-Sec Q-Sec Failure

RLWE.CPA [33] (256, 7681,≈ 4.5) 64 58 ≈ 2−11

RLWE.CPA [33] (512, 12289,≈ 4.9) 144 131 ≈ 2−10

BCNS [16] (1024, 232 − 1,≈ 3.2) 86 78 2−217

NewHope [2] (1024, 12289,≈ 2.8) 282 256 2−60

This work (1024, 12289, 2) 257 233 2−216

3 CCA2 Conversion and Masking

In this section we describe how ring-LWE can be made resilient to CCA and side-
channel attacks using the Targhi-Unruh variant of the Fujisaki-Okamoto [31,72]
(FO) transformation and our masking scheme.

3.1 Parameter Selection

To be able to use the RLWE.CPA scheme in the well-known hybrid setting
a message space of 256-bit symmetric key is sufficient to account for quan-
tum acceleration of brute-force attacks [35]. Additionally, to achieve CCA2-
security using the FO transformation, a negligible error probability is required.
As a consequence, previously proposed parameter sets, like the one used by the
NewHope scheme [2] or RLWE.CPA scheme [33, 44], are not suitable. However,
with n = 1024 we have four coefficients to encode one bit of a 256-bit message
(similar as in NewHopeSimple [1]) and can thus tolerate noise levels 4 · q4 = q.
To obtain a decryption error probability lower than 2−128 for the basic CPA-
secured scheme we decreased the parameter of the binomial distribution used
in [2] to k = 8 (contrary to k = 16 in NewHope). We therefore reach a noise
level with standard deviation of ς =

√
k/2 =

√
8/2 = 2. Even though a slightly

larger value of k would also be possible, we opted for k = 8 as it gives a large
enough margin on the error, simplifies and speeds-up sampling, and still leaves
some room for more aggressive ciphertext compression (which is out of the scope
of this work). A comparison of our final parameter set with previous proposals is
given in Table 1 (see Table 5 and Appendix A.1 for more details and the param-
eters used for the scripts). Going from NewHope’s 256-bits quantum security
and 2−60 failure for k = 16 to 233 bits of quantum security and 2−216 failure
probability for k = 8 seems like a reasonable trade-off. Note that the bit security
level compared to NewHope is only slightly smaller and still more than 128-bits

7

of security against a known-quantum adversary6. Note that this level of security
is still superior to BCNS or previously proposed RLWE.CPA parameters. It is
also worth mentioning that the security estimation in [2] uses several worst-case
estimations/simplifications so that the concrete security of the instances might
be higher (i.e., there is currently no known algorithm that breaks, e.g., BCNS
with 286 steps).

3.2 CCA2 Conversion for RLWE.CPA

In this work we use the Fujisaki-Okamoto [31] transformation to enable a se-
mantically secured encryption with respect to adaptive chosen ciphertext attack
(CCA2). For this transformation, Peikert came to the conclusion [53] that a
passively secured encryption scheme should be converted into an actively se-
cured one (based on the random oracle model; assuming adaptive attacks for
CCA2). For this transformation, two random oracles G : {0, 1}L → {0, 1}l and
H : {0, 1}L+l → {0, 1}λ are required. Targhi and Unruh pointed out that a third
random oracle H ′ : {0, 1}L → {0, 1}l is necessary for the quantum security of the
transformation [72]. The parameter L determines the size of the message to be
encrypted, l the length of the input to ring-LWE encryption, and λ the length of
the seed for the pseudo-random number generator (PRNG). In our implementa-
tion, the parameters L, l, and λ are set to 256 and we define RLWE.CCAenc

NTTand
RLWE.CCAdec

NTTas follows:

– RLWE.CCAenc
NTT(ã, p̃,mcca ∈ {0, 1}L):

Let (c̃1, c2)= RLWE.CPAenc
NTT(ã, p̃, ν;H(ν||mcca)) where ν ∈ {0, 1}L is a

nonce and H(ν||mcca) seeds the PRNG of RLWE.CPAenc
NTT. Compute c3 =

G(ν)⊕mcca as well as c4 = H ′(ν) and output (c̃1, c2, c3, c4).
– RLWE.CCAdec

NTT(r̃2, ã, p̃, c̃1, c2, c3, c4):
Compute ν′=mcpa = RLWE.CPAdec

NTT(r̃2, c̃1, c2),mcca = G(ν′)⊕c3, (c̃∗1, c∗2) =
RLWE.CPAenc

NTT(ã, p̃, ν′;H(ν′||mcca)), and c∗4 = H(ν′). Check if (c̃1, c2)
?
=

(c̃∗1, c
∗
2) and c4

?
= c∗4. If so, output mcca, otherwise output fail.

Using this transformation and our chosen parameters we obtain a theoretical
public-key size of |(ã, p̃)| = 2ndlog2(q)e = 2 · 1024 · 14 = 28672 bits (3584 bytes)
and a theoretical ciphertext size of |(c̃1, c2, c3, c4)| = 2ndlog2(q)e + 2l = 29184
bits (3648 bytes). The secret key is |r̃2| = ndlog2(q)e = 14336 bits (1792 bytes).

3.3 Masked CCA2-Secured Ring-LWE Decryption

To achieve side-channel resistance, it is necessary to mask all vulnerable modules
of the CCA2-secured decryption. As depicted in Figure 1 in bold notation, these
modules are RLWE.CPAdec

NTT, G, H, H ′, and RLWE.CPAenc
NTT, and the two com-

parisons. Note that it is not sufficient to only protect RLWE.CPAdec
NTT, because

6 In this context this means an adversary that uses quantum algorithms which are
available today to accelerate cryptanalysis [1].

8

Fig. 1: CCA2-secured decryption.

in a chosen-ciphertext setting an adversary can target the unmasked output of
RLWE.CPAdec

NTT(see Appendix B of [64]) to recover the secret key. This attack
trivially extends to any other intermediate variable which depends on mcpa.
A DPA-adversary would keep c1, c2 constant while varying c3 and c4. This
way it is possible to derive hypothetical values for every other module following
RLWE.CPAdec

NTTdepending on a guess for mcpa (which only depends on one coeffi-
cient of r2 in a chosen-ciphertext setting). Therefore, even the final comparison
needs to be protected against a side-channel adversary.

In the following, we analyze the first-order security of each module separately
in the common probing model [41]. To this end, we show that an attacker, who
can probe one intermediate variable of the computation, cannot derive any secret
information. This notion is equivalent to showing that each intermediate variable
follows a distribution independent of any sensitive variable, i.e., the secret key
r2. For one probe it is indeed sufficient to analyze each module separately, if the
input and output distributions between the modules are consistent. Therefore,
1-probing security with correct input distributions for each module implies 1-
probing security of the complete masked CCA2-secured decryption. However,
for more probes (i.e., 2-probing security) this approach would not cover every
possible attack vector and a more sophisticated analysis has to be utilized [8].

r̃′2 ∈ Rq

r̃′′2 ∈ Rq

c̃1 ∈ Rq

c̃1 ∈ Rq

c2 ∈ Rq

×

×

+

INTT

INTT

MDecode

m′′cpa ∈ {0, 1}256

m′cpa ∈ {0, 1}256
z′ ∈ Rq

z′′ ∈ Rq

Fig. 2: Proposed masking scheme for ring-LWE decryption.

9

Ring-LWE Decryption. As mentioned in Section 2.2, the masking schemes
of the ring-LWE decryption from works like [62,63] and [60] suffer from a higher
failure probability and slower performance. Therefore, we present a new approach
which avoids the aforementioned problems and still provides side-channel pro-
tection. Figure 2 shows the basic structure of our masked ring-LWE decryption.
For the initial multiplications, additions, and INTTs we rely on a simple ran-
domized sharing of r2 = r′2 + r′′2 with r′2

$← Rq similar to [62, 63]. Given the
linearity of the operations, it is easily possible to perform these computations
on each share separately. However, this approach does not work for the final
Decode. In [62,63], the authors proposed to use a rather complex decoder for the
arithmetically masked shares instead. To increase efficiency, we rely on a new ap-
proach MDecode which first transforms the arithmetic shares to Boolean shares
and then performs the decoding. With this approach, we can avoid the costly
arithmetically masked decoder and the additional error of the scheme from [60].

Correctness. To show the correctness of this scheme, we first denote the outputs
of the INTT operations as z′ and z′′ with z = z′+z′′. Showing that this relation
holds is trivial, since the INTT is linear and the scheme is identical to [62, 63]
up to this point. Instead, we show that MDecode(z′, z′′) = (m′cpa,m

′′
cpa) with

mcpa = m′cpa ⊕m′′cpa. To this end, we start by describing how an arithmetic-to-
Boolean (A2B) transformation [21,22,25,34,74] can be used to easily decode one
shared coefficient of z. Then we demonstrate a solution to efficiently adjust the
approach to our encoding scheme, i.e., four coefficients of z for one bit of mcpa.

In our basic example, we assume the arithmetic shares (x1, x2) with

x1 + x2 (mod q) = x = m · bq
2
c+ e

for some error e and want to recover (m1,m2) withm1⊕m2 = m without leaking
sensitive information. Our solution to this problem is based on the observation
that a sharing of the most significant bit can be easily extracted from Boolean
shares, while it is hard for arithmetic shares. However, we cannot straightfor-
wardly apply an A2B transformation to (x1, x2) as all A2B algorithms work with
arithmetic shares which are computed modulo a power of two.

Therefore, we propose to first transform (x1, x2) to the shares (y1, y2) with
y1 + y2 mod 215 = x given that 215 is the second-next-larger power of two
for q = 12289. This process is shown in Algorithm 1 where every operation is
done mod 2bits, A2B denotes an arithmetic-to-Boolean transformation, and MSB

returns the most significant bit of the input. In the algorithm, we first sample
a random 15-bit value y1 and reshare the input shares mod 2bits. However, in
some cases this does not result in a correct sharing as in Line 3 the shares are

y1 + y2 mod 2bits = x+ q · carry

where the carry is set if x1 + x2 ≥ q. To adjust this, we compute carry and
subtract q · carry from (y1, y2) in a secured fashion. First, we compute z1 ←

10

y1 − q mod 2bits. By doing this, we create the following relation for the most
significant bit of z1 + y2 mod 2bits

MSB(z1 + y2 mod 2bits) =

{
0 x1 + x2 ≥ q
1 x1 + x2 < q

,

if bits ≥ log2(2q). Therefore, we have MSB(z1 + y2 mod 2bits)⊕ 1 = carry. Then
we use the A2B algorithm by Debraize [25], so that we can apply MSB to each of
the output shares separately. The only remaining step now is to subtract q ·carry
from (y1, y2). This is achieved using the shares k1⊕ k2 = carry and the relation
k1 ⊕ k2 = k1 + k2 − 2k1k2 as follows

y1 − (k1 ⊕ k2)q = y1− k1q − k2q + 2k1k2q

= y1 − k1q − k2q + 2(k′1 + k′′1)(k
′
2 + k′′2)q

= y1 − k1q − k2q + 2k′1k
′
2q + 2k′1k

′′
2 q + 2k′′1k

′
2q + 2k′′1k

′′
2 q.

Since (k1, k2) is not completely independent of (y1, y2) for some A2B, we include
a random value r in the computation of the sum in Algorithm 1.

Algorithm 1 TransformPower2

Input: x1, x2, bits
Output: y1, y2
1: y1

$← {0, 1}bits
2: y2 ← x1 − y1
3: y2 ← y2 + x2
4: z1 ← y1 − q
5: [z1, z2]← A2B(z1, y2)
6: k1 ← MSB(z1)⊕ 1
7: k2 ← MSB(z2)

8: k′1
$← {0, 1}bits

9: k′′1 ← k1 − k′1
10: k′2

$← {0, 1}bits
11: k′′2 ← k2 − k′2
12: r $← {0, 1}bits
13: y1 = (((((((r + y1)− k1q)− k2q) + 2k′1k

′
2q) + 2k′1k

′′
2 q) + 2k′′1 k

′
2q) + 2k′′1 k

′′
2 q)

14: y2 = y2 − r

Although the output (y1, y2) of TransformPower2 fulfils the desired property
of y1+y2 mod 215 = x and could be easily transformed to (y′1, y

′
2) with y1⊕y2 =

x, this is not sufficient to recover m. Some additional steps are necessary to
perform a successful decoding. These steps are depicted in Figure 3. Each circle
shows the distributions of the unshared values for a specific value of m (m = 0
is thick, m = 1 is dashed) after each step, e.g., the first circle in the upper-left
corner shows the distributions for the original x where the values of x for m = 0

11

(resp. m = 1) are grouped around the mean of zero (resp. q2). In the first step,
we subtract q

4 from (x1, x2). This way no distribution is spread over the modulo
border, which would cause problems for the transformation to 15 bits. After the
transformation is done, we subtract q

2 from the result to create the following
relation for the new shares (y1, y2)

MSB(y1 + y2 mod 2bits) =

{
0 m = 0

1 m = 1
,

as the distributions are equally distant to zero which prevents an increase in
the error probability of the decoding. In the last step, we again perform an
A2B transformation A2B(y1, y2) = (y′1, y

′
2) to easily extract a sharing of m with

MSB(y′1)⊕ MSB(y′2) = m1 ⊕m2 = m.
For four related coefficients, one possible approach is to perform the afore-

mentioned masked decoding for each coefficient separately and then combined
them via a masked majority function. However, a more efficient solution is de-
scribed in Algorithm 2, where (a1, a2), (b1, b2), (c1, c2), and (d1, d2) are four
related shared coefficients (i.e., encode the same m). Our main idea is to com-
bine the coefficients before the final A2B. To perform this combination without
losing information and keeping the same error probability, we have to increase
the number of bits for TransformPower2 to bits ≥ log2(2 · 4 · q2), i.e., 16 for
q = 12289. After the transformation, we can easily sum the coefficients share-
wise. We also have to adjust the last subtraction to 2q. If no error has occurred
(i.e., all coefficients encode the same m), there are two distributions with means
216 − q and +q and (m1,m2) can be easily recovered with a final A2B. In this
way, we save three calls to A2B compared to the naive majority approach.

Algorithm 2 MDecode
Input: a1, a2, b1, b2, c1, c2, d1, d2
Output: m1,m2

1: a1 ← a1 − b q4c
2: b1 ← b1 − b q4c
3: c1 ← c1 − b q4c
4: d1 ← d1 − b q4c
5: [a1, a2]← TransformPower2(a1, a2, 16)
6: [b1, b2]← TransformPower2(b1, b2, 16)
7: [c1, c2]← TransformPower2(c1, c2, 16)
8: [d1, d2]← TransformPower2(d1, d2, 16)
9: e1 ← a1 + b1 + c1 + d1
10: e2 ← a2 + b2 + c2 + d2
11: e1 ← e1 − 2q
12: [e1, e2]← A2B(e1, e2)
13: m1 = MSB(e1)
14: m2 = MSB(e2)

12

0

q
2

q
4

3q
4

− q
4

0

q
2

q
4

3q
4

Transform to 215

0

214

q
4

3q
4

− q
2

1 0

0

214

− q
4

q
4

Fig. 3: First three steps when decoding one coefficient.

13

Security Analysis We analyze the security of Algorithm 1 and 2 by showing that
each intermediate variable follows a distribution independent of any sensitive
variable. For TransformPower2 this is formalized in the following lemma.

Lemma 1. When x1, x2 ∈ Zq are a uniform sharing of x = x1 + x2 (mod
q) and y1, k

′
1, k
′
2, r ∈ {0, 1}bits are uniformly and independently distributed in

their respective value spaces, all intermediate variables in Algorithm 1 have a
distribution independent of the sensitive variable x.

Proof. For the proof, we analyze the distributions of the variables of each line
from Algorithm 1 and show that their distributions are independent of the sen-
sitive variable x.

– Lines 2,3 : Since y1 is a random value in {0, 1}bits, (x1−y1) is also a random
variable following a distribution independent of x. The same applies to (x1−
y1) + x2 = x− y1.

– Lines 4 : A constant value is subtracted from a random value in {0, 1}bits
which does not leak about x.

– Line 5 : The security strongly depends on the chosen transformation algo-
rithm. In our implementation, we use the algorithm from [25] and refer the
interested reader to their proof of security.

– Line 6,7,9,11 Each of these lines operates on only one of the shares. There-
fore, each of them follows a distribution independent of x assuming A2B to
be secured.

– Line 13 The first operand of the sum is the random value r ∈ {0, 1}bits.
Therefore, all following operations are perfectly masked by r and follow a
distribution independent of x.

– Line 14 : A random value is subtracted from only one share. Therefore, the
result does not leak about x.

As shown above, the distribution of every intermediate variable of Algorithm 1
is independent of the sensitive variable x. The output shares y1 and y2 with
x = y1 + y2 mod 2bits are both uniformly distributed in {0, 1}bits.

For MDecode, the security properties are formalized in the following lemma.

Lemma 2. When a1, a2, b1, b2, c1, c2, d1, d2 ∈ Zq are uniform shares a = a1 +
a2 (mod q), b = b1 + b2 (mod q), c = c1 + c2 (mod q), d = d1 + d2 (mod q)
which are independent of each other, all intermediate variables in Algorithm 2
have a distribution independent of the sensitive variables a, b, c, d, and m.

Proof. For the proof, we analyze the distributions of the variables of each line
from Algorithm 2 and show that their distributions are independent of the sen-
sitive variables.

– Lines 1-4 : A constant value is subtracted from only one share. If the input
sharings are uniform, the result is still a uniform sharing independent of the
sensitive variables.

14

– Lines 5-8 : The security depends on the security of TransformPower2 which
is analyzed in the previous lemma.

– Line 9,10 : Assuming the output sharings of the four calls to TransformPower2
are still uniform and independent, processing only one share of each sharing
is always independent of the sensitive variables.

– Line 11 (e1, e2) are a uniform sharing of e = a + b + c + d. Since only one
share is processed, the result is independent of the sensitive variables.

– Line 12 Again the security depends on the chosen algorithm for A2B.
– Line 13,14 : Each of these lines operates on only one of the shares. Therefore,

each of them follows a distribution independent of the sensitive variables
assuming A2B to be secured.

As shown above, the distribution of every intermediate variable of Algorithm 2
is independent of the sensitive variables a, b, c, d, and m. The output shares m1

and m2 with m = m1 ⊕m2 are both uniformly distributed in {0, 1}.

G, H, and H ′ (SHAKE). We choose to instantiate G, H, and H ′ with the
commonly-used extendable-output function SHAKE that is based on the Kec-
cak algorithm [10] and apply the masking scheme presented in [11]. Therefore,
we do not include the security analysis of this module and instead refer the
reader to the original publications. We use a different initialization vector for
each instantiation of the random oracles to make G, H, and H ′ distinct from
each other.

Ring-LWE Encryption. For the masked RLWE.CPAenc
NTT (i.e. the re-encryption

in RLWE.CCAdec
NTT), every input or internally PRNG-generated variable is sensi-

tive (i.e., mcpa, e1, e2, e3) since they can be used to recover the secret key r2 as
detailed in the beginning of this section. Therefore, the computation of c1 and c2
is done in the shared domain. For the former this is trivial, since it only requires
linear operations which can be performed on each input share separately as

c′1 = a · e′1 + e′2,

c′′1 = a · e′′1 + e′′2 .

Due to the simplicity of this computation we omit the security analysis.
For c2, however, we have to consider the rounding error from Encode to obtain

the correct result, i.e., it is not sufficient to compute

c′2 = p · e′1 + e′3 + Encode(m′cpa),

c′′2 = p · e′′1 + e′′3 + Encode(m′′cpa).

In this equation, m′cpa⊕m′′cpa = mcpa. Since our modulus q is odd and therefore
2b q2c 6= q, we have to adjust this operation so that the correct result is computed,
i.e., the result of the re-encryption has to be exactly the same as the result of
the original encryption. The naive approach would be to multiply one of the

15

intermediate results, e.g., c′2 (without the message), by 2, encode the shares
of mcpa as {0, q}, perform two additions modulo 2q, and divide the result by
2. While this approach indeed yields the correct result, it introduces an easily
detectable side-channel leakage as the last bit of the intermediate results before
the division is always set to 1 if and only if the unshared message bit is 1, i.e.
q has been added exactly one time. Similarly, the last bit is always set to 0
if and only if the unshared message bit is 0. We cannot apply the technique
described in [53] as adding a random bit yields a different result if the value that
bit is added to is odd. In the CCA2 setting, it is required that both, the original
encryption and the re-encryption output exactly the same result and thus even
a single bit error is not tolerable.

We thus decided to only return a false result in case both shares, m′cpa and
m′′cpa, have the value 1. In this case, the floor operation cuts off 1

2 two times and
thus the result is off by one. To get the correct result, we have to add m′cpa AND
m′′cpa. Obviously, we cannot compute this multiplication of the shares directly
without leakage. Thus, we split the shares into subshares.

m′cpa = m′cpa,1 +m′cpa,2

m′′cpa = m′′cpa,1 +m′′cpa,2

Notice that for this calculation m′cpa and m′′cpa are implicitly treated as poly-
nomials inRq and not as bit vectors. For simplicity, we assume in this description
that one bit is encoded into one coefficient but this approach trivially general-
izes to multi-coefficient encodings as well. As a consequence of the splitting into
shares, we have to compute (m′cpa,1 + m′cpa,2)◦(m′′cpa,1 + m′′cpa,2) instead of
m′cpa AND m′′cpa. To obtain the correct result, we compute:

c′2 = (p · e′1 + e′3 + Encode(m′cpa))

+m′cpa,1m
′′
cpa,1 +m′cpa,1m

′′
cpa,2 +m′cpa,2m

′′
cpa,1 +m′cpa,2m

′′
cpa,2

Note that the term p · e′1 + e′3 provides the randomness to protect the masked
AND computation akin to Trichina’s masked AND [73]. Therefore, the order of
operations in the computation of c′2 is important for the security. Our complete
masked re-encryption is shown in Algorithm 3.

Lemma 3. When e′1+e′′1 = e1 ∈ Rq, e′3+e′′3 = e3 ∈ Rq, m′cpa+m′′cpa = mcpa ∈
{0, 1}n/4 are uniform, independent shared representations of the sensitive input
variables and m′cpa,1,m

′′
cpa,1 ∈ Rq are uniform and independent random vari-

ables, all intermediate variables in Algorithm 3 have a distribution independent
of the sensitive variables mcpa, e1, and e3.

Proof. For the proof, we analyze the distributions of the variables of each line
from Algorithm 3 and show that they are independent of the sensitive variables
mcpa, e1, and , e3.

16

Algorithm 3 Masked Ring-LWE Encryption
Input: p, e′1, e

′
3, e
′′
1 , e
′′
3 ,m

′
cpa,m

′′
cpa,m

′
cpa,1,m

′′
cpa,1

Output: c′2, c
′′
2

1: c′2 ← p · e′1 + e′3 + Encode(m′cpa)
2: c′′2 ← p · e′′1 + e′′3 + Encode(m′′cpa)
3: m′cpa,2 ← m′cpa −m′cpa,1

4: m′′cpa,2 ← m′′cpa −m′′cpa,1

5: t11 ←m′cpa,1◦m′′cpa,1

6: t12 ←m′cpa,1◦m′′cpa,2

7: t21 ←m′cpa,2◦m′′cpa,1

8: t22 ←m′cpa,2◦m′′cpa,2

9: c′2 ← ((((c′2 + t11) + t12) + t21) + t22)

– Lines 1,2 : Each of these lines only uses one of the shares and is therefore
independent of the sensitive variables. The shared representation of the error
vectors is independent of the shared representation of mcpa due to the mask
refresh inside the shared sampler.

– Lines 3,4 : m′cpa,1 (resp. m′′cpa,1) are new random masks that are used to
mask the shares of mcpa. Since only one share of mcpa is involved in each
line, the result is still independent of mcpa.

– Lines 5,6,7,8 : Both terms of each line are uniformly and independently dis-
tributed in Rq. Therefore, the multiplication of these terms does not create
a new dependency on mcpa and the results can be easily simulated.

– Lines 9 : The term (p ·e′1+e′3) is independent of mcpa and therefore provides
sufficient fresh randomness to protect the masked AND. Each intermediate
variable of this line follows a uniform distribution in Rq independent of the
sensitive variables mcpa, e1, and e3.

As shown above, the distribution of every intermediate variable of Algo-
rithm 3 is independent of the sensitive variables mcpa, e1, and e3. Therefore, the
aforementioned chosen-ciphertext attack is not possible.

Masked binomial sampler As detailed in the beginning of this section, the
error vectors can be target for a chosen-ciphertext adversary in the side-channel
setting. Therefore, we have to perform the sampling in a shared domain. We are
using a binomial sampler that computes the Hamming weight of two bit vectors
α and β and outputs the difference out of those Hamming weights. If we split α
and β into two Boolean shares each, we can compute the output of the sampler
as follows:

out =

k−1∑
i=0

(α1[i] + α2[i]− 2α1[i]α2[i])−
k−1∑
i=0

(β1[i] + β2[i]− 2β1[i]β2[i])

=

k−1∑
i=0

(α1[i]− β1[i]) +
k−1∑
i=0

(α2[i]− β2[i])− 2

k−1∑
i=0

(α1[i]α2[i]) + 2

k−1∑
i=0

(β1[i]β2[i])

17

Obviously, we cannot compute α1[i]α2[i] and β1[i]β2[i] directly. Instead, we
compute them securely with the help of three random values X,Y, Z ∈ [0, q− 1]
as shown in Algorithm 4.

Algorithm 4 Masked Binomial Sampler

Input: α1, α2, β1, β2 ∈ {0, 1}k with α1 ⊕ α2 = α and β1 ⊕ β2 = β
Output: out1, out2 with (out1 + out2) mod q binomial distributed
1: i← 0
2: out1 ← 0
3: out2 ← 0
4: for i < k do
5: out1 = out1 + (α1[i]− β1[i])
6: out2 = out2 + (α2[i]− β2[i])
7: X

$← [0, q − 1], Y
$← [0, q − 1], Z

$← [0, q − 1]
8: α1

′′ = α1[i]−X
9: α2

′′ = α2[i]− Y
10: out1 = out1 − 2((((Z +XY) +Xα2

′′) + α1
′′Y) + α1

′′α2
′′)

11: β1
′′ = β1[i]−X

12: β2
′′ = β2[i]− Y

13: out2 = out2 + 2((((Z +XY) +Xβ2
′′) + β1

′′Y) + β1
′′β2
′′)

14: i← i+ 1
15: end for

Lemma 4. When α2 ∈ {0, 1}k with α1⊕α2 = α, β2 ∈ {0, 1}k with β1⊕β2 = β,
X ∈ [0, q− 1], Y ∈ [0, q− 1], and Z ∈ [0, q− 1] are uniformly and independently
distributed in their respective value space, all intermediate variables in Algo-
rithm 4 have a distribution independent of the sensitive unshared input variables
α and β.

Proof. For the proof, we analyze the distributions of the variables of each line
from Algorithm 4 and show that their distributions are independent of the sen-
sitive variables α and β.

– Lines 5,6 : Only one share is used in each of the two operations. Therefore,
the result is independent of the unshared values α and β.

– Line 8-13 : The proof works analogous to the proof for Lines 5-9 of Lemma
3.

As shown above, the distribution of every intermediate variable of Algo-
rithm 4 is independent of the sensitive variables α and β. Therefore, it is not
possible for an attacker, which can probe one value, to derive sensitive informa-
tion. The output shares out1 and out2 with out = out1+out2 are both uniformly
distributed in [0, q − 1].

18

Masked PRNG The PRNG is also a possible target for a chosen-ciphertext
adversary as noted before. Therefore, we used the already implemented masked
version of SHAKE-128 to generate random numbers with a fixed seed.

3.4 Masked Comparison

It is further necessary to protect all comparisons against a side-channel adver-
sary, since even c̃∗1, c∗2, and c∗4 can be used to distinguish r̃2. Since these values
are shared, it is necessary to compute a function of both shares to compare them
to the public and possibly adversary controlled values c̃1, c2, and c4. To prevent
leakage of the sensitive variables we introduce an additional hashing-step before
the comparison. Using c̃1 as an example, we perform the comparison of c̃1 with
the shared c̃∗1 = c̃∗′1 + c̃∗′′1 as provided in Algorithm 5. The correctness of our

Algorithm 5 Masked Comparison of public c̃1 with internal c̃∗1
Input: c̃1, c̃

∗′
1 , c̃

∗′′
1

Output: eq
1: c̃∗′1 ← c̃1 − c̃∗′1
2: c̃∗′1 ← H ′′(c̃∗′1)
3: c̃∗′′1 ← H ′′(c̃∗′′1)
4: eq ← c̃∗′1 ⊕ c̃∗′′1

5: eq ← (eq == 0)

approach is easy to verify as

H ′′(c̃∗1 − c̃∗′′1)
?
= H ′′(c̃∗′1)

⇔H ′′(c̃∗1 − c̃1 + c̃∗′1)
?
= H ′′(c̃∗′1).

Relying on the collision-resistance of H ′′, this comparison is only true if the
ciphertext is valid and thus c̃∗′1 = c1.

Lemma 5. When c̃∗′1 + c̃∗′′1 = c̃∗1 ∈ Rq is a uniform, independent shared rep-
resentation of the sensitive input variable c̃∗1 and H ′′ is a cryptographic hash
function, every intermediate variable of Algorithm 5 is independent of the sen-
sitive variable c̃∗1.

Proof. For the proof, we analyze the distributions of the variables of each line
from Algorithm 5 and show that they are independent of the sensitive variable.

– Lines 1-3 : Each line uses only one share of c̃∗1 and, therefore, the computation
is independent of c̃∗1.

– Lines 4 : The adversary can probe H ′′(c̃∗1 − c̃1 + c̃∗′1) ⊕ H ′′(c̃∗′1) which de-
pends on both shares. However, we rely on the properties of H ′′ to break the
linear relation between the shares and make a direct recovery of c̃∗1 impossi-
ble. Nevertheless, a computationally unbounded adversary would be able to

19

distinguish the sensitive variable c̃∗1 by iterating over all possible c̃∗′1 . Since
c̃∗′1 ∈ Rq this task is more complex than directly iterating over the whole key
space of r̃2. Therefore, we do not consider this attack vector a viable threat.
Furthermore, in the special case of c̃∗1 = c̃1 the variable c̃∗1 is not sensitive.

However, it is only secure to have a function of both shares, because the
comparison is always negative, i.e., eq is false, in a chosen-ciphertext setting.
Therefore, the attacker does not gain additional knowledge from the output of
the comparison. This does not apply to the comparison of c2 and c4. In this case,
the adversary can adaptively change c2 or c4 without removing the sensitivity
from mcpa (which is not possible for c̃1) and use the output of compare(c∗′2 , c∗′′2)
(resp. compare(c∗′4 , c∗′′4)) to distinguish mcpa. This problem can be solved by
performing the other comparison (i.e., c̃1) beforehand and only if it returns
true the other two comparisons (i.e., c2, c4) are conducted. A timing-constant
solution would be to perform dummy comparisons for c2 and c4 in case the prior
comparison failed. Furthermore, for these comparisons it is not even necessary
to perform a masked comparison, since they are only ever done for valid c̃1 and
in this setting mcpa is not sensitive.

3.5 Hiding

To increase the level of noise and make higher-order attacks harder, we do not
only rely on masking to thwart side-channel analysis but also include hiding
schemes. We therefore applied the aforementioned blinding technique from [67]
to our implementation by multiplying the coefficients of c1 by a random value
a ∈ [0, q− 1] and the coefficients of r2 by a different random value b ∈ [0, q− 1].
The coefficients of c2 are multiplied by ab mod q as they get added to the
product (a ·c1) · (b ·r2). The mask is then removed by multiplying all coefficients
by (ab)−1 mod q. Due to the linearity of the NTT it is possible to remove
the mask after the result has been transformed back to the time domain. To
introduce even more noise we used shuffling to execute linear operations during
the decryption in a randomized order. To achieve this we shuffled the list of
coefficients by using the Fisher-Yates algorithm [29]. A similar countermeasure
has been implemented by Pessl [54] to avoid cache-timing attacks. For every run
of the decryption, the list of coefficients gets shuffled again.

3.6 Fault Resistance

Fault injection is an additional physical threat for embedded systems. Previous
publications have analyzed the vulnerability of lattice-based signature schemes
against fault attacks [12, 28] and found several attacks. In the following, we
present the – to our knowledge – first vulnerability analysis of ring-LWE.

In our analysis, we assume that the adversary targets the secret key r2 dur-
ing the CCA2-secured decryption. Without CCA2-security, a fault attack is not
necessary to recover the secret key as described before. Given that the CCA2-
conversion includes a validity check at the end, it inherently includes resistance

20

against certain faults. In particular, any fault injected in the ring-LWE decryp-
tion that changes the output of the ring-LWE decryption module will be detected
by the re-encryption at the end7. Therefore, to perform any type of fault attack,
it is required to inject another fault into the input of H (to change the seed) or
the ring-LWE encryption with the goal of passing the validity check. Depend-
ing on the capabilities of the fault attacker, this approach can be very complex.
Therefore, in most cases it is easier to directly inject the fault in the validity
check itself, e.g., by skipping instructions.

Furthermore, due to the construction of our scheme the attacker does not
have direct access to the output of the ring-LWE decryption module. Instead,
the output is defined as

out = c3 ⊕G(m)

= (M ⊕G(m))⊕G(m) =M

whereM is the message andm the output of the ring-LWE decryption. Assuming
that the attacker knows M and G(m), the faulty output is

outF = c3 ⊕G(mF)

and therefore the only novel information the attack can access is G(mF). Based
on the pre-image resistance of G, it is not easily possible to compute mF from
G(mF) for arbitrary mF . This poses another difficulty for the fault attacker, as
it is necessary to skip the computation of G to perform attacks that target the
output of the decryption assuming mF is uniformly distributed in {0, 1}n/4.

However, it is possible to overcome this limitation. A much simpler attack
relies on the basic vulnerability of ring-LWE decryption to chosen ciphertexts.
By skipping the validity check at the end, the attacker effectively removes the
CCA2-security. Meaning an attacker can send chosen ciphertexts and receive the
output

out = c3 ⊕G(mC)

where mC denotes the output of the decryption for the chosen ciphertext. Even
though, we noted above that G provides pre-image resistance, this does not
apply when mC has only a very limited value space. Then it is possible to
compute G(mC) for all possible mC and use out to check for the correct one.
For our implementation, an attacker can target each coefficient of the secret key
polynomial separately by choosing c̃1 as a polynomial with all coefficients but
one set to zero. Therefore, an attacker needs to compute only q different values
for mC . Overall, this attack only requires the injection of one fault at the end
to skip the validity check of the CCA2-conversion.

In conclusion, our implementation provides basic resistance against simple
faults in the ring-LWE decryption. However, if the attacker can skip the validity
7 There are no two distinct outputs of the decryption that can be valid at the same
time

21

check, it becomes very easy to extract the secret key. Therefore, to increase
the resistance against physical attacks, additional countermeasures need to be
included to protect this final check. Furthermore, more sophisticated attacks,
e.g., safe-error attacks [76], also pose a threat to the secret key and, therefore,
would require more sophisticated fault countermeasures.

3.7 Higher-Order Masking

As mentioned before, it is not sufficient to analyze the security against d probes
for each module separately to show the security of the full decryption. Never-
theless, we now briefly discuss the possible extension of our masked modules to
higher-orders.

For the first part of RLWE.CPAdec
NTT, each share is processed separately and

therefore extending the security to more probes is trivial. A designer only needs
to increase the number of shares and process them similar to z′′. However, the
addition of the shares in the second part requires special care, e.g., order of
operation, to obtain higher-order security.

For G, H, and H ′ we refer to [11] for a discussion of higher-order resis-
tance. We want to note that for this module the efficiency strongly depends
on the chosen function. Keccak is efficient for first-order security. However,
for higher orders a different function might be better suited. In the module
RLWE.CPAenc

NTTmost operations are linear and, therefore, can be trivially ex-
tended to higher orders. Only the masked AND needs to be extended to higher
orders as described by Ishai, Sahai, and Wagner [41]. For the masked sampler, the
extension to higher orders would be quite expensive as it is already the largest
part of the implementation. Therefore, it is reasonable to design a new sampler
which is easy to mask. Maintaining an additional share means that we need
extra temporary storage for one polynomial that stores the third share of the
key (2048 bytes) and one additional Keccak state (200 bytes). Our target plat-
form provides 192 kbytes of RAM and therefore we expect that a higher-order
masking scheme still fits onto the microcontroller.

4 Implementation

To evaluate the performance of the CCA2-conversion and our masking scheme,
we implemented the constructions on an ARM Cortex-M4F. Our evaluation plat-
form is an STM32F4 DISCOVERY board with 1 Mbyte of flash memory, 192
kbyte of RAM, a floating-point unit (FPU), and a true random number gen-
erator (TRNG). In order to keep the running time constant and independent,
we implemented critical components in assembly language. Furthermore, to pre-
vent cache timing attacks we disabled the cache of the on-board flash memory
by setting the DCEN bit of the FLASH_ACR register to zero. This also prevents
the single-trace attack by Primas, Pessl, and Mangard [57] that exploits timing
differences in the DIV instruction.

22

We use SHAKE-128 as instantiation for all random oracles H, G, H ′, and
H ′′ and use a different initialization vector for each of them. As the hashing
plays a minor role in terms of performance, we selected the readable Keccak
implementation by Saarinen [66] as basis for our implementation as it allowed us
to easily implement side-channel countermeasures. To achieve a constant running
time we decided to implement the binomial sampler from [2] with k = 8. To
sample the necessary randomness, we implemented a PRNG that is initialized
with a 256-bit seed. For encryption, we generate this secret seed from the on-
board TRNG and then use a PRNG to generate Gaussian noise. As we have
to perform a re-encryption during the decryption that must sample the exact
same values, we cannot use the TRNG for this purpose but have to initialize the
PRNG with the same seed. We also use SHAKE-128 as PRNG.

For the implementation of polynomial arithmetic we need a high-performance
and constant-time modular reduction to prevent arithmetic-related SPA and re-
mote timing attacks [57]. As a consequence, the implementation of the NTT and
especially the three-instruction modular reduction from [23] is not suitable. It
uses the DIV instruction, which has a data-dependent variable execution time
that can reach from 2 to 12 clock cycles. Therefore, we implemented a Barrett
reduction [7] using the FPU of the Cortex-M4F that takes 6 clock cycles and is
timing-independent. De Clercq et al. [23] also present an optimized implemen-
tation of the NTT. They implement the NTT in assembly and also proposed an
optimized memory access scheme. Their idea is to store two coefficients in one
data word and being able to load/store both coefficients with the same instruc-
tion. Alkim et al. implemented the NTT as well as reported in [3]. By combining a
Montgomery reduction with Barrett reduction, their NTT is considerably faster
than the one from [23] and most importantly also has a constant execution time.
We therefore embedded the NTT from [3] into our implementation.

For our implementation of the blinding countermeasure, we need to compute
the inverse of the product of the blinding values (ab)−1 mod q. To realize this
inversion efficiently, we used an addition chain to compute (ab)q−2 mod q what
equals (ab)−1 mod q according to Fermats little theorem. To shuffle the list of
indices of the polynomials and therefore change the order of the computations
according to the Fisher-Yates algorithm [29].

A theoretically secure masking scheme can still show leakage in an actual
implementation due to unconsidered effects inside the microarchitecture of the
microcontroller. For instance, overriding a register that holds one share with the
content of another register storing the other share, will inevitably leak informa-
tion. Similarly, one must avoid to load or store both shares from or to memory in
consecutive instructions (or even the same instruction, e.g. load multiple LDM).
Furthermore, carry bits can be a source of leakage. We carefully designed our
implementation to not suffer from these problems. For operations that can be
performed on both shares independently (e.g. point-wise multiplication), this is
easily achieved by executing the operations on all coefficients of one share first
and only then do the operations for the coefficients of the other share. For op-

23

erations that require both shares (i.e. Decode) hand-crafted assembly code is
necessary.

5 Side-Channel Evaluation

Even though we provide proofs for most of our modules against one probe,
practical first-order side-channel security is not automatically implied by that.
Implementation errors can still negatively affect the resistance due to effects that
are not included in the model [6]. Therefore, to extensively evaluate the security
of our masked implementation, we performed basic side-channel experiments.
Since our aim is to show first-order resistance, we rely on the commonly-used
t-test leakage detection methodology initially proposed in [20,32]. We performed
the test at first and second order. For bivariate second-order evaluation, we relied
on the optimal centered product [58,71] as the combination function.

We use a PicoScope 5203 with a sample rate of 125 MS/s to measure the
power consumption at our STM32F4 Discovery board. To increase the measure-
ment quality, we reduce the internal clock to 12 MHz and remove some capaci-
tors from the PCB. The communication with the board is done over USART as
the on-board USB interface causes additional noise in the power traces. Since
the entirely masked decryption requires an extremely high number of clock cy-
cles, we cannot easily perform a bivariate evaluation with our proposed method.
Instead, we split the practical evaluation into the modules similar to the the-
oretical evaluation of Section 3.3. For first-order evaluation this is appropriate
as noted in Section 3.3. However, for the bivariate second-order test we do not
cover the scenario of two probes in different modules. Nevertheless, our goal is
to show the existence of second-order leakage to verify our measurement setup
and we found this for every module separately. For each module we took 100,000
measurements and performed the aforementioned tests. To further speed up the
second-order evaluation, we adjusted the module to only process a small number
of coefficients.

In our experiments, we perform the non-specific fixed vs. random t-test. To
this end, we take two types of measurements. One with fixed input and one with
random input. The t-statistic t is computed as

t =
µF − µR√
σ2
F

nF
+

σ2
R

nR

where µF , σ2
F , and nF (resp. µR, σ2

R, and nR) denote the mean, variance, and
number of measurements set with fixed input (resp. random input). If the value
exceeds the threshold |t| > 4.5, the test has detected leakage. For more in-
formation, we refer the interested reader to further literature related to this
side-channel evaluation methodology [68].

We measured the computation of the butterfly during the NTT for two co-
efficients, the addition of the two shares during the masked re-encryption as
described in Section 3.3 for one coefficient, the remasking and decoding as de-
scribed in Section 3.3 for four coefficients (that encode one bit), the masked

24

χ-step of Keccak for five bytes, point-wise multiplication and addition for two
coefficients, two bits for the sampler, and 12 bytes for the comparison. To reduce
the number of measured sample points per trace, we split the decoding into one
measurement of the modulus transformation (Algorithm 1) and one measure-
ment of the final operations as described in Algorithm 2. Figure 4 depicts the
results for each module. The lower (resp. upper) curve shows the maximum ab-
solute value of the first-order (resp. second-order) test as a function of the total
number of measurements considered in the evaluation. It is noticeable that in-
deed no first-order leakage could be measured up to 100,000 traces. There is also
no obvious increase of the t-values. Thus, the implementation showed first-order
protection as expected. Additionally, the second-order evaluation shows leakage
early on for every module and displays an upward trend with higher number
of measurements. This is also expected given that we implemented first-order
masking.

However, it should be noted that even though our evaluations clearly show
second-order leakage, performing an actual second-order attack on the masked
implementation might not be trivial. First, there is the aforementioned issue of
the extreme high number of sample points which can make our naive combi-
nation approach unfeasible. Instead, more sophisticated point of interest detec-
tion mechanisms need to be utilized to reduce the number of considered sam-
ple pairs [26, 61] which further increases the complexity of the attack. A sec-
ond aspect which is briefly mentioned in Section 3.5 is the mixture of masking
with hiding countermeasures. Higher-order attacks are very sensitive to noise.
Therefore, to increase the higher-order security it is advised to include one of
the discussed hiding countermeasures. In one recent example, this increased the
practical resistance more than implementing a higher-order masking scheme [48].
Furthermore, if only the start of the ring-LWE decryption is targeted, a designer
can rely on the linear masking property to increase the number of shares signif-
icantly. However, including hiding countermeasures prevents us from evaluating
only simplified versions of the modules, since the efficiency strongly increases
with the number of coefficients. Therefore, we did not measure a masked design
with hiding, since a thorough second-order evaluation would not be feasible (the
first-order test would give similar results to Figure 4).

6 Results and Comparison

We evaluate the performance of our implementation using Keil µVision V5.17
and use -O3 optimization for compiling. We took special care to prevent effects
that the compiler optimization itself could induce side-channel leakage, e.g. by
overwriting one shared value in a register with the second share. Cycle counts
are measured using the on-board cycle count register (DWT_CYCCNT). To measure
the dynamic memory consumption we used the callgraph feature of the Keil
IDE. We present the cycle counts of our implementation in Table 2. The CCA2-
secured encryption takes 4,176,684 cycles which translates to 25 milliseconds

25

20 40 60 80 100

Number of measurements x 103

3

4

5

6

7
t

(a) Butterfly

20 40 60 80 100

Number of measurements x 103

3

4

5

6

7

t

(b) Encryption

0 10 20 30 40 50 60 70 80 90 100

Number of measurements x 103

2.5

3

3.5

4

4.5

5

5.5

t

(c) Modulus Transformation

0 10 20 30 40 50 60 70 80 90 100

Number of measurements x 103

2.5

3

3.5

4

4.5

5

5.5

t

(d) Final decoding operations

20 40 60 80 100

Number of measurements x 103

3

4

5

6

7

t

(e) Point-wise multiplication and addition

10 20 30 40 50 60 70 80 90 100

Number of measurements x 103

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

t

(f) Comparison

10 20 30 40 50 60 70 80 90 100

Number of measurements x 103

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

t

(g) Sampling

20 40 60 80 100

Number of measurements x 103

3

4

5

6

7

t

(h) Hash function

Fig. 4: Absolute maximum t-values for different modules of our masking scheme.
The solid blue line marks the first-order t-values and the dashed red line marks
the second-order t-values.

26

Table 2: Cycle counts of our implementation on an ARM Cortex-M4F. Cycle
counts for sampling are given for a whole polynomial. Our parameters are n =
1024, q = 12289, and k = 8.
Operation Cycle Counts

Unmasked Masked

Key Generation (RLWE.CPAgen
NTT) 2,669,559 -

CCA2-secured Encryption (RLWE.CCAenc
NTT) 4,176,684 -

CCA2-secured Decryption (RLWE.CCAdec
NTT) 4,416,918 25,334,493

CPA-RLWE Encryption (RLWE.CPAenc
NTT) 3,910,871 19,315,432

CPA-RLWE Decryption (RLWE.CPAdec
NTT) 163,887 550,038

Shake-128 87,738 201,997
NTT 83,906 -
INTT 104,010 -
Uniform Sampling (TRNG) 60,014 -
SampleNoisePoly (PRNG) 1,142,448 6,031,463
PRNG (64 bytes) 88,778 202,454

when operating at a clock frequency of 168 MHz. The key generation takes 16
ms at 168 MHz.

Applying the CCA2-conversion to the decryption causes a much higher over-
head due to the necessary re-encryption. In the unmasked case, it requires 27
times more cycles and in the masked case 46 times more cycles. Thus, the masked
CCA2-decryption takes 25,334,493 cycles which is an overhead factor of 5.7 com-
pared to the CCA2-secured decryption without masking. The overhead cost for
the masking of the CCA2-secured decryption is mainly due to the high cost of
the sampling. The sampling in turn heavily depends on the performance of the
PRNG. A suitable replacement for SHAKE-128 would therefore drastically im-
prove the performance of the scheme. An insecure approach with an unmasked
re-encryption would require around 2 million cycles only. However, as noted
in Section 3.3 such an implementation would not provide sufficient protection
against a side-channel adversary in a chosen-ciphertext scenario.

The results of combining our masking approach of the decryption with ad-
ditional hiding countermeasures are given in Table 3. The overall running time
for our protected decryption is 25,640,380 cycles which leads to 152 milliseconds
runtime at 168 MHz. The secret key is one polynomial and therefore requires
2,048 bytes of memory. As the public key consists of two polynomials, it needs
twice as much memory (4,096 bytes). The ciphertext consists of two polynomials
(c̃1, c2) and the bit strings c3, c4 of 256 bits each and therefore has a total size
of 4,136 bytes.

27

Table 3: Cycle counts of our CCA2-secured decryption.
Masking

Countermeasure Unmasked Masked

No Hiding 4,416,918 25,334,493
Blinding/Shuffling 4,643,394 25,640,380

6.1 Comparison

Notice that the masked implementation in [63] is a hardware implementation and
that [60] does not provide performance numbers. Thus we cannot directly com-
pare our results to the existing work and decided to re-implement the previous
proposals in combination with a CCA2-conversion to allow a fair comparison.
Our results are given in Tabel 4. This also demonstrates the individual over-
head of all schemes independent of the performance of the NTT. According to
our findings, our CCA2-secured decryption needs one million cycles less than
the masked decoder approach from [63] and 3.5 million cycles less than addi-
tively homomorphic masking [60]. It is also worth mentioning that encoding one
message bit into four coefficients is much more complex when using the masked
decoder approach as we no longer have 42 = 16 possible combinations of values
to match quadrants but 42·4 = 256 combinations. Thus, for the evaluation of
the masked decoding approach, we decode each coefficient separately and use
masked majority voting to combine them. The additively homomorphic mask-
ing inherently increases the failure probability and may thus impact parameter
choices and the acceptable noise levels.

Table 4: Cycle counts and dynamic memory consumption of our CCA2-secured
decryption.
Masking Scheme Cycle counts Dynamic memory

Our scheme 25,334,493 25,696 bytes
Masked decoder [63] 26,250,420 25,696 bytes
Additively homomorphic masking [60] 28,899,058 29,984 bytes

7 Conclusion

In this work we presented a new instantiation of CPA-secured ring-LWE encryp-
tion with masked decoding that outperforms previous proposals at a reduced

28

decryption failure probability. We also applied a CCA2-transform to the ring-
LWE encryption scheme. This requires a masked sampling of the error polyno-
mials. The implementation of our construction revealed that a side-channel and
CCA2-secured implementation of ring-LWE comes with a significant overhead.
We identified a target of further optimization within the masked implementation
of the PRNG (SHAKE-128 in our case) for that further acceleration would result
in a significantly increased overall performance.

Acknowledgement

The research in this work was supported in part by the DFG Research Training
Group GRK 1817/1 and by the European Unions Horizon 2020 program under
project number 645622 PQCRYPTO, 644729 SAFEcrypto, and 724725 SWORD.
We would also like to thank the anonymous reviewers for their very valuable and
helpful feedback.

References

1. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Newhope
without reconciliation. IACR Cryptology ePrint Archive, 2016:1157, 2016. 7, 8

2. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - A new hope. In Thorsten Holz and Stefan Savage, editors,
25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, Au-
gust 10-12, 2016., pages 327–343. USENIX Association, 2016. 2, 3, 4, 7, 8, 23,
36

3. Erdem Alkim, Philipp Jakubeit, and Peter Schwabe. A new hope on ARM
Cortex-M. In Claude Carlet, Anwar Hasan, and Vishal Saraswat, editors, Secu-
rity, Privacy, and Advanced Cryptography Engineering, Lecture Notes in Com-
puter Science. Springer-Verlag Berlin Heidelberg, 2016 (to appear). Docu-
ment ID: c7a82d41d39c535fd09ca1b032ebca1b, http://cryptojedi.org/papers/
#newhopearm. 23

4. AC Atici, Lejla Batina, Benedikt Gierlichs, and Ingrid Verbauwhede. Power anal-
ysis on NTRU implementations for RFIDs: First results. In The 4th Workshop on
RFID Security, July 9th -11th, Budapest, 2008. 6

5. Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron Steinfeld.
Improved security proofs in lattice-based cryptography: Using the rényi divergence
rather than the statistical distance. In Tetsu Iwata and Jung Hee Cheon, editors,
Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference on
the Theory and Application of Cryptology and Information Security, Auckland,
New Zealand, November 29 - December 3, 2015, Proceedings, Part I, volume 9452
of Lecture Notes in Computer Science, pages 3–24. Springer, 2015. 4

6. Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-
Xavier Standaert. On the cost of lazy engineering for masked software implemen-
tations. In Marc Joye and Amir Moradi, editors, Smart Card Research and Ad-
vanced Applications - 13th International Conference, CARDIS 2014, Paris, France,
November 5-7, 2014. Revised Selected Papers, volume 8968 of Lecture Notes in
Computer Science, pages 64–81. Springer, 2014. 24

29

http://cryptojedi.org/papers/#newhopearm
http://cryptojedi.org/papers/#newhopearm

7. Paul Barrett. Implementing the Rivest Shamir and Adleman public key encryp-
tion algorithm on a standard digital signal processor. In Andrew M. Odlyzko,
editor, CRYPTO, volume 263 of Lecture Notes in Computer Science, pages 311–
323. Springer, 1986. 23

8. Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and
type-directed higher-order masking. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, pages 116–129. ACM, 2016. 9

9. Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations
among notions of security for public-key encryption schemes. In Hugo Krawczyk,
editor, Advances in Cryptology - CRYPTO ’98, 18th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 23-27, 1998, Proceedings,
volume 1462 of Lecture Notes in Computer Science, pages 26–45. Springer, 1998.
2

10. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak. In
Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology - EU-
ROCRYPT 2013, 32nd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceed-
ings, volume 7881 of Lecture Notes in Computer Science, pages 313–314. Springer,
2013. 15

11. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Building
power analysis resistant implementations of Keccak. In Second SHA-3 candidate
conference, volume 142. Citeseer, 2010. 15, 22

12. Nina Bindel, Johannes A. Buchmann, and Juliane Krämer. Lattice-based signature
schemes and their sensitivity to fault attacks. IACR Cryptology ePrint Archive,
2016:415, 2016. to appear in FDTC’16. 20

13. Ahmad Boorghany and Rasool Jalili. Implementation and comparison of lattice-
based identification protocols on smart cards and microcontrollers. IACR Cryp-
tology ePrint Archive, 2014:78, 2014. 2

14. Ahmad Boorghany, Siavash Bayat Sarmadi, and Rasool Jalili. On constrained
implementation of lattice-based cryptographic primitives and schemes on smart
cards. IACR Cryptology ePrint Archive, 2014:514, 2014. 2

15. Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Vale-
ria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the
ring! Practical, quantum-secure key exchange from LWE. IACR Cryptology ePrint
Archive, 2016:659, 2016. to appear in CCS’16. 4

16. Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-
quantum key exchange for the TLS protocol from the ring learning with errors
problem. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015, pages 553–570. IEEE Computer Society, 2015. 2, 4,
7, 36

17. Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, and Damien Stehlé. CRYSTALS - Kyber: a CCA-
secure module-lattice-based KEM. IACR Cryptology ePrint Archive, 2017:634,
2017. 4

18. Johannes A. Buchmann, Florian Göpfert, Tim Güneysu, Tobias Oder, and Thomas
Pöppelmann. High-performance and lightweight lattice-based public-key encryp-
tion. In Richard Chow and Gökay Saldamli, editors, Proceedings of the 2nd ACM

30

International Workshop on IoT Privacy, Trust, and Security, IoTPTS@AsiaCCS,
Xi’an, China, May 30, 2016, pages 2–9. ACM, 2016. 4

19. Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray Perlner,
and Daniel Smith-Tone. DRAFT NISTIR 8105, report on post-quantum cryptogra-
phy, 2015. http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_
8105_draft.pdf. 2

20. Jeremy Cooper, Elke Demulder, Gilbert Goodwill, Joshua Jaffe, Gary Kenworthy,
and Pankaj Rohatgi. Test Vector Leakage Assessment (TVLA) Methodology in
Practice. International Cryptographic Module Conference, 2013. 24

21. Jean-Sébastien Coron. High-order conversion from boolean to arithmetic masking.
In Wieland Fischer and Naofumi Homma, editors, Cryptographic Hardware and
Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes in Computer
Science, pages 93–114. Springer, 2017. 10

22. Jean-Sébastien Coron, Johann Großschädl, Mehdi Tibouchi, and Praveen Kumar
Vadnala. Conversion from arithmetic to boolean masking with logarithmic com-
plexity. In Gregor Leander, editor, Fast Software Encryption - 22nd International
Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015, Revised Selected Pa-
pers, volume 9054 of Lecture Notes in Computer Science, pages 130–149. Springer,
2015. 10

23. Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede.
Efficient software implementation of ring-LWE encryption. IACR Cryptology
ePrint Archive, 2014:725, 2014. 23

24. Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede.
Efficient software implementation of ring-LWE encryption. In Wolfgang Nebel
and David Atienza, editors, Proceedings of the 2015 Design, Automation & Test
in Europe Conference & Exhibition, DATE 2015, Grenoble, France, March 9-13,
2015, pages 339–344. ACM, 2015. 2

25. Blandine Debraize. Efficient and provably secure methods for switching from arith-
metic to boolean masking. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 107–121. Springer, 2012. 10, 11, 14

26. François Durvaux, François-Xavier Standaert, Nicolas Veyrat-Charvillon, Jean-
Baptiste Mairy, and Yves Deville. Efficient selection of time samples for higher-
order DPA with projection pursuits. In Constructive Side-Channel Analysis and
Secure Design - 6th International Workshop, COSADE 2015, Berlin, Germany,
April 13-14, 2015. Revised Selected Papers, pages 34–50, 2015. 25

27. Cynthia Dwork, Moni Naor, and Omer Reingold. Immunizing encryption schemes
from decryption errors. In Christian Cachin and Jan Camenisch, editors, Advances
in Cryptology - EUROCRYPT 2004, International Conference on the Theory and
Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004,
Proceedings, volume 3027 of Lecture Notes in Computer Science, pages 342–360.
Springer, 2004. 2

28. Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi. Loop
abort faults on lattice-based Fiat-Shamir & hash’n sign signatures. IACR Cryp-
tology ePrint Archive, 2016:449, 2016. 20

29. Ronald Aylmer Fisher, Frank Yates, et al. Statistical tables for biological, agricul-
tural and medical research. Edinburgh and London: Oliver & Boyd., 1957. 5th rev.
ed. 20, 23

30. Scott R. Fluhrer. Cryptanalysis of ring-LWE based key exchange with key share
reuse. IACR Cryptology ePrint Archive, 2016:85, 2016. 2, 6

31

http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf

31. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Michael J. Wiener, editor, Advances in Cryp-
tology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 1999, Proceedings, volume 1666 of Lec-
ture Notes in Computer Science, pages 537–554. Springer, 1999. 3, 7, 8

32. G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi. A testing methodology for side
channel resistance validation. In NIST non-invasive attack testing workshop, 2011.
3, 24

33. Norman Göttert, Thomas Feller, Michael Schneider, Johannes A. Buchmann, and
Sorin A. Huss. On the design of hardware building blocks for modern lattice-based
encryption schemes. In Prouff and Schaumont [59], pages 512–529. 4, 7, 36

34. Louis Goubin. A sound method for switching between boolean and arithmetic
masking. In Çetin Kaya Koç, David Naccache, and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2001, Third International Work-
shop, Paris, France, May 14-16, 2001, Proceedings, volume 2162 of Lecture Notes
in Computer Science, pages 3–15. Springer, 2001. 10

35. Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996,
pages 212–219. ACM, 1996. 7

36. Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-
based cryptography: A signature scheme for embedded systems. In Prouff and
Schaumont [59], pages 530–547. 4

37. Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack on
MDPC with CCA security using decoding errors. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd International
Conference on the Theory and Application of Cryptology and Information Security,
Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, volume 10031 of Lecture
Notes in Computer Science, pages 789–815, 2016. 2

38. Jeff Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, William Whyte,
and Zhenfei Zhang. Choosing parameters for NTRUEncrypt. IACR Cryptology
ePrint Archive report 2015/708, 2015. http://eprint.iacr.org/2015/708. 36

39. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based
public key cryptosystem. In Joe Buhler, editor, Algorithmic Number Theory, Third
International Symposium, ANTS-III, Portland, Oregon, USA, June 21-25, 1998,
Proceedings, volume 1423 of Lecture Notes in Computer Science, pages 267–288.
Springer, 1998. 2

40. Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval, John Proos,
Joseph H. Silverman, Ari Singer, and William Whyte. The impact of decryp-
tion failures on the security of NTRU encryption. In Dan Boneh, editor, Advances
in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume 2729 of
Lecture Notes in Computer Science, pages 226–246. Springer, 2003. 2

41. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In Advances in Cryptology - CRYPTO 2003, 23rd Annual
International Cryptology Conference, Santa Barbara, California, USA, August 17-
21, 2003, Proceedings, pages 463–481, 2003. 9, 22

42. Abdel Alim Kamal and Amr M. Youssef. Fault analysis of the NTRUEncrypt
cryptosystem. IEICE Transactions, 94-A(4):1156–1158, 2011. 6

32

http://eprint.iacr.org/2015/708

43. Abdel Alim Kamal and Amr M. Youssef. Strengthening hardware implementations
of NTRUEncrypt against fault analysis attacks. J. Cryptographic Engineering,
3(4):227–240, 2013. 6

44. Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based
encryption. In Aggelos Kiayias, editor, Topics in Cryptology - CT-RSA 2011 - The
Cryptographers’ Track at the RSA Conference 2011, San Francisco, CA, USA,
February 14-18, 2011. Proceedings, volume 6558 of Lecture Notes in Computer
Science, pages 319–339. Springer, 2011. 2, 3, 7

45. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Henri Gilbert, editor, Advances in Cryptol-
ogy - EUROCRYPT 2010, 29th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, French Riviera, May 30 - June 3,
2010. Proceedings, volume 6110 of Lecture Notes in Computer Science, pages 1–
23. Springer, 2010. Presentation slides: http://crypto.rd.francetelecom.com/
events/eurocrypt2010/talks/slides-ideal-lwe.pdf. 2, 4, 33

46. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-
ing with errors over rings, 2010. Presentation of [45] given by Chris Peikert at Euro-
crypt’10. See http://www.cc.gatech.edu/~cpeikert/pubs/slides-ideal-lwe.
pdf. 3

47. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-
ing with errors over rings. IACR Cryptology ePrint Archive, 2012:230, 2012. Full
version of [45]. 3

48. Amir Moradi and Alexander Wild. Assessment of hiding the higher-order leak-
ages in hardware - what are the achievements versus overheads? In Cryptographic
Hardware and Embedded Systems - CHES 2015 - 17th International Workshop,
Saint-Malo, France, September 13-16, 2015, Proceedings, pages 453–474, 2015. 25

49. LEE Mun-Kyu, Jeong Eun Song, and HAN Dong-Guk. Countermeasures against
power analysis attacks for the NTRU public key cryptosystem. IEICE transactions
on fundamentals of electronics, communications and computer sciences, 93(1):153–
163, 2010. 6

50. National Security Agency. Commercial national security algorithm suite,
2015. https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm,
Last Reviewed on August 19, 2015. 2

51. NIST. Request for comments on post-quantum cryptography requirements and
evaluation criteria. National Institute of Standards and Technology, August 2016.
See https://federalregister.gov/a/2016-18150. 2

52. Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu. Practical
cca2-secure and masked ring-lwe implementation. IACR Cryptology ePrint Archive,
2016:1109, 2016. 3

53. Chris Peikert. Lattice cryptography for the Internet. In Michele Mosca, editor,
Post-Quantum Cryptography - 6th International Workshop, PQCrypto 2014, Wa-
terloo, ON, Canada, October 1-3, 2014. Proceedings, volume 8772 of Lecture Notes
in Computer Science, pages 197–219. Springer, 2014. 2, 8, 16

54. Peter Pessl. Analyzing the shuffling side-channel countermeasure for lattice-based
signatures. In Progress in Cryptology–INDOCRYPT 2016: 17th International Con-
ference on Cryptology in India, Kolkata, India, December 11-14, 2016, Proceedings,
pages 153–170. Springer, 2016. 20

55. Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced lattice-based signa-
tures on reconfigurable hardware. In Lejla Batina and Matthew Robshaw, editors,
Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th International

33

http://crypto.rd.francetelecom.com/events/eurocrypt2010/talks/slides-ideal-lwe.pdf
http://crypto.rd.francetelecom.com/events/eurocrypt2010/talks/slides-ideal-lwe.pdf
http://www.cc.gatech.edu/~cpeikert/pubs/slides-ideal-lwe.pdf
http://www.cc.gatech.edu/~cpeikert/pubs/slides-ideal-lwe.pdf
https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm
https://federalregister.gov/a/2016-18150

Workshop, Busan, South Korea, September 23-26, 2014. Proceedings, volume 8731
of Lecture Notes in Computer Science, pages 353–370. Springer, 2014. 5

56. Thomas Pöppelmann and Tim Güneysu. Towards practical lattice-based public-
key encryption on reconfigurable hardware. In Tanja Lange, Kristin E. Lauter, and
Petr Lisonek, editors, Selected Areas in Cryptography - SAC 2013 - 20th Interna-
tional Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected
Papers, volume 8282 of Lecture Notes in Computer Science, pages 68–85. Springer,
2013. 4, 5

57. Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel attacks
on masked lattice-based encryption. In Wieland Fischer and Naofumi Homma, ed-
itors, Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th Inter-
national Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, volume
10529 of Lecture Notes in Computer Science, pages 513–533. Springer, 2017. 22,
23

58. Emmanuel Prouff, Matthieu Rivain, and Régis Bevan. Statistical analysis of second
order differential power analysis. IEEE Trans. Computers, 58(6):799–811, 2009. 24

59. Emmanuel Prouff and Patrick Schaumont, editors. Cryptographic Hardware and
Embedded Systems - CHES 2012 - 14th International Workshop, Leuven, Belgium,
September 9-12, 2012. Proceedings, volume 7428 of Lecture Notes in Computer
Science. Springer, 2012. 32

60. Oscar Reparaz, Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid
Verbauwhede. Additively homomorphic ring-LWE masking. In Tsuyoshi Takagi,
editor, Post-Quantum Cryptography - 7th International Workshop, PQCrypto 2016,
Fukuoka, Japan, February 24-26, 2016, Proceedings, volume 9606 of Lecture Notes
in Computer Science, pages 233–244. Springer, 2016. 5, 6, 10, 28

61. Oscar Reparaz, Benedikt Gierlichs, and Ingrid Verbauwhede. Selecting time sam-
ples for multivariate DPA attacks. In Cryptographic Hardware and Embedded Sys-
tems - CHES 2012 - 14th International Workshop, Leuven, Belgium, September
9-12, 2012. Proceedings, pages 155–174, 2012. 25

62. Oscar Reparaz, Sujoy Sinha Roy, Ruan de Clercq, Frederik Vercauteren, and Ingrid
Verbauwhede. Masking ring-LWE. J. Cryptographic Engineering, 6(2):139–153,
2016. 5, 6, 10

63. Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede.
A masked ring-LWE implementation. In Tim Güneysu and Helena Handschuh,
editors, Cryptographic Hardware and Embedded Systems - CHES 2015 - 17th In-
ternational Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings,
volume 9293 of Lecture Notes in Computer Science, pages 683–702. Springer, 2015.
5, 6, 10, 28

64. Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede.
A masked ring-LWE implementation. IACR Cryptology ePrint Archive, 2015:724,
2015. 5, 6, 9

65. Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen,
and Ingrid Verbauwhede. Compact ring-LWE cryptoprocessor. In Lejla Batina
and Matthew Robshaw, editors, Cryptographic Hardware and Embedded Systems
- CHES 2014 - 16th International Workshop, Busan, South Korea, September 23-
26, 2014. Proceedings, volume 8731 of Lecture Notes in Computer Science, pages
371–391. Springer, 2014. 2, 4

66. Markku-Juhani O. Saarinen. tiny_sha3. https://github.com/mjosaarinen/
tiny_sha3, 2011. 23

67. Markku-Juhani O. Saarinen. Arithmetic coding and blinding countermeasures for
ring-LWE. IACR Cryptology ePrint Archive, 2016:276, 2016. 5, 6, 20

34

https://github.com/mjosaarinen/tiny_sha3
https://github.com/mjosaarinen/tiny_sha3

68. Tobias Schneider and Amir Moradi. Leakage assessment methodology - A clear
roadmap for side-channel evaluations. In Cryptographic Hardware and Embedded
Systems - CHES 2015 - 17th International Workshop, Saint-Malo, France, Septem-
ber 13-16, 2015, Proceedings, pages 495–513, 2015. 24

69. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In 35th Annual Symposium on Foundations of Computer Science, Santa
Fe, New Mexico, USA, 20-22 November 1994, pages 124–134. IEEE Computer
Society, 1994. 1

70. Joseph H. Silverman and William Whyte. Timing attacks on NTRUEncrypt via
variation in the number of hash calls. In Masayuki Abe, editor, Topics in Cryptology
- CT-RSA 2007, The Cryptographers’ Track at the RSA Conference 2007, San
Francisco, CA, USA, February 5-9, 2007, Proceedings, volume 4377 of Lecture
Notes in Computer Science, pages 208–224. Springer, 2007. 6

71. François-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Oswald, Benedikt
Gierlichs, Marcel Medwed, Markus Kasper, and Stefan Mangard. The world is not
enough: Another look on second-order DPA. In Advances in Cryptology - ASI-
ACRYPT 2010 - 16th International Conference on the Theory and Application of
Cryptology and Information Security, Singapore, December 5-9, 2010. Proceedings,
pages 112–129, 2010. 24

72. Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum security of the
fujisaki-okamoto and OAEP transforms. In Martin Hirt and Adam D. Smith,
editors, Theory of Cryptography - 14th International Conference, TCC 2016-B,
Beijing, China, October 31 - November 3, 2016, Proceedings, Part II, volume 9986
of Lecture Notes in Computer Science, pages 192–216, 2016. 3, 7, 8

73. Elena Trichina. Combinational logic design for AES subbyte transformation on
masked data. IACR Cryptology ePrint Archive, 2003:236, 2003. 16

74. Praveen Kumar Vadnala and Johann Großschädl. Faster mask conversion with
lookup tables. In Stefan Mangard and Axel Y. Poschmann, editors, Constructive
Side-Channel Analysis and Secure Design - 6th International Workshop, COSADE
2015, Berlin, Germany, April 13-14, 2015. Revised Selected Papers, volume 9064
of Lecture Notes in Computer Science, pages 207–221. Springer, 2015. 10

75. An Wang, Xuexin Zheng, and Zongyue Wang. Power analysis attacks and coun-
termeasures on NTRU-based wireless body area networks. TIIS, 7(5):1094–1107,
2013. 6

76. Sung-Ming Yen and Marc Joye. Checking before output may not be enough against
fault-based cryptanalysis. IEEE Trans. Computers, 49(9):967–970, 2000. 22

77. Xuexin Zheng, An Wang, and Wei Wei. First-order collision attack on protected
NTRU cryptosystem. Microprocessors and Microsystems - Embedded Hardware
Design, 37(6-7):601–609, 2013. 6

35

A Appendix

A.1 Security Estimation

In Table 5 we provide details security estimations based on the approach and
using the script provided in [2]. For the evaluation of the error rate we also
used the script from [2] and set the parameters dim = 1024, q = 12289, k =
8, bound_CC = 66500, t_CC = 0.0055, tau = 17.8. To evaluate the security
level of our proposal we add the line

summarize_params(12289,1024,sqrt(8.0/2), 3.*12289.0/4, False)

to the original NewHope script8.

Table 5: Security level of various parameters for ring-LWE encryption schemes

Attack m b Known Classical Known Quantum Best Plausible

RLWE.CPA [33] q = 7681, n = 256, ς ≈ 4.5160
Primal 347 222 64 58 46
Dual 369 222 64 58 46

RLWE.CPA [33] q = 12289, n = 512, ς ≈ 4.8591
Primal 660 496 145 131 102
Dual 674 494 144 131 102

BCNS proposal [16]: q = 232 − 1, n = 1024, ς = 3.192
Primal 1062 296 86 78 61
Dual 1055 296 86 78 61

NTRUencrypt [38]: q = 212, n = 743, ς ≈
√

2/3 ≈ 0.8165
Primal 613 603 176 159 125
Dual 635 600 175 159 124

JarJar: q = 12289, n = 512, ς =
√
12 ≈ 3.4641

Primal 623 449 131 119 93
Dual 602 448 131 118 92

NewHope: q = 12289, n = 1024, ς =
√
8 ≈ 2.8284

Primal 1100 967 282 256 200
Dual 1099 962 281 255 199

Our Work: q = 12289, n = 1024, ς =
√

8/2 = 2
Primal 999 886 259 235 183
Dual 1048 881 257 233 182

8 See PQsecurity.py in https://cryptojedi.org/crypto/data/newhope-20160815.
tar.bz2

36

https://cryptojedi.org/crypto/data/newhope-20160815.tar.bz2
https://cryptojedi.org/crypto/data/newhope-20160815.tar.bz2

	Practical CCA2-Secure and Masked Ring-LWE Implementation
	 Tobias Oder1, Tobias Schneider2, Thomas Pöppelmann3, and Tim Güneysu14

