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Abstract A modelling methodology is presented for assembly/disassembly systems with gen-

eral processing time distributions and finite buffers. The approach combines the distributions

discretization and a decomposition technique to analyze large manufacturing systems in a rea-

sonable computational time and with good accuracy. In the decomposition technique, the system

is decomposed into two station subsystems and the processing time distributions of the virtual

stations are iteratively modified to approximate the impact of the rest of the network, adding

estimations of the blocking and starving distributions. To analyze each subsystem, the general

processing time distributions are discretized by aggregation of the probability masses, and the

subsystem is then analytically modeled using a discrete Markov chain. We first show that this ap-

proach allows an accurate estimation of the subsystems cycle time distributions, which is crucial

in the decomposition technique. Using computational experiments, we show that our decomposi-

tion method leads to accurate performance evaluation for large manufacturing systems (relative

error on the order of one percent) and that the fine distribution estimation indeed seems to bring

an improvement. Furthermore, we show on examples that, using decomposition, the cycle time

distributions can be approximated reliably for large systems.
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1 Introduction

In this paper, we are interested in the modelling of manufacturing systems with finite buffers and

with general processing time distributions. We focus on the analysis of assembly/disassembly

manufacturing systems (which can be modelled by fork-join queueing networks). An assem-

bly/disassembly system is a feedforward open system (not closed) in which the stations are

linked arbitrarily without forming loops. A station can have several input or output stations,

but each buffer has exactly one upstream station and one downstream station (Dallery et al.,

1994). When a processing ends in a station, one job is taken from each upstream buffer and

one job is sent to each downstream buffer. We suppose that the system is manufacturing a

single product type, with discrete parts (as opposed to continuous material). An example of

assembly/disassembly system is given in Figure 1 (e.g. S2 is a disassembly station and S6 is an

assembly station).

The processing time at a station (i.e. the time spent processing one job) is random, following

a general probability distribution with a finite support (it does not have to be exponential or

phase-type). The variability of the processing times may come from manual operations or from

failures in unreliable stations (in which case, the time to failure and repair time can be included

to the “effective process time”, see Hopp and Spearman (1996)). However, by default, we suppose

manual and reliable stations as it applies better when discretizing the distribution (see Section

3). We suppose an asynchronous transfer system, i.e. the stations do not have to start or stop

their operations at the same time. Furthermore, we assume finite buffers. Blocking can thus

occur: a station gets blocked if one of the next buffers is full when the station finishes its job (we

suppose a blocking-after-service policy). Starvation of a station occurs when one of the previous

buffers is empty, preventing the starting of a new job in the station. The system is supposed

to be saturated, i.e. the first station is never starved and the last is never blocked (fictitious

stations can be used to mimic the arrival or demand processes). Note that a pure flow line (which

can be modelled by a tandem queue) is a particular case of an assembly/disassembly system,

where stations follow each other sequentially, i.e. without assembly and disassembly stations.

Our approach thus applies to pure flow lines. We do not consider split-and-merge systems, where

items are routed rather that assembled/disassembled, and where one unit entering the system

Fig. 1 Example of a assembly/disassembly system with finite buffers.
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leads to exactly one unit leaving the system (see Bitran and Dasu (1992) or Govil and Fu (1999)

for reviews and Tancrez (2009) for the application of PMF to split-and-merge systems).

In practice, the processing time in stations may follow a large range of distributions, de-

pending on the particular application and on the collected data (in the form of histograms in

particular). No exact model exists for manufacturing systems with general processing time dis-

tributions. The modelling process of such systems can be seen as made of three steps: data

collection, distribution fitting, and analytical modelling. From the collected data, an analyst has

to build distributions which are tractable for the analytical method, most often phase-type (PH)

distributions so that the Markov theory can then be applied (Johnson and Taaffe, 1989; Bobbio

and Telek, 1994; Bobbio et al., 2005). In our work, in order to transform the general distribu-

tions, we discretize them, applying probability mass fitting (PMF, Tancrez et al. (2011)). In the

next step, i.e. analytical modelling, we apply a decomposition approach. In the decomposition

technique, the manufacturing system is decomposed into virtual two station subsystems and the

processing time distributions of the stations are iteratively modified to approximate the impact

of the rest of the network, adding estimations of the blocking and starving distributions. This ap-

proach allows to efficiently analyze large systems (Dallery and Frein, 1993). We argue that PMF

distribution fitting is particularly well suited for decomposition as it allows accurate estimations

of the distributions and conserves their shape, and as these distribution estimations are crucial

in the decomposition technique. Our aim in this paper is to combine two techniques (probability

mass fitting and decomposition) and to show that these two techniques combine well, leading to

accurate performance evaluation of large general manufacturing systems.

The remainder of the paper is structured as follows. In the next Section, we review the

main analytical models for stochastic manufacturing systems. In Section 3, we present the PMF

discretization of distributions and show how small manufacturing systems can then be modelled.

In Section 4, we show how cycle time distributions can be computed in the PMF modified system

and argue that they provide accurate estimations in the original system. The decomposition

approach for assembly/disassembly manufacturing systems is then presented in Section 5. Its

efficiency is shown using computational experiments in Section 6, and the estimation of the cycle

time distributions is illustrated. Finally, we conclude in Section 7.

2 Literature Review

Various analytical methods have been proposed to model stochastic manufacturing systems and

queueing networks. Several comprehensive reviews are available (Dallery and Gershwin, 1992;

Buzacott and Shanthikumar, 1993; Altiok, 1996; Balsamo et al., 2001; Papadopoulos and Heavey,

1996; Govil and Fu, 1999; Li et al., 2009).

Most often, before applying the analytical method to evaluate the performance of a system,

distribution fitting is needed. The processing time distribution are usually fitted to phase-

type distributions. The first fitting method, historically and in popularity, is moments fitting.
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This method computes the two (or three) first moments from the original distributions and the

phase-type distributions are then built in order to get the same first moments. Various methods

have been proposed, matching two or three moments, with various types of PH distributions, and

for original distributions showing various properties. Sauer and Chandy (1975) (using hyperex-

ponential and generalized Erlang distributions), Marie (1980) (using mixed generalized Erlang

distributions) and Whitt (1982) (using hyperexponential and mixed Erlang distributions) were

the first to propose closed-form two moments fittings. Altiok (1985) proposed to add the third

moment, using mixed Erlang distributions with two stages, and gave the necessary conditions.

Botta and Harris (1986) (using generalized hyperexponential distributions) and Johnson and

Taaffe (1989) (using mixtures of Erlang distributions), extended the applicability of three mo-

ments fitting. Osogami and Harchol-Balter (2006) proposed a closed-form three moments fitting

for any original distributions, using Erlang-Coxian distributions with an almost minimal number

of phases. Subsequently, Bobbio et al. (2005) found a fitting with a minimal number of phases

(number which depends on the properties of the distributions), using acyclic PH distributions.

The second main type of method to approximate distributions is based on the computation

of the maximum likelihood. In 1992, Bobbio and Cumani (1992) proposed such a method, fit-

ting a Coxian distribution which maximizes the likelihood with the original general distribution.

Later, Asmussen et al. (1996) made a significant contribution by applying the EM (expectation

maximization) algorithm for the maximum likelihood estimation. The fitting of discrete phase-

type distributions has been less investigated than the fitting of continuous PH distributions.

Concerning moments fitting, Adan et al. (1994) proposed a two first moments fitting method

and Telek (2000) gave the necessary conditions in terms of the second moment. The likelihood

maximization was applied by Bobbio et al. (2003) to fit acyclic discrete PH distributions (with

infinite support). In this paper, we apply probability mass fitting (PMF, Tancrez et al. (2011))

which aims at mimicking the shape of the distribution with a discrete phase-type distribution

(see Section 3).

Using the phase-type processing time distributions as an input, two kinds of analytical mod-

els can be applied: exact or approximate. Exact analytical models are the richest since they

allow a direct and exact understanding of the influence of a decision variable on the performance

of interest. Closed-form models are only available for very simple configurations, e.g. two station

lines. State models build continuous (sometimes discrete) Markov chains to exactly analyze sys-

tems with exponential or phase-type (PH) processing time distributions. Based on the identified

state space, a transition matrix is derived and the stationary equations are solved numerically

to obtain the steady-state probabilities and infer the performance measures. The reader is re-

ferred for example to Hillier and Boling (1967) for an early contribution, or Gourgand et al.

(2005) for the study of lines with exponential distributions and infinite buffers. However, these

models’ applicability is limited to small instances as the state space size of the Markov chain

increases quickly with the system size. State models of small networks serve as a building block
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for the decomposition method (see below). Such two machine models are provided e.g. by Tan

and Gershwin (2009); Colledani (2013); Liu et al. (2012).

However, most stochastic manufacturing systems are too complex to be modeled exactly. Ex-

act models suffer from their complexity, which makes their applicability limited to small systems.

As a result, approximate analytical models have been proposed. The system to be analyzed

is simplified in order to be analytically modeled. While closed-form models exist (Buzacott and

Shanthikumar, 1993; Hopp and Spearman, 1996), as well as methods such as the generalized

expansion method (Kerbache and Smith, 1987, 1988) and the aggregation method (Terracol and

David, 1987; de Koster, 1987), the most popular and successful are based on the idea of de-

composing the system into smaller subsystems, and then including back the interdependencies

between the subsystems. The decomposition techniques decompose the network into smaller sub-

systems (made of one, two or three stations), analyze them in isolation and then mix the results

iteratively. Solving more, but much easier, subproblems, allows to approximately analyze the

global system much more quickly and with good accuracy. A set of equations that determines

the unknown parameters and the links between the subsystems is first derived. An iterative

procedure is then used to solve the equations. This method was initially created for systems

with exponentially distributed processing times (see Dallery and Frein (1993); Huisman and

Boucherie (2011) for surveys and Gershwin (1987); Brandwajn and Jow (1988); Helber (1999)

for early examples), and was then extended in many ways. Altiok (1989); van Vuuren and Adan

(2006); and Helber (2006) extended the method for continuous phase-type distributions, while

Gun and Makowski (1987) did for discrete PH distributions. Helber (1998) and Jeong and Kim

(1998) extended the decomposition method to assembly/disassembly systems, with unreliable

machines.

After these early contributions, many studies followed, improving the decomposition method-

ology, and applying it to many different settings. Tempelmeier and Burger (2001) proposed a

decomposition method for flow production systems with finite buffers and generally distributed

processing times. Krieg and Kuhn (2002) developed a decomposition method for kanban con-

trolled production systems with multiple products and setup changes between products, where

setup times and processing times are exponentially distributed. Kuhn (2003) investigated the in-

terdependency between production and maintenance on an automated flow line system. Levantesi

et al. (2003) studied production lines with multiple failure modes, and considered real and vir-

tual failure modes for each building block. Manitz (2008) studied assembly systems with general

production time distributions (G/G/1/N stations), and relied on estimations of the arrival rates,

service rates,and coefficients of variation to build the decomposition equations. Manitz (2015)

then extended the approach to assembly/disassembly systems. Colledani and Tolio (2011) pro-

posed a decomposition technique for production systems where the quality control is integrated,

in order to improve the design of such systems. Kim (2011) adapted the decomposition technique

to take autocorrelation and cross correlation into account. Colledani and Gershwin (2013) used

two-stage Markovian fluid models as a building block, to propose a decomposition technique for
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continuous flow lines with machines characterized by general Markovian fluid models and finite

capacity buffers.

Most of this literature, on the modelling of stochastic manufacturing systems, focuses on the

estimation of first moment performance measures. In this paper, we also study the evaluation of

distributions, besides expected values. More specifically, we look at the distribution of the cycle

time, i.e. the time passing between two jobs exiting a given station (also called the inter-departure

time). Papers of note which have investigated the estimation of variances and distributions in

other contexts include the following. Leemans (2001) and Tan (2003) were among the firsts to

propose methodologies to evaluate distributions, relying on state models. Leemans (2001) applied

matrix-geometric methods to derive the queue length distribution of a Markovian two-class two-

server queue, and then proposed an algorithm to compute the waiting time distribution. Tan

(2003) proposed an algorithm to generate the state space model of unreliable production lines

controlled by various pull policies (kanban, constant WIP, control point or base stock), and then

derived the distributions of various performance measures, notably the cycle time. More recently,

Assaf et al. (2014) focused on the variance of performance measures such as the cumulated output

or the cycle time on small production systems with unreliable machines. Lagershausen and Tan

(2015) proposed a method to compute the exact distributions of the cycle time for closed queueing

networks with phase-type distributions. Shi and Gershwin (2016) studied the distribution of the

time spent by one part in a two-station one-buffer line with unreliable machines, and then

extended their method to longer lines using a decomposition approach.

In this paper, we propose a decomposition method for assembly/disassembly manufacturing

systems with general distributions. The main contribution of this paper is in matching-up the

PMF discretization with the decomposition method to evaluate the performance of large systems,

and in showing that these two approaches indeed combine well, leading to accurate performance

evaluation. The reason is that PMF discretization allows fine cycle time distribution estimations,

and that these distributions are crucial in the application of the decomposition technique. Fur-

thermore, another originality of this research is in the accurate cycle time distribution estimation

itself, and in showing that it stays mostly true after applying the decomposition. The cycle time

distribution offers a much more detailed information than the usual average cycle time.

3 Probability Mass Fitting

As explained previously, in order to model manufacturing systems with general processing time

distributions, tractable distributions have first to be built, before applying analytical methods

(e.g. a decomposition method). A discrete Markov chain can be built if the processing time

distributions are discrete with regular intervals. Accordingly, the idea of probability mass fitting

(PMF) is simply to aggregate on regular discrete values the original probability mass around

them. In few words, PMF transforms a given distribution into a discrete one by aggregating the

probability mass distributed in the interval ((j−1)τ+α, jτ+α] on the point jτ , for j = 2, . . . , a,
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Fig. 2 Modelling of a two station line with a buffer of size one (a), with processing times (b) collected in the

form of histograms (c): construction of the tractable discrete distributions by PMF (d, with a = 2 for the first

distribution, a = 3 for the second), PH representation (e) and Markov chain modelling the evolution of the system

(f).

and the mass in [0, α] on τ . Increasing the number of discrete values (parameter a) will improve

the accuracy of the probability fitting but deteriorate the tractability of the model.

PMF is illustrated in Figure 2 on a two station line (Figure 2.a). An original distribution

(Figure 2.b) is transformed into a discrete distribution (Figure 2.d) simply by aggregating the

probability masses on discrete values (a = 2 for the first distribution, a = 3 for the second) with

regular distances between them (parameter τ). Here, the probability masses are aggregated in

the middle of the interval, i.e. α/τ = 0.5.

From the transformed discrete distributions, the behavior of the system can be modeled by a

discrete Markov Chain, i.e. using a state model. The Markov chain given in Figure 2.f lists all the

possible recurrent states of a two station line and the transitions between these states. The first

symbol of a state refers to the first station, the second to the buffer and the third to the second

station. Each station can be starved (S), blocked (B) or in some stage of processing (for example,

1 means that the station already spent one time step working on the current job). Each buffer

is described by its content (0 or 1 here, as the line has a buffer of size one). For example, two

transitions are possible from 113, depending if the first station continues the same job or finishes

it. In the first case, the new state will be 201 (the second station ends and takes the job from

the buffer). The probability of this transition is 0.6, given in the PH representation of Figure

2.e. In the second case, the first station ends its job and places it in the buffer, the new state

is thus 111. From the Markov chain and its stationary probabilities, the performance measures

can be computed. For example, the throughput of a station is given by the production rate of

this station (known from the processing time distribution of the station) times the probability
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Fig. 3 Original continuous distributions (beta(2,2) and triangular(0,1,0.5)) and discretized distributions by PMF

(α/τ = 0.5), with a = 5, 10 and 20 discretization steps.

of the station to be working (which is simply the sum of the stationary probabilities of all

the states where the station is working, not starved or blocked). In the example of Figure 2,

the throughput of the second station is its production rate times the probability it is working

(one minus the stationary probability of state 20S). This methodology can be applied to model

virtually any manufacturing system, but is limited to small networks (less than five stations)

due to the explosion of the Markov chain state space and the prohibitive computational effort

required for larger systems (Tancrez et al., 2011).

Probability mass fitting has various advantages. First, it is simple and intuitive. It can be

refined (decreasing the interval size τ , or, equivalently, increasing the number of discrete values

a) and, at the limit, it tends to the exact distribution. The accuracy of the approximation can be

chosen according to the affordable computational effort. Other characteristics of PMF come from

the fact that it builds discrete phase-type distributions (and not continuous). Bobbio et al. (2004)

summarized the advantages of discrete PH distributions: their ability to approximate original

distributions with a low coefficient of variation, with abrupt changes, with finite support, or with

deterministic values. Neuts (1981) argues that continuous phase-type distributions are better

suited to model heavy tails. He however notes that continuous PH distributions are not well

suited to model delayed distributions and distributions with steep increases or decreases. These

characteristics imply that PMF is better suited to model reliable stations with manual operations.

This source of uncertainty leads to processing time distributions on a rather small finite support,

which can be efficiently fitted using PMF (with a small number of discrete values a). On the

opposite, failures and effective process times including the repair time (Hopp and Spearman,

1996) will lead to a larger distribution support and will thus be less efficiently modelled using

PMF. This is why we suppose manual reliable stations by default (see Section 1).

In this paper, we profit in particular from another valuable advantage: probability mass fitting

preserves the shape of the distribution. In fact, it could have been called “shape fitting”. This

point can even be thought as a motivation of the idea of PMF. It is illustrated in Figure 3.

Moreover, in the next Section, we show that this property stays true after applying the state

model: the shape of the cycle time distribution is conserved. This characteristic, the shape



Decomposition for assembly/disassembly systems 9

conservation, makes a valuable difference with moments fitting methods, for example, which

sums up the information in two or three numbers and looses information about the shape of the

distribution or the percentiles (Pearson et al., 1979). In the literature, visual comparisons of the

distribution functions is a common way to evaluate the adequacy of the fitting (see for example

the extensive distribution fitting methods comparison study by Lang and Arthur (1997)).

4 Cycle Time Distributions

In this Section, we show that, using probability mass fitting, shape conservation does not only

hold for the original processing time distributions of the stations but also holds for their cycle

time distributions (i.e. including blocking and starvation times). While the literature focuses

on the expectation of performance measures, complementary information regarding their distri-

bution can be very useful in order to reflect the stochastic nature of a manufacturing system.

Furthermore, a detailed and reliable estimation of the cycle time distribution of a station is

crucial in the application of the decomposition technique (see Section 5).

4.1 Computation

To begin, we explain how the cycle time distribution of stations of small manufacturing systems

can be computed from the modelling presented in the previous section. By the cycle time dis-

tribution of a station, we mean the distribution of the time passed between two jobs exiting a

given station. The cycle time distribution is possibly different for each station, and differs from

the processing time as it includes the blocking and starvation times. In the discretized time, the

cycle time distribution is a discrete phase-type distribution, and it can be modelled as the time

until absorption of a discrete Markov chain with one absorbing state. It is fully characterized by

the transition matrix of the Markov chain and the initial probabilities for starting in any of the

states of the chain (Neuts, 1981).

The transition matrix characterizing the distribution of the cycle time of a station is deduced

from the Markov chain modelling the evolution of the system (see Figure 2.f). In this Markov

chain, a transition from a state where station i is working or blocked to a state where station i

is starved or in its first stage of processing (symbol 1) corresponds to one unit leaving station

i. These transitions, from [1, 2, . . . , a or B] to [S or 1], are highlighted (dashed) in the left-hand

side of Figure 4, for the second station. They are the transitions that have to be modified to get

the transition matrix of the cycle time PH distribution of station i = 2. The departure state of

these transitions stays the same but the transition goes to the absorbing state of the Markov

chain characterizing the PH distribution. Informally said, reaching the absorbing state means

that one item leaves the station, and that the cycle time thus ends. The Markov chain of the PH

cycle time distribution (for the second station) is given in Figure 4 for a two station line. This
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Fig. 4 Markov chain modelling the evolution of two station line with a buffer of size one (left-hand side), and

Markov chain associated with the phase-type distribution of the cycle time of the second station (right-hand side).

illustrates how the Markov chain modelling the evolution of the system, given in the left-hand

side, is modified to get the phase-type distribution.

Besides the transition matrix, the other information needed to characterize a phase-type

distribution is the initial probabilities of starting in any of the chain states. In our case, the

transitions mentioned previously (from [1, 2, . . . , a or B] to [S or 1]) correspond to the end of one

cycle time and also to the beginning of the next one. The initial probabilities are thus positive

for the destination states of these transitions, and equal the probability for a cycle time to start

in these particular states. The initial probability of a state s is the sum, for all these transitions,

of the stationary probability of the departure state of the transition multiplied by the transition

probability to s. The vector of initial probabilities pinit can be computed as follows:

pinit =
π Pout

π Pout e
,

where Pout is the matrix of the transition probabilities from [1, 2, . . . , a or B] to [S or 1] (on

station i), i.e. corresponding to the beginning of a cycle time, π is the vector of the stationary

probabilities of the states of the Markov chain modelling the evolution of the system, and e is a

column vector of ones.

The cycle time distribution of any station can thus be computed in the PMF modified system.

It is a discrete phase-type distribution, characterized by its transition matrix and its initial

probabilities. The computation does not require any additional matrix inversion. Thanks to

a mature theory (Neuts, 1981), the probability density function can be formulated, and the

moments can be computed, for example.

4.2 Shape Conservation

In the previous Section, we show that the cycle time distribution of any station can be computed

in the modified system with PMF discretized distributions. We now argue that it is a good

approximation of the cycle time distribution in the original system with general distributions. In
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Fig. 5 Cycle time distributions computed, using PMF (α/τ = 0.5), for the three stations of a line (beta(2,2),

uniform(0,1) and triangular(0,1,0.5) processing time distributions), with 5 (dashed), 10 (dash-dot, gray) and 20

(solid) discretization steps.

other words, the shape conservation of the processing time distributions (see Figure 3) extends

to the cycle time distributions.

We first have a look at the following illustrative manufacturing system: a three station

line with buffers of size one and processing time distributions beta(2, 2), uniform(0, 1) and

triangular(0, 1, 0.5). Figure 5 depicts, for each station, the computed discrete cycle time distribu-

tion. The three graphs show how starving and blocking impact the cycle time. The distributions

are different from the beta, uniform and triangular processing time distributions (see Figure 3).

The cycle time distributions are computed with 5, 10 and 20 discretization steps. As our PMF

distribution fitting refines and converges when the number of steps increases, it can be supposed

that the cycle time distribution computed with 20 steps is accurate. Figure 5 reveals that the

shape of a cycle time distribution appears to be independent of the number of discretization

steps used. The distribution is of course more detailed with 20 steps but the distributions com-

puted with 5 or 10 steps show the same shape. It tends to show that the cycle time distribution

estimations with 5 or 10 steps are already good.

To further convince of the accuracy of the cycle time distribution approximation, we compare

the computation(PMF with α/τ = 0.5 and a = 10) to the result of a simulation, on a three

station line (uniform distributions, zero storage space), for the third (end) station. The results

are given in Figure 6. The distributions, their shapes and values, show to be remarkably similar.

As another example, let us consider an assembly system with four stations. The two first stations

are in series, and the fourth station assembles the jobs coming from the second and third stations.

The buffer sizes equal one except for the buffer between the third and fourth station, whose size

is zero. The processing time distributions are beta(2,2), uniform(0,1), triangular(0.1,0.9,0.6) and

beta(5.5,6). Figure 7 shows that the cycle time distribution estimation (fourth station) is very

close to the simulation result. Note that many other examples were tested, showing the same

behavior (see Tancrez (2009)).

In conclusion, we may say that the cycle time distributions computed by our modelling

method have a shape close to the original ones (with general processing time distributions). The
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Fig. 6 Cycle time distribution of the third and last station of a line, with uniform processing time distributions,

computed using PMF (left) and computed via simulation (right).
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Fig. 7 Cycle time distribution of the fourth and last station of an assembly system, with various processing time

distributions, computed using PMF (left) and computed via simulation (right).

computation of a good cycle time distribution estimation is a significant advantage, compared to

other fitting methods which are unable to do so, such as moments fitting in particular (Pearson

et al., 1979). The distribution offers more detailed information on the behavior of the system,

compared to the isolated expectation. It allows to estimate measures such as the variance or the

percentiles, and is crucial in the application of the decomposition technique, as explained in the

next Section.

5 Decomposition

As any exact model, the modelling method presented in Section 3 and illustrated in Figure 2 has

one main weakness: its complexity, which limits the applicability of the method. To model larger

systems, we study the application of decomposition (see Section 2) after probability mass fitting.

With decomposition, the computational time is drastically decreased, compared to a state model.

We implement the method, following standard principles for decomposition methods, for lines

and assembly/disassembly manufacturing systems. A system is decomposed into two (virtual)

station subsystems, which are analyzed using the state model presented in Section 3. Then, the

processing time distributions of the virtual stations are iteratively modified to approximate the

impact of the rest of the network, adding estimations of the blocking and starving distributions.
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Fig. 8 Decomposition of an assembly system. Fig. 9 Decomposition of a disassembly system.

In this context, the ability (shown in Section 4) of PMF to reliably approximate the cycle

time distributions is a valuable feature of PMF for the application of the decomposition method.

The cycle time of one station is the average time between the departures of two units from the

station. The cycle time distribution thus derives from the processing time distribution but is

modified due to the rest of the system (for example, the cycle time distribution in Figure 6 is a

modification of the uniform processing time distribution). Starvation time is added due to the

previous stages and blocking time is added due to the blocking time. From the estimation of the

cycle time distribution of a station, and from its processing time, it is thus possible to deduce

estimations of the blocking and starvation time distributions (even conditional distributions). As

mentioned previously, those distributions are used to update the processing time distributions

of the virtual stations in the decomposition technique. The reliable estimations of the blocking

and starvation time distributions provided by PMF are thus valuable when applying the decom-

position technique. It hints that PMF should well with the decomposition technique (it is shown

with experimental results in Section 6).

The decomposition technique we implement decomposes the systems into two station sub-

systems (similar to Dallery and Frein (1993)), as illustrated in Figures 8 and 9. The original

system is denoted T and the subsystems are denoted T (i) (i = 1, 2, . . . ,mb, with mb the number

of buffers). There is one subsystem for each buffer in the original system. The buffer sizes of

the subsystems are kept equal to the corresponding original buffer sizes. A subsystem T (i) is

made of two “virtual” stations: an upstream station Su(i) and a downstream station Sd(i). The

processing times of the virtual stations are modified so that the flow of items through the sub-

system buffer is close to the flow in the original buffer (almost the same arrivals and departures,

starvations, blockages, and buffer levels). In other words, upstream and downstream stations of

each two station subsystem summarize the effects on the buffer of the entire upstream portion

of the original system and the entire downstream portion of the original system, respectively

(Dallery and Gershwin, 1992).
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Compared to an isolated two station subsystem, in the original system the upstream portion

may cause starvation in a station, if this portion has been comparatively slow. Consequently, we

have to modify the processing time distribution of the virtual station Su(i) to include the omitted

starvation time. The latter can be deduced from the previous subsystem T (i − 1) (potentially

more than one for an assembly station). Indeed, a starvation of station Si in the original system

corresponds to a starvation of the second virtual station Sd(i − 1) in the previous subsystem

T (i−1). The processing time distributions of stations Su(i) are thus iteratively updated, starting

from the beginning of the system to its end (i = 1, 2, . . . ,mb), using the information from the

previously computed system T (i−1) and station Sd(i−1). In the particular case of an assembly

station, the starvation may be caused by several stations (each of its predecessors). The omitted

starvation time to be added is thus deduced from several subsystems, namely the subsystems

corresponding to the preceding buffers. An example is given in Figure 8. On this example, the

algorithm first analyzes subsystems T (1) and T (2). This allows to evaluate the starving caused

by S1 and S2 on the assembly station S3. Subsequently, the starving caused by both predecessors

can be consistently1 added to the processing time of the virtual station Su(3). The subsystem

T (3) can then be analyzed, and so on.

Similarly, compared to an isolated two station subsystem, in the original system the down-

stream portion may cause blocking in a station. The processing time distribution of Sd(i) has thus

to be modified in order to include the omitted blocking time, which corresponds to the blocking

time in the first virtual station Su(i + 1) of the next subsystem T (i + 1). The processing time

distributions of stations Sd(i) are thus iteratively updated, starting from the end of the system

(i = mb,mb−1, . . . , 1), using the information from the previously computed system T (i+1) and

station Su(i + 1). In particular, a disassembly station can be blocked by each of its successors,

and the omitted blocking time to be added is thus deduced from the subsystems corresponding

to all the succeeding buffers. In Figure 9 for example, the algorithm analyzes subsystems T (2)

and T (3) in order to estimate the blocking caused by S3 and S4 on the disassembly station S2.

Subsequently, the blocking caused by both successors is consistently2 added to the processing

time of the virtual station Sd(1). The subsystem T (1) can then be analyzed, and so on.

All in all, the processing time distributions of the virtual stations are thus updated iteratively,

in a loop. The algorithm first goes forward and updates the processing times of the upstream

stations Su(i) (from the starvation time of previous Sd stations). It then goes backward and

updates the processing times of the downstream stations Sd(i) (from the blocking time of next

Su stations). The processing time distributions of the subsystems T (i) are thus progressively

updated, in several loops, and the algorithm converges to an approximate model of the original

system T . This approximate model (each of the resulting subsystems) can then be used to

1 If S3 is starved by two preceding stations, the starving ends when each station has ended its job. The starvation

time to be added to Su(3) is thus the maximum of the starvation times computed on Sd(1) and Sd(2).
2 If S2 is blocked by two successors, the blocking ends when each of them has ended its job. The blocking time

to be added to Sd(1) is thus the maximum of the blocking times computed on Su(2) and Su(3).
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a m = 2 m = 3 m = 4 m = 5 m = 10 m = 20

4 0.1 (0.1) 0.2 (0.1) 0.2 (0.3) 0.3 (4.8) 0.7 1.1

6 0.1 (0.1) 0.2 (0.2) 0.3 (1.2) 0.4 (41) 0.8 1.3

8 0.1 (0.1) 0.3 (0.3) 0.4 (4.7) 0.4 (240) 0.8 1.6

Table 1 Computational time (in seconds) of the decomposition method, using PMF, for lines with a total storage

space equal to two. The number m of stations and the number a of discretization steps vary. The computational

time of the exact state model is given under parenthesis.

estimate the performance measures of the original system. For example, the throughput of the

last station (when the algorithm converged, the throughput is equal for each of the subsystems),

can be computed on the second virtual (modified) station of the last subsystem T (mb), exactly

as for an exact state model (see Section 3).

In our case, the processing time distributions are discrete phase-type. This allows to compute

finer estimations of the starving and blocking times to be added in the virtual station processing

times. We are able to compute a discrete distribution of the starving (resp. blocking) time, which

basically gives the probabilities for the starving (or blocking) time to equal nτ (n = 1, 2, . . . , a).

Furthermore, the estimation can still be refined, as we can in fact compute the conditional

probability of a discrete starving (blocking) time, knowing the value of the preceding processing

time. In other words, we are able to compute the probability for the starvation time to equal

nτ , knowing that the preceding processing time equals n′τ . In short, we are able to compute

fine conditional blocking and starvation time distributions, while these distributions are crucial

in the decomposition technique, and, as seen in Section 4.1, probability mass fitting leads to

accurate estimations of these distributions. PMF discretization and decomposition should thus

combine well and lead to accurate performance evaluation.

The motivation behind the decomposition technique is to decrease the computational cost for

modelling large systems. To assess the complexity of the method, let us denote niter the number

of decomposition loops/iterations and a the number of PMF discrete values, and suppose, to

keep it simple, that b represents the average buffer size and that m ≈ mb (the number of stations

is similar to the number of buffers). We get that the computational cost is proportional to

2niter mba2 using decomposition, as m subsystems are analyzed twice in each iteration, and

each two-stations subsystem is analyzed using a state model with a number of Markov chain

states proportional to b2−1 a2. We thus see that the increase of the computational cost with the

system size (a, b, m) is much less steep than for an exact state model of the full system with

m stations (bm−1 am). In Tables 1 and 2, we give the actual computational time needed by the

decomposition method using PMF on production lines . Table 1 shows the impact of the number

of stations while Table 2 shows the impact of the total storage space. On both Tables, it can

be seen that the computational time stays low even with many stations, or with large buffers.

Compared to the state model (under parenthesis), the computational cost is much smaller for

large systems. Table 5 gives the computational time reached for large assembly/disassembly
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a BΣ = 2 BΣ = 4 BΣ = 6 BΣ = 8 BΣ = 10 BΣ = 20 BΣ = 40

4 0.2 (0.1) 0.2 (0.1) 0.2 (0.1) 0.2 (0.3) 0.2 (0.4) 0.2 0.3

6 0.2 (0.2) 0.3 (0.3) 0.3 (0.5) 0.3 (1.4) 0.3 (2.3) 0.4 0.6

8 0.3 (0.3) 0.3 (0.6) 0.4 (2.9) 0.4 (8.1) 0.4 (44) 0.7 1.2

Table 2 Computational time (in seconds) of the decomposition method, using PMF, for three station lines. The

total storage space BΣ =
∑

bi and the number a of discretization steps vary. The computational time of the

exact state model is given under parenthesis.

systems (m = 8), with various buffer sizes. Even if the computational times are a bit longer,

and increases with the buffer sizes, they stay low (in seconds). Finally, note that, in all our

experiments, the number of iterations of the decomposition method is quite small: it is around

five, independently of the system size parameters (a, b, m).

6 Computational Experiments

In this Section, we perform numerical experiments to show the efficiency of the decomposition

method combined with PMF. We focus on the computation of the cycle time, i.e. the time

between the departures of two units from the system. It is the inverse of the throughput, which

gives the number of items served in one time unit. We first analyze the accuracy of the expected

cycle time estimation on small systems and then on larger assembly/disassembly systems. We

also provide some comparison points with existing methods from the literature. Finally, we show

that cycle time distributions can also be accurately estimated using our decomposition approach.

6.1 Results on Small Systems

To begin, we analyze a set of small systems in order to allow the comparison with the exact

state model (see Section 3). The analyzed networks have three or four stations (line, disas-

sembly and assembly topologies). The total storage space of a network goes from zero to four

and is balanced among the buffers. The processing time distributions are chosen randomly from

ten distributions with various shapes (uniform(0,1), beta(1.3,1), beta(2,2), beta(4,4), beta(5.5,6),

beta(8,8), beta(10,9), triangular(0,1,0.5), triangular(0.2,1,0.3) and triangular(0.1,0.9,0.6)). In to-

tal, 1500 systems (50 for 5 storage space and 6 topologies) were analyzed. The number a of PMF

discretization steps equals 4, 6, 8 or 20 (20 is only possible with decomposition), and α/τ = 0.5.

The expected cycle time of the last station is estimated and then compared to simulation results.

The average relative errors (computed as |resultsimu − resultdecompo|/resultsimu) are given in

Tables 3 and 4. Note that the errors presented here are the errors made by the global modelling

method, on manufacturing systems with general processing time distributions. The errors have

thus two components: the error brought by the distribution fitting (PMF), and the error brought
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Line Disassembly Assembly

a m = 3 m = 4 m = 3 m = 4 m = 3 m = 4

4 0.69% (.47%) 1.14% (.46%) 0.96% (.51%) 1.38% (.46%) 0.93% (.50%) 1.37% (.46%)

6 0.53% (.20%) 1.05% (.21%) 0.78% (.22%) 1.30% (.21%) 0.76% (.22%) 1.28% (.21%)

8 0.51% (.12%) 1.01% (.13%) 0.74% (.13%) 1.28% (.13%) 0.71% (.13%) 1.25% (.13%)

20 0.52% 1.02% 0.74% 1.29% 0.71% 1.27%

Table 3 Average relative error when estimating the expected cycle time, in percent, reached by the decomposition

using PMF, the number of steps a and the number of stations m varying. The error reached by the state model

is given under parentheses.

a BΣ = 0 BΣ = 1 BΣ = 2 BΣ = 3 BΣ = 4

4 2.75% (0.48%) 0.97% (0.41%) 0.55% (0.45%) 0.57% (0.53%) 0.56% (0.53%)

6 2.93% (0.23%) 0.90% (0.19%) 0.32% (0.20%) 0.23% (0.23%) 0.29% (0.23%)

8 2.93% (0.14%) 0.90% (0.12%) 0.28% (0.12%) 0.22% (0.14%) 0.24% (0.13%)

20 2.99% 0.93% 0.25% 0.22% 0.23%

Table 4 Average relative error when estimating the expected cycle time, in percent, reached by the decomposition

using PMF, the number of steps a and the storage space changing (BΣ stands for
∑

b(i, j)). The error reached

by the state model is given under parentheses.

by the analytical model (decomposition). It can be compared with the errors made by the state

model (under parentheses), that give the errors coming only from the distribution fitting (PMF).

Table 3 shows that the proposed decomposition method leads to good accuracy. The relative

error on the expected cycle time is in the order of one percent (with general processing time

distributions). It can also be seen that the topology (line, disassembly, assembly) has little impact.

On the opposite, the accuracy level tends to deteriorate when the number of stations increases

(we show in Section 6.2 that it is not confirmed with larger systems). Table 4 shows the impact

of the buffer sizes on the expected cycle time estimation. The decomposition approximation

improves when the storage space increases. This is not surprising as the blocking and starvation

times decrease when the storage space increases, and as the main approximation concerns them

when a system is decomposed.

The impact of the number of discretization steps a is quite low. The global error is composed

of the PMF distribution fitting error (revealed by the error made by the state model) and of the

decomposition error, and the former is significantly smaller than the latter. From a = 8, and

even a = 6 in most cases, the PMF error seems to have no impact on the global error anymore.

In these cases, the relative errors shown on Tables 3 and 4 are nearly equal to the decomposition

error (revealed with a = 20). When the decomposition is used, the distributions may thus be

discretized in 6 or 8 steps.
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a i = 1 i = 2 i = 3 i = 4 i = 5

4
1.39% 0.48% 0.65% 0.70% 0.70%

3.1 sec. 3.6 sec. 3.9 sec. 3.7 sec. 4.0 sec.

6
1.40% 0.26% 0.30% 0.33% 0.29%

3.5 sec. 5.3 sec. 5.5 sec. 6.6 sec. 7.5 sec.

Table 5 Average relative error when estimating the expected cycle time, in percent, reached by the decomposition

using PMF on large assembly/disassembly systems (m = 8), the number of steps a and the storage space varying

(i refers to all buffer sizes being in the interval [2(i− 1) 2i]). The computational time is given in italic.

i = 1 i = 2 i = 3 i = 4 i = 5

Smallest error (min) 0.03% 0.00% 0.00% 0.00% 0.00%

10th smallest error 0.17% 0.05% 0.08% 0.05% 0.02%

50th error (median) 0.92% 0.19% 0.29% 0.35% 0.31%

10th largest error 3.27% 0.57% 0.48% 0.57% 0.50%

Largest error (max) 6.74% 1.32% 0.86% 0.98% 0.90%

Table 6 Spread of errors when estimating the expected cycle time, among 100 experiments for each storage

space (i), in percent, reached by the decomposition method using PMF on large assembly/disassembly systems

(m = 8), with 6 steps (a = 6) and the storage space varying (i refers to all buffer sizes being in the interval

[2(i− 1) 2i]).

6.2 Larger assembly/disassembly systems

In this Section, we show how the decomposition method using PMF behaves on larger assem-

bly/disassembly manufacturing systems. For this, we analyze systems with the topology shown

in Figure 1, with eight stations and seven buffers, a disassembly station and an assembly station.

We run 5 sets of 100 experiments. For each experiment, the buffers sizes are randomly chosen

in the interval [2(i − 1) 2i], where i = 1, 2, . . . , 5 is the index of the set of experiments (i.e. the

buffer sizes are chosen among 0, 1 or 2 in the first set, 2, 3 or 4 in the second set, etc.). The

distributions are chosen among the ten used in the previous experiments (see Section 6.1). For

these 500 networks, we apply the decomposition method, using PMF (α/τ = 0.5) with a = 4 or

6, to estimate the expected cycle time, and compare the results to simulation results.

The accuracy level reached on the expected cycle time is given in Table 5. The Table reveals

that, even for large networks, the accuracy is good (note again that these are the errors made by

the global modelling method, with general processing time distributions). In fact, the accuracy

does not seem to deteriorate when the system size increases (see Table 4). Table 5 also confirms

that the accuracy of the estimations tends to improve when the buffer sizes increase, while it

is less good with very small buffers (size 0, 1 or 2; i = 1). To further assess the reliability of

our decomposition method, Table 6 displays the spread of the errors (with a = 6). Each column

corresponds to one storage space configuration, i.e. 100 experiments. The errors are sorted in

ascending order: the 1st (minimum), 10th, 50th, 90th and 100th (maximum) are given. With
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buffers of size 2 or larger (from i = 2), an error smaller than one percent is basically guaranteed

(except for few cases when i = 2), while an error smaller than 0.5 percent is very likely (with

a probability close to 90%). We also see that errors can reach very small values (close to zero).

However, Table 6 also confirms that our method is less accurate and less reliable with very small

buffers (i = 1), as the error may become quite large in some cases (several percents).

On all experiments, with any storage space, we get an average relative error of 0.52% (resp.

0.78%) with 6 (resp. 4) discretization steps. For buffer sizes larger than two, the relative errors is

around 0.3% with six discretization steps. These experiments confirm the value of our decompo-

sition approach: it allows to accurately evaluate the expected cycle time of large networks with

general distributions in a short computational time (given in italic in Table 5).

6.3 Comparison with Available Methods

In this Section, our goal is to assess the quality of our results by comparing to results from the

literature. Unfortunately, the comparison reveals to be limited, as few results from the literature

are readily comparable, with a limited number of papers analyzing systems with phase-type

distributions and similar assumptions (finite buffers in particular).

Altiok (1989) provides four examples of three station lines under saturation, with buffers of

size three. His decomposition leads to average errors ranging from 2.31% to 6.87% (see Table 4,

in Altiok’s examples BΣ = 6). Altiok (1989) also provides three other examples of unsaturated

lines (Poisson arrivals and finite buffer in front of the first station). The relative errors are 1.3%

(buffer sizes of 8, 5 and 3), 4.26% (buffer sizes of 5, 3 and 2), and 3.69% (5 stations, buffer sizes

larger than 2). In his book, Altiok (1996) gives two other examples of unsaturated lines (Poisson

arrivals and infinite buffer in front of the first station). On these examples, his decomposition

method leads to relative errors of 0.35% (three stations, buffer sizes of three) and 1.02% (five

stations, buffer sizes larger than four). Gun and Makowski (1987) do not give any results on the

cycle time approximation. van Vuuren and Adan (2006) propose and test a decompositon method

for assembly systems (without stations in series, and without disassembly stations). They apply

the method on a set of experiments with 768 assembly systems, with 3, 5 or 9 stations and

buffers of sizes 0, 2, 4 or 8, and report an average relative error of 1.5%. This can be compared

to the 0.52% average relative error found in Section 6.2 with 6 PMF discretization steps (recall

that it includes the distribution fitting error). To allow better comparison with Table 5, the

average relative errors found by van Vuuren and Adan (2006) are 2.35%, 1.68%, 1.05% and

0.82%, for buffers of sizes 0, 2, 4 or 8 (distribution fitting error not included). Bierbooms et al.

(2013) analyse lines with finite buffers and breakdowns, and report results on a large test set :

0.57%, 1.03%, 1.65% and 2.18%, with 4, 8, 12 and 16 stations (buffer sizes range for 1 to 50).

Some other references can be cited as limiting cases, even if the system assumptions are pretty

different. Brandwajn and Jow (1988) were among the first authors to propose a decomposition

method. They studied lines with blocking and exponential processing time distributions. On nine
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Fig. 10 Cycle time distribution of the third and last station of a production line (uniform processing time

distributions, no storage space). The left-hand side gives the distribution computed by the decomposition using

PMF (α/τ = 0.5) with a = 10 discretization steps. The right-hand side gives the distribution computed via

simulation.

examples, their decomposition technique lead to a 0.89% average relative error, with buffer of

sizes larger than 2 on all examples. The results brought by the generalized expansion method

can also be compared. Andriansyah et al. (2010) analyse bufferless multi-server manufacturing

systems with exponential processing time distributions. Their networks are not saturated, but

are fed by an arrival process. They report an average relative error of 2.5% on about twenty

examples. Manitz (2015) studies assembly/disassembly systems with general production time

distributions (G/G/1/N stations), and compares the estimations of the throughput (the inverse

of the cycle time) to simulation results, assuming gamma distributions. He reports estimations

“within a 5% error interval” and “even better for most cases”. The detailed results are displayed

but the average error is not given. It appears that a good share of the errors are over 1%.

Even if this analysis is limited, our results compare favorably. It tends to show that PMF

indeed brings an improvement in the application of decomposition. As shown in Section 4, PMF

allows to accurately approximate the cycle time distributions, and thus the starving and blocking

time, leading to a more accurate decomposition of the system.

6.4 Cycle Time Distributions

One of the advantages of the proposed modelling method comes from its ability to compute

good cycle time distribution approximations (see Section 4.2). In this Section, we test whether

this ability remains true when decomposition is used instead of a state model. The cycle time

distributions are simply computed on the decomposed subsystems with the modified processing

time distributions. The subsystems are analyzed by a state model and the computation explained

in Section 4.1 can thus be applied.

To begin with, we analyze a three station line with uniform processing time distributions and

no storage space, as in Figure 6. Figure 10 shows the cycle time distribution estimation for the

last station, using decomposition (left-hand side). It can be compared to the result of a simulation

(right-hand side). We see that the cycle time distribution estimation is still valuable when using
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Fig. 11 Cycle time distribution of the last station of a large assembly/disassembly system (uniform distributions,

buffers of size 2), computed using decomposition (left) and computed via simulation (right).
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Fig. 12 Cycle time distribution of the last station of a large assembly/disassembly system (beta(2,2) distributions,

buffers of size 4), computed using decomposition (left) and computed via simulation (right).

decomposition. However, it is not as good as the result obtained with a state model, shown in

Figure 6. For example, the values just before one are: 0.972 with simulation, 0.972 with the exact

PMF state model, 1.013 with decomposition. The values just after one are: 0.519 with simulation,

0.512 with the exact model, 0.617 with decomposition. The less accurate approximation is not

surprising, as we already observed that the decomposition is less accurate, and particularly with

buffers of size zero.

We now illustrate the accuracy of the cycle time distribution estimation on larger systems,

with larger buffers. We look at two instances of the assembly/disassembly system used in the

previous experiments set, and shown in Figure 1. In the first case (Figure 11), the buffer sizes

equal two and the processing times are uniformly distributed, while in the second case (Figure

12), the buffer sizes equal four and the processing times distributions are beta(2,2). For both

Figures, the left-hand side shows the cycle time distribution estimation using decomposition (and

PMF with a = 10 and α/τ = 0.5), while the right-hand side gives the result of a simulation.

We see that the cycle time distribution estimation is still a reliable approximation, in its shape

and values, when using decomposition. For example, in Figure 11, the values just after one are:

0.268 with simulation, and 0.286 with decomposition. In Figure 12, the maximum values of the

distributions are: 1.431 with simulation, and 1.425 with decomposition.

The ability to compute a reliable approximation of the cycle time distribution (except with

very small buffers) is a valuable feature of probability mass fitting, compared to other concurrent
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methods (moments fitting in particular). It is true when a state model is coupled to PMF and

also mostly true when the decomposition technique is applied. The distribution provides more

information on the behavior of the system, compared to the isolated expectation. Percentiles, for

example, help the manager to evaluate the risk and the service level of the system.

7 Conclusion

In this paper, we propose an efficient methodology to evaluate the performance of stochastic

manufacturing systems with general characteristics: assembly/disassembly layout, general pro-

cessing time distributions, finite storage spaces, and a potentially large number of stations. To

model these general manufacturing systems, we first apply probability mass fitting (PMF) to

fit general distributions to discrete phase-type distributions. Then, we apply decomposition: the

system is decomposed into two station subsystems and the processing time distributions of the

virtual stations are iteratively modified to approximate the impact of the rest of the network,

adding estimations of the blocking and starving distributions. The ability of PMF to reliably ap-

proximate the cycle time distributions (and thus the blocking and starvation time distributions)

is an important advantage of PMF for the application of the decomposition method.

Our computational experiments show that the decomposition method coupled to PMF pro-

vides accurate estimations. The accuracy improves when the storage space increases (it is sensibly

less good with zero buffers). The global error is made of the PMF error and the decomposition

error. Both errors are shown to be limited, and from 8 discretization steps the PMF error is

negligible. On a set of large assembly/disassembly manufacturing systems, the average global

error equals 0.3% with buffer sizes larger than two, and 1.4% with buffer sizes smaller than two

(a = 6). Comparing with results available in the literature, it seems that probability mass fitting

has a positive impact in the application of the decomposition technique, due to its ability to

accurately approximate cycle time distributions. Furthermore, we showed that using PMF the

decomposition approach allows to compute reliable estimations of the cycle time distributions

(except with very small buffers). This is a valuable feature as it offers more detailed information

than the usual expected performance measures.

The main contribution of this paper is in matching-up the PMF discretization with the

decomposition method to evaluate the performance of large general assembly/disassembly man-

ufacturing systems, and in showing that these two approaches indeed combine well. Future

research could extend these results to other configurations such as split-and-merge networks,

closed manufacturing systems, or multiple-server networks. It could also aim at coupling the

performance evaluation with optimization methods (for buffer sizing for example). Finally, the

distributions approximations could be further explored, beyond the cycle time distribution, in

particular looking at the distribution of the time spent by a part in the entire production system.
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