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Abstract

In this paper we make an attempt to compare two distinct branches of research on
second-order optimization methods. The first one studies self-concordant functions and
barriers, the main assumption being that the third derivative of the objective is bounded
by the second derivative. The second branch studies cubic regularized Newton methods
with main assumption that the second derivative is Lipschitz continuous. We develop new
theoretical analysis for a path-following scheme for general self-concordant function, as op-
posed to classical path-following scheme developed for self-concordant barriers. We show
that the complexity bound for this scheme is better than for Damped Newton Method.
Next, we analyze an important subclass of general self-concordant function, namely a class
of strongly convex functions with Lipschitz continuous second derivative and show that
for this subclass cubic regularized Newton Methods give even better complexity bound.
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1 Introduction

Motivation. Local performance guarantees for the second-order methods are known
since the paper [2] (1948), where the author proved a local quadratic convergence of
the Newton method under some natural assumptions (non-degeneracy of the Hessian
at solution and local Lipschitz continuity of the Hessian). However, in some sense the
quadratic convergence is too fast: each step of such methods doubles the number of
right digits in the approximate solution. Therefore, the questions on acceleration of these
schemes were never raised in the literature (see [1]). Moreover, during many years the only
complexity results on the global performance of the second-order methods were obtained
in the framework of the theory of self-concordant functions and barriers (see [6], [4]).

The situation was changed after the paper [7], where the first global complexity bounds
were obtained for a special cubic regularization of the Newton method. Namely, it was
shown that for convex function with globally Lipschitz continuous Hessian the Cubic
Newton converges in function value as O( 1

k2
), where k is the iteration counter. Very soon

it was shown that this method can be accelerated up to the rate O( 1
k3

) using the technique
of estimating sequences (see [5]).

Thus, at this moment there exist two independent frameworks for complexity analysis
of the second-order methods. One is based on the affine-invariant theory of self-concordant
functions. And the second one assumes bounded third derivatives of the objective in a
fixed Euclidean norm. The main goal of this paper is to show that these classes of problems
do intersect and we can compare efficiency of the corresponding methods. For that, we
derive new complexity bounds for a path-following method as applied to minimization
of a self-concordant function. This result is new since the known complexity bounds are
related to self-concordant barriers (see, for example, Section 4.2 in [4]). We compare our
bounds with the complexity results for different versions of the Cubic Newton Method on
the class of strongly convex functions with Lipschitz continuous Hessian. It appears that
such functions are self-concordant. Our conclusion is that the latter methods are much
more efficient on this particular class of self-concordant functions.

Contents. In Section 2 we recall the properties of self-concordant functions extend-
ing them to the case of non-standard self-concordant functions and analyze complexity
of Damped Newton Method. Section 3 is devoted to the description and new analysis
of the path-following scheme for general self-concordant functions. In Section 4 we dis-
cuss modifications of Damped Newton Method and path-following scheme with adaptive
choice of the stepsize. Section 5 contains complexity analysis of strongly convex func-
tions with Lipschitz-continuous Hessian by cubic regularized Newton methods. Finally,
in Section 6 we present numerical experiments to compare Damped Newton Method and
path-following scheme for general self-concordant functions as well as adaptive variants of
these methods.

Notation. Given a function f with non-degenerate at any x ∈ E Hessian ∇2f(x), we
denote

‖h‖x = 〈∇2f(x)h, h〉1/2, h ∈ E, ‖g‖∗x = 〈g, [∇2f(x)]−1g〉1/2, g ∈ E∗

and
λf (x) = ‖∇f(x)‖∗x, x ∈ E.
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We define also two univariate functions ω(τ) = τ − ln(1 + τ), ω∗(τ) = −τ − ln(1 − τ),
τ ≥ 0.

2 Minimizing self-concordant functions:

Damped Newton Method

Let us start from a variant of definition of self-concordant function.

Definition 1 Let function f from C3 be convex on E. It is called a general self-concordant
function if there exists a constant Mf ≥ 0 such that for any point x ∈ E and direction
h ∈ E we have

D3f(x)[h]3 ≤ 2Mf 〈∇2f(x)h, h〉3/2. (2.1)

If Mf = 1, then the function is called the standard self-concordat. 2

It is clear that for any self-concordant function f , function

f̃(x)
def
= M2

f f(x), x ∈ E, (2.2)

is standard self-concordant. Standard self-concordant functions are more convenient for
defining the self-concordant barriers (see [6]). However, in this paper we do not need the
barrier property. Therefore, we will work directly with definition (2.1).

Taking into account normalization (2.2), we can rewrite all known properties of stan-
dard self-concordant functions for the general ones. Let us present the most important of
them (see Section 4.1 in [4]). Denote

‖h‖x = 〈∇2f(x)h, h〉1/2, h ∈ E, ‖g‖∗x = 〈g, [∇2f(x)]−1g〉1/2, g ∈ E∗.

From now on, we assume that the Hessian ∇2f(x) is non-degenerate at any x ∈ E. Denote

λf (x) = ‖∇f(x)‖∗x, x ∈ E. (2.3)

For all y ∈ E with ‖y − x‖x < 1
Mf

we have

(1−Mf‖y − x‖x)2∇2f(x) � ∇2f(y) � 1
(1−Mf‖y−x‖x)2

∇2f(x), (2.4)

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ 1
M2
f
ω∗(Mf‖y − x‖x), (2.5)

where ω∗(τ) = −τ − ln(1− τ). And for all y ∈ E we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ 1
M2
f
ω(Mf‖y − x‖x), (2.6)

where ω(τ) = τ − ln(1 + τ). Similarly, if δ ≡ ‖∇f(x)−∇f(y)‖∗x < 1
Mf

, then

(1−Mfδ)
2∇2f(x) � ∇2f(y) � 1

(1−Mf δ)2
∇2f(x), (2.7)

This relation follows from the trivial observation that the dual function

f∗(s) = sup
x∈E

[〈s, x〉 − f(x)]

is also self-concordant on its domain with the same constant Mf .
Inequality (2.5) leads to the following bound.
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Lemma 1 Let λf (x) < 1
Mf

. Then

f(x)−min
y∈E

f(y) ≤ 1
M2
f
ω∗(Mfλf (x)). (2.8)

Proof:
Note that for any τ ≥ 0 we have min

y∈E
{〈∇f(x), y − x〉 : ‖y − x‖x = τ} = −τλf (x), and

this minimum is attained at the point y = x− τ
λf (x) [∇2f(x)]−1∇f(x). Therefore

min
y∈E

f(y)
(2.6)

≥ min
y∈E
{f(x) + 〈∇f(x), y − x〉+ 1

M2
f
ω(Mf‖y − x‖x)}

= min
τ≥0
{f(x)− τλf (x) + 1

M2
f
ω(Mfτ)}.

It remains to find optimal τ∗ from the first-order optimality condition

λf (x) = 1
Mf
· Mf τ∗

1+Mf τ∗
.

Thus, τ∗ =
λf (x)

1−Mfλf (x) . Note that τ∗ > 0 since λf (x) < 1
Mf

. We get inequality (2.8) by

substituting this value into the objective function of the last minimization problem. 2

Minimizing the right-hand side of inequality (2.5) in y, we come to the following result.

Theorem 1 Define

x+ = x− [∇2f(x)]−1∇f(x)
1+Mfλf (x) . (2.9)

Then
f(x+) ≤ f(x)− 1

M2
f
ω(Mfλf (x)). (2.10)

Moreover,
λf (x+) ≤ 2Mfλ

2
f (x). (2.11)

Proof:
Inequality (2.10) can be justified in the same way as it was done for inequality (2.8), using
in the reasoning inequality (2.5) instead of (2.6).

Let us prove now inequality (2.11). Denote λ = λf (x), h = x+−x, r = ‖h‖x = λ
1+Mfλ

.

Hence, λ = r
1−Mf r

. Note that, since r < 1
Mf

,

λ2
+ ≡ 〈∇f(x+), [∇2f(x+)]−1∇f(x+)〉

(2.4)

≤ 1
(1−Mf r)2

〈∇f(x+), [∇2f(x)]−1∇f(x+)〉.

Without changing notation, we can associate with the Hessians symmetric positive-definite
matrices. Then, denoting G = [∇2f(x)]1/2 � 0, we have

∇f(x+) = ∇f(x) +
1∫
0

∇2f(x+ τh)hdτ
(2.9)
= −(1 +Mfλ)∇2f(x)h+

1∫
0

∇2f(x+ τh)hdτ

= G

[
−(1 +Mfλ)I +G−1

(
1∫
0

∇2f(x+ τh)dτ

)
G−1

]
Gh.
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Note that

1∫
0

∇2f(x+ τh)dτ
(2.4)

�
1∫
0

1
(1−τMf r)2

∇2f(x)dτ = 1
1−Mf r

∇2f(x) = (1 +Mfλ)∇2f(x).

Thus, denoting H = [·], we can see that H � 0. On the other hand,

1∫
0

∇2f(x+ τh)dτ
(2.4)

�
1∫
0

(1− τMfr)
2∇2f(x)dτ = (1−Mfr + 1

3M
2
f r

2)∇2f(x).

Thus, H � [−(1 + Mfλ) + (1 −Mfr)]I = [−(1 + Mfλ) + 1
1+Mfλ

]I � −2λMfI, and we

conclude that

λ2
+ ≤ 1

(1−Mf r)2
(‖GHGh‖∗x)2 = 1

(1−Mf r)2
〈GH2Gh, h〉 ≤ (2Mfλ)2

(1−Mf r)2
〈G2h, h〉

=
(2Mfλ)2

(1−Mf r)2
〈∇2f(x)h, h〉 =

(2Mfλ)2r2

(1−Mf r)2
= 4M2

fλ
4. 2

Now we can analyze the efficiency of Damped Newton Method

xk+1 = xk − [∇2f(xk)]−1∇f(xk)
1+Mfλf (xk) , k ≥ 0. (2.12)

as applied to the following minimization problem:

f∗ = min
x∈E

f(x), (2.13)

where f is a general self-concordant function. We assume that the Hessian of this function
at any point is positive definite and that the solution x∗ of problem (2.13) do exist.

Our goal is to find an approximate solution of problem (2.13). In view of inequality
(2.11), method (2.12) starts converging quadratically when it enters the region

Q =
{
x ∈ E : λf (x) ≤ 1

2Mf

}
.

This convergence is very fast and, in view of inequality (2.8), any reasonable accuracy
in function value can be reached in a small number of iterations. Therefore, the main
computational time is spent when λf (xk) ≥ 1

2Mf
. Denote by N the last iteration such

that
λf (xk) ≥ 1

2Mf
, k = 0, . . . , N.

Then, in view of inequality (2.10), we have

N ≤ ∆(x0)

ω
(

1
2

) , ∆(x0)
def
= M2

f (f(x0)− f∗). (2.14)

Let us show that ∆(x0) is a natural complexity measure of our problem class. In
order to see this, let us attribute to our objects some physical units. Denote the units
for measuring the function value by µf , and the units for measuring the argument by
µx. Then, the units for measuring the gradient is µg = µf/µx. The Hessian is measured
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in µh = µf/µ
2
x, and the third derivative is measured in µt = µf/µ

3
x. Thus, in view of

definition (2.1), the units for measuring the constant Mf are

µs = µtµ
3
x/(µhµ

2
x)3/2 = µ

−1/2
f .

Note that the number of iterations is an integer number with no physical dimension
(scalar). Therefore, for using the constant Mf in the bounds for the number of iterations,

it must be multiplied by something having physical dimension µ
1/2
f . The simplest way to

do this is to define the characteristic ∆(x0) as in (2.14). In the sequel, we will use ∆(x0)
as the main characteristic of complexity of problem (2.13). By the way, it is important
that we can use the characteristics of our problem as arguments of nonlinear univariate
functions only by transforming them in a scalar form. For example, the values Mfλf (x)
and Mf‖h‖x has no physical dimension.

3 Minimizing self-concordant functions:

path-following scheme

Let us estimate the complexity of solving the problem (2.13) by a path-following scheme.
Let us start from some x0 ∈ E. Define the central path x(t), 0 ≤ t ≤ 1, by the following
equation:

∇f(x(t)) = t∇f(x0). (3.1)

Clearly, x(1) = x0 and x(0) = x∗. Note that this is a trajectory of minimizers of the
following parametric family of general self-concordant functions:

x(t) = arg min
x∈E

{
ft(x)

def
= f(x)− t〈∇f(x0), x〉

}
, 0 ≤ t ≤ 1. (3.2)

Let us present here a part of the theory of path-following schemes, which is relevant for
general self-concordant functions (see Sections 4.2.4 and 4.2.5 in [4]). Note that the full
justification of these methods is done only for self-concordant barriers.

Let us introduce two constants

β = 0.026, γ = 0.1125 <
√
β

1+
√
β
− β. (3.3)

We say that point x satisfies an approximate centering condition if

λft(x) ≡ ‖∇f(x)− t∇f(x0)‖∗x ≤
β
Mf
. (3.4)

Consider the following iterate:

(t+, x+) = P(t, x) ≡


t+ = t− γ

Mf‖∇f(x0)‖∗x
,

x+ = x− [∇2f(x)]−1(∇f(x)− t+∇f(x0)).

(3.5)

The following statement is just Theorem 4.2.8 from [4], but we prove it for the sake of
completeness.
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Theorem 2 If the pair (x, t) satisfies (3.4), and β, γ are chosen such that

|γ| ≤
√
β

1 +
√
β
− β (3.6)

then the pair (x+, t+) satisfies (3.4) too.

Proof:
Let us denote λ0 = ‖∇f(x)−t∇f(x0)‖∗x, λ1 = ‖∇f(x)−t+∇f(x0)‖∗x and λ+ = ‖∇f(x+)−
t∇f(x0)‖∗x. Then λ0 ≤ β

Mf
and

λ1 =

∥∥∥∥∇f(x)− t∇f(x0) +
γ

Mf‖∇f(x0)‖∗x
∇f(x0)

∥∥∥∥∗
x

≤ β + |γ|
Mf

.

Since x+ is obtained from x as a step of Newton Method for the function ft+(x), by
Theorem 4.1.12 from [4],

λ+ ≤Mf

(
λ1

1−Mfλ1

)2

.

The statement of the theorem follows from the fact that inequality Mf

(
λ1

1−Mfλ1

)2
≤ β

Mf

is equivalent to inequality λ1 ≤ 1
Mf

√
β

1+
√
β

. 2

Let us derive from this fact a complexity bounds of the path-following scheme as
applied to the problem (2.13).

Theorem 3 Consider the following process:

t0 = 1, x0 ∈ E, (tk+1, xk+1) = P(tk, xk), k ≥ 0. (3.7)

Assume that λ(xk) ≥ 1
2Mf

for all k = 0, . . . , N . Then

tN ≤ exp

{
− γ(γ−2β)N2

2M2
f (f(x0)−f∗)

}
. (3.8)

Proof:
Denote c = −∇f(x0). Then

tk+1
(3.5)
= tk − γ

Mf‖c‖∗xk
= tk

(
1− γ

Mf tk‖c‖∗xk

)
≤ tk exp

{
− γ
Mf tk‖c‖∗xk

}
.

Thus, tN ≤ exp
{
− γ
Mf
SN

}
, where SN =

N∑
k=0

1
tk‖c‖∗xk

.

Let us estimate the value SN from below. Note that

xk − xk+1
(3.5)
= [∇2f(xk)]

−1
(
tkc+∇f(xk)− γc

Mf‖c‖∗xk

)
. (3.9)

Therefore,

rk
def
= ‖xk − xk+1‖xk

(3.4)

≤ β+γ
Mf

. (3.10)
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On the other hand, β2

M2
f

(3.4)

≥ λ2
f (xk) + 2tk〈∇f(xk), [∇2f(xk)]

−1c〉+ t2k(‖c‖∗xk)2. Hence,

−〈∇f(xk), [∇2f(xk)]
−1c〉 ≥ 1

2tk

[
λ2
f (xk) + t2k(‖c‖∗xk)2 − β2

M2
f

]
. (3.11)

Therefore, denoting λk = ‖∇f(xk)− tk∇f(x0)‖∗xk ,

f(xk)− f(xk+1)
(2.5)

≥ 〈∇f(xk), xk − xk+1〉 − 1
M2
f
ω∗(Mfrk)

(3.9)
= 〈∇f(xk), [∇2f(xk)]

−1
(
tkc+∇f(xk)− γc

Mf‖c‖∗xk

)
〉 − 1

M2
f
ω∗(Mfrk)

= λ2
k − tk〈c, [∇2f(xk)]

−1(tkc+∇f(xk))〉+ 〈∇f(xk), [∇2f(xk)]
−1
(

−γc
Mf‖c‖∗xk

)
〉 − 1

M2
f
ω∗(Mfrk)

≥ λ2
k − tk‖c‖∗xkλk −

γ
Mf‖c‖∗xk

〈∇f(xk), [∇2f(xk)]
−1c〉 − 1

M2
f
ω∗(Mfrk)

(3.11)

≥ λ2
k − tk‖c‖∗xkλk + γ

2Mf tk‖c‖∗xk

[
λ2
f (xk) + t2k(‖c‖∗xk)2 − β2

M2
f

]
(3.10)

≥ γ−2Mfλk
2Mf

tk‖c‖∗xk + ρk
(3.4)

≥ γ−2β
2Mf

tk‖c‖∗xk + ρk,

(3.12)

where ρk = γ
2Mf tk‖c‖∗xk

[
λ2
f (xk)− β2

M2
f

]
− 1

M2
f
ω∗(β + γ).

Our next goal is to show that ρk ≥ 0. Note that tk‖c‖∗xk
(3.4)

≤ λf (xk) + β
Mf

. Since

λf (xk) ≥ 1
2Mf

, we have

ρk ≥ γ
2Mf

[
λf (xk)− β

Mf

]
− 1

M2
f
ω∗(β + γ) ≥ γ(1−2β)

4M2
f
− 1

M2
f
ω∗(β + γ)

Using the values (3.3), by direct computation we can see that the right-hand side of this
inequality is positive.

Thus, we have proved that f(xk)− f(xk+1) ≥ γ−2β
2Mf

tk‖c‖∗xk . Therefore,

SN ≥
N∑
k=0

γ−2β
2Mf (f(xk)−f(xk+1))

≥ γ−2β
2Mf

min
τ∈RN+1

+

{
N+1∑
i=1

1
τ (i)

:
N+1∑
i=1

τ (i) = f(x0)− f(xN+1)

}

= (γ−2β)(N+1)2

2Mf (f(x0)−f(xN+1)) . 2

Let us estimate now the number of iterations, which are necessary for method (3.7) to
enter the region of quadratic convergence Q. Denote

D = max
x,y∈domf

{‖x− y‖x0 : f(x) ≤ f(x0), f(y) ≤ f(x0)}.

7



Theorem 4 Let sequence {xk}k≥0 be generated by the method (3.7). Then for all

N ≥

[
2∆(x0)
γ(γ−2β) ln

MfDω
−1(∆(x0))

ω
(

(1−β)(1−2β)
2

)
]1/2

(3.13)

we have xN ∈ Q.

Proof:
Indeed,

f(x(tk))− f∗ ≤ 〈∇f(x(tk)), x(tk)− x∗〉
(3.1)
= tk〈∇f(x0), x(tk)− x∗〉 ≤ tkλf (x0)D,

where we used that f(xk+1) ≤ f(xk), k ≥ 0, see (3.12). Since ω(Mfλf (x0))
(2.10)

≤
M2
f (f(x0)− f∗), we have

1
M2
f
ω(Mfλf (x(tk)))

(2.10)

≤ f(x(tk))− f∗ ≤ tk
Mf
ω−1(∆(x0))D.

Note that ‖∇f(xk)−∇f(x(tk))‖∗xk
(3.1)
= ‖∇f(xk)−tk∇f(x0)‖∗xk

(3.4)

≤ β
Mf

< 1
Mf

. Therefore,

λf (xk)
(3.4)

≤ tk‖∇f(x0)‖∗xk + β
Mf

(3.1)
= 〈∇f(x(tk)), [∇2f(xk)]

−1∇f(x(tk))〉1/2 + β
Mf

(2.7)

≤ 1
1−βλf (x(tk)) + β

Mf
.

Thus, inclusion xk ∈ Q, is ensured by inequality λf (x(tk)) ≤ (1−β)(1−2β)
2Mf

. Consequently,

we need
tk
Mf
ω−1(∆(x0))D ≤ 1

M2
f
ω
(

(1−β)(1−2β)
2

)
It remains to use inequality (3.8). 2

As we can see from the estimate (3.13), up to a logarithmic factor, the number of
iterations of the path-following scheme is proportional to ∆1/2(x0). This is much better
than the guarantee (2.14) for the Damped Newton Method (2.12). However, as we will
see in Section 5, for some special subclasses of self-concordant functions the performance
estimate (3.13) can be significantly improved.

Note that, in the complexity bound (3.13), the constant
[

2
γ(γ−2β)

]1/2
≤ 17.1. The

choice of the parameters β and γ is governed by the following aspects. First, from Theorem
2, these parameters should satisfy (3.6). Second, ρk in the proof of Theorem 3 should be
non-negative. Third, the complexity in (3.13) is proportional to (γ(γ− 2β))−1/2, which is
desired to be as small as it is possible. This motivates the following maximization problem
for optimal choice of β and γ.

max γ(γ − 2β) s.t. (3.14)
√
β

1 +
√
β
− β − γ ≥ 0 (3.15)

γ(1− 2β)

4
− ω∗(β + γ) ≥ 0. (3.16)

8



Figure 1 illustrates this optimization problem and the optimal objective value

Figure 1: Optimal choice of β and γ.

4 Implementation details

The results of previous section prescribe specific values for the accuracy of following the
central path β and stepsize γ. Nevertheless, if we use a larger stepsize γ and after the
Newton step the approximate centering condition holds, we can continue to follow the
path. This leads to an adaptive path-following scheme.

Adaptive Path-Following Scheme

• Set initial point x0, initial value of the penalty parameter t0 =
1, initial stepsize value γ−1 ≤ 0.1125.

• Iteration k ≥ 0. Find the minimum value ik ≥ 0 s.t.

t+ = t− 21−ikγk−1

Mf‖∇f(x0)‖∗x
,

x+ = xk − [∇2f(xk)]
−1(∇f(xk)− t+∇f(x0)).

satisfy approximate centering condition

‖∇f(x+)− t+∇f(x0)‖∗x+ ≤
β

Mf
.

• Set γk = 21−ikγk−1, xk+1 = x+, tk+1 = t+.

(4.1)
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By the results of the previous section, there exists γ̂ s.t. the Newton step with the stepsize
γ̂ outputs a point satisfying approximate centering condition. Hence, the search for ik is
finite and γk = 21−ikγk−1 ≥ γ̂

2 . Hence, the number of Newton steps can be estimated as
follows

k∑
j=0

ik =

k∑
j=0

(
1 + log2

γj−1

γj

)
= k + 1 + log2

γ−1

γk
= k + log2

2γ−1

γ̂
.

As we see, the price for the adaptivity is reasonable taking into account that the practical
performance of the adaptive algorithm is better since the penalty parameter t grows faster.

Damped Newton method (2.9) has also an adaptive stepsize extension. Since the
Damped Newton method is obtained by minimization of (2.5), the adaptive choice of the
stepsize is based on this inequality and we obtain the adaptive Damped Newton method
as follows.

Adaptive Damped Newton Method

• Set initial value of the stepsize τ−1 and initial point x0.

• k-th iteration. Find the minimum value ik ≥ 0 s.t.

xk+1 = xk −
21−ikτk−1

1 +Mfλf (xk)
[∇2f(xk)]

−1∇f(xk)

satisfies

f(xk+1) ≤ f(xk)−
21−ikτk−1(λ(xk))

2

1 +Mfλf (xk)
+ω∗

(
21−ikτk−1λ(xk)

1 +Mfλf (xk)

)
.

• Set τk = 21−ikτk−1.

(4.2)

The overhead for the adaptivity can be estimated similarly to the path-following
scheme.

5 Minimizing strongly convex functions

Let B = B∗ � 0 maps E to E∗. Define Euclidean metric

‖x‖2 = 〈Bx, x〉1/2, x ∈ E.

In this section, we consider the following minimization problem

min
x∈E

f(x), (5.1)

where f is a strongly convex function:

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ 1
2σf‖y − x‖

2, x, y ∈ E, (5.2)

10



where σf > 0. We also assume that function f belongs to C3(E) and its Hessian is
Lipschitz continuous:

‖∇2f(x)−∇2f(y)‖ ≤ Hf‖x− y‖, x, y ∈ E. (5.3)

Lemma 2 Under assumptions above, function f is self-concordant with

Mf =
Hf

2σ
3/2
f

. (5.4)

Proof:
Indeed, for any point x ∈ E and direction h ∈ E we have

D3f(x)[h]3
(5.3)

≤ Hf

[
‖h‖2

]3/2 (5.2)

≤ Hf

[
1
σf
〈∇2f(x)h, h〉

]3/2
.

It remains to use definition (2.1). 2

Thus, problem (5.1) can be solved by methods (2.12) and (3.7). The corresponding
complexity bounds can be given in terms of the complexity measure

∆(x0) =
H2
f

σ3
f

(f(x0)− f∗).

As we have seen, the first method needs O(∆(x0)) iterations. Complexity bound of the
second method is of the order Õ(∆1/2(x0)). Let us show that for our particular subclass
of self-concordant functions these bounds can be significantly improved.

Our methods are based on the cubic regularization of the Newton method. Let us
define quadratic approximation of f at point x ∈ E:

Q(x, y) = f(x) + 〈∇f(x), y − x〉+ 1
2〈∇

2f(x)(y − x), y − x〉.

Then

|f(y)−Q(x, y)| ≤ Hf
6 ‖y − x‖

3, y ∈ E. (5.5)

This inequality justifies the cubic Newton step:

TM (x) = arg min
y∈E
{Q(x, y) + 1

6M‖y − x‖
3}. (5.6)

As it was shown in [7], the method iterating these steps converges for functions with
Lipschitz continuous Hessian as O( 1

k2
), where k is the iteration counter.

Define the region of quadratic convergence of the Cubic Newton Method in terms of
the function value:

Qf =

{
x ∈ E : f(x)− f∗ ≤ σ3

f

2H2
f

(5.4)
= 1

8M2
f

}
(see (6.4) in [5]). Let us check how many iterations we need for entering this region by
different schemes based on the cubic Newton step. Assume our method has the following
rate of convergence:

f(xk)− f∗ ≤ cHf‖x0−x∗‖3
kp

(5.2)

≤ cHf
kp

(
2
σf

(f(x0)− f∗)
)3/2

(5.4)
=

25/2cMf

kp (f(x0)− f∗)3/2,

(5.7)
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where c is an absolute constant and p > 0. Thus, we need

O

([
M3
f (f(x0)− f∗)3/2

]1/p
)

= O
(

∆
3
2p (x0)

)
iterations for entering the region of superlinear convergence Qf . For Cubic Newton
method we have p = 2 (see [7]). Thus, it ensures complexity O(∆3/4(x0)). For the
accelerated Cubic Newton method [5] we have p = 3. Thus, it needs O(∆1/2(x0)) iter-
ations (which is slightly better than (3.13)). However, note that there exists a powerful
tool for accelerating these schemes, the restarting strategy.

Let us define kp as the first integer, for which the right-hand side of inequality (5.7) is
smaller than 1

2(f(x0)− f∗):

25/2cMf

kp (f(x0)− f∗)3/2 ≤ 1
2(f(x0)− f∗).

Clearly kp = O
([
Mf (f(x0)− f∗)1/2

]1/p)
= O

(
∆

1
2p (x0)

)
.

This value can be used in the following multi-stage scheme.

Multi-stage Acceleration Scheme

At the first stage, we perform t1 = dkpe iterations of our
method starting from the point y0 = x0. It generates the
point y1, which is the starting point for the next stage.

Its length is
⌈
kp

21/p

⌉
, etc.

In general, kth stage starts from the point yk−1 and its

length is tk =
⌈

kp
2(k−1)/(2p)

⌉
. Method stops when yk ∈ Qf .

(5.8)

Theorem 5 The total number of stages T in the optimizations strategy (5.8) satisfies
inequality

T ≤ 4 + log2 ∆(x0). (5.9)

The total number of the lower-level iterations N in this scheme does not exceed

4 + log2 ∆(x0) + 21/(2p)

21/(2p)−1
kp.

Proof:
Let us prove by induction that f(yk) − f∗ ≤ (1

2)k(f(y0) − f∗). For k = 0 this is true.

Assume that this is also true for some k ≥ 0. Note that tpk+1 ≥ (1
2)k/2kpp. Therefore,

f(yk+1)−f∗
f(yk)−f∗ ≤ 25/2cMf

tpk+1
(f(yk)− f∗)1/2 ≤ kpp(f(yk)−f∗)1/2

2tpk+1(f(x0)−f∗)1/2
≤ 1

2

[
2k(f(yk)−f∗)
f(x0)−f∗

]1/2
≤ 1

2 .

Thus, the total number of stages satisfies inequality
(

1
2

)T−1
(f(x0)− f∗) ≥ 1

8M2
f

. Finally,

N =
T∑
k=1

tk ≤ T + kp
T−1∑
k=0

(
1
2

) k
2p ≤ T + kp

∞∑
k=0

(
1
2

) k
2p = T +

kp

1−
(

1
2

)1/(2p) .
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2

Applying Theorem 5 to different second-order methods based on the Cubic Regular-
ization, we get the following complexity bounds.

• Cubic Newton Method [7]. For this method p = 2. Therefore, the complexity
bound of this scheme, as applied in the framework of multi-stage method (5.8) is
of the order O(∆1/4(x0)). In fact, this method does not need a restarting strategy.
Thus, Theorem 5 provides the Cubic Newton with a better way of estimating its
rate of convergence.

• Accelerated Newton Method [5]. For this method p = 3. Hence, the complexity
bound of the corresponding multi-stage scheme (5.8) becomes O(∆1/6(x0)).

• Optimal second-order method [3]. For this method p = 3.5. Therefore, the
corresponding complexity bound is Õ(∆1/7(x0)). However, this method includes
an expensive line-search procedure. Consequently, its practical efficiency should be
worse than the efficiency of the method from the previous item. Note that the
theoretical gap in the complexity estimates of these methods is negligibly small, of
the order of O(∆1/42(x0)).

Remark 1 For the restarting procedure, the knowledge of f∗ is not necessary. Indeed, if
we know only a lower bound f̃ such that f∗ ≥ f̃ , we obtain that after

k̃p = O

([
Mf (f(x0)− f̃)1/2

]1/p
)

steps of the inner method the right-hand side of inequality (5.7) is smaller than 1
2(f(x0)−

f∗) since k̃p ≥ kp. Then, the overall number of lower-level iterations is of the order of

k̃p = O
(

∆̃(x0)
) 1

2p
, where ∆̃(x0) = M2

f (f(x0)− f̃).

As we can see, the methods considered in this section have much better complexity
bounds for problem (5.1) than the the methods based on the framework of self-concordant
functions. A possible explanation of this phenomena is that these methods use a more
precise model of the objective function, which is based on two independent inequali-
ties (5.2) and (5.3) instead of single inequality (2.1). Nevertheless, unlike Damped New-
ton Method and Path-Following Scheme, the methods in this section are not applicable
for a wide class of self-concordant functions - self-concordant barriers, a typical example
being log-barrier − lnx. The reason is that this function neither strongly convex, nor have
Lipshitz-continuous Hessian.

6 Computational experiments

In the experiments, we consider two problems, the first one being the regularized logistic
regression and the second being the dual problem to a feasibility problem on the cube.
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6.1 Regularized logistic regression

Regularized logistic regression is the following problem

min
x∈Rp

1

n

n∑
i=1

ln (1 + exp(−〈ai, x〉)) +
κ

2
‖x‖22,

where ai ∈ Rm, i = 1, ..., n. As it is shown in [8], this function is self-comcordant with

Mf = max{‖ai‖2, i=1,...,n}
2
√
κ

. We use different values of regularization parameter, namely

κ ∈ {10−1, 10−1} and random starting point. We compare the Damped Newton method
(2.9) and the path-following scheme (3.7) using the binary classification dataset down-
loaded from [9] at https://www.csie.ntu.edu.tw/~cjlin/libsvm/. We also compare
the adaptive versions (4.2) of the Damped Newton method and (4.1) of the path-following
scheme. Figure 2 illustrates convergence of these two methods. As we can see, adaptive
choice of stepsize accelerates path-following scheme so that it becomes much faster than
the Damped Newton Method. Interestingly, the value of γk in the experiments was up to
15, whereas the value of τk did not exceed 2. Table 1 contains the results of experiments
with fixed stepsize and different random initial points and different values of the regular-
ization parameter κ. As we can see the theoretical estimate for the number of iterations
to enter the region of quadratic convergence is much larger for Damped Newton Method.
At the same time, both methods require much smaller number of iterations than in theory
and Damped Newton Method is faster than the path-following scheme. The situation is
opposite for the case of adaptive choice of the stepsize, see Table 2.

κ 10−1 10−1 10−1 10−1 10−4 10−4 10−4 10−4

DN (experiment) 575 328 998 388 294 866 76 806
DN (theory) 1708582 547205 5189850 769250 443171 3918329 27776 3388730

PF (experiment) 5044 2851 8797 3382 2552 7630 626 7094
PF (theory) 31464 17061 56987 20497 15222 49047 3360 45386

Table 1: Number of iterations until λf (xk) ≤ 1
2Mf

in different runs of the experiment, fixed

stepsize.

κ 10−1 10−1 10−1 10−1 10−4 10−4 10−4 10−4

DN (experiment) 203 653 74 902 353 67 570 97
DN (theory) 207792 2215056 26092 4240539 645250 22004 1689036 46643

PF (experiment) 23 27 21 29 36 30 37 34
PF (theory) 10106 36158 3249 51164 18642 2954 31267 4470

Table 2: Number of iterations until λf (xk) ≤ 1
2Mf

in different runs of the experiment, adaptive

stepsize.
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(a) Methods with fixed stepsize

(b) Methods with adaptive stepsize

Figure 2: Convergence of Damped Newton Method and path-following scheme

6.2 Dual feasibility problem

In this subsection we consider the following problem

Find x s.t. ‖x‖∞ ≤ 1 and Ax = b,

where x ∈ Rn, b ∈ Rm, A ∈ Rm×n. To solve this problem, we introduce a barrier for the
set ‖x‖∞ ≤ 1 and minimize it over the affine manifold given by linear constraints Ax = b

min

n∑
i=1

ψ(xi) s.t. Ax = b,

where ψ(t) := (−|t| − ln(1− |t|)). Introducing Lagrange multiplier y ∈ Rm, we construct
the dual problem

minx maxy
∑n

i=1 ψ(xi) + 〈y,Ax− b〉

= maxy
{
−〈b, y〉+ minx

{∑n
i=1 ψ(xi) + 〈AT y, x〉

}}
= −〈b, y〉 −

∑n
i=1 ψ

∗(aTi y),
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where ψ∗(τ) = |τ | − ln(1 + |τ |) is the Fenchel conjugate for ψ(t), ai ∈ Rm, i = 1, ..., n are
columns of A. Formally, ψ∗(τ) is not three times continuously differentiable. Nevertheless,
repeating the same arguments as in Section 4.1.4 in [4], we obtain that inequalities (2.4)
– (2.7) hold and we can apply the whole theory described above.

Similarly to the previous subsection, we compare the Damped Newton method (2.9)
and the path-following scheme (3.7) and their adaptive versions (4.2) and (4.1) respec-
tively. The data A, b was generated randomly and the starting point was chosen to be
zero. Figure 3 illustrates convergence of these four methods. Unlike logistic regression,
adaptivity does not lead to a large gain for this problem. Table 3 contains the results of
experiments with fixed stepsize and different random data for different problem sizes m,n.
As we can see the theoretical estimate for the number of iterations to enter the region
of quadratic convergence is much larger for Damped Newton Method. At the same time,
both methods require much smaller number of iterations than in theory and Damped
Newton Method is faster than the path-following scheme. Table 4 illustrates the behavior
of the adaptive counterparts of these methods.

(a) Methods with fixed stepsize

(b) Methods with adaptive stepsize

Figure 3: Convergence of Damped Newton Method and path-following scheme
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n = 1000,m = 100 n = 5000,m = 1000
DN (experiment) 64 69 67 65 121 118 123 121

DN (theory) 5029 5740 5425 5435 26135 25777 26546 26796
PF (experiment) 463 504 490 478 978 955 997 982

PF (theory) 1582 1700 1650 1647 3671 3653 3717 3724

Table 3: Number of iterations until λf (xk) ≤ 1
2Mf

in different runs of the experiment, fixed

stepsize.

n = 1000,m = 100 n = 5000,m = 1000
DN (experiment) 66 65 65 65 124 118 141 123

DN (theory) 5415 5190 5359 5222 25722 26442 26990 26398
PF (experiment) 147 145 143 145 180 174 219 184

PF (theory) 1647 1611 1636 1614 3774 3661 4059 3763

Table 4: Number of iterations until λf (xk) ≤ 1
2Mf

in different runs of the experiment, adaptive

stepsize.
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